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Classical spin clusters: Integrability and dynamical properties

N. Srivastava, C. Kaufman, and G. Muller

Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881-0817

E. Magyari, B. Weber, and H. Thomas

Institut fiir Physik, Universitdt Basel, CH-4056 Basel, Switzerland

A pair of exchange-coupled classical spins with biaxial exchange and single-site anisotropy
represents a Hamiltonian system with two degrees of freedom for which the integrability
guestion is nontrivial. We have found that such a system is completely integrable if the model
parameters safisfy a certain condition. For the integrable cases, the second integral of the
motion (in addition to the Hamiltonian), which guarantees integrability, is determined
explicitly. It can be reconstructed numerically by means of time averages of dynamical
variables over al! trajectories. In the nonintegrable cases, the existence of the time averages is
still guaranteed, but they no longer define an analytic invariant, and their determination is
subject to long-time anomalies. Our numerical calculation of time averages for two lines of
initial conditions reveals a number of interesting features of such nonanalytic invariants.

Notwithstanding the overwhelming success of Max-
well’s theory of classical electromagnetism for numerous ap-
plications, magnetism as a cooperative phenomenon in mat-
ter remained a mystery until the advent of gquantum
mechanics. The breakthrough came with the discovery by
Heisenberg and Dirac of the exchange interaction as a purely
quantum mechanical mechanism responsible for cooperat-
ive magnetism. Ironically the most immediate progress in
understanding the physical properties of macroscopic sys-
tems of exchange-coupled electron spins was achieved in the
context of theories in which these intrinsically nonclassical
objects were adapted to the formalism of classical Hamilto-
nian dynamics. Classical spin dynamics of magnetic insula-
tors, which employs classical counterparts of guantum-me-
chanical exchange Hamiltonians, has become very useful
both in statistical mechanics and in magnetic materials re-
search. However, only very recently attention has been given
to nonintegrability effects in spin dynamics.'™ Hamiltonian
chaos in classical spin dynamics exhibits a number of pecu-
liar features associated with the following properties which
are atypical for classical dynamicel systems: the spin Hamil-
tonian is not of the type “kinetic energy plus potential ener-
gy”; the energy is bounded by a finite interval; the phase
space is a compact manifold. The objective of the work re-
ported here is to study time averages in nonintegrable dy-
namical systems and thus prepare the ground for a detailed
study of nonintegrability effects in time-dependent correla-
tion functions of classical spin systems.

Consider a system of IV localized classical three-compo-
nent spins §;, / = 1,...,N specified by some interaction Ham-
iftonian H(8,...,.8y ). Its time evolution is governed by the
Hamitton equation of motion

s,

dt
The Poisson brackets for classical spin variables (the sym-
plectic structure for classical spin dynamics) are construct-
ed via the condition that the resulting Hamilton equation of
motion {1} is consistent with the Heisenberg equation of
motion for quantum spin operators:

={HS,}, I=1,.,N (D
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{8780 = -8, Ye?sy). (2)
v

1f the classical spins S, are expressed in terms of spherical
coordinates as 8, = S(sin &, cos &,, sin &, sin #;, cos &)
then a set of cancnical variables is given by p, = § cos ¥,
g, = ¢,. Thus z system of N classical spins specified by an
energy function H(S,,..,Sy) represents an autonomous
Hamiltonian system of NV degrees of freedom. The system is
completely integrable if there exist N distinct integrals of the
motion in involution®:

I (8,...8y)=const, k=1,._N, {3

with{7, [, } = Ofork, k' = 1,...,N. A completely integrable
N-spin system is characterized by the property that all
phase-space trajectories are regular, i.e., confined to N-di-
mensional tori and described by a discrete Fourier spectrum.
The N-tori are, in fact, obtained by the intersection of the N
(2N — 1)-dimensional hypersurfaces 7, = const. If fewer
than & independent integrals of the motion in involution
exist, the foliation of the phase space by invariant tori is
incomplete, thus leaving room for new types of trajectories
in addition to regular ones: trajectories whose course
through phase space is strikingly erratic and extremely sensi-
tive to slight changes in initial conditions and whose Fourier
spectrum is continuous. These are the chaotic trajectories.’

In a previous study,* we have studied the integrability
problem for a system of two exchange-coupled spins, speci-
fied by a Hamiltonian of the general form

H= 3 {7,859+ (I/)4,[ (59 + (SH]},
o = xyz
4

which inciudes both exchange and single-site anisctropy.
We have shown that an independent integral of the motion
(in addition to H) quadratic in the spin variables exists if
and only if the model constants satisfy the eguation

(4, — A, (4, — A4, —A4,)

+ > Jaldy—4,)=0 (5)

afy = cycl(xyz)
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IfA4, =4, = A4_, the second invariant has the form

I=—  J,JSYSY
aBy = cyei(xyz)
+%a%zfi[(sg’)z+(sg>2}. (6)
if not all three 4, are equal, it is given by
I=a§:zgﬂs‘{‘ % (7
where -

8o =J,(Jy +Jg +J,)+ (4, — 4/,
+ (4, —A )~ (Ay —Ag)(A, —4,)

with affy = cycl(xyz). Moreover, we have provided nu-
merical evidence that the violation of condition (5) implies
not only the nonexistence of a2 quadratic invariant but the
nonexistence of a second independent analytic invariant in
general.

For the present work we consider an X ¥-type two-spin
model with single-site anisotropy in the xy plane

H, = — (S]85 + 5153 + (1/2)a[ (ST

+ (8§32 —(§7)* - (§3)°], (8

which is nonintegrable except for & = 0, + 1. In Fig. | we
show a number of phase-space trajectories for the case
a = — 1/2 of this model. Al} trajectories shown are focated
on the same 3D energy hypersurface £ = — 0.09957501 in
4D (&, ¢y, 35, ¢,) space. For the purpose of better visnaliza-
tion, Fig. 1 actually shows only the projection onto the (¢,
¢,) plane of the two Poincaré surfaces of section of these
trajectories which are defined by (a) &, = #/2, 52 <0 and
(b} ¢, = 7/2, &, > 0. In this representation, regular trajec-
tories appear as 1D objects (lines) if they are guasiperiodic

FIG. 1. Various phase-space trajectories of the nonintegrable classical two-
spin  model H, with a= -1/2, all for the same energy
E = — 0.09957501. Shown is the projection onto the (¥, ¢,) plane of the
two Poincaré surfaces of section of these trajectories which are defined by
{a) &, =n/2, ¢, <0and (b) &, = 7/2, 192 = 0. The dashed lines A and B
specify two sets of initial conditions for which time averages of 2 dynamical
variable over single trajectories are presented in Fig. 2.
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or as finite sets of points if they are periodic. The chaotic
trajectories, on the other hand, are represented by more
complicated sets of phase points, which spread over 2D re-
gions on the (&, #,) plane.

The equations of motion (1) for our model (8) are in-
variant under six discrete symmetry transformations: the
three twofold rotations about the coordinate axes 5™, 8%, §°,
in spin space, and the three reflections at the corresponding
coordinate planes combined with time reversal. Whereas the
Poincaré hyperplane J, = #/2 is invariant under all six
transformations, the direction of any trajectory through this
plane is left invariant only by two transformations: (7)
(5,8, ) (-8, —58,5), which corresponds 1o
(3¢} — (e + ), (i) (57,8,5)- (8., —5) com-
bined with time reversal, which corresponds to (,¢) — (7~
&.¢). The Poincaré cut of any trajectory then either has the
symmetries (i) and (ii} or is transformed into the cut of a
symmetry equivalent trajectory. In Fig. 1 we observe that
one of the chaotic trajectories {the most prominent cne)
appears to have the full symmetry (7 + &), whereas the regu-
lar trajectories break either symmetry (ii) (top and bottom)
or symmetry {1} (center). That particular chaotic trajectory
acts as the separatrix between two types of regular motion:
precession of spin 8, about the z axis (top and bottom),
accompanied by a considerable amount of nutation, and
quasiperiodic oscillations of various complexity without
precession (center). There are two pairs of primary fixed
points on the axis <, = #/2 in Fig. 1: a pair of hyperbelic
fixed points on the chaotic separatrix and a pair of elliptic
fixed points in between. Furthermore, we can identify a pair
of secondary elliptic fixed points representing periodic tra-
jectories of pericd 2 (in the cut), whick originate from de-
stroyed rational tori about the primary fixed point. These
secondary elliptic fixed points are accompanied by an egual
number of hyperbolic ones and surrounded by chaotic separ-
atrices. Similar patterns occur at the rational tori of second-
ary elliptic fixed points and so on, ad infinitum.’

Even though the model specified by Hamiltonian &,
becomes nonintegrable as the parameter « is assigned values
different from 0, - 1, which implies the nonexistence of 2
second analytic invariant in addition to A, the abundance
of invariant tori observed in the phase flow suggests that
fragments of the second invariant 7 survive in some form. In
the following we outline a procedure for the numerical re-
construction of these fragments.

Lei us first consider the completely integrable cases
a =0, + 1, for which the two analytic invariants necessary
for complete integrability are H, itself and J as given in Eq.
(7) by analytic construction. If the second analytic invariant
I were not known explicitly, it could be reconstructed nu-
merically as follows: Pick any dynamical variable X which is
independent of H . The time average of X over any (regu-
lar) trajectory is then, by consiruction, an invariant. [t is, in
fact, an analvtic function of the initial conditions and can be
identified as the second independent integral of the motion

.
(X )= tim if dt X(1) = I(8,S,). )
Toew ¥ (3]

In nonintegrable cases such as @ = — 1/2, the Birkhoff
theorem®” guarantees that the time average Eq. (9) stil ex-

Srivastava et a/. 4439

Downloaded 29 Nov 2007 to 131.128.70.27. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



” e O
(23] 0.4 8 12 18
2]

FIG. 2. Time average { (57 )*) over single (regular or chaotic) trajectories
as a function of &, for initial conditions along lines A and B shown dashed in
Fig. 1. The dots represent time averages which have converged to within 1
part in 10*. The time averages over some chaotic trajectories (represented
by asterisks) are subject to long-time anomalies. The estimated numerical
uncertainties are up to 1 part in 30 for those points.

ists for almost all trajectories, even chaotic ones. However,
the quantity 7(S,,S,) is no longer an analytic function; its
nonanalyticities are, of course, associated with the presence
of chaotic trajectories in phase space. We may call it a nonan-
alytic invariant.

With the calculation of time averages (9), we can thus
investigate the most inferesting question of the persistence
and smoothness of residues of the second integral of the mo-
tion in the nonintegrable case in regions of the energy hyper-
surface depicted in Fig. i, where invariant tori are predomi-
nant, and in regions where chactic trajectories are
predominant. For this purpose we consider two lines A and
B on the energy hypersurface £ = — 0.09957501 intersect-
ed by the Poincaré hyperplane &, = #/2. The projections of
these two lines onto the (J,,4,) plane are shown dashed in
Fig. 1. In Fig. 2 we have plotted the time average {(S¥ )%} as
a function of ¢, for initial conditions along lines A and B.

Line A starts out in a predominantly regular region,
where chaotic trajectories are very restricted in their course
and range and then enters the broad chaotic separatrix re-
gion. This has its reflection in Fig. 2 as follows: The nonana-
Iytic invariant {((S7 )7} appears to be fairly smooth in the
reguiar region, but its nonanalytic nature is dramatically ap-
parent at the border to and inside the chaotic region. How-
ever, we must bear in mind that within the regular region
there is (like everywhere in phase space) a dense population
of chaotic trajectories and that within the chaoctic region
there is an abundance of small islands of regular trajectories,
all of which affect the smoothness of the invariant {(S7)?)
on ever smaller scales. The effect of larger scale regular is-
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lands on the quantity (S )?) can be investigated along line
B of Fig. 1. It shows three relatively smooth pieces corre-
sponding to the regular region outside the chaotic separatrix
and the two regular islands around a secondary and a pri-
mary elliptic fixed point. It is interesting to note that the
extrapolated curve of one regular region does not seem to
connect to the extrapolated curve of a neighboring regular
region across a narrow band of chaos. Also, the irregular
pattern of points in the chaotic intervals of Fig. 2 suggests
that the phase flow might not be ergodic within those re-
gions; ergodic flow would imply that {X ) is the same for all
initial conditions in 3 given connected region.

At this point we should add a word on the practical
aspects of the calculation of time averages. Even though the
Birkhoff theorem gunarantees the existence of time averages
for virtually all trajectories, in practice one may sometimes
encounter difficulties because of long-time anomalies. We
have identified two mechanisms which seem to be responsi-
ble for such anomalies: (i) The chaotic motion may appear
to be superimposed on & periodic component with widely
separated phase slips. (ii) Chaotic trajectories may stay for
long times in regions bounded by “cantori,” i.e., by nearly
intact tori which have decayed to Cantor sets. This mecha-
nism has its analogy in the critical siowing down in the the-
ory of phase transitions.

Evidently all these results along with our gualitative in-
terpretation raise a number of interesting questions which in
turn call for 2 more extensive investigation of time averages
and nonanalytic invariants in nonintegrable dynamical sys-
tems. A detailed study is underway. Moreover, a satisfactory
understanding of these questions appears to be a prerequisite
for a successful analysis of time-dependent correlation func-
tions, which is the actual goal of our endeavor. The work in
Basel was supported by the Swiss National Science Founda-
tion and the work at URI by the Council on Research of the
University of Rhode Island, by a grant from Research Cor-
poration, and by the U. 8. Nationa! Science Foundation,
Grant Number DMR-86-03036.
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