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Ⓔ

Crustal Velocity Structure of the Northeastern Tibetan Plateau

from Ambient Noise Surface-Wave Tomography

and Its Tectonic Implications

by Xinfu Li,* Hongyi Li,* Yang Shen, Meng Gong, Danian Shi, Eric Sandvol, and Aibing Li

Abstract Broadband seismic data from the regional seismic network operated by the
China Earthquake Administration and 32 temporary seismic stations are used to image
the crustal velocity structure in the northeast Tibetan plateau. Empirical Rayleigh- and
Love-wave Green’s functions are obtained from interstation cross correlation of con-
tinuous seismic records. Group velocity dispersion curves for Rayleigh andLovewaves
between 10 and 50 s are obtained using the multiple-filter analysis method with phase-
matched processing. The group velocity variations of Rayleigh and Lovewaves overall
correlate well with the major geologic structures and tectonic units in the study region.
Shear-wave velocity structures were then inverted from Rayleigh- and Love-wave
dispersion maps. The results show that the Songpan–Ganzi terrane is associated with
a low velocity at depth greater than 20 km. The northern Qilian orogen, with higher
elevation and thicker crust compared to the southern Qilian orogen, is also dominated
by low velocity at depth greater than∼25 km.However, there is no clear evidence of the
low-velocity mid-to-lower crust beneath the southern Qilian orogen as the crustal flow
model predicts. The low-velocity zone (LVZ) beneath the northern Qilian orogen may
suggest that the crustal thickening and surface uplift of the northern Qilian orogen are
related to the LVZ, and the LVZmay be considered as an intracrustal response to bear the
ongoing deformation in the northern Qilian orogen.

Online Material: Figures of crustal topography, number of group velocity mea-
surements, checkerboard tests for NETS stations, and 1D velocity models.

Introduction

The Tibetan plateau has been the prime site for under-
standing the processes of continental collision, mountain
building, and the interaction between tectonics and climate
change. The collision between the Indian and Eurasian plates
not only has caused significant elevation and highly deformed
orogenic belts within the Tibetan plateau, but also impacts re-
mote areas such as eastern China and the Baikal rift to the
north (Molnar and Tapponnier, 1975; Tapponnier and Molnar,
1977; Bendick and Flesch, 2007). Many studies have been
performed in the Tibetan plateau, but most of the geophysical
studies of the Tibetan crust and mantle structure to date have
focused on the southern (Brown et al., 1996; Kind et al., 1996;
Nelson et al., 1996; Huang et al., 2000; Wei et al., 2001;
Wang et al., 2003; Unsworth et al., 2005; Yao et al., 2008;
Guo et al., 2009), central (Owens and Zandt, 1997; Kind et al.,
2002; Tilmann et al., 2003), and eastern Tibetan plateau (Li

et al., 2009), with the primary objectives of understanding the
continental collision process and the intrusion of the crustal
and mantle materials from the Indian plate into the Eurasian
plate. In comparison to other parts of the plateau, fewer seis-
mic investigations have been done in the northeastern Tibetan
plateau (e.g., Wittlinger et al., 1996; Zhu and Helmberger,
1998; Vergne et al., 2002, 2003; Karplus et al., 2011, 2013;
Yue et al., 2012), which either are localized along linear pro-
files or focused on the velocity discontinuity structure. In our
previous study (Li et al., 2012), we determined that the low-
velocity zone (LVZ) terminated around the east Kunlun fault
(KLF) in the northeastern Tibetan plateau. However, due to the
coarse resolution (1.6°) and lack of data (we only used data
from the China Provincial Digital Seismic Networks, Kyrgyz-
stan network, and Kazakhstan network), we did not resolve
any features in the Qilian orogen. In this study, we comple-
mented the data from the China Earthquake Networks Center
with the northeastern Tibet seismic experiment (Shen et al.,
2008). These additional broadband, passive-source seismic
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experiments were designed to investigate the lithospheric struc-
ture and evolution of the northeastern Tibetan plateau (Fig. 1)
and contributed additional high-quality data to resolve the
structure under the northeastern portion of the Tibetan plateau.

The deformation process of the Tibetan plateau is gen-
erally attributed to a series of collision events (Molnar et al.,
1993; Owens and Zandt, 1997; Tapponnier et al., 2001;
Chung et al., 2005; Dai et al., 2011). The deformation
mechanism of the Tibetan plateau and its adjacent regions
may be characterized by several models of collision between
India and Eurasia, such as a unidirectional underthrust model
and bidirectional subduction model. In the unidirectional
underthrust model, the Indian lithosphere subducts north-
ward, the Songpan–Ganzi oceanic lithosphere was subducted
northward beneath the Kunlun blocks (Powell and Cona-
ghan, 1975; Molnar et al., 1993; Yin and Harrison, 2000),

and the Qaidam basin acted as an obstacle (Zhao and Mor-
gan, 1985; Yin and Harrison, 2000). In the bidirectional sub-
duction model, in addition to this northward subduction, the
Tarim basin and the Qaidam basin lithospheres are being
subducted southward (Pearce and Mei, 1988; Arnaud et al.,
1992; Xu, 1992; Deng, 1997; Tapponnier et al., 2001; Kind
et al., 2002; C. Zhang et al., 2010; Z. Zhang et al., 2010; Q.
Zhang et al., 2011; Z. Zhang et al., 2011). Aside from these
two models, some studies suggest that the stronger Indian
plate is embedded in the Tibetan plateau and the force of
collision leads to the lateral escape of the plateau materials
toward the southeast and the east along a series of strike-slip
faults (e.g., Molnar and Tapponnier, 1975; Tapponnier and
Molnar, 1977). Tapponnier et al. (2001) suggested an
oblique crustal subduction accommodated by the extrusion
tectonics to be the mechanism of the growth and uplift of the
eastern Tibetan plateau. However, other researchers (e.g.,
Royden et al., 1997, 2008; Clark and Royden, 2000; Clark
et al., 2005) consider that the lower crustal flow may be
responsible for the different topographic profiles at the differ-
ent margins of the Tibetan plateau. Low-velocity and low-
resistivity materials have been observed beneath the eastern
Tibetan plateau (Li et al., 2009; Bai et al., 2010), but geo-
physical evidence of the proposed flow paths remains to be
found in the northeast Tibetan plateau.

In this study, we focus on a complex junction that con-
nects the margin of the Tibetan plateau with the Tarim basin,
Sichuan basin, Ordos plateau, and Alashan block (Fig. 1),
where 32 temporary broadband stations were deployed
between June 2008 and July 2010 (Shen et al., 2008).
Our study area contains the northeast Tibetan plateau, the
Songpan–Ganzi terrane, the Qilian orogen, and the Alashan
block, which are separated by the Haiyuan fault (HF) system
and Qinling suture (QS) in the north and the KLF system and
the Qaidam basin in the south (Fig. 1). The convergence in
the northeast Tibetan plateau has been accommodated by the
left lateral strike-slip motion (with a slip rate of ∼12 mm=yr)
along the KLF (e.g., Tapponnier et al., 2001; Wang et al.,
2001; Zhang et al., 2004). Therefore, this region is very suit-
able to study the mechanisms responsible for the rising of the
Tibetan plateau and the role of the KLF in accommodating
the convergence of the India–Asia collision.

In this article, we apply the ambient noise method to the
northeastern Tibetan plateau to obtain a high-resolution
crustal velocity structure. Three-component time series,
recorded at 81 broadband stations of Provincial Digital Seis-
mic Networks and 32 broadband stations deployed by China
University of Geosciences in Beijing, Chinese Academy of
Geological Sciences, University of Rhode Island, University
of Houston, and University of Missouri between June 2008
and July 2010, are cross correlated to estimate both Ray-
leigh- and Love-wave Green’s functions. The resulting group
velocity maps have resolutions on the order of ∼100 km in
most parts of the northeast Tibetan plateau and generally
show good correlations with major geologic and tectonic
units in the study region. We invert shear-wave velocity
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Figure 1. (a) Topographic relief of the Tibetan plateau and ad-
jacent areas and (b) the distribution of seismic stations used in this
study. Dashed lines mark tectonic elements. The rectangle in (a) in-
dicates the study area. ATF, Altyn-Tagh Fault; QS, Qinling Suture;
HF, Haiyuan Fault; KLF, KunLun Fault; JRS, Jinsha–River Suture;
BNS, Bangong–Nujiang Suture. In (b), the triangles are seismic sta-
tions belonging to the Seismic Network of Gansu Province and the
Chinese center of Digital Seismic Network (CCDSN). The solid
circles are the stations of northeast Tibet seismic (NETS) array from
June 2008 to July 2010. The star denotes the location referred to in
Figure 7. The color version of this figure is available only in the
electronic edition.
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structures from Rayleigh- and Love-wave group velocities
and discuss their geologic and tectonic implications.

Data Selection and Processing

In this study, we collected continuous three-component
broadband seismic data recorded at 81 regional stations from
the China Earthquake Networks Center between January
2008 and September 2009 and 32 temporary stations from
June 2008 to July 2010. We followed the same ambient noise
cross-correlation processing procedure as described in our
previous studies (Li et al., 2009; Li, Bernardi, and Michelini,
2010; Li, Su, et al., 2010; Li et al., 2012). The data were first
windowed into one-hour-long time series, after removing
trend, mean value, and instrument response. The north–south
and east–west components were then rotated to the radial and
transverse components for each station pair by setting the
first station as the event and the second station as the receiver
before the cross correlations are calculated and stacked.
Next, each stacked cross correlation was cut into positive
and negative lags, and the two correlation lags were added
together to produce the final cross-correlation function.

Figure 2 shows record sections of cross correlations be-
tween station ZEKU and other stations for the Rayleigh wave
(Z�Z; Fig. 2a) and the Love wave (T�T; Fig. 2b), respec-
tively. As seen in Figure 2, clear signals simultaneously

emerge at both positive and negative correlation lags for
Rayleigh and Love waves, and Rayleigh waves generally dis-
play a higher signal-to-noise ratio than Love waves. Then the
group velocity dispersion measurement was performed based
on the multiple-filter techniquewith phase-matched processing
(Dziewonski et al., 1969; Herrmann, 1973). The waveforms
were first band-pass filtered with the narrowband Gaussian fil-
ter operator exp�−α�ω − ω0�2=ω2

0�, in which ω0 is the central
frequency of the desired period and α is a tunable parameter to
balance the resolutions in the frequency and time domains
and is usually distance dependent. After that, a phase-
matched filter was then constructed and performed for the sig-
nal to isolate the fundamental mode. We visually checked each
dispersion measurement to make sure that only the reliable
dispersion curves were selected for our inversion. In this study,
we obtained more than 3200 group velocity dispersion curves
for Rayleigh waves and about 2000 curves for Love waves.

Figure 3 shows the number of group velocity dispersion
measurements for Rayleigh and Love waves at different peri-
ods. In this article, only station pairs with the interstation dis-
tances larger than three wavelengths of the waves of interest
are selected for our inversion. Because of higher noise levels
on the horizontal components, fewer interstation paths of
Love waves are selected from the cross correlation of the
T�T component in comparison with Rayleigh waves from
that of Z�Z component. For the Rayleigh-wave tomography,
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the longest period can extend to about 50 s; however, for the
Love-wave tomography at periods longer than 40 s, the station
coverage becomes poor for most of the study area except for
the southern Qilian orogen.

Group Velocity Tomography

The dispersion measurements from more than 3200
paths were used to invert for group velocity maps at periods
from 10 to 50 s for Rayleigh and Love waves. The study area
was divided into a 0:4° × 0:4° grid, and the Occam’s inver-
sion scheme, which seeks a smooth model that fits the ob-
servations (Constable et al., 1987), was adopted for inversion
(Constable et al., 1987; DeGroot-Hedlin and Constable,
1990). Before inversion, checkerboard tests were conducted
to evaluate lateral resolution with the Occam’s inversion
technique. Figure 4a shows an input checkerboard velocity
model. The size of alternative low- and high-velocity cells is
0.4°. Alternating positive and negative �5% velocity pertur-
bations are assigned to each cell, with average velocity of
3:0 km=s. Synthetic group velocity data were calculated ac-
cording to the actual paths at the 30 s period, and then ran-
dom errors with a standard deviation of 0:05 km=s were
added to each path. Figure 4b and c shows the ray-path den-
sity at the 30 s period for Rayleigh and Love waves, respec-
tively. Generally, the coverage is good for the northeastern
and southern parts (the Qilian orogen, east KLF, and the south
of the Qaidam basin), but in the western part of the study
region, the path coverage (and hence resolution) is poor
due to few available stations. The checkerboard test results
are given in Figure 4d for Rayleigh wave and Figure 4e for
Love wave. The reconstructed velocity models are basically
correct in most of the study area. The resolving power is gen-
erally good in the northeastern and southeastern parts of the
study area, but it becomes worse beneath the Qaidam basin
where the path coverage is sparse. The lateral resolution is
estimated to be ∼0:8° for both Rayleigh and Love waves in
the eastern part of the study area and 1.2° for the Rayleigh

wave beneath the Qaidam basin. Surface wave speeds are
known to exhibit a frequency-dependent sensitivity to the
Earth’s structure. In general, the longer the period, the deeper
the surface-wave energy penetrates. Because our previous
study (Li et al., 2012) gave the radial sensitivity kernels
for Rayleigh and Love waves and showed that Rayleigh
waves sample down to depths approximately one-third of
their wavelength and Love waves are more affected by shal-
low structures, we do not elaborate here.

The Rayleigh-wave group velocity images at 10, 30, and
50 s are presented in Figure 5. At the short-period range
(≤20 s) Rayleigh-wave group velocities are most sensitive to
shear velocities in the upper crust. In the 10 s period map
(Fig. 5a), the prominent low group velocities are clearly ob-
served beneath the Qaidam basin. The surrounding mountain
areas show overall higher velocities than the basin at this
period. We note a small patch of high velocity in the northern
part of the Qilian orogen. At the 30 s period (Fig. 5b), the
Qaidam basin is still featured with very low velocity; mean-
while, a very low group velocity anomaly also occurs in the
Songpan–Ganzi terrane. We also note that the small patch of
high velocity in the northernmost Qilian orogen still exists. In
the 50 s map (Fig. 5c), the group velocity distribution is differ-
ent from those at short-to-intermediate periods, the lowest
velocities are observed beneath the Songpan–Ganzi terrane
rather than the Qaidam basin. The Love-wave maps at 10
and 30 s (Fig. 6) exhibit similar features to the Rayleigh-wave
maps. In the 10 s Love-wave map (Fig. 6a), the low velocity
also appears beneath the Qaidam basin, and a small patch of
high velocity is observed beneath the northernmost Qilian or-
ogen. In the 30 s map (Fig. 6b), the Qaidam basin and the
Songpan–Ganzi terrane still show low velocities. The strong
difference in group velocities among the different subregions
reveals strong lateral variations in the crust in the northeast
Tibetan plateau.

Shear-Wave Velocity Structure

As it is well known that surface waves at different peri-
ods are sensitive to the shear-wave velocity structure over
different depth ranges, so they can provide useful informa-
tion to constrain the shear-wave velocity structure and valu-
able insights into the lateral variation of shear-wave
velocities in different depths. We use the pure-path Rayleigh-
and Love-wave dispersion curves for each grid node to carry
out inversion for the shear-wave velocity structure with a pro-
gram developed by Herrmann and Ammon (2004). The
shear-wave velocity in each layer with fixed thickness is
taken as the inversion parameter, and P-wave velocity and
density are calculated from shear-wave velocity with empiri-
cal formulas. The shear-wave velocity and Moho depth in the
initial models are referred to the deep seismic sounding
profiles (Xu et al., 2002; Zhao et al., 2004; S. Li et al.,
2006), tomography results (Huang et al., 2003; Wang et al.,
2003, 2007; Maceira et al., 2005), and receiver functions
(Pan and Niu, 2011; Ⓔ Fig. S1, available in the electronic
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supplement to this article). Because surface waves have poor
ability to resolve the velocity discontinuity and the trade-off
between the shear-wave velocity and Moho depth, we used
10 different initial models by adjusting the shear-wave veloc-
ity (Ⓔ Fig. S4, available in the electronic supplement), layer
thickness, and Moho depth, then the inversion was repeated

10 times, and the final shear-wave velocity structure was
averaged from the 10 inversion solutions.

In our inversion, we adopted an isotropic model to
simultaneously fit both Raleigh- and Love-dispersion curves,
however, we noticed that for some particular cells showing
an LVZ in its mid-to-lower crust, it is hard to fit both
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Rayleigh- and Love-wave dispersion curves, which could re-
late to the radial anisotropy. Therefore, the obtained S-wave
velocity structure in our inversion is somehow the average
between VSv and VSh. An example of pure path dispersion
curves and their corresponding 1D shear-wave velocity mod-
els is presented in Figure 7. The location of the grid
(104.8° E, 35° N) is identified with a star in Figure 1b.
The synthetic dispersion curves for both the Rayleigh and
Love waves generally resemble the observed ones well.

The final S-wave velocity structures at depths of 10, 20,
30, and 40 km are shown in Figure 8. The S-wave velocity
structure shows significant differences with depth in the study
area. Pronounced low shear-wave velocities appear in the
Songpan–Ganzi terrane and in the vicinity of the KLF, from
the mid-to-lower crust down to at least 40 km (Fig. 8). At
10 km depth, the Qaidam basin is characterized by a low
S-wave velocity, and a small patch of very-high-velocity
anomaly is observed in the northernmost Qilian orogen
(Fig. 8a). Low-velocity anomalies at shallow depth beneath
the Qaidam basin could be due to thick sedimentary layers
because the Qaidam basin has been in a stable sedimentary
environment since Cenozoic time (Chen et al., 1999; Métivier

et al., 1999). At depths of 20 km, the velocity distribution is
quite different from velocities at 10 km. The high S-wave
velocity appears beneath the Qaidam basin. The upper crust
of the Songpan–Ganzi terrane and KLF is characterized by the
lowest velocity. Figure 8c shows that at the depth of 30 km, the
Qaidam basin is featured with a relatively higher velocity and
the Songpan–Ganzi terrane with a lower velocity. We note that
relatively lower velocities are observed beneath the north
Qilian orogen instead of high velocities at shallow depth
(Fig. 8c). The shear-wave velocity map at 40 km depth
(Fig. 8d) shows a similar velocity distribution as at the
depth of 30 km except that the LVZ beneath the north Qilian
orogen is more obvious and becomes larger than that at depth
of 30 km. This shear-wave velocity model offers new insights
into the subsurface structures beneath the northeast Tibetan
plateau, and its implications to the deformation and rise of
the Tibetan plateau are discussed in the Discussion section.

Figure 9 presents shear-wave velocity structure along
two vertical profiles from the surface down to 70 km depth.
In the AA′ profile (Fig. 9a) through the Songpan–Ganzi
terrane to the southern Qilian orogen, an evident mid-to-
lower crustal LVZ is present only beneath the Songpan–
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Figure 5. Estimated Rayleigh-wave group velocity maps at (a) 10 s, (b) 30 s, and (c) 50 s. Period is indicated in the upper right corner of
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Ganzi terrane but not beneath the southern Qilian orogen. In
the BB′ profile crossing the Songpan–Ganzi terrane and the
northern Qilian orogen (Fig. 9b), an LVZ in the mid-to-lower
crust exists beneath the Songpan–Ganzi terrane and the
northern Qilian orogen.

Discussion

Generally speaking, our group velocity maps show high
correlations with the major tectonic units in the study region.
At the same time, both our group velocity maps (Figs. 5 and
6) and shear-wave velocity maps (Fig. 8) reveal significant
anomalies within our study area.

Low velocities are clearly observed in the Qaidam basin.
However, high velocities are associated with the mountainous
areas at short periods (Figs. 5a and 6a) because most mountain
regions are mainly dominated by metamorphic rocks (com-
pared with sediment-filled basin). It is well known that seismic
velocities of sediments are much lower than those of metamor-
phic rocks. At 30 s period (Figs. 5b and 6b), the Qaidam basin
is still featured with low velocity and shows the influence of

sedimentary layers. With the increase of the period, surface-
wave energy penetrates the deeper structure of the Earth, so
the surface-wave velocities are mainly influenced by the thick-
ness of the crust, as well as the shear velocities in the lower
crust and uppermost mantle. For the Love-wave velocity map
at 30 s, due to more than 8 km sedimentary cover on average
beneath the Qaidam basin, the imprint of the sedimentary

32°

34°

36°

38°

40°

42°

T=30.0 s

Qaidam Basin

Songpan-GanziTerrane

Qilian Orogen

ATF
QS

HF

KLF

JRS

2.9 3.0 3.1 3.2 3.3 3.4
Group velocity (km/s)

88° 92° 96° 100° 104° 108°

88° 92° 96° 100° 104° 108°
32°

34°

36°

38°

40°

42°(a)

(b)

T=10.0 s

Qaidam Basin

Songpan-GanziTerrane

Qilian Orogen

ATF
QS

HF

KLF

JRS

2.2 2.4 2.6 2.8 3.0 3.2 3.4
Group velocity (km/s)

Figure 6. Estimated Love-wave group velocity maps at (a) 10 s
and (b) 30 s. Period is indicated in the upper right corner of each
map. The color version of this figure is available only in the elec-
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sponding 1D shear-wave velocity models at the location marked
in Figure 1b as the star. (a) The 10 inverted 1D velocity models,
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curves from 10 models, and (c) the observed (dashed line) and syn-
thetic Rayleigh-wave dispersion curves. The color version of this
figure is available only in the electronic edition.
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layers still exists; therefore, the velocity map at 30 s is influ-
enced not only by the lower crust, but also by the thick sedi-
ments. At the 30 s period, the Songpan–Ganzi terrane shows
low velocity due to its thicker crust compared with the basin
areas. Rayleigh-wave velocity maps at greater periods (50 s,
Fig. 5c) show an inverse correlation with the crustal thickness
variation. The Qaidam basin is overall associated with high
velocity due to relatively thin crustal thickness in comparison
with the mountain areas.

The shear-wave velocity structures derived from both
Rayleigh- and Love-wave dispersion curves show that the
Songpan–Ganzi terrane is featured with a prominent LVZ
in its mid-to-lower crust (∼20–40 km), which is consistent
with the P-velocity model (C. Li et al., 2006) in this area.
Meanwhile, as seen in Figures 8 and 9, it is very striking
that the northern Qilian orogen associated with a relatively
higher topography also features an LVZ in the middle crust,
but the LVZ has not been observed beneath the southern Qi-
lian orogen.

What causes such a low-velocity anomaly and the dis-
tribution of the mid-to-lower crustal LVZ beneath the Tibetan

plateau are the important questions that need to be discussed.
If the lower-crustal velocity were laterally more uniform, this
would accentuate the proposed Moho topography (Q. Zhang
et al., 2011). The mid-to-lower LVZ beneath the Songpan–
Ganzi terrane is similar to the LVZs observed beneath other
parts of the plateau, such as the eastern, central, and southern
Tibetan plateau. Geophysical studies using different methods
also found high-electrical conductivity, high-temperature,
partial melting, low-velocity, and low-strength zones in the
mid-to-lower crust beneath the plateau (e.g., Clark et al.,
2005; Royden et al., 2008; Yao et al., 2008; Guo et al.,
2009; Li et al., 2009; Bai et al., 2010; Yang et al., 2012).
The crustal flow model suggested that the weak mid-to-lower
crustal materials beneath the Tibetan plateau probably con-
tributed to the elevated topography and crustal thickening of
the Tibetan plateau (Clark and Royden, 2000; Royden et al.,
2008). In their models, they proposed when the crust of ad-
jacent regions is cold and strong, then the weak mid-to-lower
crust beneath the plateau could be difficult to flow into ad-
jacent regions, and therefore a narrow and steep plateau mar-
gin has been built up. If the crust of adjacent regions is also
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weak, then the mid-to-lower crust could escape to regions
where crust is weak, thus resulting in a broad and gentle pla-
teau margin with long wavelength and low topographic gra-
dient. Based on their model, in the northeastern plateau
margin with a gentle topography gradient, the weak mid-to-
lower crustal materials could escape through the Songpan–
Ganzi terrane toward the southwestern Ordos platform.

Our results show that a mid-to-lower crustal LVZ has been
observed beneath the northern Qilian orogen, with the highest
topography and a thickened crust (∼60 km; Yue et al., 2012)
compared to its surrounding regions. However, it has not been
found beneath the southern Qilian orogen. Because our data
have poor resolution in the Qaidam basin, it is hard to evaluate
whether the LVZ exists beneath the Qaidam basin and the LVZ
beneath the Songpan–Ganzi terrane flows through the Qaidam
basin to the northern Qilian orogen. However, our observa-
tions in the southern Qilian orogen are probably inconsistent
with the simple crustal flow model, in which the eastward
moving crust of the central plateau is diverted northeast

and southeast around the Sichuan basin. Therefore, it would
support a gentle long-wavelength topographic gradient along
the northeastern edge of the Tibetan plateau toward the Ordos
platform (Clark et al., 2005; Royden et al., 2008). The lateral
distribution of the LVZ beneath the northern Qilian orogen
shows a very good correlation with the area of thickened crust
and highest topography. As a result of the continent–continent
collision, the main part of the Tibetan plateau was uplifted and
has a very thick crust, and the mid-crustal LVZ is widely dis-
tributed in the main plateau. Therefore, we infer that the mid-
to-lower crustal LVZ beneath the northwestern Qilian orogen
may be attributed to the crustal thickening and surface uplift
responding to the ongoing collision of the plateau, which is
similar to that of the main part of the Tibetan plateau; however,
at this point, it could be difficult to use our results to support
the crustal flow mode.

Conclusion

In this study, we obtained group velocity maps of Ray-
leigh and Love waves in the northeast Tibetan plateau using
broadband seismic data recorded by temporary broadband
seismic arrays and the regional seismic networks. Cross-
correlation functions are computed in one-hour segments,
and group velocity dispersion curves are determined using
the multiple-filter analysis technique. The large variation of
velocity structure indicates strong heterogeneities and struc-
ture complexities in the study area. Prominent low-velocity
layers have been found in the mid-to-lower crust beneath the
Songpan–Ganze terrane and the northern Qilian orogen. The
LVZ beneath the northern Qilian orogen may be attributed to
the crustal thickening and surface uplift, which is responding
to the ongoing collision. From this study, there is no clear
evidence of the low-velocity mid-to-lower crust beneath
the southern Qilian orogen as the crustal flow model predicts.

Data and Resources

The continuous seismic data used in this study were
from the northeastern Tibet seismic (NETS) experiment
(Shen et al., 2008) and the China Earthquake Networks
Center. The inversion program for the shear-wave velocity
structure can be found at http://www.eas.slu.edu/People/
RBHerrmann/CPS330.html (last accessed September 2012).
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