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Abstract: Triple negative breast cancer is a collection of heterogeneous breast cancers that are 

immunohistochemically negative for estrogen receptor, progesterone receptor, and ErbB2 (due to 

deletion or lack of amplification). No dominant proliferative driver has been identified for this type 

of cancer, and effective targeted therapy is lacking. In this study, we hypothesized that triple 

negative breast cancer cells are multi-driver cancer cells, and evaluated a biphasic mathematical 

model for identifying potent and synergistic drug combinations for multi-driver cancer cells. The 

responses of two triple negative breast cancer cell lines, MDA-MB-231 and MDA-MB-468, to a panel 

of targeted therapy drugs were determined over a broad range of concentrations. The analyses of 

the drug responses by the biphasic mathematical model revealed that both cell lines were indeed 

dependent on multiple drivers, and inhibitors of individual drivers caused a biphasic response: a 

target-specific partial inhibition at low nM concentrations, and an off-target toxicity at μM 

concentrations. We further demonstrated that combinations of drugs, targeting each driver, cause 

potent, synergistic, and cell-specific cell killing. Immunoblotting analysis of the effects of the 

individual drugs and drug combinations on the signaling pathways supports the above conclusion. 

These results support a multi-driver proliferation hypothesis for these triple negative breast cancer 

cells, and demonstrate the applicability of the biphasic mathematical model for identifying effective 

and synergistic targeted drug combinations for triple negative breast cancer cells. 

Keywords: biphasic inhibition; combination targeted therapy; MDA-MB-231; MDA-MB-468; 

protein kinase inhibitors; triple negative breast cancer 

 

1. Introduction 

According to the American Cancer Society, breast cancer will account for 30% of all female 

cancers, and is the second leading cause of cancer deaths in women in 2020 [1]. Early diagnosis and 

advances in targeted therapy have significantly improved the effectiveness of breast cancer treatment 

[2]. Targeted therapy is premised on blocking the dominant proliferative drivers of a given cancer, 

and it has translated into two major forms of treatment for breast cancers: (1) hormonal therapy for 

breast cancers that display receptors for estrogen and/or progesterone [3]; and (2) targeted therapy 
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using monoclonal antibodies and small molecule inhibitors against ErbB2 for cancers that over-

express this receptor protein tyrosine kinase [4].  

Triple negative breast cancers (TNBC) are a group of heterogeneous cancers characterized by 

their lack of estrogen receptor (ER), progesterone receptor (PR), and ErbB2/HER2/Neu [5]. No 

dominant actionable targets have been identified and no targeted therapy has been approved for 

TNBC [6]. Consequently, TNBC still relies on surgery, radiation, and chemotherapy [5]. While TNBC 

represents only about 15–20% of all breast cancers, it is more aggressive with higher rates of 

recurrence and shorter overall survival [4]. There is an urgent need to find approaches of targeted 

therapy for TNBC [5,7]. 

While TNBC’s are readily defined by their lack of ER, PR, and ErbB2, it is much more difficult 

to define what they have in common at the molecular level due to their notorious inter-tumor 

heterogeneity. A comprehensive analysis of the molecular characteristics of TNBC, including 

genomic DNA copy number arrays, DNA methylation, exome sequencing, messenger RNA arrays, 

microRNA sequencing, and reverse-phase protein arrays, revealed that TNBCs are commonly 

associated with alterations in TP53, RB1, and BRCA1 function [8]; however, no dominant signaling 

protein was found to be commonly affected. PIK3CA was the most commonly mutated signaling gene 

at 9%, even though the PI(3)K pathway activity was affected more frequently by other alterations 

such as loss of PTEN and INPP4B and/or PIK3CA [8]. Blocking Akt, a central step in the PI3-kinase 

pathway has not proved to be an effective therapy [9]. Drugs for many other targets have been tested, 

including BRCA1/2, CDKs, receptor tyrosine kinases, angiogenesis (via vascular endothelial growth 

factor receptor), Src, and WNT signaling. Many clinical trials have tested combinations of targeted 

therapeutics or combinations with chemotherapy [6]. Despite these efforts, no effective targeted 

therapy for TNBC has emerged.  

At the center of targeted cancer, drug discovery is the analysis of how cancer cells respond to 

treatment by various drugs. Historically, the analysis of how cancer cells respond to treatments has 

used various versions of the Hill equation [10], which was originally developed to describe how O2 

binds to hemoglobin [11]. When applied to cell responses to drug treatment, the full Hill equation (I 

= Imax × Dn/(IC50*n + Dn)) uses three parameters to describe the response of biological systems to 

pharmaceutical intervention: Imax (maximal inhibition at saturating drug concentration), n (Hill co-

efficient), and IC50*, the concentration of a drug that achieves 50% of the Imax [12].  

When applied to how colorectal cancer cells responded to kinase inhibitors [12], the Hill co-

efficient, n, varied between 0.3 and 0.8 suggesting varying levels of negative cooperativity. However, 

there is no obvious mechanistic explanation for this negative cooperativity. Furthermore, in some 

cases, the dose response curves were clearly broken into two phases, suggesting that a targeted drug 

may inhibit cell viability by interacting with two distinct targets with different affinities. Based on 

these considerations, we developed a biphasic mathematical model for characterizing the cell 

responses to targeted therapy [12]. The biphasic model assumes two inhibitory effects, and breaks 

the inhibition of a cancer cell by a targeted drug into a target-specific inhibition (F1 with Kd1) and an 

off-target inhibition (F2 with Kd2). In this model, the inhibition of cell viability by a drug as a function 

of drug concentration (D) follows this equation: I = F1 × [D]/([D] + Kd1) + F2 × [D]/([D] + Kd2). We further 

demonstrated that the biphasic inhibition only applies to multi-driver cancer cells, and toward mono-

driver cancer cells, the inhibition becomes monophasic, with F2 inhibition becoming negligible. Thus, 

the biphasic model was able to distinguish multi-driver from mono-driver cancer cells. Furthermore, 

by identifying inhibitors for each driver, and quantifying the amplitude (F1) and the potency (Kd1) of 

the inhibition by blocking each driver, the biphasic analysis was able to suggest potent and 

synergistic combinations for blocking colorectal cancer cells [12].  

In light of the challenge of developing targeted therapy for TNBC, and their apparent multi-

driver nature, we tested if the biphasic mathematical model is applicable to TNBC cells, and can 

identify potent and synergistic combinations of targeted therapy. The results indicated that the multi-

driver hypothesis, biphasic analysis, and mechanism-based combination targeted therapy are 

directly applicable to MDA-MB-231 and MDA-MB-468, raising the prospect of developing targeted 

combination therapies for TNBC.  
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2. Results 

2.1. Profiling of MDA-MB-231 and MDA-MB-468 Responses to Kinase Inhibitors 

To examine if the multi-driver proliferation hypothesis and the biphasic mathematical model 

apply to TNBC cells, we examined two TNBC cell lines, MDA-MB-231 and MDA-MB-468. Both cell 

lines have been widely used for studying the molecular mechanisms of TNBC proliferation and for 

drug discovery [13]. Both are included in the NCI-60 cell line panel, and widely used for cancer cell 

drug screening [14].  

To determine the response of MDA-MB-231 and MDA-MB-468 cells to targeted therapy drugs, 

they were screened against a panel of 18 inhibitors against many common oncogenic protein kinases 

(Table 1). To gain a full assessment of the responses of these cells, the inhibitors were tested at 16 

concentrations from 0.6 nM to 20 μM. The most potent inhibitor for MDA-MB-231 is the 

Src/Abl/PDGFR inhibitor dasatinib with an IC50 of 0.578 ± 0.05 μM, and the most potent inhibitor for 

MDA-MB-468 is the ErbB2/EGFR inhibitor lapatinib with an IC50 of 0.3 ± 0.06 μM. Both cell lines 

responded to a few other inhibitors, but with IC50′s above 1 μM.  

Table 1. Inhibition of MDA-MB-231 and MDA-MB-468 cell viability by protein kinase inhibitors. 

Drug Target 1 
IC50 (μM) 2 

MDA-MB-231 MDA-MB-468 

Dasatinib Src (0.2), Abl (0.05), PDGFRs (1) 0.578 + 0.05 19.7 + 0.30 

AZD-6244 Mek (99) >20 >20 

Lapatinib EGFR (2.4) ErbB2 (7) >20 0.30 + 0.06 

GSK690693 Akt (2–3) 16.7 + 0.40 9.28 + 0.96 

BX-912 PDK1 (26) 14.6 + 0.63 1.62 + 0.037 

AZD6482 PI 3-Kβ (10) >20 >20 

HG6-64-1 BRAF (90) >20 >20 

Bosutinib Src (1), Abl (0.12), etc 10.3 + 0.21 >20 

BMS-754807 IR (1.7), IGF-1R (1.8), Met (5.6) 7.47 + 0.15 1.59 + 0.021 

Crizotinib Alk (3.3), Met (2.1) 5.63 + 0.41 2.39 + 0.11 

Erlotinib EGFR (0.7) >20 15.9 + 0.63 

Linsitinib IR (75), IGF-1R (35) >20 >20 

Linifanib PDGFRs (0.6–10), VEGFRs (7–8) >20 6.29 + 0.46 

Sorafenib PDGFRs (13), VEGFRs (31) 9.20 + 0.25 7.12 + 0.14 

Sunitinib PDGFRs (0.1–2), VEGFRs (1–2) 12.1 + 0.33 15.5 + 0.35 

Pazopanib PDGFRs (2-8), VEGFRs (14) >20 >20 

Gefitinib EGFR (1) >20 19.1 + 0.86 

BGJ398 FGFRs (0.9–1.4) >20 13.3 + 0.27 
1 The table only lists common targets of these drugs and listed the Kd’s in nM for those targets in 

parentheses following targets. Quantitative binding information of each drug for most of the kinome 

is available at the Library of Integrated Network-based Cellular Signatures 

(http://lincs.hms.harvard.edu/kinomescan/). 2 The IC50 values are determined empirically from the 

drug response curves as the concentration that resulted in 50% inhibition. Means ± SE are reported 

for six sets of data from two independent experiments in triplicate. The data for generating the table 

are presented in Supplementary Data for Table 1. 

2.2. The Inhibition of MDA-MB-231 by Dasatinib Is Biphasic 

To gain insights into the inhibition, the responses of MDA-MB-231 cell viability by dasatinib was 

analyzed by both the Hill equation and the biphasic model (Figure 1A). On the left is the inhibition 

data fitted to the Hill equation: I = Imax × Dn/(IC50*n + Dn), where Imax is the maximal inhibition by 

dasatinib, IC50* is the IC50 for inhibiting the portion of cell viability that is sensitive to dasatinib, and 

n is the Hill coefficient, or slope. The data fit the equation reasonably well, with a root mean square 

error (RMSE) of 0.05. The curve fitting yielded an IC50* 0f 0.3 μM, and Imax of 88%, and an n of 0.49. 
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The curve fitting had two issues. First, the data had a clear biphasic contour that was not reflected in 

the fitted curve, resulting in stretches of the data either above or below the curve. Second, the n of 

0.49 suggests a strong negative cooperativity in dasatinib inhibition. It is not clear what mechanism 

this apparent negative cooperativity represents. When the data was curve-fitted to the biphasic 

equation: I = F1 × [D]/([D] + Kd1) + F2 × [D]/([D] + Kd2), a significantly better fit was obtained with an 

RMSE of 0.018. The biphasic fitting yielded three inhibitory parameters: an F1/F2 ratio of 49/51, and a 

Kd1 of 29.9 nM, and a Kd2 of 9.3 μM. These data suggested that dasatinib inhibited MDA-MB-231 in 

two phases: the first phase (F1) accounted for 49% cell viability, and had a Kd of 29.9 nM, and the 

second phase accounted for 51% of cell viability, and had a Kd of 9.3 μM. Because dasatinib blocks its 

molecular targets, such as Src, Abl, and PDGFR family kinases, with Kd’s in the low nM range, the F1 

inhibition is taken as the target-specific inhibition by dasatinib, while the F2 inhibition (Kd2 of 9.3 μM) 

likely reflected an off-target toxicity. The interpretation suggests that the dasatinib target is 

responsible for a fraction (49%) of cell viability, consistent with the multi-driver hypothesis. A visual 

inspection of the two graphs (Figure 1A) also clearly supports the biphasic interpretation. 

 

Figure 1. Analyses of the inhibition of MDA-MB-231 cell viability by dasatinib and AZD-6244. (A) the 

dose response data of MDA-MB-231 to dasatinib were analyzed by the Hill equation (left) and by the 



Cancers 2020, 12, 1087 6 of 23 

 

biphasic equation (right). The inhibitory parameters from each analysis are presented in the graphs; 

(B) inhibition of MDA-MB-231 by lapatinib, HG6-64-1, sunitinib and AZD-6244. (C) The dose 

response data of MDA-MB-231 to AZD-6244 were analyzed by the Hill equation (left) and by the 

biphasic equation (right). Each set of inhibition data represents six sets of data in two independent 

experiments in triplicates, with standard errors presented as error bars. 

The main proliferative targets for dasatinib include Src, Abl, and PDGFR family kinase [15–17]. 

Because the cells did not respond to Abl inhibitor, imatinib (Supplementary Data for Table 1), or 

PDGFR inhibitor, sunitinib, the most likely target for dasatinib is Src family kinases. Previous reports 

indicate that Src does play a significant role in MDA-MB-231 proliferation [18–20]. The fact that 

inhibiting this target, likely Src, only blocks 49% of cell proliferation indicates that additional 

dasatinib-insensitive signaling pathway(s) is independently promoting viability when the dasatinib 

target is blocked. This prompted us to examine the responses of MDA-MB-231 to other kinase 

inhibitors in search of additional signaling pathways. 

An examination of the inhibition curves by other kinase inhibitors indicated that even though 

AZD-6244, a Mek inhibitor, did not reach 50% inhibition at 20 μM, it did cause a partial inhibition of 

MDA-MB-231 viability even at nM concentrations (Figure 1B). In comparison, although sunitinib 

reached 50% between 10 and 20 μM, it did not inhibit MDA-MB-231 viability below 1 μM. In contrast, 

AZD-6244 caused a partial but consistent inhibition even at nM concentrations. The AZD-6244 

inhibition data fit the Hill equation well (Figure 1C, left) (RMSE = 0.021), with an Imax of 46%, IC50* of 

209 nM and an n of 0.68. The data fit the biphasic equation similarly well with an RMSE of 0.023 

(Figure 1C, right). The biphasic analysis revealed that AZD-6244 inhibited 36% of viability (F1) with 

a Kd1 of 91 nM, with the remaining portion of proliferation largely resistant to AZD-6244, with the 

Kd2 of over 100 μM. Both the Hill analysis and the biphasic analysis support the following general 

conclusion: AZD-6244 partially blocks MDA-MB-231 viability, suggesting that the target, Mek, plays 

a partial but important role in the viability of the cell line. Both analyses indicated that AZD-6244 

caused relatively little off-target inhibition. The discrepancy between the two analyses is minor: the 

Hill equation assumed a moderate negative cooperativity, while the biphasic model assumed mixed 

inhibition. Because the second phase inhibition is minor due to the high specificity of AZD-6244, the 

two analyses largely agreed with each other. The high specificity of AZD-6244 suggested by this data 

is consistent with the kinome scan data (http://lincs.hms.harvard.edu/db/datasets/20156/results) that 

indicated that AZD-6244 binds to Mek 1 and Mek 2 with Kd’s of 99 and 530 nM, respectively. It did 

not bind to any other kinase with a Kd below 1 μM.  

2.3. MDA-MB-231 Viability Is Potently Inhibited by the Combination of Dasatinib and AZD-6244 

The biphasic analysis indicated that 49% of MDA-MB-231 viability can be blocked by dasatinib 

with a Kd of 29.9 nM, while 36% of viability can be blocked by AZD-6244 with a Kd of 91 nM. The 

likely targets for dasatinib, Src, and AZD-6244 target, Mek, represent distinct signaling pathways, 

thus the inhibitory effects of these two drugs should combine to achieve much stronger inhibition 

than either inhibitor alone. This prediction was tested (Figure 2A) by measuring the cell viability in 

the presence of both drugs at equal concentrations. The combination of dasatinib and AZD-6244 was 

indeed dramatically more effective in blocking MDA-MB-231 viability than either drug alone. The 

two-drug combination had IC50 and IC70 of 73 nM and 158 nM, respectively, much lower than that of 

the most sensitive individual inhibitor, dasatinib, with IC50 and IC70 at 697 nM and 7413 nM, 

respectively. The dramatic synergy is illustrated by the isobolograms in Figure 2B,C, as the dots 

representing the combined IC50 or IC70 are far below the line linking the individual IC50’s or IC70’s. 

The dose reduction index could not be meaningfully calculated because AZD-6244 only reached 

about 40% inhibition. It is also noteworthy that the synergy is most dramatic at high inhibition levels, 

such as 80% or 90% inhibition. This feature is mathematically consistent with the multi-driver 

proliferation mechanism, and may be an especially desirable feature for targeted therapy. Finally, 

while dasatinib did reach 80% and 90% inhibition, this level is achieved by both target-specific and 

off-target effects. The off-target effects represented by the F2 inhibition, while artificially helpful in 
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enhancing the in vitro inhibitory effect, is unlikely to contribute to effective targeted therapy. It is 

likely the cause of dose-limiting toxicity. In contrast, the drug combination reached 90% inhibition at 

about 600 nM of both drugs. Based on the Kd2 values of both drugs, the drug combination at this 

concentration would not be expected to cause general toxicity.  

Overall, these results clearly support the multi-driver hypothesis for this cancer cell line in that 

the cell viability is dependent on both Src kinases and the MAP kinase pathways. Inhibiting either 

pathway alone is not sufficient to effectively block these cells, while the drug combination can 

effectively block cell viability with strong synergy.  

 

Figure 2. Inhibition of MDA-MB-231 cell viability by dasatinib, AZD-6244, and their combination. (A) 

The responses of MDA-MB-231 cells to dasatinib and AZD-6244 are compared to their response to the 

combination of both at equal molar concentrations; (B) isobolograms of AZD-6244 and dasatinib 

combination analysis at 50% inhibition; (C) isobolograms of AZD-6244 and dasatinib combination 

analysis at 70% inhibition. The results are representative of two independent experiments of 

triplicates. 

2.4. MDA-MB-468 Cells Follow Similar Inhibitory Patterns but Are Sensitive to Different Drugs 

To determine if the multi-driver proliferation mechanism and the biphasic mathematical model 

also apply to other TNBC cancer cells, the same analytical approach was applied to the cell line MDA-

MB-468. The most potent inhibitor for MDA-MB-468 is lapatinib, with an IC50 of 231 nM (Table 1). 

Fitting the MDA-MB-468 data to the Hill equation generated a well-fitting curve (RMSE = 0.026) with 

n of 0.45, IC50* of 0.19 μM, and Imax of 100% (Figure 3A, left). The n value of significantly less than 1 

suggested an apparently strong negative cooperativity consistent with the flattened inhibition curve. 
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Biphasic analysis of the same data generated a similarly well-fitting curve (RMSE = 0.038), but with a 

very different mechanistic interpretation for the flattened inhibition pattern. It suggested that 

lapatinib inhibited 53% (F1) of MDA-MB-468 viability with a Kd1 of 17 nM, and inhibited the 

remaining 47% with a Kd2 of 3.05 μM. The relatively close Kd1 and Kd2 (a difference of 179 fold) fused 

the two phases together to make the biphasic nature of the dose response curve less visually obvious. 

Lapatinib is an EGFR and ErbB2 inhibitor and MDA-MB-468 is negative for ErbB2 but overexpresses 

EGFR [21]. The sensitivity of MDA-MB-468 to lapatinib has been previously reported [22]. However, 

the biphasic analysis suggests that lapatinib only achieves a partial inhibition through a target-

specific inhibition, and achieves the remaining inhibition by an off-target effect. This result suggests 

that the lapatinib target, presumably EGFR, only supports 53% of MDA-MB-468 viability, leaving the 

remaining portion of viability dependent on other driver(s).  

 

Figure 3. Analyses of the inhibition of MDA-MB-468 cell viability by lapatinib and GSK690693. (A) 

The dose response data of MDA-MB-468 to lapatinib were analyzed by the Hill equation (left) and by 
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the biphasic equation (right). The inhibitory parameters from each analysis are presented in the 

graphs; (B) inhibition profile of MDA-MB-468 by crizotinib, BMS-754807, and GSK690693; (C) The 

dose response data of MDA-MB-468 to GSK690693 was analyzed by the Hill equation (left) and by 

the biphasic equation (right). Each set of inhibition data represents six repeat data sets from two 

independent experiments in triplicates, with standard errors presented as error bars. 

The analysis of MDA-MB-468 responses to targeted drugs by the Hill equation and the biphasic 

equation offered an interesting comparison of the two models. Both models fit the data similarly well 

statistically, with RMSE of 0.026 for the Hill equation and 0.038 for the biphasic equation. The Hill 

equation assumed a single target binding, and relied on an assumed strong negative cooperativity (n 

= 0.45) to generate a well-fitting curve, generating an Imax of 100% and an IC50 of 190 nM. In contrast, 

the biphasic model assumed a biphasic inhibition pattern, relied on varying the F1/F2 ratio (53/47), Kd1 

(17 nM), and Kd2 (3.05 μM) to generate a well-fitting curve. Clearly, the two models generated two 

dramatically different interpretations of the response data. The Hill analysis suggests that lapatinib 

binds to a single molecular target with negative cooperativity to cause all the observed inhibition. In 

contrast, the biphasic equation suggests that lapatinib causes 53% of viability inhibition by binding 

to one target with a Kd of 17 nM, and inhibits the remaining 47% by an additional mechanism (Kd of 

3.05 μM). Statistics alone cannot distinguish these mechanistic explanations, thus other information 

is necessary to distinguish these possibilities. 

If the biphasic analysis is correct, then MDA-MB-468 should have additional drivers other than 

EGFR. To search for additional signaling pathways that would complement EGFR in supporting 

MDA-MB-468 viability, we examined the inhibition profiles of other kinase inhibitors. Even though 

GSK690693 was a weak inhibitor of MDA-MB-468 as indicated by the IC50 of 9.3 μM, we noticed that 

it partially inhibited MDA-MB-468 viability even at low nM concentrations (Figure 3B). Even though 

crizotinib and BMS-754807 both had lower IC50 values, GSK690693 clearly was more potent at the 

lower concentration range. The inhibition profile suggested that GSK690693 reached about 45% 

inhibition at approximately 1 μM and plateaued until 10 μM. The inhibitor caused additional 

inhibition at 20 μM, thus displaying a clearly biphasic inhibition pattern. Fitting the data to the Hill 

equation produced the graph in Figure 3C (left). The fit of the data to the Hill equation was reasonable 

as judged by the RMSE (0.08), and yielded an Imax of 100% and an IC50 of 2.94 μM, and again suggested 

an apparently strong negative cooperativity (n = 0.42). Furthermore, the Hill graph did not reflect the 

subtle but clear biphasic contour of the data. The data fit the biphasic equation slightly better (RMSE 

of 0.066) (Figure 3C, right), yielding an F1 of 37%, a Kd1 of 67 nM, and a Kd2 of 15.6 μM. GSK690693 is 

a specific Akt inhibitor [23], and this data suggested that Akt signaling accounted for 37% of MDA-

MB-468 viability, and this portion of viability was blocked by GSK690693 with a Kd of 67 nM.  

We then determined how potent the combination of lapatinib and GSK690693 was toward 

MDA-MB-468. As shown in Figure 4A, the combination was indeed much more potent than either 

inhibitor alone. The combination had an IC50 and IC70 of 22 nM and 64 nM, respectively, dramatically 

lower than either drug individually. An inhibition of 90% was achieved below 1 μM of the drug 

combination. The dramatic synergy of the drug combination is illustrated by the dose reduction of 

40-fold to achieve a 70% inhibition (Figure 4B). This result supports the biphasic interpretation and 

indicates that MDA-MB-468 is indeed a multi-driver cancer cell line, dependent on Akt and EGFR 

signaling, and that combination targeted therapy strategy would likely be an effective strategy for a 

cancer with a similar mechanism.  
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Figure 4. Synergistic inhibition of MDA-MB-468 cell viability by lapatinib and GSK690693. (A) The 

individual responses of MDA-MB-468 cells to lapatinib and GSK690693 are compared to the response 

of MDA-MB-468 cells to the combination of both drugs at equal molar concentrations; (B) synergistic 

dose reduction of lapatinib and GSK690693 on MDA-MB-468 cells as a function of the percentage of 

viability inhibition. The results are representative of two independent experiments of triplicates. 

2.5. The Effectiveness of the Drug Combinations Is Cell-Specific 

Having identified an effective combination of dasatinib and AZD-6244 for MDA-MB-231, and 

lapatinib and GSK690693 for MDA-MB-468, we wondered if the effectiveness of the drug 

combinations is cell-specific. We therefore tested the effectiveness of dasatinib/AZD-6244 on MDA-

MB-468 cells and the effectiveness of lapatinib/GSK690693 on MDA-MB-231 cells. The IC50 of 

dasatinib/AZD-6244 for MDA-MB-468 was 15 μM, more than 200 fold higher than that for MDA-MB-

231 at 73 nM (Figure 5A). Furthermore, the drug combination had virtually no effect on MDA-MB-

468 below 1 μM. The lapatinib/GSK690693 combination was similarly cell-specific. While it blocked 

MDA-MB-468 viability with an IC50 of 22 nM, it did not affect MDA-MB-231 viability up to 5 μM, and 

caused significant cell inhibition between 10 and 20 μM, a >500-fold difference. These data 

demonstrate that the potency of the drug combinations is strictly dependent on the drug targets 

playing crucial roles in a cell’s viability. 



Cancers 2020, 12, 1087 11 of 23 

 

 

Figure 5. Cell line-specific inhibition of MDA-MB231 cell viability by dasatinib/AZD-6244 

combination and of MDA-MB-468 cell viability by lapatinib/GSK690693 combination. (A) inhibition 

of MDA-MB-231 and MDA-MB-468 cell viability by the combination of AZD-6244 and dasatinib; (B) 

inhibition of the two cell lines by the combination of lapatinib and GSK690693. The results are 

representative of two independent experiments of triplicates. 

2.6. The Effects of Drugs and Their Combinations on the Signaling Pathways 

The above results suggested that EGFR signaling and Akt signaling independently play crucial 

roles in MDA-MB-468 cells, while Src and the MAP kinase pathway play independent and crucial 

roles in MDA-MB-231 cells. Some of these responses are consistent with known genomic information 

on these cells. For example, MDA-MB-231 contains mutations in several genes in the MAP kinase 

pathway, such as EGFR, BRAF, IRS4, KRAS, and PDGFRA. Although most of these mutations have 

not been confirmed to be associated with oncogenic properties, it is known that G13D mutation is 

oncogenic by activating the MAP kinase pathway downstream to KRAS [24]. This explains the 

reliance of MDA-MB-231 on Mek signaling. Src kinases in MDA-MB-231 do not contain any 

mutations, but Src activation is rarely activated by mutations, but most frequently activated by 

increased expression or mis-regulation [25–27]. According to the COSMIC database, MDA-MB-468 

overexpresses EGFR [28,29], which explains why this cell line is sensitive to lapatinib. Furthermore, 

it is well established that MDA-MB-468 cells are deficient in PTEN expression [30–34], which would 

lead to constitutive activation of Akt signaling. This observation explains the partial reliance of MDA-

MB-468 on Akt activity indicated by the cell line sensitivity to GSK690693. 

To determine the effects of the drug treatments on the signaling pathways, both cell lines were 

treated by the drugs individually and in combination for 2 h, and the protein levels and 

phosphorylation/activation status of numerous signaling proteins, including Src, and proteins from 

the MAP kinase and PI 3-kinase pathways were determined by Western blots (Figure 6). In MDA-

MB-468 cells, lapatinib treatment mildly decreased Akt phosphorylation on T308, but not on S473, 

and near completely blocked Mek and Erk phosphorylation. These results suggested that lapatinib 

mainly blocked the MAP kinase pathway. GSK690693 is a specific Akt inhibitor, and it fully blocked 

the phosphorylation of PRAS40 and significantly decreased GSK-3β phosphorylation. Both PRAS40 

and GSK-3β are direct Akt substrates [35]. The lapatinib and GSK690693 combination blocked the 

phosphorylation of PRAS40, GSK-3β, Mek, and Erk. Thus, the combination blocked both the Akt and 

MAP kinase signaling pathways.  
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Figure 6. Western blot analyses of the effects of protein kinase inhibitors on the status of key signaling 

pathways in MDA-MB-231 and MDA-MB-468. The cells at 70% confluency were treated for 2 h with 

the following drugs: Control, no drug; lapatinib, 5 μM; GSK690693, 1 μM; lapatinib+GSK690693, 0.5 

μM each; dasatinib, 1 μM; AZD-6244, 20 μM; dasatinib+AZD-6244, 0.5 μM each. The cells were lysed 

immediately in lysis SDS-PAGE sample buffer at 95 °C, and the proteins in the treated cells were 

fractionated by SDS-PAGE and probed by different antibodies against the indicated proteins. Protein 

sample loadings were equalized based on the level of β-actin. Full pictures of the Western blots and 

the densitometry scans are presented in Figure S1 and Table S1. 

The effects of the lapatinib and GSK690693 on MDA-MB-231 cells provided an interesting 

contrast. First, lapatinib had no appreciable effect on the protein expression or phosphorylation levels 

of any of the proteins in MDA-MB-231. Second, the phosphorylation levels of Akt on both T308 and 

S473 are very low in untreated MDA-MB-231 cells. The Akt phosphorylation levels were unaffected 

by lapatinib, but greatly stimulated by GSK690693, and the lapatinib/GSK690693 combination. These 

results indicated that MDA-MB-231 cells did not rely on the EGFR kinase pathway or Akt signaling 

for viability, and thus were not sensitive to lapatinib and GSK690693, either individually or in 

combination. The observation that Akt phosphorylation on both T308 and S473 was increased by 

GSK690693 indicated that GSK690693 entered the cells, and interacted with Akt. Increased Akt 

phosphorylation in response to GSK690693 was previously observed in multiple cell lines [12,23,36–

38]. The fact that GSK690693 and GSK690693/lapatinib combination did not inhibit the 

phosphorylation of PRAS40, and GSK-3β explains why MDA-MB-231 was not inhibited by 

GSK690693 or the combination. It is not yet clear why GSK690693 did not inhibit Akt phosphorylation 

of PRAS40 and GSK-3β in MDA-MB-231 cells. These results are consistent with literature reports that 

another Akt inhibitor, MK-2206 [39–41], also does not inhibit MDA-MB-231 cell viability, even though 

it inhibits Akt phosphorylation in MDA-MB-231 cells. These results indicated that EGFR and Akt 
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play negligible roles in MDA-MB-231 proliferation. Collectively, these results provide a molecular 

basis for why lapatinib/GSK690693 combination blocks MDA-MB-468 viability specifically, but had 

no effect on MDA-MB-231. 

The treatment of MDA-MB-231 cells with dasatinib decreased Src phosphorylation on both Y416 

and Y527. Y416 is a site of autophosphorylation and Y527 is phosphorylated by a different PTK, Csk 

[42]. Both Src and Csk are sensitive to dasatinib [43]. Treatment of MDA-MB-231 with AZD-6244 

resulted in a complete block of Erk phosphorylation by Mek. The combination of dasatinib and AZD-

6244 resulted in decreased Src phosphorylation on both Y416 and Y527, and blocked phosphorylation 

of Erk. The fact that the drug combination effectively blocked MDA-MB-231 viability indicates that 

Erk and Src signaling is crucial for the viability of this cell line. Surprisingly, the treatment of MDA-

MB-468 cells with dasatinib, AZD-6244, and the combination also caused the same inhibition pattern, 

even though the drugs did not block MDA-MB-468 viability. This result suggests that these pathways 

are present in MDA-MB-468 cells, but do not play appreciable roles in their viability.  

2.7. The Hill and Biphasic Analyses Applied to Multi-Driver versus Mono-Driver Cancer Cells 

Up to this point, seven cell lines have been subjected to a detailed kinase inhibition profiling in 

our lab. The dose response data are analyzed by both the Hill equation and the biphasic equation, 

and the inhibitory parameters from these analyses are summarized in Table 2. The list contains two 

mono-driver cancers, an acute myeloid leukemia cell line, CTV-1 [44,45], non-small cell lung cancer 

cell line HCC-827 [46], three colorectal cancer cell lines, HT-29, SK-CO-1, and NCI-H747 [12], and two 

TNBC cell lines MDA-MB-231 and MDA-MB-468. CTV-1 and HCC-827 are both mono-driver cancer 

cells driven by mutated Lck kinase [47] and EGFR [28], respectively. The colorectal cancer cells and 

TNBC cells are multi-driver cancer cells. The combined Hill analysis and biphasic analysis offered 

clear and consistent distinguishing patterns for mono-driver and multi-driver cells. Mono-driver 

cancer cells displayed: (1) Imax and F1 close to 100%, (2) n values above 1, and (3) similarly low nM 

IC50* and Kd1 values. In contrast, multi-driver cancer cells produced: (1) F1 values significantly below 

100%, (2) n values significantly below 1, and (3) low nM Kd1 values dramatically below the IC50*’s. 

Table 2. Analysis of cancer cell response to kinase inhibitors by the Hill equation and the biphasic 

mathematical model. The data used for the analyses are derived from the current study and two 

previous studies [12,47], and the data are provided in Supplementary Data for Table 2. An example 

of Hill and biphasic analyses (the effect of dasatinib on MDA-MB-231) is shown in Supplementary 

Data—Hill and Biphasic Analyses of the Effects of Dasatinib on MDA-MB-231. 

Cell Drug 
Hill Analysis Biphasic Analysis 

RMSE Imax (%) IC50* (nM) n RMSE F1/F2 Kd1 (nM) Kd2 (μM) 

HT-29 

AZD-6244 

BMS-754807 

Dasatinib 

HG6-64-1 

0.027 

0.023 

0.032 

0.024 

73 

100 

67 

51 

248 

585 

147 

16 

0.52 

0.34 

0.62 

0.84 

0.029 

0.047 

0.026 

0.026 

55/45 

44/56 

51/49 

50/50 

92 

12 

59 

14 

54.1 

8.4 

33.3 

>100 

SK-CO-1 
AZD-6244 

BMS-754807 

0.025 

0.034 

83 

68 

543 

200 

0.69 

0.50 

0.025 

0.048 

55/45 

44/56 

169 

32 

13.6 

29.3 

NCI-H747 
AZD-6244 

BMS-754807 

0.019 

0.028 

75 

75 

71 

231 

0.62 

0.60 

0.029 

0.031 

61/39 

54/46 

34 

75 

25.6 

22.4 

MDA-MB-231 
AZD-6244 

Dasatinib 

0.021 

0.05 

46 

88 

210 

300 

0.68 

0.49 

0.023 

0.018 

36/64 

49/51 

91 

30 

>100 

9.3 

MDA-MB-468 
GSK690693 

Lapatinib 

0.08 

0.026 

100 

100 

2940 

190 

0.42 

0.45 

0.06 

0.038 

37/63 

53/47 

67 

17 

15.6 

3.1 

HCC-827 

Gefitinib 

Erlotinib 

Dasatinib 

0.027 

0.029 

0.049 

89 

90 

93 

10 

14 

149 

1.73 

1.87 

1.88 

0.056 

0.062 

0.075 

92/8 

93/7 

98/2 

11 

16 

157 

>100 

>100 

>100 

CTV-1 

Bosutinib 

Dasatinib 

WH-4-023 

0.033 

0.043 

0.043 

96 

97 

98 

51 

9.1 

712 

2.71 

2.72 

2.49 

0.10 

0.11 

0.096 

100/0 

100/0 

100/0 

56 

9.1 

716 

None 

None 

None 
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To determine if the multi-driver hypothesis, a biphasic inhibition pattern is broadly applicable 

to other triple negative breast cancer cells, we applied the Hill analysis and the biphasic analysis to 

the TNBC data in the Genomics of Drug Sensitivity in Cancers database 

(https://www.cancerrxgene.org/compound/Trametinib/1372/overview/ic50). The database contains 

17 TNBC cell lines. Judging by the standard discussed above, only one cell line is a clear mono-driver 

cancer cell line, DU-4475. This cell line is sensitive to BRAF inhibitors AZ628, PLX472, and SB5908, to 

Mek inhibitors RDEA119, CI-1040, and PD-0325901, and Erk inhibitor VX-11e. Hill analysis and 

biphasic analysis (Table 3) indicate that the cell line responds to all seven inhibitors as a largely mono-

driver cancer with the following characteristics. (1) The dose response data fit well to both the Hill 

equation and the biphasic equation; (2) The Imax and F1 are generally similar and close to 100%, 

indicating that all seven drugs can fully inhibit cell viability; (3) the IC50* from the Hill analysis and 

the Kd1 from the biphasic analysis are in good agreement for every inhibitor; (4) the n values from the 

Hill analysis are consistently above 1. Indeed, DU-4475 cells contain a BRAF V600E mutation that 

would activate BRAF, which, in turn, activated Mek and Erk. Both the Hill analysis and biphasic 

analysis indicate that the DU-4475 cells can be fully blocked by inhibitors to BRAF, Mek or Erk, 

consistent with this being a mono-driver cell line. The other 16 TNBC cell lines in the GDSC database 

did not respond to kinase inhibitors strongly and consistently enough to suggest that any of them is 

a mono-driver cancer. Furthermore, the data are too incomplete (too few concentration points in a 

too narrow a range) and noisy (single determination with a single well for each concentration) to 

definitely show that they are multi-driver cancer cells. Cases in point are MDA-MB-231 and MDA-

MB-468 cell lines. Both are among the 16 TNBC cell lines tested, and, in contrast to our data, the GDSC 

data do not demonstrate that they are multi-driver cancer cells. We therefore anticipate that most of 

the TNBC cells would turn out to be multi-driver cancer cells, and are subject to biphasic analysis 

and combination targeted therapy.  

Table 3. Analysis of DU-4475 cell line responses to BRAF, Mek, and Erk kinase inhibitors by the Hill 

equation and the biphasic mathematical model. The data used for the analyses are from the Genomics 

of Drug Sensitivity in Cancers database (Supplementary Data for Table 3). 

Drug Target 

Hill Analysis Biphasic Analysis 

RMSE 
Imax 

(%) 

IC50 

(nM) 
n RMSE F1/F2 

Kd1 

(nM) 

Kd2 

(μM) 

AZ628 BRAF 0.011 91 27 1.81 0.055 95/5 26 3469 

PLX4720 BRAF 0.035 90 378 1.41 0.052 98/2 472 32448 

SB590885 BRAF 0.081 75 353 1.47 0.088 86/14 524 60 

RDEA119 Mek 0.030 86 37 1.62 0.055 90/10 37 75644 

CI-1040 Mek 0.024 88 116 1.63 0.054 93/7 131 50525 

PD-0325901 Mek 0.044 81 2.4 2.30 0.094 87/13 2.6 2169 

VX-11e Erk 0.029 98 80 1.36 0.049 100/0 80 None 

 

3. Discussion 

Targeted therapy is effective for mono-driver cancers, but not for most cancers. Genetic evidence 

indicates that most cancers are multi-driver cancers. Therefore, a combination of drugs, each blocking 

an independent driver, would be necessary for effective therapy. Most TNBC likely belongs to this 

category as no dominant driver has been found, and no targeted therapy has been approved. 

Identification of effective targeted therapy combination is a challenge since most current therapeutic 

combinations are formulated empirically and lack synergistic benefits [48]. Because most efforts to 

identify effective drug combinations rely on empirical screening [49–52], due to the large number of 

potential combinations, most screens test drug combinations only at very few concentrations. The 

development of a systematic and mechanism-based mathematical model for formulating drug 

combinations would greatly enhance the development of combination therapy for multi-driver 

cancers [53].  
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In a recent study, we developed a rational approach for identifying effective targeted therapy 

combinations for colorectal cancer cells [12]. The approach was based on the observation that multi-

driver cancer cells have a biphasic response to targeted therapy drugs: a target-specific inhibition and 

an off-target inhibition. The traditional analytic tools, all based on the assumption of a single target 

binding, are inadequate for characterizing such a biphasic response, as has been suggested previously 

[54]. A biphasic mathematical model was developed that can accurately describe the biphasic 

response and determine the amplitude (F1 and F2) and the potency (Kd1 and Kd2) of the target-specific 

and off-target responses [12]. The previous study further demonstrated that combination of drugs 

with mechanistically distinct F1 effects resulted in highly potent and strongly synergistic 

combinations against colorectal cancer cells. In the current study, the same approach was applied to 

two triple negative breast cancer cell lines and the results suggest the multi-driver proliferation 

hypothesis, the biphasic mathematical model, and the mechanism-based combination targeted 

therapy strategy also apply to these triple negative breast cancer cells.  

3.1. Drug Sensitivity Profiling Combined with Biphasic Analysis Can Identify Partial Drivers and Suggest 

Effective Drug Combinations for TNBC Cells 

Determining the oncogenic drivers for a given cancer is a challenge, and the TNBC cells are no 

exceptions. In this current study, we demonstrate that quantitative analysis of cancer cell response to 

kinase inhibitors can be an effective tool for identifying the drivers in triple negative breast cancer 

cells. First, the biphasic analysis offers a more comprehensive view of the signaling mechanism for 

the TNBC cells. MDA-MB-231 has been reported to respond to dasatinib [55–59] and AZD-6244 [60–

62], MDA-MB-468 has been shown to respond to lapatinib [22,63,64] and AKT inhibitor MK-2206 [65] 

previously. The previous studies tend to view the cancer cell signaling with a focus on one driver or 

another, often in isolation from other signaling pathways. Examining the responses of a cancer cell 

to a panel of signaling inhibitors provides a more comprehensive view of the signaling landscape for 

a given cell, and separating the target-specific and off-target effects for a drug provides a more 

quantitative assessment of the role of a given kinase in cell viability. This analysis in the context of 

multi-driver proliferation offers a holistic view of cancer signaling mechanism. Second, assuming a 

multi-driver signaling mechanism and assessing the relative contribution of each driver to viability 

provide a mechanistic basis for formulating targeted drug combinations that can effectively and 

synergistically block cancer cell viability. This approach identified effective drug combinations for 

both MDA-MB-231 and MDA-MB-468 cells. In both cases, the drug combination is far more potent 

than the individual drugs alone. Finally, these results provide an explanation as to why mono-agent 

therapy would not be effective for TNBC. Even though both cells displayed some level of sensitivity 

to several kinase inhibitors, with sub-μM IC50’s, the relatively low IC50’s, achieved by the combined 

effect of target-specific and off-target inhibition, are deceiving. When used for targeted therapy, only 

the target-specific effect is likely beneficial for therapeutic efficacy, and the off-target effects are likely 

contributing to dose-limiting toxicity. If these drugs are used in the target-specific concentration 

window, the best they can achieve are approximately 50% inhibition. This provides at least one 

explanation for why single agent targeted therapy would not be effective for multi-driver cancers. 

Dasatinib [66], Akt inhibitor MK-2206 [9], and lapatinib [67] have all been tested against TNBC in 

clinical trials, and all displayed minimal benefits. In retrospect, unless a patient has a mono-driver 

cancer with one of these kinases as the driver, these mono-agent therapies would not be expected to 

be effective.  

Even though the target-specific effects are combined synergistically when appropriate drugs are 

used together, data in this study and a previous study [12] suggest that the off-target effects of the 

individual drugs are not combined synergistically. For example, dasatinib and AZD-6244 

individually inhibited MDA-MB-468 with IC50’s of around 20 μM or above (Table 1), and the 

combination inhibited the cell line with IC50 close to 20 μM of each (Figure 5A). Similarly, lapatinib 

and GSK690693 inhibited MDA-MB-231 with IC50’s of >20 μM and 16.7 μM, respectively (Table 1), 

and the combination inhibited the cell line viability with an IC50 close to 10 μM of each (Figure 5B). 

Similar observations were made with drugs that inhibited HT-29 cells with only off-target effects [12]. 
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A broader and unanswered question about this combination approach is whether these cell line-

specific drug combinations would display any potent general toxicity toward any normal cells. Drug 

combinations should be tested against a broad spectrum of normal cells and/or animal models to 

assess their toxicity before they can be used in clinical setting. 

3.2. The Hill Analysis versus Biphasic Analysis 

Historically, the response of cells to drug treatment was performed using some version of the 

Hill equation. In this study and the preceding study, we have developed an alternative equation for 

analyzing the cell responses to targeted therapy. One fundamental difference between the Hill 

equation and the biphasic equation is the mechanistic assumption about the shallow drug response 

curves, a common feature of many drug response curves [54]. The Hill equation assumes that the 

shallow response curves are produced by a drug binding to a single target with negative 

cooperativity, producing n values less than 1. There is no mechanistic basis for this negative 

cooperativity. The Hill analysis data in Table 2 indicated that the shallow response curves (n < 1) are 

common among multi-driver cancer cells. The biphasic analysis interprets the shallow response 

curves as the result of an inhibitor binding to multiple targets, causing a partial inhibition in a target-

specific manner and additional inhibition by an off-target effect. The competing interpretation is best 

illustrated by MDA-MB-468, where the Imax was 100% for both lapatinib and GSK690693 in the Hill 

analysis, while the F1 for the two drugs are 53% and 37%, respectively, according to the biphasic 

analysis. As a result, the IC50 values (2940 nM for GSK690693 and 190 nM for lapatinib) are 

significantly higher than the target-specific Kd1 values (67 nM for GSK690693 and 17 nM for lapatinib). 

The remarkable synergy between lapatinib and GSK690693 (combined IC50 of 22 nM each) in 

inhibiting MDA-MB-468 viability strongly supports the biphasic interpretation.  

Theoretically, the inhibition pattern may contain more than two phases. For example, if a cell 

contains three drivers and each responsible for 33% cell viability, a drug that inhibits driver one with 

a Kd of 10 nM, the driver two with a Kd of 100 nM, and causes off-target toxicity with a Kd of 5 M, 

then the inhibition will be theoretically triphasic. Such perfectly configured scenarios are likely rare. 

In practice, if two drivers both respond to the same inhibitor with Kd’s within 10 fold of each other, 

they become indistinguishable by this type of analysis. The toxicity phase is also likely complex as it 

is caused by ill-defined and likely variable mechanisms. Despite these potentially complicating 

scenarios, the inhibition of most multi-driver cancer cells by most inhibitors for one of the drivers can 

be practically described by this biphasic mathematical model. 

Even though the biphasic analysis assumed a bi-target inhibition, it is still informative in 

analyzing mono-driver cancers, where the F2 becomes negligible, and the equation becomes a 

simplified Hill equation with assumed n value of 1. For all the mono-driver cancer cell/drug 

combination, both the Hill analysis and the biphasic analysis produced similar inhibitory potency 

(IC50* vs. Kd1). The only major difference is the apparent positive cooperativity suggested by the n 

values (>1) in the Hill analysis. The mechanistic basis for the positive cooperativity is still unclear. 

3.3. Heterogeneity and Cell-Specificity of TNBC Signaling  

It is also important to note the dramatic mechanistic differences between the two cell lines 

revealed by both inhibitor sensitivity analysis and immunoblot analysis. MDA-MB-468 relies on the 

lapatinib-sensitive MAP kinase pathway and Akt signaling pathways for viability, while MDA-MB-

231 relies on a KRAS-initiated downstream signaling and Src kinase for viability. Consequently, the 

potency of the drug combinations is extremely cell-specific. Dasatinib/AZD-6244 inhibited MDA-MB-

231 >200-fold more potently than MDA-MB-468, while lapatinib/GSK690693 was >500-fold more 

potent toward MDA-MB-468. The cell specificity is also consistent with available genetic information. 

MDA-MB-231 contains KRAS G13D mutation and the cell was partially sensitive to AZD-6244, while 

MDA-MB-468 does not contain the mutation and was not sensitive to the inhibitor. Lapatinib 

inhibited the phosphorylation of both Mek and Erk phosphorylation in MDA-MB-468, but not in 

MDA-MB-231, indicating that the MAP kinase pathway activation is dependent on EGFR in MDA-

MB-468 cells but not in MDA-MB-231. The roles of Akt in the two cell lines are also quite different. 
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GSK-690693 blocked Akt phosphorylation of its substrates PRAS40 and GSK-3β in MDA-MB-468 

cells, but not in MDA-MB-231 cells. This was not due to a lack of cell uptake or cellular export of the 

drug, as GSK690693 strongly stimulated the phosphorylation of Akt on both T308 and S473 in MDA-

MB-231 cells. These results demonstrate drug sensitivity is closely linked to the cell signaling 

mechanism, rather than general cytotoxicity. This feature is likely important for the future application 

of combination therapy in clinical settings.  

3.4. Implications of Biphasic Analysis on Targeted Therapy 

Identifying synergistic targeted therapy is still a major challenge for cancer treatment. The 

strategy demonstrated in this paper and the previous study [12] provides an intriguing strategy for 

this purpose. To fully evaluate the application of this strategy, two types of further investigation will 

be necessary. First, the combinations that were found to be effective in vitro need to be tested in vivo 

for their effectiveness in inhibiting tumor growth in animals. Second, the biphasic analysis has been 

applied only to a small number of cell lines and needs to be tested in more cell lines representing 

diverse cancer types. Based on the colorectal cancer and TNBC cell lines tested thus far, the Src kinase, 

the MAP kinase pathway, and PI-3 kinase/Akt pathways play crucial roles as cancer drivers. It is 

likely that, as more cell lines are tested, mechanistic patterns will emerge and cancer cells will be 

classified based on their molecular signaling mechanism and drug sensitivity. It is also possible that 

relatively few combinations of drugs will be found to be effective for multiple types of cancers.  

4. Materials and Methods  

4.1. Cell Lines, Media, and Drugs 

The TNBC cell lines, MDA-MB-231 and MDA-MB-468, were purchased from ATCC (Manassas, 

VA, USA). They were authenticated by ATCC by short tandem repeat profiling, cell morphology 

monitoring, karyotyping, and cytochrome C oxidase I testing. The cells were grown in ATCC-

recommended media, containing 10% FBS and 1% Penicillin-streptomycin (Thermo Fisher Scientific, 

Pittsburgh, PA, USA). All cells were cultured at 37 ℃ in humid atmosphere containing 5% CO2. 

Kinase inhibitors were purchased from Selleckchem (Munich, Germany), LC Laboratories (Woburn, 

MA, USA), or AdooQ Bioscience (Irvine, CA, USA).  

4.2. Cell Culture and Viability Assays 

Cell culture and viability assays were performed as described previously [12]. Briefly, cells were 

plated in 96-well plates at 25,000 cells per well, and were incubated with drugs at indicated 

concentrations in 100 μL medium containing 1% DMSO for 72 h. At the end of the incubation, cell 

viability was determined by the MTT dye assay (Thermo Fisher Scientific). The formazon product 

was determined by absorbance at 490 and 750 nm using a VersaMax Tunable Microplate Reader. The 

A490-A750 values were taken as indicator of cell viability. All cell growth and drug inhibition 

experiments were performed in triplicates at least two times.  

4.3. Curve-Fitting by the Hill Equation and the Biphasic Equation 

Curve fitting was performed in Microsoft Excel. The Hill equation used was: I = Imax × Dn/(IC50*n 

+ Dn), where Imax is the maximal inhibition by a drug, IC50* is the IC50 for inhibiting the portion of cell 

viability that is sensitive to the drug, and n is the Hill coefficient, or slope. In curve fitting, the root 

mean square error (RMSE) between the experimental cell viability and the calculated viability was 

minimized using the Imax, IC50*, and n as a variable. The RMSE minimization was carried out using 

the Solver add-in program in Microsoft Excel.  

The biphasic kinetic curve fitting was performed similarly, except that the equation used was: I 

= F1 × [D]/([D] + Kd1) + F2 × [D]/([D] + Kd2). In this equation, the inhibition of cell viability (I) as a 

function of variable drug concentration is determined by three constants: F1, Kd1, and Kd2. The F2 was 

not an independent variable, but calculate from F1 (F2 = 100%-F1). The RMSE was minimized allowing 
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the F1, Kd1, and Kd2 as variables. The F1, Kd1, and Kd2 that resulted in the smallest RMSE were taken as 

the best fitting parameters.  

4.4. Drug Synergy Analysis and Combination Index Calculation 

Drug synergy was evaluated by two methods: quantitatively by the dose reduction index (DRI), 

and visually by the isobologram, as described previously [12]. Cell viability was determined after 

incubation in the presence of each drug alone or both drugs (1:1 ratio) at 16 concentrations ranging 

from 0.6 nM to 20 μM. The concentration of a drug or drug combination that inhibited cell viability 

at certain percentage (ICx) was determined manually from the graphs of drug dose response curves. 

The DRI was calculated according to Chou [68], using the Chou and Talalay Method [68]. The DRI at 

a given level of inhibition was calculated by the following equation: DRI = ICx−1 × ICx−2/(ICx−1+2 x (ICx−1 

+ ICx−2), where ICx−1, ICx−2, and ICx−1+2 are the concentrations of drug 1, drug 2, and drugs 1 + 2, causing 

X% inhibition of cell viability, respectively. Isobolograms, comparing the inhibitory potency of a drug 

combination to individual drugs, was drawn using Microsoft Excel. 

4.5. Western Blot Analysis of Drug Effects on Cell Signaling 

To determine the effects of the kinase inhibitors on the signaling network in the TNBC cells, the 

cells were cultured to 60–70% confluency, and treated by the drugs or drug combinations at indicated 

concentrations for 2 h under normal cell culture conditions. After treatment, the culture medium was 

aspirated, and adherent cells were then resuspended in the SDS-PAGE loading buffer containing a 

protease inhibitor cocktail (Sigma-Aldrich, St. Louis, MO, USA) and protein phosphatase inhibitors 

(PhosSTOP, Sigmal-Aldrich) and lysed in a 95 °C heat bath immediately. SDS-PAGE and Western 

blotting were performed as described [69]. The loading was normalized based on the β-actin 

expression levels in the lysates determined by an antibody specific for this protein. Western blotting 

analyses were performed on two separate experiments. All antibodies were purchased from Cell 

Signaling Technology (Danvers, MA, USA). The density of each protein band in the Western blots 

was measured using the ImageJ software (https://imagej.nih.gov/ij/). 

4.6. Analyses of TNBC Cell Drug Response Data in the Genomics of Drug Sensitivity in Cancer Database 

The TNBC cell line drug response data (GDSC1-raw-data) were from the Genomics of Drug 

Sensitivity in Cancer website (https://www.cancerrxgene.org/downloads/bulk_download). The raw 

viability data were normalized to the controls as relative viability. The Hill analysis and biphasic 

analysis were carried out as described in Section 4.3.  

5. Conclusions 

Targeted cancer therapy is highly effective for mono-driver cancers, but effective drug 

combination therapy is necessary for multi-driver cancers. We previously developed a biphasic 

mathematical model for analyzing multi-driver cancer cell response to targeted therapy. The biphasic 

analysis can delineate the response of a multi-driver cancer cell to targeted therapy into a target-

specific inhibition and an off-target inhibition, and predict highly potent and synergistic drug 

combinations for colorectal cancer cells. In the current study, we demonstrate that the same approach 

can be applied to triple negative breast cancer cells to identify effective targeted drug combinations 

for TNBC cells.  

MDA-MB-231 and MDA-MB-468 are two commonly used triple negative breast cancer cell lines. 

Despite numerous reports of potential protein kinase signaling pathways in sustaining their viability, 

a systematic understanding is lacking. Biphasic analysis of the response of these cells to a panel of 

protein kinase inhibitors revealed that MDA-MB-231 is Mek kinase signaling and Src kinase for 

viability and MDA-MB-468 is dependent on EGFR and Akt signaling for viability. Due to this multi-

driver set up in these cells, individual kinase inhibitors can only partially inhibit cell viability in a 

target-specific manner. Higher level inhibition by a given inhibitor can only be achieved with the aid 

of off-target toxicity, which is not transferable to clinical efficacy in targeted therapy. The biphasic 



Cancers 2020, 12, 1087 19 of 23 

 

analysis further predicted and experiments confirmed effective and synergistic combination of drugs, 

each blocking a separate driver in each cell line. If this mechanism-based approach of developing 

combination targeted therapy is further validated in vivo, it would greatly expand the reach of 

targeted therapy to multi-driver cancers.  
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