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Finite-size scaling and integer-spin Heisenberg chains

JillC. Bonner
University of Rhode Island, Kingston, Rhode Island 02881

Gerhard Miiller
Institute for Theoretical Physics, S.U.N.Y. at Stony Brook, Stony Brook, New York 11794

Finite-size scaling (phenomenological renormalization) techniques are trusted and widely applied
in low-dimensional magnetism and, particularly, in lattice gauge field theory. Recently,
investigations have begun which subject the theoretical basis to systematic and intensive scrutiny
to determine the validity of finite-size scaling in a variety of situations. The 2D ANNNI model is
an example of a situation where finite-size scaling methods encounter difficulty, related to the
occurrence of a disorder line (one-dimensional line). A second example concerns the behavior of
the spin-1/2 antiferromagnetic XXZ model where the 7' = O critical behavior is exactly known
and features an essential singularity at the isotropic Heisenberg point. Standard finite-size scaling
techniques do not convincingly reproduce the exact phase behavior and this is attributable to the
essential singularity. The point is relevant in connection with a finite-size scaling analysis of a
spin-one antiferromagnetic XXZ model, which claims to support a conjecture by Haldane that
the T = 0 phase behavior of integer-spin Heisenberg chains is significantly different from that of

half-integer-spin Heisenberg chains.

PACS numbers: 75.10. — b

INTRODUCTION

The numerical analysis of sequences of finite systems
has been a powerful tool in the investigation of thermody-
namic and critical properties of low dimensional systems in
the thermodynamic limit." The technique of finite-size
scaling (also known as phenomenological renormaliza-
tion)*® has utilized concepts from scaling theory and renor-
malization group analysis to provide a systematic method
for extracting quantitative values for critical properties in
the limit N— 0. Hence the validity was established of ex-
tracting N— o information from finite systems, as assumed
by the older, direct extrapolation methods. Finite systems, of
course, do not display critical behavior, but temperature,
ordering field, and finite-size deviations from criticality are
all described by the same set of critical exponents. To obtain
sequences of reasonable length for analysis, the method is
essentially limited to 2D classical systems (where the proper-
ties of infinite strips of finite width are calculated by the
transfer matrix technique) and 1D quantum systems (where
finite chain calculations involve diagonalization of the Ha-
miltonian matrix). Finite-size scaling techniques are trusted
and widely applied in low dimensional magnetism and relat-
ed studies.>S

A typical system close to its critical point is character-
ized by a temperature-like (nonordering) field and an order-
ing field, denoted by ¢ and A, respectively. The critical point
is given by t = & = 0. For systems of finite size N, criticality
implies a third condition, namely 1/N = 0. In fact, 1/N
plays the role of a scaling field with exponent equal to unity.
Scaling expressions may be formulated for the free energy
f=/f(t.h,1/N }and theinverse correlation lengthx = «(t,4,1/
N), and the phenomenological renormalization approach
yields values for the critical point and its exponents. Of spe-
cific interest here is the relation «{(0,0,1/N)=#xy =N ~},
and hence the critical point is identified as the point where
the curves N« intersect as a function of temperature {or any
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temperature-like parameter in general). For a 2D classical
system and a lattice of N X oo sites, xy may be obtained from
the eigenvalues of the transfer matrix, 4 §"'> [A V'|> ...:

Ky =In|A /AN (1)

The free energy and inverse correlation length in 2D corre-
spond to the ground-state energy and excitation energy gap,
respectively, for quantum systems in 1D.

Recently, the bases of the finite-size scaling method
have come under critical scrutiny,® which seems appropriate
in view of the rapidly increasing number and areas of appli-
cation(s). For example, finite-size scaling, like scaling theory
generally, breaks down at sufficiently high dimensionality.®
Here we focus on two situations in low D magnetism where
the method has demonstrated potential for yielding mislead-
ing results. The first situation occurs in 2D Ising systems
with competing interactions, and the second involves the
essential singularity terminating a nonuniversal critical line.
The suggestion follows that the finite-size scaling method
should not be applied in routine fashion, but with caution
when there is reason to suspect unusual critical behavior.

THE 2D ANNNI MODEL

The 2D ANNNI (axial next-nearest neighbor Ising)
model is the 2D variant of a simple cubic 3D Ising model
with competing interactions introduced to explain modulat-
ed magnetic phases observed experimentally in rare-earth
systems. The 3D ANNNI model has n.n. ferromagnetic
(FM) intraplane interactions (J,); FM interactions (/;)
between n.n. planes, and competing antiferromagnetic
(AFM) interactions (J,) between n.n.n. planes. There is gen-
eral consensus that the 3D ANNNI model shows a para-
magnetic (PM) phase at high temperatures, a FM phase for
values of the ratio of axial competing interactions X = |J,/
Ji| <0.5, and a modulated “antiphase” (2 spins up, 2 spins
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FIG. 1. Schematic phase diagram of the 2D ANNNI model as described in
the text, including the pseudo Lifshitz point (L). Not mentioned in the text is
an additional phase boundary line shown dash-dotted (for X > 0.5) pertain-
ing to an incommensurate phase (I) between PM and antiphase regions. The
behavior of this line for large X is not yet well established.

down) for K > 0.5. Between the three phase regions a multi-
plicity of modulated phases occurs, a large number of which
converge at the “multiphase” point M, located at T'=0,
K =0.5. A second special point is a Lifshitz point where
FM, PM, and modulated phase regions meet, located at
K =0.27. In the case of the 2D ANNNI model, where FM
planes {J,) are replaced by FM lines (J,), the situation is less
clear. Figure 1 is a sketch of the current status of the 2D
phase diagram. The solid lines denote phase boundaries and
other features whose existence is established by consensus.
The 2D ANNNI model possesses a FM phase, an ordered
antiphase, and a special point M at K = 0.5. A body of early
work including high-temperature series expansions,'’
Monte-Carlo simulation,!' and perturbation series'? indicat-
ed an additional phase region (shown by the dashed line in
Fig. 1), believed to be modulated in analogy with the 3D
ANNNI model, or incommensurate. A Lifshitz point (L)
was indicated, located at K ~0.35. However, Peschel and
Emery found an exact solution of the 2D problem along a
special trajectory in [7,K ] space, which they called a “one-
dimensional line” (ODL)."* As an effect of competition in the
axial interaction, the dimensionality of the problem is re-
duced by unity along the ODL, permitting an exact solution.
Since D = 1, the ODL is disordered (PM) for 7> 0, having a
(multi-) critical singularity M at T = 0." Such phenomena
were systematically investigated by Stephenson, who called
them disorder lines, in a number of competing-interaction
Ising models.’> When FM and AFM interactions compete,
the disorder line separates PM regions where the correla-
tions show monotonic exponential decay and oscillatory ex-
ponential decay. Disorder lines appear to form a natural
boundary which series, perturbation, and Monte Carlo tech-
niques cannot reliably cross. The Peschel-Emery ODL,
shown in Fig. 1, demonstrates conclusively that the early
work predicting a Lifshitz point and associated intermediate
phase is erroneous, since the system must be PM down to
T = 0 in the vicinity of the ODL. We note that, from Fig. 1,
for 0.35 5K < 0.5, the ODL runs very close to the FM phase
boundary. The suggestion is that this feature is giving rise to
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the misleading results. This early work includes finite-size
scaling studies on the 1D quantum analogue of the 2D
ANNNI model.'? For 0<X %0.35, the finite chain studies
gave results for the FM phase boundary in good agreement
with the perturbation series results. For K > 0.35, however,
the finite-size scaling approach initially ran into difficulty,
since the first excited state was no longer a wave-vector
k =0 state like the ground state. This feature meant that
calculations on longer chains were required to obtain critical
information in this X region, and led to the misleading sug-
gestion that the k-sector variation indicated the presence of
modulated phases for K > 0.35, in agreement with the Monte
Carlo and series methods. When the significance of the ODL
was fully appreciated, finite-size scaling calculations were
successfully extended using Roomany—Wyld SB-function ap-
proximants.'®

THE XXZ SPIN CHAIN

Recently, Haldane'” has put forward an interesting
conjecture that integer-spin XXZ antiferromagnetic chains
show a very different kind of phase behavior at 7 = 0 from
half-integer-spin XXZ chains, which resemble the spin-1/2
case, the only case where an exact analytic solution is possi-
ble.'® The Hamiltonian is given by

N

H=2|JtEI[(Sfo+1+SfS¥+l)+,{Sf. ?+l]' (2)
In the case of spin-1/2, for 0<A < 1 the system displays a
gapless phase with continuously varying critical exponents
(7, say) and long-range correlations which decay algebraical-
ly to zero (i.e., a Baxter-type nonuniversal line). An essential
singularity occurs at the isotropic Heisenberg point, 4 = 1,
terminating the nonuniversal line. For 4 > 1, the ground-
state is twofold degenerate with long-range order, and the
system displays an excitation energy gap. For integer-spin
systems, Haldane predicts the occurrence of an intermediate
phase, encompassing the Heisenberg point, 4 = 1. For
0<A4 <4, a gapless, nonuniversal line is expected, terminat-
ing in an essential singularity at A =4, <1. For A >4,,
where 4, > 1, the system has a gap and an ordered, degener-
ate ground state. The singularity at A = A, is expected to be
of the transverse Ising model type. The new intermediate
phase occurs for 4, <4 < 4,, and is characterized by an ener-
gy gap and a nondegenerate, nonordered ground state. Spe-
cifically, the isotropic Heisenberg point, A = 1, where the
symmetry of the problem changes from easy-plane (1 < 1) to
easy-axis (4 > 1)is not associated with any singular behavior.

Using finite-size scaling techniques and calculations on
spin-1 XXZ chains of 2~12 spins, Botet and Jullien'® have
recently concluded that the T = O phase behavior confirms
the Haldane integer-spin conjecture. They find an essential
singularity A, located back at the XY limit and a singularity
claimed to be of transverse Ising type at A,~1.18, and con-
clude that the intermediate region 0 <A < 1.18 has a gap and
a nonordered ground state. Our analysis, however, suggests
that the numerical treatment of Botet—Jullien is less than
conclusive and depends crucially on the reliability of finite-
size scaling in the vicinity of (essential) singularities. We have
repeated the Botet-Jullien analysis for the exactly solvable
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FIG. 2. Scaled gaps NG, for N = 4, 6, 8, 10,
and 12 for spin-1/2 XXZ chains plotted as
solid curves as a function of A, in analogy
with Fig. 1 of Ref. 19. Data are available
only for A > 1 (except for NG, for N =4).
The dashed curves for N> 4 denoted N4,
are A > 1 continuations of scaled gaps for
A < 1. The NG successively cross at values
of A denoted A.(N,N + 2). The inset shows
the crossing values A, plotted vs (N + 1)~ .
They appear to extrapolate to a limiting
12 A, > 1. For more details see Ref. 19.

spin-1/2 XXZ model, and a comparable plot to their Fig. 1
(of Ref. 19) is shown as Fig. 2. Here we have plotted the
“scaled mass-gaps” NG, as a function of anisotropy 4. The
scaled gap is the excitation energy gap between ground state
and first excited state multiplied by system size N. We have
data for spin-1/2 systems with N =4, 6, 8, 10, and 12 for
A>1 only, but Solyom?® has data for N = 4-12 for 0<A < 1
also, and his independent results confirm our conclusions on
the qualitative similarity of scaled-gap plots for spin-1/2 and
spin-1 systems.?' If the spin-1/2 data are interpreted accord-
ing to the arguments of Botet-Jullien (BJ), they yield the
same phase behavior found by BJ for spin-1, known rigor-
ously to be incorrect for spin-1/2. The effect is attributable
to the essential singularity at A = 1. In fact, essential singu-
larities (or, equivalently, the presence of logarithmic correc-
tions) are well known to cause difficulty for approximate
techniques. Misleading results are obtained unless due cau-
tion is exercised. The possibility should be considered that a
strong singularity at the Heisenberg point for spin-1 may be
giving rise to the phenomena interpreted by Botet—-Jullien as
supporting the Haldane conjecture.

There is only one significant difference between the be-
havior of the NG, for spin-1/2 and spin-1. For finite systems
up to 12 spins, the NG, for spin-1/2 appear to be converging
to a finite value at 4 = 1, indicating a gapless phase in the
thermodynamic limit, whereas for spin-1, the NG,, appear to
be diverging, indicating the possibility of a gap. On the other
hand, investigation shows that convergence with A is ex-
tremely slow in the vicinity of A = 1 for spin-1/2, and longer
chains of ~25-30 spins are required to show the true, large
N, asymptotic behavior.?’ Hence the question of whether
spin-1 XXZ chains behave in accordance with the Haldane
conjecture remains open, and further numerical studies are
desirable.
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