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ABSTRACT 

 20-hydroxyecdysone (20E), the active principle of the molting hormone in the 

American lobster has significant effects on the animals’ agonistic behavior and has 

been shown to influence the outcome of agonistic interactions.  Animals injected with 

20E are significantly more aggressive than saline-injected control animals, and 

premolt animals, which have high circulating levels of 20E in their hemolymph, are 

more successful than intermolt animals in agonistic interactions.  20E has been shown 

to act as an internal modulator of neuromuscular physiology: there is an increase in the 

amplitude of excitatory post-synaptic potentials in the claw opener muscle and a 

decrease of them in the abdomen when 20E is perfused across the neurons.  In 

addition to its humoral action, 20E appears to be an important signaling molecule 

sensed by the animal’s antennules, since the behavior of animals change when they are 

exposed to 20E.  The purpose of this study was twofold: to reassess the internal 

hormonal effects of 20E on agonistic behavior in lobsters, and to provide biochemical 

evidence for the presence of 20E receptors on the antennules. 

 Fights were conducted between small lobsters injected with 20E and large 

lobsters injected with saline.  The nephropores of each lobster were blocked to 

eliminate urine signals between the combatants.  Using an ethogram, the frequency 

and intensity of aggressive, defensive and avoidance behaviors of animals in 

experimental fights were compared to those in control fights (large and small lobsters 

injected with saline).  A significant difference was found in the aggressive content in 

the behavior of animals engaged in experimental fights and that of the animals 

engaged in control fights, such that the difference in aggressive content of defensive 



behaviors between 20E injected animals and their opponents was less than its 

difference between saline-injected animals and their opponents.  These results suggest 

the aggressiveness of the defensive behavior of smaller treated animals was closer to 

that of their larger opponents than the behavior of smaller control animals was to their 

opponents.  A post-hoc analysis comparing the control animals in this study to control 

animals in a similar experiment in which lobsters were injected with 20E and allowed 

to urinate freely showed that blocking urine release changes the dynamics of an 

agonistic interaction between lobsters.   

 Since 20E was previously shown to affect the neuromuscular properties of the 

claw opener muscle, force experiments were performed to test the effect of 

ecdysteroids on the claw closer muscle.  A customized force transducer was 

constructed to measure the force and duration generated by the closer muscle of male 

and female lobsters after injection with alpha-ecdysone or 20E.  The differences in 

force and duration before and after injection of 20E or alpha-ecdysone was compared 

to their differences after injection of saline.  Alpha-ecdysone significantly increased 

the force generated by female crusher and cutter claws, and 20E potentially increased 

the force in female crusher claws.  The results suggest that circulating ecdysteroids 

influence the claw closer muscle of females and could be a factor influencing agonistic 

interactions. 

 Because previous behavioral experiments indicated that 20E could be 

perceived by lobsters and could alter their behavior, experiments were performed to 

determine whether a 20E receptor (EcR) existed on the antennules of lobsters.  In 

order to visualize the presence of an EcR, various tissues from lobsters were dissected, 



soluble and insoluble fractions extracted, and spot blots and Western blots performed.  

Spot blots indicate the presence of a 20E receptor in both the soluble 

(cytoplasmic/nuclear) and insoluble (membrane-associated) fractions of walking legs 

and eyestalks, but only in the membrane-associated fraction of the guard setae and 

aesthetasc sensilla.  Western blots and Mass Spectrometry returned several different 

molecular weights for the EcR (75 kDa, 50 kDa, 40 kDa).  The presence of an EcR in 

the membrane-associated fraction confirms that 20E can be perceived by the 

antennules of lobsters, while the various molecular weights suggest different isoforms 

may exist, which is consistent with various insect and crustacean species. 
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PREFACE 

 This dissertation is prepared in manuscript format.  Chapter one contains 

general background information and the rationale for each of the three major 

experiments conducted.  Each experiment is separated into its own chapter and has 

been prepared for publication in the format of the relevant journal. 

 Chapter Two addresses the effects of 20-hydroxyecdysone (20E) on the 

agonistic interactions of lobsters, and has been prepared for Biological Bulletin.  

Appendix A containing all figures, tables and raw data not included in the paper 

prepared for publication is included at the end of the dissertation.  

 Chapter Three describes the location and molecular weights of a receptor for 

ecdysone (EcR) in lobsters, and has been prepared for Chemical Senses. 

 Chapter Four addresses the effects of 20E and alpha-ecdysone on the claw 

closer muscle in lobsters, and has been prepared for Biological Bulletin.  Appendix B 

containing all figures, tables, and raw data not included in the paper prepared for 

publication is included at the end of the dissertation. 

 In summary, this dissertation addresses the pheromonal and hormonal actions 

of the molting hormone, 20E, on agonistic interactions in the American lobster, 

Homarus americanus.  It is the first study to show biochemical evidence that a 

membrane bound EcR exists in lobsters, which could contribute to the immediate 

changes in agonistic behavior of lobsters exposed to 20E.  It also describes the effects 

of alpha-ecdysone on the force produced by the claw closer muscle.              
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Background: 

 Agonistic encounters play an important role in the life of lobsters; they are 

involved in procuring shelters, defending and maintaining those shelters, mating, and 

foraging success (Atema and Cobb, 1980).  Some of the factors affecting the outcomes 

of agonistic encounters include the physical characteristics of the animals, such as 

weight, carapace size, and chelae size.  Large animals who weigh more and have 

greater carapace and chelae size (Scrivener, 1971) will often take on a dominant 

position over smaller animals (Cobb and Tamm, 1975).  In staged encounters, larger 

lobsters will win significantly more encounters than smaller lobsters of the same sex 

(Scrivener, 1971).  Size also plays a role in the formation of dominance hierarchies in 

lobsters; larger lobsters are dominant over smaller lobsters in social settings 

(Karnofsky, 1989).  Similar hierarchies exist in crayfish, where larger animals are 

dominant over and have more access to food resources than smaller, subdominant 

males (Issa et al., 1999; Herberholz et al., 2007).  Shelter competition between 

lobsters is influenced by size and prior residence; larger animals and animals who 

maintain prior residence are more aggressive and successful in obtaining/maintaining 

shelter (O’Neill and Cobb, 1979; Cromarty et al., 1999).  

 

Effects of hormones on agonistic behavior: 

Along with size, internal hormones and external chemical signals 

(pheromones) have been shown to influence the outcome of agonistic interactions 

between lobsters.  The effects of hormones and pheromones are complex and can lead 

to a wide spectrum of effects on animals engaged in an agonistic interaction.   
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The hemolymph titers of the molting hormone, 20-hydroxyecdysone (20E), 

varies over the molt cycle of lobsters.  Premolt animals (D1and D2 stage animals about 

to molt) with increased levels of ecdysone in their hemolymph and urine (Chang, 

1985; Snyder and Chang, 1991a; Snyder and Chang, 1991b), are dominant over and 

more aggressive than their intermolt C-stage opponents in a confrontation (Tamm and 

Cobb, 1978).  Evidence has been presented that injected 20E makes lobsters more 

aggressive, as in staged combats between large and small lobsters, smaller lobsters 

injected with the hormone are significantly more aggressive than small control animals 

injected with saline (Bolingbroke and Kass-Simon, 2001).  The injection of 20E may 

mimic the increased 20E titers that occur in D-stage animals about to molt. 

20-hydroxyecdysone isn’t the only hormone shown to affect agonistic 

behavior; amines, such as serotonin and octopamine, have been shown to affect 

behavior (Kravitz, 1990; Kravitz, 2000).  In lobsters, injection of serotonin causes 

sustained flexion of the limbs and abdomen: claws are opened and held forward, 

walking legs are flexed directly under the body, and tails are loosely flexed and tucked 

under the body (Livingstone et al., 1980).  Octopamine has the opposite effect on the 

posture of lobsters; injection causes sustained extension of the limbs and abdomen, 

legs and tail are held rigidly straight just above the substrate, and the tail and claws are 

fully extended (Livingstone et al., 1980).  Evidence has also been presented that 

injection of serotonin increases the aggression of previously subordinate lobsters 

(Huber et al., 1997).  A dominance hierarchy was established between two lobsters, 

and subordinate animals were removed and injected with serotonin.  The serotonin-

injected subordinate animals were then re-introduced to the same dominant individual 
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from the first encounter.  The fight duration and intensities of the serotonin-injected 

animals were three times as great as those of saline-injected control animals, which 

suggests that serotonin made the animals more aggressive (Huber et al., 1997).  

 

Effects of hormones on neuromuscular physiology: 

The effects of 20E and serotonin on behavior include their effects on 

neuromuscular physiology and synaptic transmission; 20E has been shown to affect 

the neuromuscular electrophysiology of the claw and abdomen.  Over the molt cycle, 

animals in premolt stage D produce significantly larger excitatory junctional potentials 

(EJP’s) and significantly fewer inhibitory junctional potentials (IJP’s) in the claw 

opener muscle (Schwanke et al., 1990).  In the presence of 20E (which is present in 

greater quantities in the hemolymph of premolt animals), there is an increase in EJP 

amplitudes and miniature excitatory junctional potential (MEJP) frequency in the 

opener muscle (used in threat displays).  There is also, a decrease in EJP amplitudes in 

the abdominal muscles used in the escape response, which corresponds to the effect of 

pre-molt and post-molt hemolymph on EJPs (Schwanke et al., 1990; Cromarty and 

Kass-Simon, 1998).  These findings are consistent with the agonistic behavior of 

premolt animals.     

In crayfish, 20E has also been shown to act as a hormone that alters the 

internal physiology of neurotransmitter release (Cooper and Ruffner, 1998; Cooper et 

al., 2003).  Cooper and his colleagues have shown that 20E decreases the probability 

of neurotransmitter vesicle release in the walking legs, and that a mixture of 20E and 

serotonin increases neuron firing frequency in the slow-adapting muscle receptor 
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organ (MRO) of the abdomen.  In early experiments (Fischer and Florey, 1983) both 

octopamine and serotonin were shown to increase nerve-evoked tension, amplitudes of 

EPSPs, amplitudes of synaptic currents and the effectiveness of excitation-contraction 

coupling through an increase in neurotransmitter release in the claw opener muscle of 

crayfish. 

In concordance with their effects on postures and behavior mentioned above, 

in the neuro-muscular junctions of lobsters, octopamine and serotonin induce 

contractures and the appearance of Ca2+ action potentials.  Serotonin facilitates 

transmitter release and dopamine relaxes muscle baseline tension, decreasing 

contraction (Kravitz, et al., 1980).  Serotonin and octopamine were also found to act in 

the central ganglion and affect only slow (postural) flexor and extensor muscles, each 

with an opposite pattern of activation on the excitatory and inhibitory neurons that 

innervate the muscles.  Octopamine acts on the excitatory extensor neuron and the 

inhibitory flexor neuron, and serotonin acts on the excitatory flexor neuron and 

inhibitory extensor neuron (Kravitz, et al., 1980).  The results show that amines may 

act as neurohormones in the lobster nervous system, affecting behavior.  High 

circulating levels of octopamine or serotonin could cause sustained extension or 

flexion of limbs, which could affect the mobility of a lobster.  If a lobster is unable to 

flex or extend claws or walking legs, then they may be at a disadvantage in an 

agonistic interaction. 

In the Pacific spiny lobster, serotonin significantly reduced the strength of 

graded synaptic transmission, and octopamine significantly increased the strength of 

graded synaptic transmission at all pyloric dilator synapses (Johnson and Harris-
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Warwick, 1990).  Serotonin was shown to reduce the pre- and post-synaptic input 

resistance, while octopamine did not change the input resistance.  The results suggest 

that the different amines work through different mechanisms and affect the same 

neurons differently (Johnson and Harris-Warwick, 1990). 

 Ecdysteroids may also have differential effects on the neuromuscular 

properties of the claw closer muscle of crusher and cutter claws, particularly as the 

two claws differ in their muscle fiber types, motoneuron innervation and contractile 

properties (Govind, 1984).  Fast twitch fibers quickly reach a maximal tension, which 

rapidly decays, while slow twitch fibers gradually increase in tension with a slow 

decay phase (Jahromi and Atwood, 1971; Costello and Govind, 1983).  Crusher claw 

closer muscles contain only slow twitch fibers with long sarcomeres, which allows the 

crusher to maintain force for a long period of time (Lang et al., 1977; Govind and 

Lang, 1978; Kent and Govind, 1981; Govind, 1984).  Cutter claws contain mostly fast 

twitch fibers with short sarcomeres and a small ventral band of slow twitch fibers, 

which leads to a quicker fatigue than crusher muscle (Lang et al., 1977; Govind and 

Lang, 1978; Kent and Govind, 1981; Govind, 1984).  The closer muscle in both 

crusher and cutter claws are innervated by the fast closer excitor neuron (FCE) and the 

slow closer excitor neuron (SCE), however, cutter closer muscles have mostly FCE 

while crushers have a mixture of both (Wiersma, 1955; Costello et al., 1981; Govind, 

1984).  Generally, SCE synapses are more fatigue resistant and recover more quickly 

than FCE synapses, but the synapses at both the FCE and SCE in crusher claws are 

more resistant to fatigue than those in the cutter (Govind and Lang, 1974; Govind and 

Lang 1979).   
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 During an agonistic interaction, lobsters perform many behaviors with their 

claws, including grabbing, hitting, pinching and claw locks (Mello et al., 1999; 

Bolingbroke et al. 2001; Coglianese et al., 2008; Reinhart et al., submitted; Sipala et 

al., unpublished).  These claw behaviors are important, as the strength or duration of a 

squeeze/pinch may affect the outcome of the agonistic interaction. Also, a larger, 

thicker claw might deliver more force during a hit than a smaller claw, which could 

cause more harm.  Based on the known neurophysiological effects of 20E, serotonin, 

and octopamine described above, the different neuromuscular properties of the crusher 

and cutter claw could lead to different responses to ecdysteroids.  Any differential 

response by the claw closer muscle to ecdysteroids may affect the action of the claw 

during an agonistic encounter and therefore the outcome the interaction between 

animals.  Such differences would be reflected in differences in patterns of behavior in 

pre- and intermolt animals and could help explain why premolt animals are more 

successful in agonistic encounters than intermolt animals.   

 

Effects of pheromones on agonistic behavior: 

Along with internal hormonal effects, external pheromonal signals have also 

been shown to affect the outcome of an agonistic interaction.  Urine signaling appears 

to play a large role in determining the outcome of a fight: the ability of a lobster to 

‘smell’ urine is very important in both establishing dominance hierarchies and in 

individual recognition in lobsters engaged in agonistic encounters.  If urine release is 

blocked, then dominance hierarchies are not established (Karavanich and Atema 1998; 

Karavanich and Atema, 1991) and lobsters are not able to recognize each other in 
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subsequent encounters, which results in increased fighting before dominance is re-

established during the secondary encounter (Kaplan, 1993; Karavanich and Atema, 

1991).  If the aesthetasc sensilla are removed or made anosmic, lobsters are not able to 

recognize previous opponents or established dominance relationships and spend more 

time fighting than lobsters who could smell normally (Johnson and Atema, 2005; 

Hoeppner, 1997).  The same is true for crayfish, where ablation of aesthetasc sensilla 

results in fights of longer duration between previous combatants than unablated 

control pairs (Horner et al., 2008).  Further, there is evidence that both the timing of 

urine release and the contents of the urine affect agonistic encounters between 

lobsters.  It has been shown that the winners of fights release significantly more urine 

than losers, and the removal or prevention of urine release in subsequent encounters 

between the same pair of animals abolishes a previously established dominance 

relationship (Breithaupt and Atema, 1993; Karavanich and Atema, 1998; Breithaupt et 

al., 1999; Breithaupt and Atema, 2000; Breithaupt and Eger, 2002). These results 

highlight the importance of the urine as a means of assessing opponents in an agonistic 

encounter.  If the urine signal or the ability to smell are removed, then the behavior of 

the lobster changes.   

One component of urine that has been found to affect the outcome of agonistic 

encounters is the active principle of the molting hormone, 20E (Coglianese et al., 

2008; Reinhart et al., submitted).  Recent evidence presented by Coglianese et al. 

(2008), Reinhart et al. (submitted) and Cromarty et al. (unpublished) indicates that 

20E acts as a pheromone that changes the behavior of other lobsters.  Coglianese et al. 

(2008) found that the behavior of female animals exposed to a plume of 20E was 
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different than control animals exposed to a plume of artificial sea-water (ASW).  In 

these experiments, the nephropores of each animal were blocked, thereby eliminating 

urine release into the tank, and 20E was puffed across the antennules of large lobsters 

while their small opponents were made anosmic.  Large female lobsters who had a 

plume of 20E puffed across their antennules performed significantly more aggressive, 

defensive and avoidance behaviors than large control animals in staged confrontations.  

The small non-exposed animals became significantly more aggressive, presumably in 

response to the larger animal’s overall arousal.  The change in behavior of the exposed 

individual can be attributed to the “smelling” of the 20E in the odor plume, suggesting 

it acts as a pheromone.  Reinhart et al. (submitted) performed the same experiment 

with male lobsters, and found that the behavior of males exposed to a plume of 20E 

was different than control animals exposed to a plume of artificial sea-water (ASW).  

Reinhart found that male lobsters exposed to 20E performed more defensive behaviors 

than ASW exposed control animals.  Also, the opponents of the 20E exposed animals 

performed significantly more aggressive behaviors than the opponents of ASW 

exposed animals.  These results also led to the conclusion that the change in behavior 

of the exposed individual could be attributed to the “smelling” of the 20E in the odor 

plume.  One important distinction between the results of Coglianese and Reinhart is 

that males and females responded differently to 20E: Females responded to 20E 

exposure by becoming more aroused, increasing aggressive, defensive and avoidance 

behaviors, whereas males simply increased the frequency of defensive behaviors.  In 

electrophysiological experiments, Cromarty et al. (unpublished) found that the 

olfactory receptor neurons (ORN bundles) of female lobsters exhibit a dose dependent 
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response to 20E, supporting that idea that 20E may be perceived by the antennules of 

lobsters during an agonistic encounter. 

 

Chemoreception of ecdysteroids by an ecdysone receptor (EcR): 

The perception of 20E by the antennules of lobsters suggests there is an 

ecdysone receptor (EcR) for 20E.  Ecdysone and its active metabolite, 20-

hydroxecdysone (20E), are steroid hormones that regulate molting in insects and 

crustaceans and coordinate alterations in the transcription of groups of genes required 

to control this process (Waddy et al., 1995).  An EcR has been found in numerous 

insect and crustacean species, including Drosophila (Talbot et al., 1993), Manduca 

sexta (Fujiwara et al., 1995; Jindra et al., 1996), Bombyx mori (Kamimura et al., 1997) 

Crangon crangon (Verhaegen et al., 2011) and Homarus americanus (El Haj et al., 

1994; Tarrant et al., 2011).   Isoforms of the EcR have been found in many animals; 

Drosophila has three different isoforms, EcR-A (91 kDa), EcR-B1 (93 kDa) and EcR-

B2 (73 kDa) (Talbot et al., 1993), and lobsters have two (Tarrant et al., 2011). 

Molting is a slow process that takes place over several days or weeks, and 

activation of receptors for 20E most likely act via genomic mechanisms.  Steroid 

hormones have been traditionally considered to work through genomic mechanisms, 

where steroids enter a cell, bind to a specific receptor in the cytosol or nucleus, and 

activate transcription that leads to changes in gene expression and results in the 

production of proteins that have a biological function (Losel et al., 2003).  This 

mechanism is generally slow-acting.  The pheromonal effects of 20E described above, 
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however, result in immediate changes in behavior, which cannot be explained by 

slow-acting genomic mechanisms.   

A model for the fast-actions of steroid hormones involves a non-genomic 

mechanism, wherein steroids have an immediate effect on physiological function 

(Losel et al., 2003).  The physiological effect of steroids that act through non-genomic 

mechanisms can be seen within seconds of exposure to the hormone, ruling out any 

models that involve changes in the transcription levels of genes.  The activation of an 

outer membrane-bound receptor, or signaling via a second messenger pathway are 

likely causes of the immediate physiological changes observed to occur in response to 

the hormone (Losel et al., 2003).    

In recent studies in numerous insects and crustaceans, ecdysteroids have been 

shown to have fast-acting effects, suggesting the presence of an additional non-

classical steroid hormone signaling pathway (Spencer and Case, 1984; Cromarty and 

Kass-Simon, 1998; Cooper and Ruffner, 1998; Tomaschko, 1999; Thummel and 

Chory, 2002; Cooper et al., 2003; Schlattner et al., 2006).  Rapid non-genomic effects 

have been found to act in exocrine glands, the central nervous system, motor neurons, 

neuromuscular junctions and sensory cells of numerous organisms (Schlattner et al., 

2006). Compared to the prolonged and slow process of ecdysone induced molting, the 

non-genomic effects of ecdysone exposure are immediate; changes are sometimes 

observed within a matter of seconds or milliseconds (Tomaschko, 1999).  

In the California spiny lobster, Spencer and Case (1984) found an increased 

action potential firing-frequency in the lateral antennule one second after exposure to 

both 20E and alpha ecdysone.  In American lobsters, 20E has been shown to have 
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immediate effects on neuro-muscular properties.  In the presence of 20E, there is an 

increase in EJP amplitudes and miniature excitatory junctional potential (MEJP) 

frequency in the opener muscle, as well as a decrease in EJP amplitudes in the 

abdomen (Cromarty and Kass-Simon, 1998).  In Drosophila, Ruffner et al. (1999) 

found reduced transmitter release in the ventral abdominal muscles within one minute 

after exposure to 20E.  In crayfish, there is a decreased amount of neurotransmitter 

release in the opener muscle of the first walking leg within 20 minutes after exposure 

to 20E (Cooper and Ruffner, 1998).  Cooper et al. (2003) found increased action 

potential firing frequency in the muscle receptor organ of crayfish 10 seconds after 

exposure to 20E. 

As described above, 20-hydroxyecdysone also appears to be a pheromone that 

immediately alters the agonistic behavior of lobsters (Coglianese et al., 2008; Reinhart 

et al., submitted) and is sensed by ORN in the antennules (Cromarty et al., 

unpublished).  The external perception of 20E in lobsters and the immediate change in 

behavior of lobsters exposed to 20E suggest that a membrane bound receptor must be 

present on the aesthetasc sensilla.  In spiny lobsters, Panulirus argus, the aesthetasc 

sensilla are the sensory cilia of the olfactory receptor cells whose nuclei are located 

within the antennules themselves (Ache and Derby, 1985; Grunert and Ache, 1988).  

Histological studies show that the aesthetasc sensilla are innervated by the dendritic 

extensions of multiple bipolar receptors, with the soma gathered in a cluster at the base 

of the sensillum inside the antennule itself (Ache and Derby, 1985; Grunert and Ache, 

1988).  The anatomy of the antennules in the Spiny lobster suggests that any receptor 

for 20E must be a membrane bound receptor, as no nucleus or cytoplasm exists in the 
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sensory hair itself.  A similar morphology is presumed to exist in the American 

lobster, although the histology of the antennules in the American lobster has not been 

examined.  The activation of membrane bound receptors is fast-acting, and could 

explain the immediate change in behavior observed by Coglianese et al (2008) and 

Reinhart et al. (submitted), and the immediate neural response to 20E observed by 

Cromarty et al. (unpublished). 

The presence of a membrane bound ecdysone receptor has been isolated from 

the anterior silk gland of the silkworm, Bombyx mori (Elmogy et al., 2004).  20E aids 

in the initiation of apoptosis of the anterior silk gland, and Elmogy et al. (2004) found 

a putative membrane receptor located in the plasma membrane.  This membrane 

receptor exhibited saturable binding to 20E and the authors suggest that the receptor is 

likely to be an integrated membrane protein.  The presence of a membrane bound 

receptor for 20E in the silkworm supports the idea that a membrane bound receptor for 

20E exists in other insect and crustacean tissues.  Srivastava et al. (2005) discovered a 

G-protein coupled ecdysone receptor in Drosophila, so it is possible that an EcR in 

lobsters might act through a second messenger pathway. 

 

Rationale of Dissertation: 

  This dissertation investigates both the internal and external effects of 20E on 

agonistic interactions in lobsters.   

  One of the questions raised by the Bolingbroke, Coglianese and Reinhart 

experiments (cited above) is what role do the internal hormonal effects and the 

external pheromonal effects of 20E play in the agonistic interactions of lobsters.  In 
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Bolingbroke and Kass-Simon (2001) lobsters were injected with 20E and allowed to 

urinate, and both the hormonal and pheromonal effects of 20E were present.  In 

Coglianese et al. (2008) and Reinhart et al. (submitted), lobsters had their nephropores 

blocked and were not injected, but 20E was puffed from one lobster onto another 

allowing for only the pheromonal signal of 20E.  The purpose of the experiments in 

Chapter Two was to determine the effects of the 20E hormonal signal alone on the 

aggressive behaviors of female American lobsters, Homarus americanus.  To do this, 

lobsters were injected with 20E and the nephropores were blocked, effectively 

eliminating urine released into the water.    

  The apparent pheromonal effects of 20E shown by Coglianese et al. (2008), 

Reinhart et al. (submitted) and corroborated by the response from ORN by Cromarty 

et al. (unpublished), lead to experiments in Chapter Three.  The purpose of these 

experiments was to find biochemical evidence of a membrane bound EcR on the 

antennules of lobsters and to provide a molecular weight for the receptor.  The 

presence of a membrane bound receptor would support the idea that lobsters are able 

to perceive 20E, and that the actions are too quick to be explained by genomic 

mechanisms.   

  The importance of claws in agonistic interactions and the effects of 20E on the 

neuromuscular physiology of lobsters and crayfish lead to the experiments in Chapter 

Four.  The purpose of these experiments was to determine the effects of ecdysteroids, 

20E and alpha-ecdysone on the claw closer muscle in lobsters.  Since 20E affects 

neuromuscular physiology in the claw opener muscle and abdomen, it is possible that 

it affects the claw closer muscle.  If 20E or alpha-ecdysone change neuromuscular 
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properties, such as increasing the force or duration of a squeeze, a lobster that has high 

circulating levels of ecdysteroids may have an advantage in an agonistic interaction.    

  Taken together, the experiments are aimed at further describing the hormonal 

and pheromonal effects of ecdysteroids on the physiology underlying agonistic 

behavior in Homarus americanus.         
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CHAPTER 2 

 

Effects of injected 20-hydroxyecdysone on the agonistic behavior of American 

lobsters, Homarus americanus 
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Abstract: 

 In lobsters, 20-hydroxyecdysone (20E) has been shown to act as both an 

internal modulator of neuromuscular physiology and as an external pheromone that 

affects behavior.  The purpose of this study was to reassess the internal hormonal 

effects of 20E on agonistic behavior in lobsters.  Experimental fights were conducted 

between small lobsters injected with 20E and large lobsters injected with saline.  

Control fights consisted of small and large lobsters injected with saline.  The 

nephropores of each lobster were blocked to eliminate urine signals between the 

combatants.  Using an ethogram, the frequency and intensity of aggressive, defensive 

and avoidance behaviors of animals in experimental fights were compared to those in 

control fights.  Significance was found between the differences in aggressive content 

of animals engaged in experimental fights to animals engaged in control fights.  These 

results suggest the aggressiveness of the defensive behavior of smaller treated animals 

was more similar to that of their larger opponents than the aggressiveness of defensive 

behaviors of smaller control animals to their larger opponents.  A post-hoc analysis 

comparing our control animals to control animals from a similar experiment in which 

lobsters were injected with 20E and allowed to urinate freely showed that blocking 

urine release changes the dynamics of an agonistic interaction between lobsters.   
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Introduction:   

 Agonistic encounters play an important role in the life of lobsters; they are 

involved in procuring shelters, defending and maintaining those shelters, mating, and 

foraging success (Atema and Cobb, 1980).  Some of the factors affecting the outcomes 

of agonistic encounters include weight, carapace size, and chelae size; large animals 

weigh more and have greater carapace and chelae size (Scrivener, 1971).  In staged 

encounters, larger lobsters will win significantly more encounters than smaller lobsters 

of the same sex (Scrivener, 1971).  Size also plays a role in the formation of 

dominance hierarchies in lobsters, as larger lobsters are dominant over smaller lobsters 

in social settings (Karnofsky, 1989).  This is also true of crayfish, where larger 

animals are dominant over and have more access to food resources than smaller, 

subdominant males (Issa et al., 1999; Herberholz et al., 2007).        

Along with size, internal hormones and external chemical signals 

(pheromones) have been shown to influence the outcome of agonistic interactions 

between lobsters.  The effects of hormones and pheromones are complex and can lead 

to a wide spectrum of effects on animals engaged in an agonistic interaction.  Recent 

evidence indicates that 20-hydroxyecdysone (20E), a hormone that modulates molting 

in American lobsters, also acts as a pheromone (Coglianese et al., 2008; Reinhart et 

al., unpublished). 

The hemolymph titers of the molting hormone, 20-hydroxyecdysone (20E), 

varies over the molt cycle.  Premolt animals (D1and D2 stage animals about to molt) 

have increased levels of ecdysone in their hemolymph and urine (Chang, 1985; Snyder 

and Chang, 1991a; Snyder and Chang, 1991b), and are dominant over and more 
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aggressive than their intermolt C-stage opponents in a confrontation (Tamm and Cobb, 

1978).  Evidence has been presented that injected 20E makes lobsters more 

aggressive, as in staged combats between large and small lobsters, smaller lobsters 

injected with the hormone are significantly more aggressive than small control animals 

injected with saline (Bolingbroke and Kass-Simon, 2001).  The injection of 20E may 

mimic the increased 20E titers that occur in D-stage animals about to molt (D1 and 

D2), which are correlated with increased aggression in D-stage animals (Tamm and 

Cobb, 1978).    

20E has been shown to affect the neuromuscular electrophysiology of the claw 

and abdomen.  In the claw opener muscle, the amount of opening depends on the 

patterned interaction between excitatory and inhibitory junctional potentials (Wilson 

and Davis, 1965; Kass-Simon and Govind, 1989).  Over the molt cycle, animals in 

premolt stage D produce significantly larger excitatory junctional potentials (EJP’s) 

and significantly fewer inhibitory junctional potentials (IJP’s) in the claw opener 

muscle (Schwanke et al., 1990).  In the presence of 20E (which is present in greater 

quantities in the hemolymph of premolt animals), there is an increase in EJP 

amplitudes and miniature excitatory junctional potential (MEJP) frequency in the 

opener muscle (used in threat displays).  Also, there is a decrease in EJP amplitudes in 

the abdomen (used in the escape response), which corresponds to the effect of pre-

molt and post-molt hemolymph on EJPs (Schwanke et al., 1990; Cromarty and Kass-

Simon, 1998).  This correlates with the finding that lobsters are more aggressive just 

before molting.     
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In crayfish, 20E has been shown to act as a hormone that alters the internal 

physiology of neurotransmitter release (Cooper and Ruffner, 1998; Cooper et al., 

2003).  Cooper and his colleagues have shown that 20E decreases the probability of 

neurotransmitter vesicle release in the walking legs, and that a mixture of 20E and 

serotonin was effective in increasing neuron firing frequency in the slow-adapting 

muscle receptor organ (MRO) of the abdomen.  In lobsters, injection of serotonin 

causes sustained flexion of the limbs and abdomen, where claws are opened and held 

forward, walking legs are flexed directly under the body, and tails are loosely flexed 

and tucked under the body (Livingstone et al., 1980).  Furthermore, evidence has been 

presented that injection of serotonin increases the aggression of previously subordinate 

lobsters (Huber et al., 1997).  Dominance hierarchies were established between two 

lobsters, subordinate animals were removed and injected with serotonin, and were then 

re-introduced to the same dominant individual from the first encounter.  These 

serotonin injected animals had a fight duration and intensity level three times that of a 

saline injected control animal, which suggested that serotonin made them more 

aggressive (Huber et al., 1997).   However, recent studies indicate that the removal of 

serotonin also increases the duration of fighting behavior in lobsters (Doernberg et al., 

2001).  This suggest that the concentration of serotonin, per se, is unlikely to be the 

determining factor in the level of aggression.  This is consistent with the earlier 

biochemical studies indicating that serotonin does not vary significantly over the molt 

cycle (Fadool et al., 1989).          

Internal hormonal effects are not the only factors that affect the outcome of a 

confrontation, as urine signaling appears to play a large role in determining the 
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outcome of a fight.  There is evidence that both the timing of urine release and the 

contents of the urine affect agonistic encounters.  It has been shown that the winners 

of fights release significantly more urine than the losers, and the removal or 

prevention of urine release in subsequent encounters between the same pair of animals 

abolishes a previously established dominance relationship  (Breithaupt and Atema, 

1993; Karavanich and Atema, 1998; Breithaupt et al., 1999; Breithaupt and Atema, 

2000; Breithaupt and Eger, 2002).  One component of urine that has been found to 

affect the outcome of agonistic encounters is the active principle of the molting 

hormone, 20E (Coglianese et al., 2008; Reinhart et al., submitted).   

Recent evidence presented by Coglianese et al. (2008), Reinhart et al. 

(submitted)  and Cromarty et al. (unpublished) indicates that 20E may not only act as 

a hormone, but also as a pheromone that changes the behavior of other lobsters.  

Coglianese et al. (2008) found that the behavior of female animals exposed to a plume 

of 20E was different than control animals exposed to a plume of artificial sea-water 

(ASW).  In these experiments, the nephropores of each animal were blocked, thereby 

eliminating urine release into the tank, and 20E was puffed across the antennules of 

large lobsters while their small opponents were made anosmic.  Large female lobsters 

who had a plume of 20E puffed across their antennules performed significantly more 

aggressive, defensive and avoidance behaviors than large control animals in staged 

confrontations.  The small non-exposed animals became significantly more aggressive, 

presumably in response to the larger animal’s overall arousal.  The change in behavior 

of the exposed individual can be attributed to the “smelling” of the 20E in the odor 

plume, suggesting it acts as a pheromone.  Reinhart et al. (submitted) performed the 
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same experiment as Coglianese with male lobsters, and found that the behavior of 

males exposed to a plume of 20E was different than control animals exposed to a 

plume of artificial sea-water (ASW).  Reinhart found that male lobsters exposed to 

20E performed more defensive behaviors than ASW exposed control animals.  Also, 

the opponents of the 20E exposed animals performed significantly more aggressive 

behaviors than the opponents of ASW exposed animals.  These results also led to the 

conclusion that the change in behavior of the exposed individual could be attributed to 

the “smelling” of the 20E in the odor plume.  In electrophysiological experiments, 

Cromarty et al. (unpublished) found that the olfactory receptor neurons (ORN 

bundles) exhibit a dose dependent response to 20E, supporting that idea that 20E may 

be perceived by the antennules of lobsters during an agonistic encounter.  

One of the questions raised by the Bolingbroke, Coglianese and Reinhart 

experiments is what role do the internal hormonal effects and the external pheromonal 

effects of 20E play in the agonistic interactions of lobsters.  In Bolingbroke and Kass-

Simon (2001) lobsters were injected with 20E and allowed to urinate, and both the 

hormonal and pheromonal effects of 20E were present.  In Coglianese et al. (2008) 

and Reinhart et al. (submitted), lobsters had their nephropores blocked and were not 

injected, but 20E was puffed from one lobster onto another allowing for only the 

pheromonal signal of 20E.  The purpose of the present experiment was to determine 

the effects of the 20E hormonal signal alone on the aggressive behaviors of female 

American lobsters, Homarus americanus.  To do this, lobsters were injected with 20E 

and the nephropores were blocked, effectively eliminating urine released into the 

water.  Given that urine appears to affect the outcome of aggressive encounters and 
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that the injection of 20E appears to increase the aggressiveness of lobsters, blocking 

the pheromone signal leaves only the hormonal effect.  The experimental set-up was 

identical to Bolingbroke and Kass-Simon (2001), with the exception that the 

nephropores were blocked on all animals.   
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Methods: 

 Animal Procurement and maintenance:  

 Female American lobsters, Homarus americanus, were obtained from local 

fisherman and the Rhode Island Department of Environmental Management from 

inshore waters off the coast of Narragansett Bay, RI.  Animals were maintained in 

natural circulating unfiltered seawater tanks at the Narragansett Bay Campus, on a 12-

hr light/dark cycle.  Water temperature and salinity were ambient, ranging from 10-

20°C and 28-33ppt, respectively.  Animals were fed fish scraps, supplied by a local 

fish market, twice weekly.  No animal was fed 48 hours prior to a fight.  Animals were 

banded and kept in separate tanks with compartmentalized large gauge wire cages to 

prevent physical interactions between any lobsters prior to a fight.  All animals were 

returned to Narragansett Bay after 2 weeks.  

 All lobsters used were intermolt C-stage animals in perfect condition, i.e., all 

eight walking legs, claws, antennae and antennules were intact, with no other signs of 

physical damage or shell disease.  Animals for each fight were identified based on 

carapace length (at least a 10% difference) and claw length (at least a 5% difference 

for crusher and cutter claw).  The small animals used for each fight ranged from 75-

84.6mm carapace length and the large animals ranged from 83.4-97mm carapace 

length.  Each individual pair within a fight differed by at least 10% in carapace length 

and 5% in claw length, allowing for consistency throughout the fights.  Comparisons 

of the treated (T) and control (C) animals indicated that there were no significant 

differences in weight (F1,18=0.05, P=0.8), carapace length (F1,18 = 0.03, P=0.9), crusher 

(F1,18=1.8, P=0.2 ) or cutter length (F1,18=0.02, P=0.9).  Comparisons of the opponents 
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of treated (OT) and opponents of control (OC) animals indicated that there were no 

significant differences in weight (F1,18=0.002, P=0.97), carapace length (F1,18= 0.08, 

P= 0.8), crusher (F1,18=0.8, P=0.4) or cutter length (F1,18=1.5, P=0.2).  Comparisons of 

the T and OT animals  indicated that there were significant differences in weight 

(F1,18=12.5, P=0.002), carapace  length (F1,18=43.5, P= 3.4E-6), crusher (F1,18=17.3, 

P=0.0006) and cutter length (F1,18=8.6, P=0.009).  Comparisons between C and OC 

animals indicated there were significant differences in weight (F1,18=15.8, P=0.0009), 

carapace length (F1,18=26.2, P=7.2E-5), crusher (F1,18=16, P=0.0008 ) and cutter length 

(F1,18=11.6, P=0.003).  All fights consisted of large versus small animals in order to 

bias the fight in favor of larger animals, who have been found to win significantly 

more encounters with smaller animals (Scrivener, 1971).    

 Experimental set-up: 

 A total of 20 fights (10 experimental and 10 control) were carried out between 

July-August 2005 and July-August 2006.  Experimental fights consisted of a small 20-

hydroxyecdysone-injected lobster pitted against a large saline-injected lobster; control 

fights consisted of saline-injected small lobsters versus saline-injected large animals.  

The large animal in all fights was identified by a rubber band placed on the endopodite 

of the crusher claw between the cheliped joint and the insertion of the dactyl.  The 

band was placed in such a way that it did not interfere with the normal movement of 

the joint or the claw as a whole.  In order to prevent urine release into the tank during 

the fights, the nephropores of each lobster were covered with aquarium tubing sealed 

at one end with sealing wax.  Aquarium tubing was first cut to a size of approximately 

2 cm, one end was blocked with sealing wax, allowed to cool and tested for leaks.  
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The nephropore blockers were glued over the nephropores with Super-Glue on the 

morning of the fight.  Although the nephropores were blocked, the actual release of 

urine from the lobsters was not blocked during the fight, as the nephropore blockers 

collected the urine that was released by the lobsters during the fight.    

The pre-fight injection protocol consisted of 4 injections of 20E or lobster 

saline 12 hours apart, and with 12 hours between the fourth injection and the fight.  

For example, a typical injection protocol was as follows: Day 1: 7PM; Day 2: 7AM 

and 7PM; Day 3: 7AM and fight at 7PM.  Control animals were injected with saline 

with a composition in (mM/L) of: NaCl 472; KCl 10; MgCL2*6H2O 7; CaCl2 16; 

glucose 11; Tris-maleate 10; pH 7.4 (Meiss and Govind, 1979).  Experimental animals 

were injected with enough 20-hydroxyecdysone to result in a final hemolymph 

concentration inside the body of 600 ng/ml.  Stock aliquots of 20E (1mg/mL saline) 

were frozen at –80°C.  The volume of stock solutions injected was that which was 

estimated on the basis of the animals weight to result in a final hemolymph 

concentration of 600ng/ml.  This weight/volume estimate was generated by 

Bolingbroke and Kass-Simon (2001), by measuring the hemolymph volume bled from 

lobsters of known weights and fitted to a linear curve, having the values: y = 0.26x – 

54.33, where y is the hemolymph volume and x is the weight of the animal.  The 

volume estimated from the equation was then used in a ratio to determine the amount 

of 20E stock solution needed to be injected in order to obtain a final concentration of 

600ng/mL.  The ratio used was: 0.0006mg/1mL = X mg/hemolymph volume of 

interest (y from the equation).  For example, an animal with a total hemolymph 

volume of 50mL would receive an injection of 0.03 mL stock 20E solution, whereas 
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one with a hemolymph volume of 100mL would receive an injection of 0.06 mL stock 

solution.  The amount of saline injected in the control animals was calculated the same 

way.  A Dremel electric drill was used to drill a small hole through the outer portion of 

the carapace above the presumed level of the cardium through which a 20-gauge 

needle could be inserted into the remaining carapace layer.  After injection, the hole 

was plugged with dental wax to prevent bleeding.    

 Fights took place in a 74cm diameter circular tank filled with approximately 2 

feet of seawater.  Prior to each fight, the tank was filled with new seawater and 

drained twice, in order to completely flush the tank.  All fights were recorded with a 

SONY camcorder placed approximately 5 feet above the fighting arena.  Taping was 

started prior to the introduction of lobsters into the fight tank, in order to ensure the 

first interactions of the fights were recorded; each fight lasted 30 minutes.  Each fight 

was numbered in order on the camcorder tapes, and given a random alphabetical code 

by a colleague.  The fights were then transferred from camcorder tapes to VHS tapes 

with the new alphabetical code, to preclude the possibility of recognizing the fight 

during subsequent analysis of the tapes.   

 Analysis:  

 Each fight was analyzed for aggressive, defensive and avoidance behaviors 

using the behavioral ethogram developed by Mello et al. (1999) and modified by 

Bolingbroke and Kass-Simon (2001) and Coglianese et al. (2008) (Table 1).  The 

ethogram ranks each behavior on a numerical scale, called the Rank of Aggression 

scale, where the most aggressive behaviors receive the highest number, and the least 

aggressive behaviors (avoidance behaviors) receive the lowest numbers.  For clarity, a 
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summary of the considerations used in the ethogram is repeated here: Aggressive 

behaviors are defined as any behavior in which the animal attempts to cause damage 

to their opponent or signal a threat of such a behavior.  Defensive behaviors are 

defined as behaviors that attempt to ward off aggressive behaviors by an opponent.  

Avoidance behaviors are defined as any behaviors in which the animal attempts to get 

away from, or avoid its opponent.  Along with behaviors directed towards opponents, 

behaviors designated as wall behaviors were also recorded.  Wall behaviors are 

defined as any aggressive or defensive behavior that is directed towards the walls of 

the fighting tank, rather than towards the opponent.  Definitions of all behaviors in the 

ethogram are listed in Table 2.   

The fights were analyzed by two people, one of whom (MS) had initially 

staged the confrontations.  The number of times each behavior was performed by each 

animal was noted (Frequency) and recorded into a computer program that kept a 

running total of the number of behaviors and also the rank of each behavior.  After the 

frequency of behaviors were tabulated, two more parameters were calculated in order 

to assess the relative aggressiveness of each animal, the Rank Frequency and the 

Average Rank.  The Rank Frequency (RF) for each animal was calculated by 

multiplying the Frequency of each behavior by its Rank of Aggression value, in order 

to reflect relative aggressive intensity.  The RF value accounts for animals that may 

perform a low total number of aggressive behaviors, but perform many highly 

aggressive behaviors.  The Average Rank (AR) is the mean of the ranks of all the 

behaviors for each animal.  It is calculated for each individual by dividing the sum of 

all the Rank Frequencies for an animal by the sum of the total number of behaviors 
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performed by that animal (AR= Σ RF/ Σ F).  For each pair of animals, the Frequency, 

Rank Frequency and Average Rank values of each animal were either added together 

(Treated + Opponent Treated) or subtracted from each other (Opponent Treated – 

Treated) for each category of behavior (aggressive, defensive and avoidance) both 

with and without wall behaviors.  The summed values of the combatants in a fight 

represent the overall aggressive and defensive intensity of the fight, and the subtracted 

differences represent the relative aggressiveness or defensiveness of each individual 

combatant in the fight.          

 Single factor Analyses of Variance (ANOVA) were used to determine 

significance between control and experimental animals.  In our analysis, small 

experimental animals (20E injected)  (Treated, T) were compared to small control 

animals (saline injected) (Control, C), and large experimental animals (opponents of 

20E injected animals (OT)) were compared to large control animals (opponents of 

saline injected small animals (OC)).  ANOVA’s were performed on all three 

parameters measured, Frequency, Rank Frequency and Average Rank for all behaviors 

recorded (aggressive, defensive, avoidance) both with and without wall behaviors.  

ANOVA’s were also performed on each pair within a fight; large experimental plus 

small experimental vs. large control plus small control (OT + T vs. OC + C), large 

experimental minus small experimental vs. large control minus small control (OT – T 

vs. OC- C).  Values were considered significant at p < 0.05 and potentially significant 

(strong trend) at 0.05< p <0.08.        
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Post-Hoc Analysis:  

 During the course of analyzing the data of the present study, it became 

apparent the results were different from those of Bolingbroke and Kass-Simon (2001).   

Since no significant differences were found among the aggressive or avoidance 

behaviors and only one significant difference was found in defensive behaviors, the 

question arose as to whether blocking the nephropores changes the dynamics of 

agonistic interactions in lobsters.  To address this question, a post-hoc analysis was 

performed to compare the control animals in the present study (blocked) with the 

control animals of Bolingbroke and Kass-Simon (2001) (unblocked).  The total 

Frequency and Average Rank of aggressive, defensive and avoidance behaviors 

(including wall behaviors) were compared using two-sample, two-tailed T-tests with 

equal variance.  The following comparisons were made: Sipala Control (CS) vs. 

Bolingbroke Control (CB), Sipala Opponent Control (OCS) vs. Bolingbroke Opponent 

Control (OCB), Sipala Opponent Control plus Control (OCS + CS) vs. Bolingbroke 

Opponent Control plus Control (OCB + CB), and Sipala Opponent Control minus 

Control (OCS – CS) vs. Bolingbroke Opponent Control minus Control (OCB – CB).  

Values were considered significant if the p-value was < 0.05. 
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Results:  

    All Behaviors (Aggressive, Defensive and Avoidance): 

     No significant differences were found for all behaviors between treated 

animals (T) and their counterpart controls (C) in any of the parameters measured with 

or without wall behaviors (Frequency, Rank Frequency and Average Rank).  Nor were 

there any significant differences found between the opponents of treated animals (OT) 

and their counterpart controls (OC) for any parameters measured with or without wall 

behaviors.  Similarly, there were no significant differences found between OT + T vs. 

OC + C, or between OT – T vs. OC – C for any parameters measured with or without 

wall behavior. 

    Aggressive Behaviors:  

     No significant differences were found for any aggressive behaviors between 

treated animals (T) and their counterpart controls (C) in any of the parameters 

measured with or without wall behaviors (Frequency, Rank Frequency and Average 

Rank).  Nor were there any significant differences found between the opponents of 

treated animals (OT) and their counterpart controls (OC) for any parameters measured 

with or without wall behaviors.  Similarly, there were no significant differences found 

between OT + T vs. OC + C, or between OT – T vs. OC – C for any parameters 

measured with or without wall behavior.   

     Defensive Behaviors: 

 No significant differences were found for any defensive behaviors between 

treated animals (T) and their counterpart controls (C) in any of the parameters 

measured with or without wall behaviors (Frequency, Rank Frequency and Average 
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Rank).  Nor were there any significant differences found between the opponents of 

treated animals (OT) and their counterpart controls (OC) for any parameters measured 

with or without wall behaviors.  Similarly, there were no significant differences found 

between OT + T vs. OC + C for any parameters with or without wall behaviors. 

 Significance was found in the differences in Average Rank between the OT - T 

vs. OC – C with wall behaviors (41.8 and 60.7, respectively; F1,18=4.9, P=0.04) 

(Figure 1) indicating that the disparity between the two combatants in control fights 

might have been greater than in treated fights.  Since the Average Rank is larger for 

the control fights, these results indicate that the aggressiveness of the defensive 

behavior of smaller treated animals was more similar to that of their larger opponents 

than the aggressiveness of the defensive behaviors of smaller control animals and their 

larger opponents.  No other significant differences were found between OT – T and 

OC - C animals for any parameters measured with or without wall behaviors.   

    Avoidance Behaviors: 

 No significant differences were found for any avoidance behaviors between 

treated animals (T) and their counterpart controls (C) in any of the parameters 

measured (Frequency, Rank Frequency and Average Rank).  Nor were there any 

significant differences found between the opponents of treated animals (OT) and their 

counterpart controls (OC) for any parameters measured. 

Post-Hoc Results: 

 The post-hoc analysis results suggests that the removal of the urine/chemical 

signal from an agonistic interaction changes the behaviors of the combatants in the 

following ways. 
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     Aggressive Behaviors: 

 Significant differences in the Frequency of aggressive behaviors were found 

between the control experiments in which the nephropores were blocked (Sipala) and 

those in which they were not blocked (Bolingbroke).  CS animals performed 

significantly more aggressive behaviors than CB animals (183.4 and 93.2, respectively, 

p=0.004), while OCB animals performed significantly more aggressive behaviors than 

OCS animals (359.9 and 242.2, respectively, p=0.009) (Figure 2).  When the 

aggressive behaviors of the control animal were subtracted from the behaviors of the 

opponent control animal in a single fight, the difference between OCB-CB was larger 

than the difference between OCS-CS (266.7 and 59, respectively, p=0.001) (Figure 2).         

     Defensive Behaviors: 

 Significant differences in the Frequency of defensive behaviors were found 

between the experiments such that CB animals performed significantly more defensive 

behaviors than CS animals (110.8 and 51.3, respectively, p=0.0000004) (Figure 3).  

When the defensive behaviors of the two animals in a single fight were added 

together, OCB+CB performed significantly more defensive behaviors than OCS+CS 

(152.2 and 99.1, respectively, p=0.001) (Figure 3).  When the defensive behaviors of 

the control animal were subtracted from the behaviors of the opponent control animal 

in a single fight, OCB-CB was larger than OCS-CS (-69.4 and -3.5, respectively, 

p=0.0002) (Figure 3).      
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     Avoidance Behaviors: 

 Significant differences in the Frequency of avoidance behaviors were found 

between the experiments such that CB animals performed significantly more avoidance 

behaviors than CS animals (81.5 and 59.6, respectively, p=0.03) (Figure 4).  When the 

avoidance behaviors of the two animals in a single fight were added together, OCB+CB 

performed significantly more avoidance behaviors than OCS+CS (135.2 and 107.5, 

respectively, p=0.007) (Figure 4).   
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Discussion: 

  The purpose of this study was to determine whether increased blood titers of 

20-hydroxyecdysone affected the aggressive behavior of female American lobsters, 

Homarus americanus.  The only significant difference found in the present study was 

the difference in Average Rank of Defensive Behaviors between the OT - T and OC – 

C with wall behaviors (41.8 and 60.7, respectively; F1,18=4.9, P=0.04), indicating that 

the difference in the aggressiveness of defensive behaviors of treated animals was 

more similar to that of their opponents than the aggressiveness of the defensive 

behaviors of control animals and their opponents.  Therefore, the disparity between the 

two combatants is greater in the control fights than in the fights with treated animals.  

This could be due to the hormonal effect of 20E making treated animals more 

aggressive than saline-injected control animals.  The increased aggression of the 

treated animals could cause the OT animals to increase their level of aggression in 

defensive response, which could lead to a decreased difference in the total amount of 

defensive behaviors between the T and OT animals.   It was expected that the injection 

of the hormone alone (with no urine release) would increase the aggressiveness of 

lobsters due to its effects on physiological processes: increase in EJP amplitudes and 

miniature excitatory junctional potential (MEJP) frequency in the opener muscle, as 

well as a decrease in EJP amplitudes in the abdomen (Cromarty and Kass-Simon, 

1998).  However, our experiments failed to find any significant differences in 

aggressive behaviors between hormone-injected treated animals and saline-injected 

control animals (or their opponents) for any category of behaviors tested.  The lack of 

significance in other parameters raised the possibility that an experimental artifact had 
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been created by removing the urine signal from the interaction, since in comparable 

studies in which an olfactory signal was present, a number of significant differences 

were found (Bolingbroke and Kass-Simon, 2001; Coglianese et al., 2008; Reinhart et 

al., unpublished).   

 This led to a post-hoc analysis to compare the behaviors of the control animals 

of the present study with the control animals in the Bolingbroke and Kass-Simon 

study, since the only treatment differences between these two sets of animals was that 

the control animals in the Bolingbroke and Kass-Simon study were capable of 

receiving a urine signal, while those in the present study were not.  The differences in 

behaviors found between the present experiment and Bolingbroke and Kass-Simon 

(2001) indicates that removing the urine signal changes the dynamics of agonistic 

interactions in lobsters.  Since the only obvious consistent difference between the 

control animals was the lack of a urine signal in the present study, the difference in 

behavior may be due to the removal of the urine signal. 

 In an agonistic interaction between a large and a small lobster, large lobsters 

win significantly more encounters than smaller lobsters (Scrivener, 1971).  

Concomitantly, larger animals will often take on a dominant position over smaller 

animals (Cobb and Tamm, 1975), evicting them from shelters and initiating more 

confrontations than smaller animals (Karnofsky, 1989).  Furthermore, once dominance 

is established between two lobsters in a staged confrontation, dominant ‘winners’ 

continue to perform aggressive behaviors toward the subordinate ‘losers,’ who 

perform submissive or avoidance behaviors (Karavanich and Atema, 1998).  The 

present study and Bolingbroke and Kass-Simon (2001) do not directly assess 
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dominance or ‘winners’ and ‘losers’ in a fight, but addresses the aggressiveness of the 

behaviors of the lobsters engaged in the interaction.  Since the fights consist of a large 

animal versus a small animal, the fight is biased in favor of the larger animal, and the 

behaviors of each animal in the interaction should follow those described in the 

previous experiments: larger animals should be dominant over smaller animals and 

perform more aggressive behaviors, while smaller animals should be submissive and 

perform more submissive/avoidance behaviors.   

 The control animals in Bolingbroke and Kass-Simon (2001) (CB and OCB) 

appear to follow similar behavioral patterns to the normal dominant/subordinate 

interaction, while CS and OCS animals do not.  The differences found between OCB-

CB and OCS-CS suggests that there is a smaller difference in the total number of 

aggressive behaviors between the lobsters in a single fight when the urine signal is 

removed.  In OCB animals, the total number of aggressive behaviors is greater than 

that of the CB animals, leading to a larger difference.   The difference in the aggressive 

behaviors between OCS and CS was much smaller than that of Bolingbroke’s, which 

means that the number of aggressive behaviors of the smaller animal was closer to that 

of the larger animal.  Once the urine signal is removed, small animals that would 

ordinarily become less aggressive in an interaction with a larger opponent did not, 

which accounts for the smaller difference in aggressive behaviors between OCS – CS 

than OCB – CB.  The removal of urine changes the behavior of a small animal engaged 

agonistic interaction with a larger animal is that CS animals perform significantly more 

aggressive behaviors than CB animals, and CB animals perform significantly more 

defensive and avoidance behaviors.   
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 OCB animals performed significantly more aggressive behaviors than OCS 

animals, which contradicts the finding that non-urine signaled control animals are 

more aggressive than urine-signaled controls.  Since small CS did not become more 

defensive or subordinate, the large OCS did not become more aggressive in response 

to a more defensive subordinate smaller animal.  This may be why OCB perform more 

aggressive behaviors than OCS.  Another reason OCB may be more aggressive is 

explained by the fact that OCB + CB perform significantly more defensive and 

avoidance behaviors than OCS + CS.  Since CB immediately perform more defensive 

and avoidant behaviors in response to a larger dominant animal, the additive value of 

those behaviors in the individual fight is very high due to the high frequency of 

behaviors by the smaller animal.  This could further explain why OCB are more 

aggressive than OCS, as the larger OCB would increase its aggressiveness in response 

to a smaller subordinate animal, while OCS would not increase their aggressiveness 

because their smaller opponent does not exhibit the same frequency of defensive and 

avoidance behaviors as a urine-signaled animal.     

These results together suggest that blocked animals engaged in an agonistic 

interaction are not able to assess each other through urine signals, resulting in a change 

of the dynamics of the encounter.  The ability of each lobster to asses each other via 

urine signals is an important determinant in the outcome of agonistic interactions 

(Breithaupt and Atema, 1993; Karavanich and Atema, 1998; Breithaupt et al., 1999; 

Breithaupt and Atema, 2000; Breithaupt and Eger, 2002), and the lack of urine signals 

in the present study affects the outcome of the encounter.  Bolingbroke’s OC is able to 

receive a urine signal from its smaller combatant, alerting the larger animal that the 
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smaller lobster is weaker, and therefore increases its aggressiveness.  Sipala’s OC does 

not receive a urine signal, so it is not able to assess the strength of its smaller 

combatant, and its aggressiveness does not increase as much as Bolingbroke’s OC.  

Bolingbroke’s OC aggressiveness has been increased by the perceived weakness of its 

smaller combatant, and since Sipala’s OC can’t assess its opponent, it is less 

aggressive than Bolingbroke’s OC.  Conversely, Sipala’s C did not receive a urine 

signal from a blocked larger opponent, and therefore increased its aggressiveness due 

to the lack of a ‘strong’ signal from a larger animal. 

The ability of a lobster to ‘smell’ urine is very important in both establishing 

dominance hierarchies and individual recognition in lobsters engaged in agonistic 

encounters.  If urine release is blocked, then dominance hierarchies are not established 

(Karavanich and Atema 1998; Karavanich and Atema, 1991) and lobsters are not able 

to recognize each other in subsequent encounters, leading to increased fighting before 

dominance is re-established (Kaplan, 1993; Karavanich and Atema, 1991).  

Furthermore, if the aesthetasc sensilla are removed or made anosmic, lobsters are not 

able to recognize previous opponents or established dominance relationships and 

spend more time fighting than lobsters who could smell normally (Johnson and 

Atema, 2005; Hoeppner, 1997).  The same is true for crayfish, as the ablation of 

aesthetasc sensilla results in fights of longer duration between previous combatants 

than unablated control pairs (Horner et al., 2008).  These results highlight the 

importance of lobsters being able to smell urine and gain some kind of assessment of 

the animal opposite them in an agonistic encounter.  If the urine signal or the ability to 

smell are removed, then the behavior of the lobster changes.  The lobsters in the 
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present study were not able to smell the urine of their opponent lobsters, which may 

have prevented them from assessing their opponent, thereby affecting their behavior.  
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Table 1.  Rank of Aggression Ethogram 
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         Aggressive Behaviors          Defensive Behaviors           Avoidance Behaviors

152 Agressive Tail Flip 82 Hitting Wall 28 Avoidance Stretch
150 Agressive Subsequent Swim 80 Small Ready to Wall 26 Back/Front Truce
148 Pulling 78 Antenna Whip to Wall 24 Appendage Release
146 Grabbing 76 Advance to Wall 22 Mutual Avoidance
144 Pushing 74 Claw Touch to Wall 20 Antenna Retraction
142 Claw Lock 72 Antenna Touch to Wall 18 Withdrawal
140 Meral Spread 70 Antenna Point to Wall 16 Freeing
138 Large Ready 68 Backing into Wall 14 Walk Away
136 Lunge 66 Avoidance Stretch to Wall 12 Turn Away
134 Hitting/Pinching 64 Climbing Wall 10 Retreat
132 Agg Antenna Whip 62 Hitting 8 Backing Away
130 Lean On 60 Shielding 6 Superman Swim
128 Backing Into 58 Claw Extension 4 Avoidance Tail Flip
126 Walk Over/On 56 Forward/Backward Walk 2 Avoidance Subsequent Swim
124 Aggressive Claw Touch 54 Holding
122 Aggressive Tail Touch 52 Defensive Antenna Whip
120 Aggressive Antenna Touch 50 Defensive Antenna Touch
118 En Passant 48 Defensive Antenna Point
116 Walk By 46 Defensive Antenna Wave
114 Advance 44 Defensive Position
112 Small Ready Position 42 Defensive Turn Into
110 Turn Into 40 Defensive Claw Touch
108 Aggressive Antenna Wave 38 Defensive Tail Touch
106 Aggressive Antenna Point 36 Defensive Walk By
104 Meral Spread To Wall 34 Backing Into
102 Hitting Wall 32 Squeeze By
100 Climbing Wall 30 Walk Under
98 Large Ready to Wall
96 Antenna Whip to Wall
94 Advance to Wall
92 Claw Touch to Wall
90 Antenna Touch to Wall
88 Antenna Point to Wall
86 Backing into Wall
84 Facing
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Table 2.  Description of Ethogram behaviors (numbers indicate the rank of each 

  behavior). 
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Behavior Description 
Advance (114) Forward movement towards the opponent 
Antenna point (Aggressive 
106, Defensive 48) 

Movement of antennae toward opponent without physical contact with 
the opponent 

Antenna retraction (20) Moving antenna back away from opponent along axis of body 

Antenna touch (Aggressive 
120, Defensive 50) 

A single touch of the opponent with an antenna 

Antenna wave (Aggressive 
108, Defensive 46) 

Lateral sweep of the antennae without physical contact with opponent 

Antenna whipping 
(Aggressive 132, 
Defensive 52) 

Hitting opponent with antennae 

Appendage release (24) Animal releases opponent's appendage 

Avoidance stretch (28) An extension of the entire body with chelipeds and tail extended, such 
that the animal has made its profile as thing and long as possible 

Back/front truce (26) Opponents aligned with the tail of one in close proximity or touching the 
opponent 

Backing away (8) Walking backward with contact while facing an opponent 
Backing into (Aggressive 
128, Defensive 34) 

Walking backward toward or into an opponent with abdomen flexed 

Claw extension (58) Use of one claw to shield and the other to fend off an opponent 
Claw lock (142) Mutual grasping and holding of opponent's claws 
Claw touch (Aggressive 
124, Defensive 40) 

Use of claw to touch opponent's claw 

Defensive position (42) Claws closed together in front of body (protecting) 

En passant (118) Walking past opponent while brushing against it 
Facing (standoff) (84) Lobsters face each other without contact for 10-60 s 

Forward/backward walk 
(56) 

Indecisive movement (approach/retreat or retreat/approach) 

Freeing (16) Withdrawal of an appendage or body part from being held 
Grab (146) Animal seizes or attempts to seize the opponent's appendage or body part 

Hitting (Aggressive 134, 
Defensive 62) 

Swinging claws and touching various parts of opponent's body 

Holding (54) Standing one's ground in the face of an aggressive act by opponent 
Lean on (130) One or both claws pressing on claw or carapace of the opponent 
Lunge (136) Rapid striking out at opponent with claw 
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Meral spread (140) Claws open and raised slightly to either side of rostrum; not always 
completely perpendicular to carapace (true meral spreads as defined in 
the literature were rarely seen and usually only when the animals were 
placed in the fighting tank) 

Mutual avoidance (22) Both animals are somewhat in an avoidance stretch or defensive position 
against side of the tank, separated by a distance of approximately 1/4 of 
the tank's circumference 

Pinching (Aggressive 134, 
Defensive 62) 

Tips of dactyl and propodite are forcefully applied to opponent 

Pulling (148) An attempt to pull off an opponent's appendage with backward 
movement (if the movement consisted of a tail flip and pulling, it was 
simply referred to as an aggressive tail flip) 

Pushing (144) Forced movement of the opponent with fixed claws; forceful 
displacement of the opponent 

Ready position (Large 
Ready 138, Small Ready 
112) 

Claws in front of head preparing to confront; the large ready differs from 
meral spread in that the claws are not raised as high or spread as far apart; 
the small ready is a lesser large ready 

Retreat (10) Walking backward without contact while facing an opponent 
Shielding (60) Claws slightly separated in front of body to fend off opponent 
Squeeze by (32) Animal moves between opponent and the wall in avoidance stretch 
Subsequent swims 
(Aggressive 150, 
Avoidance 2) 

Successive abdominal flexions following the initial aggressive or 
avoidance tail flip 

Superman swim (6) Tail flip away from opponent with full extension of the body 
Tail flip Contraction of the abdomen to propel animal backwards 
(1) Aggressive (152) Used to pull opponent's appendage (usually a claw) 
(2) Avoidance (4) Used to escape from opponent 
Tail touch (Aggressive 
122, Defensive 38) 

Use of claw to touch opponent's tail 

Turning away (12) Animal turns away from opponent 
Turning into (110) Animal turns to face opponent 
Walk away (14) Animal simply walks away from opponent (leaves interaction) 
Walk by (Aggressive 116, 
Defensive 36) 

One animal passes closely by its opponent without contact 

Walk over (126) One animal walks on top of its opponent 
Walk under (30) One animal walks under its opponent 
Withdrawal (18) Forward movement away from an opponent without physical contact 
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Figure 1. Average rank values of defensive behaviors with wall behaviors for 

  OT-T vs. OC-C.  Values are means + SEM, N = 10.  Asterisk indicates 

  significant difference (P = 0.04).   
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Figure 2a. Comparison of frequency of Aggressive behaviors between CB and CS.  

  Values are means + SEM, N = 10.  Asterisk indicates significant  

  difference (P = 0.004). 

 

 

 

 

Figure 2b. Comparison of frequency of Aggressive behaviors between OCB and 

  OCS.  Values are means + SEM, N = 10. Asterisk indicates significant 

  difference (P = 0.009). 

 

 

 

 

Figure 2c. Comparison of frequency of Aggressive behaviors between OCB – CB 

  and OCS – CS.  Values are means + SEM, N = 10.  Asterisk indicates 

  significant difference (P = 0.001) 
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Figure 3a. Comparison of Frequency of Defensive behaviors between CB and CS. 

  Values are means + SEM, N = 10.  Asterisk indicates significant  

  difference (P = 0.0000004).  

 

 

Figure 3b. Comparison of Frequency of Defensive behaviors between OCB + CB 

  and OCS + CS. Values are means + SEM, N = 10.  Asterisk indicates 

  significant difference (P = 0.0001). 

 

 

Figure 3c. Comparison of Frequency of Defensive behaviors between OCB – CB 

  and OCS – CS.  Values are means + SEM, N = 10.  Asterisk indicates 

  significant difference  (P = 0.0002). 
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Figure 4a. Comparison of Frequency of Avoidance behaviors between CB and CS.  

  Values are means + SEM, N = 10.  Asterisk indicates significant  

  difference (P = 0.03). 

 

 

 

Figure 4b. Comparison of Frequency of Avoidance behaviors between OCB +  

  CB and OCS + CS. Values are means + SEM, N = 10.  Asterisk indicates 

  significant difference (P = 0.007).  
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CHAPTER 3 

 

Biochemical evidence for the molecular weight of a membrane-associated and 

cytoplasmic EcR in the tissues of the American lobster, Homarus americanus 
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Abstract: 

 20-hydroxyecdysone (20E), the active principle of the molting hormone in the 

American lobster, Homarus americanus, has significant effects on the animals’ 

agonistic behavior.  In addition to its humoral action, 20E appears to be an important 

signaling molecule sensed by the animal’s antennules, since the behavior of animals 

change when they are exposed to 20E.  In this study, we provide biochemical evidence 

for the presence of 20E receptors on the antennules of lobsters, along with their 

molecular weights.  Various tissues from lobsters were dissected, soluble and 

insoluble fractions extracted, and spot blots and Western blots performed.  Spot blots 

indicate the presence of a 20E receptor in both the soluble (cytoplasmic/nuclear) and 

insoluble (membrane-associated) fractions of walking legs and eyestalks, but only in 

the membrane-associated fraction of the guard setae and aesthetasc sensilla.  Western 

blots and Mass Spectrometry returned several different molecular weights for the EcR 

(75 kDa, 50 kDa, 40 kDa).  The presence of an EcR in the membrane-associated 

fraction confirms that 20E may be perceived by the antennules of lobsters, while the 

various molecular weights suggest different isoforms may exist, which is consistent 

with various insect and crustacean species.  
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Introduction: 

Ecdysone and its active metabolite, 20-hydroxecdysone (20E), are steroid 

hormones that regulate molting in insects and crustaceans and coordinate alterations in 

the transcription of groups of genes required to control this process (Waddy et al., 

1995).  Molting is a slow process that takes place over several days or weeks, 

however, in recent studies in numerous insects and crustaceans, Ecdysteroids have 

been shown to have fast-acting effects, suggesting the presence of an additional non-

classical steroid hormone signaling pathway (Spencer and Case, 1984; Cromarty and 

Kass-Simon, 1998; Cooper and Ruffner, 1998; Tomaschko, 1999; Thummel and 

Chory, 2002; Cooper et al., 2003; Schlattner et al., 2006). 

Steroid hormones have been traditionally considered to work through genomic 

mechanisms, where steroids enter a cell, bind to a specific receptor in the cytosol or 

nucleus, and activate transcription that leads to changes in gene expression and results 

in the production of proteins that have a biological function (Losel et al., 2003).  This 

mechanism is generally slow-acting, as it sometimes takes several hours or days to 

alter patterns of gene transcription after the hormone enters the cell.  A second model 

for the actions of steroid hormones involves a non-genomic mechanism, wherein 

steroids have an immediate effect on physiological function that cannot be explained 

by the slower classical mechanisms (Losel et al., 2003).  The physiological effect of 

steroids that act through non-genomic mechanisms can be seen within seconds of 

exposure to the hormone, ruling out any models that involve changes in the 

transcription levels of genes.  The activation of an outer membrane-bound receptor, or 

signaling via a second messenger pathway are likely causes of the immediate 
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physiological changes observed to occur in response to the hormone (Losel et al., 

2003).        

Rapid non-genomic effects have been found to act in exocrine glands, the 

central nervous system, motor neurons, neuromuscular junctions and sensory cells of 

numerous organisms (Schlattner et al., 2006).  Compared to the prolonged and slow 

process of ecdysone induced molting, the non-genomic effects of ecdysone exposure 

are immediate; changes are sometimes observed within a matter of seconds 

(Tomaschko, 1999).  In the California spiny lobster, Spencer and Case (1984) found 

an increased action potential firing frequency in the lateral antennule 1 second after 

exposure to both 20E and alpha ecdysone.  In American lobsters, 20E has been shown 

to have immediate effects on neuro-muscular properties.  In the presence of 20E, there 

is an increase in EJP amplitudes and miniature excitatory junctional potential (MEJP) 

frequency in the opener muscle, as well as a decrease in EJP amplitudes in the 

abdomen (Cromarty and Kass-Simon, 1998).   In Drosophila, Ruffner et al. (1999) 

found reduced transmitter release in the ventral abdominal muscles within 1 minute 

after exposure to 20E.  In crayfish, Cooper and Ruffner (1998) found a decreased 

amount of neurotransmitter release in the opener muscle of the first walking leg within 

20 minutes after exposure to 20E.  Cooper et al. (2003) found increased action 

potential firing frequency in the muscle receptor organ of crayfish 10 seconds after 

exposure to 20E.   

Recent evidence presented by Coglianese et al. (2008) and Reinhart et al. 

(submitted) indicates that 20E acts as a pheromone that leads to an immediate change 

in the behavior of lobsters.  Coglianese et al. (2008) found that the behavior of female 



 62 

animals exposed to a plume of 20E was different than control animals exposed to a 

plume of artificial sea-water (ASW).  Large female lobsters who had a plume of 20E 

puffed across their antennules performed significantly more aggressive, defensive and 

avoidance behaviors than large control animals in staged confrontations.  The change 

in behavior of the exposed individual was attributed to the perception of the 20E in the 

odor plume, suggesting it acts as a pheromone.  Reinhart et al. (submitted) performed 

a similar experiment as Coglianese with male lobsters, and found that the behavior of 

males exposed to a plume of 20E was also different than control animals exposed to a 

plume of artificial sea-water (ASW).  Reinhart found that male lobsters exposed to 

20E performed more defensive behaviors than ASW exposed control animals.  These 

results led to the conclusion that the change in behavior of the exposed individual 

could be attributed to the perception of the 20E in the odor plume.   

In earlier electrophysiological experiments, Cromarty et al. (unpublished) 

found that the olfactory receptor neurons (ORN bundles) in the antennules of 

American lobsters exhibit a dose-dependent response to 20E, which supports the idea 

that 20E may be perceived by the antennules of lobsters and this perception is 

responsible for the alteration of behavior during an agonistic encounter.  Because the 

physiological and behavioral changes occur within milliseconds or seconds of 

ecdysone exposure, these result together suggest the presence of a non-genomic 

receptor on the lateral antennules.                   

Here, we present evidence for a membrane-bound and nuclear ecdysone 

receptor (EcR) with comparable molecular weights in various tissues of the American 

lobster, Homarus americanus.  The presence of a receptor for 20E in the membrane 
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fraction suggests the possibility that a membrane bound receptor is responsible for the 

immediate physiological response exhibited by lobsters exposed to 20E.  
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Methods: 

Animal procurement and maintenance:  

Female American lobsters, Homarus americanus, were obtained from local 

fisherman and the Rhode Island Department of Environmental Management from 

inshore waters off the coast of Narragansett Bay, RI.  Animals were maintained in 

circulating unfiltered natural seawater tanks at the Narragansett Bay Campus, on a 12-

hr light/dark cycle.  Water temperature and salinity were ambient, ranging from 10-

20°C and 28-33ppt, respectively.  Animals were fed fish scraps twice weekly, banded 

and kept in separate tanks with compartmentalized large gauge wire cages.  All 

animals were returned to Narragansett Bay after 2 weeks.  All lobsters used were 

intermolt C-stage animals in perfect condition, all eight walking legs, claws, antennae 

and antennules were intact with no other signs of physical damage or shell disease.  

Samples of each tissue types were dissected from live animals, and each sample 

consisted of the same tissue type from at least 3 different animals 

Tissue Dissection: 

We tested a variety of tissues for the presence of a receptor for 20E including 

walking legs (WL), eyestalk (EY), intact lateral antennule (IA), guard setae (GS), 

aesthetasc sensilla (SE), cuticle from antenna (CUA) and cuticle from carapace 

(CUC).  Once each tissue was removed from a lobster, it was immediately placed into 

a scintillation vial with lobster saline and protease inhibitors (10 mM Tris base, 5 mM 

Maleic acid, 472 mM NaCl, 10 mM KCl, 16 mM CaCl2, 7 mM MgCl2, D-glucose, 

Complete mini EDTA-free protease inhibitor cocktail tablets, pH=7.4) in ice before 

further maceration was performed. WL muscle tissue was dissected out of the first two 
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pair of walking legs; EY was cut out of the head of the animal, leaving only the y-

organ.  Cuticle from the antenna (CUA) and the carapace (CUC) was shaved off, 

under saline, with razor blades.  When cuticle was shaved, care was taken to only 

scrape the outermost layer of the cuticle in order to avoid cutting into the softer inner 

layers.  The lateral antennule (IA) was cut off of the lobster, and chopped up into 

small pieces.  The GS and SE were separated from each other under a dissecting 

microscope as follows: the GS were plucked off of the antennule with a fine pair of 

forceps leaving the SE on the antennule.  The SE were then carefully shaved off with a 

Feather Razor blade (#11) taking great care to prevent contamination or cutting into 

the softer layers of the antennules.  For Western Blots and Mass Spectrometry, GS and 

SE were combined together (GS+SE) in order to increase the overall protein 

concentration.  We collected Drosophila (D) larvae and pupae as a control for the 

presence of 20E, and placed them into the same saline with protease inhibitors as the 

lobster tissue samples.   

Homogenization and Membrane Protein Fractionation: 

The tissue was placed into a homogenization tube and macerated sequentially 

with two different buffers: homogenization buffer (20 mM Tris-HCl, 2 mM EDTA) 

and detergent Buffer (0.5X homogenization Buffer, 1% (v/v) Triton X-114).  The 

transfer of the smaller GS and SE were performed under a dissecting microscope to 

ensure adequate sample was collected for maceration.  The tissue was first ground up 

with homogenization buffer in a 1:1 ratio using a Dounce Homogenizer and the liquid 

portion was transferred to a micro-centrifuge tube.  Detergent buffer was then added to 

the homogenization tube along with homogenization buffer (1:1 ratio), and further 
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macerated.  The residual liquid from this procedure was placed in a separate micro-

centrifuge tube.  All samples were then sonicated with a Branson Model 184 V 

sonicator (Branson Instruments, Danbury, CT) with a 3 mm tip operating at 50/60 Hz 

for 3 separate 5 second bursts in order to ensure that tissue was fully disrupted before 

the final extraction process.  After all samples were sonicated, the insoluble pellet was 

removed by centrifugation for 10 min at 5,000 RPM.  The resultant supernatants were 

transferred to new tubes with 500 ul aqueous sucrose (0.5X Homogenization Buffer, 

6% (w/v) Sucrose, 0.06%(v/v) Triton X-114).  The homogenate was vortexed and 

placed on a heating block at 37°C for 10 minutes, until the cloud point was reached.  If 

the cloud point was not reached after 10 minutes, more detergent buffer was added 

drop-wise until the solution appeared cloudy.  After the cloud point was reached, the 

samples were spun for 3 minutes at 2,000 RPM to separate the soluble (aqueous) from 

the insoluble (pellet) fractions.  The aqueous supernatant was transferred to a new 

micro-centrifuge tube to separate it from the remaining pellet.  

Protein Characterization by Western Blotting: 

The homogenized samples were then either spotted directly onto nitrocellulose 

paper or loaded into a 10% SDS-PAGE gel.  Samples run on SDS-PAGE gels were 

then transferred to nitrocellulose.  A total of three spot blots were made during each 

experiment: one spot blot for an amido black total protein stain and two blots for 

staining with two different anti-mouse secondary antibodies (Biotin-linked goat anti-

mouse and LICOR Odyssey Goat anti-mouse IR DYE 680LT).  We used two different 

types of standards as controls for the two different types of blots: BSA was used to 

quantify the total protein blot and a standard mouse IGG was used for the two 
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antibody blots.  The total protein stain spot blot was stained with 0.25 % Amido Black 

in order to determine if protein was indeed extracted for each sample.  This blot was 

later compared to the blots labeled with EcR-specific antibodies in order to eliminate 

background artifacts.  If a receptor was positively identified on an antibody spot blot, 

but inadequate protein was extracted from that tissue sample on the amido black spot, 

then that result could be thrown out as background staining.      

The staining protocol for the Biotin linked Goat Anti-Mouse secondary 

antibody was as follows.  The blots were blocked overnight in the fridge with 5% 

(w/v) Bovine Serum Albumin (BSA) in Tris Buffered Saline (TBS) (20mM Tris-HCl, 

150 mM NaCl, pH=7.5), and washed in TBS twice, for 5 min each the next morning.  

Each blot was then submerged in a solution of the primary antibody, DDA2.7 (EcR 

common supernatant, Hybridoma Bank U. Iowa), for 1 hour, and then washed 3 times 

with TBS (15 min, 5 min and 5 min). The blot were treated for 45 min with Biotin 

Linked Goat Anti-Mouse secondary antibody dissolved in 1% BSA/TBS, and washed 

with TBS 3 times (15min, 5min, 5min).  The blot was then stained with a 1:1,000 

Streptavidin-linked Alkaline Phosphatase (Zymed Laboratories) dissolved in 1% 

BSA/TBS for 30 minutes and then washed with TBST (TBS with Tween-20) 3 times 

(15 min, 5 min, 5 min) followed by a final wash with TBS for 5 min.  Each 

nitrocellulose membrane was washed off with distilled water, placed into a clean petri 

dish, and a small amount of Fast Red dye (Fast Red Substrate pack, Zymed 

Laboratories) was poured into the dish on top of the membrane.  The dye was allowed 

to soak into the blot for about 1-2 minutes, until the standards clearly showed up and 

other positive results became clear.  The blots were washed with distilled water again 
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to prevent development of excess background color, and were then scanned on the 

computer.  The EcR-positive results for the Fast Red appeared as red spots.  

The staining protocol for the LICOR Odyssey Goat anti-mouse IR DYE 

680LT was as follows.  The blots were blocked with Casein blocking buffer for one 

hour at room temperature and washed in TBS three times for five minutes each.  Each 

blot was then submerged in a solution of the primary antibody, DDA2.7 (EcR 

common supernatant, Hybridoma Bank University of Iowa), for 24 hours at 4°C and 

then washed three times with TBS (15 min, 5 min and 5 min).  The blots were then 

stained with LICOR Odyssey Goat anti-mouse IR DYE 680LT for one hour at room 

temperature and washed with TBST (TBS with Tween-20) three times (15 min, 5 min, 

5 min) followed by a final wash with TBS for five min.  Membranes were then 

visualized with the LICOR Odyssey scanner at a 700nm wavelength to visualize the 

presence of a receptor.              

In order to determine the molecular weights of the lobster receptors for 20E 

expressed in different tissue fractions, SDS-PAGE and Western Blots were employed.  

SDS gels (10 lanes each) were prepared with 5% Acrylamide stacking and 10% 

Acrylamide resolving gels using the BIO-RAD Mini Trans Assembly Kit.  Samples 

were first mixed with an equal volume of 2x sample loading buffer (10% (w/v) SDS, 

4X Stacking buffer, 80% (w/v) Glycerol, DTT, 1% (w/v) bromophenol blue), vortexed 

and centrifuged at 11,000 rpm for 10 seconds, heated at 100°C for 5 minutes, vortexed 

and centrifuged again at 11,000 rpm for 10 sec.  Approximately 18 uL of protein 

sample and 10 uL of standard sample were loaded into each lane of the gel.  Standards 

included: Precision Plus Protein Unstained Standards, Biotinylated SDS-PAGE 
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Standards, Kaleidoscope Standards and LICOR Odyssey fluorescent molecular weight 

markers.  Gels were run at a constant voltage of 125 Volts for 2 hours in 1X Tank 

Buffer (0.025M Tris Base, 0.192M Glycine, 0.1% SDS).  Gels were cut into two 

identical halves, one was stained with GelCode Blue reagent, the other used to transfer 

to a nitrocellulose membrane.  The GelCode half was rinsed in double distilled water 

for 15 minutes to remove SDS before GelCode stain was added, and the gel remained 

in darkness on the shaker table at room temperature overnight.  The gel was then 

washed with distilled water, photographed and scanned into the computer.  The 

Western Blot half was first washed in transfer buffer (80% tank buffer, 20% methanol 

HPLC grade) for 10 minutes and then assembled in the Mini Trans-Blot assembly kit.  

Transfer blots were run at a constant current of 150 Volts for 30 min in transfer buffer.  

The staining procedure for the Western Blots is the same as for the LICOR antibody 

stained dot blots, described above.  

 In order to confirm bands found on Western Blots and to specify accurate 

molecular weights of the receptor, we ran Matrix Assisted Laser Desorption Ionization 

(MALDI) Mass Spectrometry.  Samples were mixed with a 7% ACN/TFA 

(Acetonitrile, Trifluoroacetic acid) solution, added to a sinapinic acid matrix and 

loaded onto a gold chip.  The gold chip was placed into a Ciphergen Mass 

Spectrometer, and hit with a laser at an intensity of 150-200.  
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Results:  

 Spot blot results indicate the presence of an EcR in both the soluble and 

insoluble fractions of walking legs and eyestalks, but only in the membrane associated 

fraction of the guard setae and aesthetasc sensilla (Table 1; Figure 1).  No evidence of 

a receptor was found in the outer layer of the cuticle for the antenna or carapace.  Spot 

blots on D control were positive for both the soluble and insoluble fractions (Table 1; 

Figure 1).   

Western Blots confirmed the presence of the receptor in WL, EY and D control 

and yielded molecular weights for the receptor.  The membrane bound WL fraction 

yielded two bands at approximately 75 kDa and 40 kDa whereas the 

cytoplasmic/nuclear fraction yielded three bands at approximately 75 kDa, 50 kDa and 

40 kDa (Table 1; Figure 2).  The cytoplasmic/nuclear fraction of EY yielded two 

bands at approximately 50 kDa and 40 kDa. (Table 1; Figure 3)  The D control yielded 

bands for both the membrane and cytoplasmic/nuclear fractions (75, 50, 40 kDa and 

60, 50, 40 kDa, respectively) (Table 1; Figure 4).  We were unable to obtain a Western 

Blot for GS or SE, as we were unable to obtain a sufficient concentration of protein to 

show up on the Western Blot.  Our maximum concentration of 3.8 ug/uL from 90 

noses was considerably less than the 8 ug/uL we had previously found to be necessary 

for visualization on Western Blots.            

All bands found on Western Blots were consistent with peaks found by matrix-

assisted laser desorption/ionization (MALDI) mass spectrometry.  The membrane and 

cytoplasmic/nuclear fractions of WL, EY and GS+SE consistently returned peaks of 

75/76 kDa and 39/38/37 kDa on the Mass Spec (Table 1; Figure 5; Figure 6; Figure 7).  
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The D control returned peaks of 83 kDa, 48 kDa, 39 kDa for the membrane fraction 

and 65 kDa, 46 kDa, 41 kDa for the cytoplasmic/nuclear fraction (Table 1; Figure 8).        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 72 

Discussion: 

 In this study, we have presented the first biochemical evidence for a membrane 

bound EcR in the guard setae, aesthetasc sensilla, walking legs and eyestalks of 

lobsters.  The presence of a membrane bound receptor could explain the immediate 

actions of 20E that cannot be explained by genomic mechanisms.  Spot blots indicated 

the presence of the EcR in both the membrane and nuclear/cytoplasm of WL and EY.  

Western Blot and Mass Spec analysis of WL and EY consistently returned molecular 

weights of 75 kDa and 40 kDa for both the cytoplasmic/nuclear and membrane 

fractions.  Spot blots indicated the presence of a receptor in only the membrane bound 

fraction of GS and SE, and never the nuclear/cytoplasmic fraction.  Mass Spec 

analysis of GS+SE consistently returned molecular weights of 75 kDa and 38 kDa for 

the membrane fraction.  Although we were not able to obtain a Western Blot for GS or 

SE, spot blot data coupled with MALDI results indicate that there is an EcR whose 

molecular weights are consistent with those found in WL and EY.   

 In spiny lobsters, Panulirus argus, the aesthetasc sensilla are the sensory cilia 

of the olfactory receptor cells whose nuclei are located within the antennules 

themselves (Ache and Derby, 1985; Grunert and Ache, 1988).  Histological studies 

shows that the aesthetasc sensilla are innervated by the dendritic extensions of 

multiple bipolar receptors, with the soma gathered in a cluster at the base of the 

sensillum inside the antennule itself (Ache and Derby, 1985; Grunert and Ache, 1988).  

Although we have not studied the histology of the antennules in the American lobster, 

we have made the assumption that a similar morphological arrangement exists, and 

our spot blot data appears to confirm this.  Since we shaved the sensilla off of the 



 73 

antennule at the base, we would have separated the cell bodies from the dendritic 

extensions that extend into the sensillum itself.  Therefore, our GS and SE samples did 

not contain any cell bodies (nucleus or cytoplasm), and positive staining for the EcR 

must represent a membrane receptor, not a cytoplasmic one.   

 We found several molecular weights for the EcR, which suggest that different 

isoforms exist in lobsters.  Isoforms of the EcR have been found in several insect and 

crustacean species, including Drosophila (Talbot et al., 1993), Manduca sexta 

(Fujiwara et al., 1995; Jindra et al., 1996), Bombyx mori (Kamimura et al., 1997) 

Crangon crangon (Verhaegen et al., 2011) and Homarus americanus (Tarrant et al., 

2011).  In Drosophila, three different isoforms exist for the EcR: EcR-A (91 kDa), 

EcR-B1 (93 kDa) and EcR-B2 (73 kDa) (Talbot et al., 1993).  Ann Tarrant et al. 

(2011) sequenced the EcR in American lobsters, and found two splice variants with 

different amino acid sequences, predicted at 60.1 kDa, but expressed as 63.3 kDa 

when expressed in a plasmid.  

 The molecular weights of the EcR reported here for WL and EY are not 

consistent with those reported by El Haj et al. (1994) (97-116kDa) or Tarrant et al. 

(2011), (60.1kDa sequence data and 63.3 kDa expression plasmids).  We do not know 

the reason why we didn’t obtain similar molecular weights for the EcR in our samples, 

however, there are some possibilities for the differences.  The differences found 

between our work and Tarrant’s work might be attributed to the fact that Tarrant et al. 

(2011) derived their results by synthesizing and expressing cDNA in a plasmid, 

whereas we obtained our results directly from dissected tissue.  A possible reason for 

this could be due to alternative splicing of the EcR, which has been widely reported in 
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crustaceans (Chung et al., 1998; Wu et al., 2004; Kim et al., 2005; Asazuma et al., 

2007; Kato et al., 2007).  Also, Tarrant et al. (2011) states that EcR variants they 

found were identified fortuitously during cloning and suggest that additional variants 

of the EcR may be found from different tissue types.  Tarrant used tissue from the 

abdomen, claw, hepatopancreas and ovary, while we used tissue from the WL, EY, GS 

and SE.  The different tissues used could express different splice variants of the EcR, 

which could explain the differences found between our data.  Finally, the pictures of 

the gels published in Tarrant et al. (2011) do not coincide with the text that reports the 

molecular weight of 60.1/63.3kDa.  The gels pictured appear to show bands about 

halfway between 52 kDa and 38 kDa, which would correspond with our data that has 

bands at approximately 40 kDa on Western Blots and mass spec.    

 We are not sure why both our data and Tarrant’s data are different from El Haj 

et al. (1994).   El Haj reported only the presence of one receptor at approximately 97-

116 kDa, with no possible isoforms in WL and EY tissue.  It may be that the 

dissection and extraction method that El Haj et al. (1994) employed did not separate 

different isoforms, or there may be a possible dimerization of the two isoforms.  A 

second possibility could be due to the fact that El Haj used juvenile premolt animals, 

and we used adult intermolt animals.  In crustaceans, it has been shown that there is 

differential expression of the EcR over the molt cycle (Durica et al., 1999; Asazuma et 

al., 2007; Kato et al., 2007; Hirano et al., 2008).   

 The molecular weights we obtained for Drosophila (75/60, 50, 40 kDa) are not 

consistent with the three isoforms reported by Talbot et al. (1993) (93, 91, 73 kDa), 

however, a similar argument to the differences we found in lobster molecular weights 
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can be made.  Talbot et al. (1993) employed a plasmid method and transfected S2 cells 

with the expression construct of each isoform, while we extracted the receptor from 

live pupae and larvae.  It is possible that different tissues used or alternative splicing in 

those tissues could account for the differences we observed.     

  The mechanism of non-genomic actions of Ecdysone in insects and 

crustaceans has not been fully described, although several studies suggest possible 

modes of action.  Srivastava et al. (2005) discovered a G-protein coupled 

dopamine/ecdysteroid receptor in Drosophila, the Drosophila melanogaster 

dopamine/ecdysteroid receptor, which confirms to the second messenger system 

hypothesis for the non-genomic action of steroids.   The Drosophila 

dopamine/ecdysteroid receptor is able to bind dopamine, 20E and alpha ecdysone.  Its 

genetic sequence is homologous to the vertebrate β-adrenergic receptor, and activates 

two different second messenger pathways depending upon whether dopamine or 

ecdysteroids are bound to the receptor.  Once dopamine binds, cAMP levels increase 

inside the cell and the phosphoinositide-3-kinase pathway is activated.  When 20E or 

alpha ecdysone binds, the mitogen-activated protein kinase pathway is activated 

(Srivastava et al., 2005).  With respect to the non-genomic functions of the ecdysone 

receptor, the presence of a putative membrane bound ecdysone receptor has been 

isolated from the plasma membrane of the anterior silk gland of the silkworm, Bombyx 

mori (Elmogy et al., 2004).  The receptor (57 kDa) exhibited rapid saturable binding 

to PonasteroneA, and these quick association/dissociation kinetics are characteristic of 

membrane bound receptors, not nuclear/cytoplasmic receptors (Elmogy et al., 2004).  

The presence of a membrane bound receptor for 20E in the silkworm correlates with 



 76 

our finding of a membrane bound receptor for 20E in lobsters.  These membrane 

bound receptors could act through a second messenger pathway, as observed in 

Drosophila, or through another pathway initiated in the membrane.  

  In summary, we have shown the presence of a receptor for 20E in both the 

membrane and nucleus/cytoplasm for WL, and EY, but only the membrane of GS and 

SE.  These results were obtained consistently multiple times through spot blots and 

Western Blots, and the molecular weights were confirmed with Mass Spec.  Our 

present findings, together with our previous electrophysiological and behavioral 

studies indicate that in lobsters, a fast-acting membrane-bound ecdysone receptor 

exists and that either external or internal exposure to 20E contributes to changes in the 

animal’s behavior.      
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Table 1. Summary of Spot Blots, Western Blots and Mass Spectrometry.   

  

  Abbreviations: WL=Walking legs, EY= Eyestalk, GS= Guard Setae, 

  SE= Aesthetasc sensilla, D= Drosophila, (+) = Positive for EcR,               

  ( - ) = Negative for EcR, P= Pellet/membrane fraction,                        

  S= Soluble/nuclear/cytoplasmic fraction.  Molecular weights are in 

  kDa.  Results were replicated 5 times for spot blots, 3   

  times for Western Blots, and 4 times for Mass Spectrometry.      
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Tissue Dot Blot Western Blot Mass Spec
WL P + 75, 40 75, 39
WL S + 83, 75, 50, 40 83, 75, 47, 39
EY P + N/A 75, 39
EY S + 50, 40 75, 65, 37

GS + SE P + N/A 76, 38
GS + SE S - N/A 75, 38

D P + 75, 50, 40 83, 48, 39
D S + 60, 50, 40 65, 46, 41
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Figure 1a.  Representative Spot blot of Walking legs (WL), Guard Setae (GS) and 

  Aesthetasc Sensilla (SE) with Fast Red Stain.  P = Pellet/membrane 

  fraction, S = Soluble/cytoplasmic/nuclear fraction, STD = Biotin  

  Standard.    

 

 

Figure 1b. Spot blot of Eyestalk (EY) with Fast Red Stain.  P = Pellet/membrane 

  fraction, S = Soluble/cytoplasmic/nuclear fraction. 

 

 

Figure 1c. Spot blot of Drosophila (D) control with Fast Red stain.  P =  

  pellet/membrane fraction, S = soluble/cytoplasmic/nuclear fraction, 

  STD =  Biotin standard 
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Figure 2a. Representative Western Blots for Walking leg Pellet (Membrane)  

  fraction.  LICOR Odyssey fluorescent molecular weight marker bands 

  are labeled with appropriate molecular weight in kDa. 

 

 

Figure 2b. Representative Western Blot for Walking leg soluble   

  (nuclear/cytoplasmic) fraction. LICOR Odyssey fluorescent molecular 

  weight marker bands are labeled with appropriate molecular weights in 

  kDa. 
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Figure 3. Representative Western Blot for Eyestalk soluble (cytoplasmic/nuclear) 

  fraction. LICOR Odyssey fluorescent molecular weight marker bands 

  are labeled with appropriate molecular weights in kDa.   
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Figure 4a. Representative Western blots for Drosophila pellet (membrane)  

  fraction.  LICOR Odyssey fluorescent molecular weight marker bands 

  are labeled with appropriate molecular weights in kDa.  

 

Figure 4b. Representative Western blot for Drosophila soluble    

  (cytoplasmic/nuclear) fraction. LICOR Odyssey fluorescent molecular 

  weight marker bands are labeled with appropriate molecular weights in 

  kDa. 
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Figure 5a. Mass Spectrometry results for Walking leg pellet (membrane) fraction. 

 

Figure 5b. Mass Spectrometry results for Walking leg soluble    

  (cytoplasmic/nuclear) fraction. 
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Figure 6a. Mass Spectrometry results for Eyestalk pellet (membrane) fractions. 

 

Figure 6b. Mass Spectrometry results for Eyestalk soluble (cytoplasmic/nuclear) 

  fractions. 
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Figure 7a. Mass Spectrometry results for Guard Setae and Aesthetasc sensilla  

  pellet (membrane) combined. 

 

Figure 7b. Mass Spectrometry results for Guard Setae and Aesthetasc sensilla  

  soluble (cytoplasmic/nuclear) combined. 
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Figure 8a. Mass Spectrometry results for Drosophila pellet (membrane) fraction. 

 

Figure 8b. Mass Spectrometry results for Drosophila soluble    

  (cytoplasmic/nuclear) fraction. 
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CHAPTER 4 

 

Effect of injected ecdysteroids on force generation in the claw closer muscle of the 

American lobster, Homarus americanus 

 

by 
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Abstract: 

 20-hydroxyecdysone (20E), the active principle of the molting hormone, has 

been shown to affect the outcome of agonistic interactions in lobsters.  Lobsters 

injected with 20E are more aggressive than non-treated animals, and premolt lobsters, 

which have high circulating levels of 20E, have a higher success rate in agonistic 

encounters.  20E has been shown to increase the amplitude of excitatory post-synaptic 

potentials in the claw opener muscle and decrease them in the abdomen.  To test 

whether ecdysteroids also affect the closer muscle, a customized force transducer was 

constructed to measure the force and duration generated by the closer muscle of male 

and female lobsters after injection with alpha-ecdysone or 20E.  The difference in 

force and duration before and after injection of 20E or alpha-ecdysone was compared 

to their differences after injection of saline.  Alpha-ecdysone significantly increased 

the force generated by female crusher and cutter claws, and 20E also potentially 

increased the force in female crusher claws.  The results suggest that circulating 

ecdysteroids influence the claw closer muscle and could be a factor influencing 

agonistic interactions.    
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Introduction: 

 Agonistic encounters play an important role in the life of lobsters; they are 

involved in procuring shelters, defending and maintaining those shelters, mating, and 

foraging success (Atema and Cobb, 1980).  Some of the factors affecting the outcomes 

of agonistic encounters include physical characteristics of the animals, such as weight, 

carapace size, and chelae size; larger animals weigh more and have greater carapace 

and chelae size (Scrivener, 1971).  In staged encounters, larger lobsters will win 

significantly more encounters than smaller lobsters of the same sex (Scrivener, 1971).  

Size also plays a role in the formation of dominance hierarchies in lobsters, as larger 

lobsters are dominant over smaller lobsters in social settings (Karnofsky, 1989).  This 

is also true in crayfish, where larger animals are dominant over and have more access 

to food resources than do smaller, subdominant males (Issa et al., 1999; Herberholz et 

al., 2007).        

 During an agonistic interaction, lobsters perform many behaviors with their 

claws, including grabbing, hitting, pinching and claw locks (Mello et al., 1999; 

Bolingbroke et al. 2001; Coglianese et al., 2008; Reinhart et al., submitted; Sipala et 

al., unpublished).  These claw behaviors are important, as the strength or duration of a 

squeeze/pinch may affect the outcome of the agonistic interaction.  On average, male 

lobsters have larger crusher and cutter claws than female lobsters of the same carapace 

size (Elner and Campbell, 1981).  This is also true in crayfish, where for a given body 

length, males have larger chelae that generate a greater force than do the chelae of 

females of the same size (Wilson et al., 2009). 
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 Along with body size, hormones have been shown to influence the outcome of 

agonistic interactions in crustaceans.  In lobsters, the hemolymph titers of the molting 

hormone, 20-hydroxyecdysone (20E), varies over the molt cycle.  Premolt animals 

(D1and D2 stage animals about to molt) have increased levels of ecdysones in their 

hemolymph and urine (Chang, 1985; Snyder and Chang, 1991a; Snyder and Chang, 

1991b), and are dominant over and more aggressive than their intermolt C-stage 

opponents in a confrontation (Tamm and Cobb, 1978).  Evidence has been presented 

that injected 20E makes lobsters more aggressive; in staged combats between large 

and small lobsters, smaller lobsters injected with the hormone are significantly more 

aggressive than small control animals injected with saline (Bolingbroke and Kass-

Simon, 2001).  The injection of 20E may mimic the increased 20E titers that occur in 

D-stage animals about to molt (D1 and D2), which are correlated with increased 

aggression in D-stage animals (Tamm and Cobb, 1978). 

 One reason circulating 20E may affect the outcome of an agonistic interaction 

has to do with its effect on neuromuscular physiology.  20-hydroxyecdysone has been 

shown to affect the neuromuscular electrophysiology of the claw and abdomen in 

lobsters  (Cromarty and Kass-Simon, 1998), as well as alter neurotransmitter release in 

crayfish (Cooper and Ruffner, 1998; Cooper et al., 2003).  20E decreases the 

probability of vesicular neurotransmitter release in the walking legs (Cooper and 

Ruffner, 1998), and a mixture of 20E and serotonin increased neuron firing frequency 

in the slow-adapting muscle receptor organ (MRO) of the abdomen (Cooper et al., 

2003).  In the claw opener muscle of lobsters, animals in premolt stage D produce 

significantly larger excitatory junctional potentials (EJP’s) and significantly fewer 
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inhibitory junctional potentials (IJP’s) than intermolt animals (Schwanke et al., 1990).  

In the presence of 20E (which is present in greater quantities in the hemolymph of 

premolt animals), there is an increase in EJP amplitudes and frequency of miniature 

excitatory junctional potentials (MEJP) in the opener muscle (used in threat displays) 

(Cromarty and Kass-Simon, 1998).  There is also a decrease in EJP amplitudes in the 

abdomen (used in the escape response) (Cromarty and Kass-Simon, 1998), which 

corresponds to the effect of pre-molt and post-molt hemolymph on EJPs (Schwanke et 

al., 1990).   

 Ecdysteroids may also have differential effects on the neuromuscular 

properties of claw closer muscle of crusher and cutter claws, as the two claws differ in 

their muscle fiber types, motoneuron innervation and contractile properties (Govind, 

1984).  Fast twitch fibers quickly reach a maximal tension, which rapidly decays, 

while slow twitch fibers gradually increase in tension with a slow decay phase 

(Jahromi and Atwood, 1971; Costello and Govind, 1983).  Crusher claw closer 

muscles contain only slow twitch fibers with long sarcomeres, which allows the 

crusher to maintain force for a long period of time (Lang et al., 1977; Govind and 

Lang, 1978; Kent and Govind, 1981; Govind, 1984).  Cutter claws contain mostly fast 

twitch fibers with short sarcomeres and a small ventral band of slow twitch fibers, 

which leads to a quicker fatigue than crusher muscle (Lang et al., 1977; Govind and 

Lang, 1978; Kent and Govind, 1981; Govind, 1984).  The closer muscle in both 

crusher and cutter claws are innervated by the fast closer excitor neuron (FCE) and the 

slow closer excitor neuron (SCE), however, cutter closer muscles have mostly FCE 

while crushers have a mixture of both (Wiersma, 1955; Costello et al., 1981; Govind, 
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1984).  Generally, SCE synapses are more fatigue resistant and recover more quickly 

than FCE synapses, but the synapses at both the FCE and SCE in crusher claws are 

more resistant to fatigue than those in the cutter (Govind and Lang, 1974; Govind and 

Lang 1979). 

  The purpose of this study was to determine whether alpha-ecdysone and its 

active principle, 20E, alter the squeezing properties of the crusher and cutter closer 

muscle in male and female lobsters.  
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Methods: 

 Animal procurement and maintenance: 

 Male and female American lobsters, Homarus americanus, were obtained from 

local fisherman and the Rhode Island Department of Environmental Management 

from inshore waters off the coast of Narragansett Bay, RI.  Animals were maintained 

in natural circulating unfiltered seawater tanks at the Narragansett Bay Campus, on a 

12-hr light/dark cycle.  Water temperature and salinity were ambient, ranging from 10-

20°C and 28-33ppt, respectively.  Animals were fed fish scraps, supplied by a local 

fish market, twice weekly.  All lobsters used were intermolt C-stage animals in perfect 

condition, i.e., all eight walking legs, claws, antennae and antennules were intact, with 

no other signs of physical damage or shell disease.  The tanks were 

compartmentalized, so animals could not physically interact with each other prior to 

use.  After animals were weighed and measured, one claw was chosen to be the test 

claw and left unbanned for the entirety of the experiment.  This allowed the claw to 

have free movement prior to the testing period in order to prevent atrophy of the claw.  

The other claw was banded for the entirety of the experiment, which ensured that the 

unbanned claw was the only claw that could grab the force transducer used to measure 

force.    

 Preparation of test substances and injection protocol: 

 In order to prevent bias during data acquisition and analysis, one of us number 

coded stock aliquots of 20E, alpha-ecdysone and saline.  Each number was then 

assigned to a given sex and claw type, ensuring that male and female cutters and 

crushers were allotted equal numbers of 20E, alpha-ecdysone and saline.  The 
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following experiments were performed: Male cutter and crusher with 20E, alpha-

ecdysone, and saline and female cutter and crusher with 20E, alpha-ecdysone, and 

saline.      

  20E and alpha-ecdysone aliquots were made at a concentration of 1mg/ml, and 

frozen at –80°C.  Saline aliquots had a composition in (mM/L) of: NaCl 472; KCl 10; 

MgCL2*6H2O 7; CaCl2 16; glucose 11; Tris-maleate 10; pH 7.4 (Meiss and Govind, 

1979) and were frozen at –80°C.  Experimental animals were injected with enough 

20E or alpha-ecdysone to result in a final hemolymph concentration inside the body of 

600 ng/ml.  The volume of stock solutions injected was that which was estimated on 

the basis of the animals weight to result in a final hemolymph concentration of 

600ng/ml.  This weight/volume estimate was generated by Bolingbroke and Kass-

Simon (2001), by measuring the hemolymph volume bled from lobsters of known 

weights and fitted to a linear curve, having the values: y = 0.26x – 54.33, where y is 

the hemolymph volume and x is the weight of the animal.  The volume estimated from 

the equation was then used in a ratio to determine the amount of 20E stock solution 

needed to be injected in order to obtain a final concentration of 600ng/mL.  The ratio 

used was: 0.0006mg/1mL = X mg/hemolymph volume of interest (y from the 

equation).  The amount of saline injected in the control animals was calculated the 

same way.  A Dremel electric drill was used to drill a small hole through the outer 

portion of the carapace above the presumed level of the cardium through which a 20-

gauge needle could be inserted into the remaining carapace layer.  After injection, the 

hole was plugged with dental wax to prevent bleeding. 
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 Force Measurements: 

 In order to measure the force generated by the claw, a customized force 

transducer with strain gauges leading to a customized Wheatstone bridge was 

constructed similar to that described by Wilson et al. (2009).  The transducer consisted 

of six metal mending braces (Stanley zinc plated 3 in. X 5/8 in.) stacked on top of each 

other, with the top and bottom braces offset from the other four to create a squeezing 

area for the claw.  The mending braces were held together with a screw and bolt to 

prevent movement or breaking when the lobster squeezed.  Strain gauges (Omega 

Precision Linear, 1000 Ohm resistance) were glued with epoxy onto the underside of 

each offset mending brace and wires were soldered onto the leads of the strain gauge, 

and plugged into the Wheatstone bridge.  In order to waterproof the transducer, shrink 

tubing was placed over every exposed wire connection point, and epoxy was layered 

over the strain gauges and shrink tubing to create a tight seal.  The Wheatstone bridge 

was connected to a Power Lab (ADInstruments), which recorded the deflections in 

each strain gauge.  The transducer was calibrated by hanging known weights from 

each squeezing surface to determine the change in voltage for each weight.  These 

results were graphed and a best-fit line and equation were generated.  Since there were 

two strain gauges attached to each offset mending brace, the total force for one 

squeeze was obtained by adding the force from each strain gauge.  A sample Power 

Lab recording is provided (Figure 1).      

 Experimental protocol: 

 The squeeze injection protocol consisted of an initial pre-squeeze followed by 

4 injections of 20E, alpha-ecdysone or saline 12 hours apart.  The post-squeeze was 



 109 

taken 12 hours after the fourth injection.  All pre- and post-squeezes were taken after 

7PM.  

 A total of three pre-squeezes and three post-squeezes were recorded from each 

subject.  During the acquisition of squeezes, lobsters were placed into 10-gallon 

opaque Tupperware bins filled with approximately nine gallons of water and allowed 

to acclimate for one hour.  All experiments were performed under red light to mimic 

nighttime conditions.  The squeezing protocol was as follows:  the transducer was 

slowly lowered into the water and the lobster was allowed to grab and release the 

transducer.  Once the lobster released the transducer, the transducer was slowly 

removed from the bin and re-introduced for the second squeeze one minute after the 

first squeeze ended.   The third squeeze was recorded one minute after the second 

squeeze ended.  In some instances, three squeezes could not be elicited from a lobster, 

or some squeezes were not forceful enough to be picked up by the force transducer.  

The transducer was only presented three times to each lobster for a maximum of one 

minute each, with one minute in between each presentation.  Only measurable 

squeezes were used for analysis, any instances where no measurable squeezes were 

elicited were thrown out.  Because several trials had to be discarded, the following 

sample sizes for each experiment were analyzed: N=9 (FM 20E cutter, FM alpha 

cutter, FM saline cutter, M 20E cutter), N=8 (FM 20E crusher, FM alpha crusher, FM 

saline crusher, M saline cutter, M saline crusher), N=7 (M 20E crusher, M alpha 

cutter) and N=6 (M alpha crusher).             

 Squeezes were analyzed for force and duration using the Power Lab analysis 

tools.  Force was determined by measuring the maximum amplitude of each squeeze, 
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and duration was determined by measuring the total length of each squeeze.  The 

difference between the maximum of the three pre-squeeze values and the maximum of 

the three post-squeeze values were calculated and compared for each treatment in each 

claw category (i.e. male cutters, male crushers, female cutters, female crushers).  The 

average difference (Post-Pre) for each test were compared with Student’s t-tests.  

Values were considered significantly different at P < 0.05 and potentially significant 

(trend) at 0.07 < P < 0.05.    
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Results:     

 In female crusher claws, the average difference between post and pre-squeezes 

for animals injected with alpha-ecdysone (71.4 N) was greater than the average 

difference between post and pre-squeezes for those treated with saline (-55.5 N) 

(Student’s t-test, P=0.009) (Figure 2). In female cutter claws, the average difference 

between post and pre-squeezes for animals treated with alpha-ecdysone (18.1 N) was 

greater than the average difference between post and pre-squeezes for those treated 

with saline (-17.7 N) (Student’s t-test, P=0.024) (Figure 3).  Potential significance was 

found in the force of female crusher claws treated with 20E compared to saline (109.2 

N vs. -55.5 N, Student’s t-test, p=0.07).  No other significant differences were found 

in crusher or cutter claws for any other parameter measured in males or females.  

 An analysis was made of all the pre-squeezes for all animals (control, before 

hormone injection) to compare the force and duration generated by crusher and cutter 

claws for males and females.  The average maximum force generated by crusher claws 

(93.9 Newtons) was greater than that by cutter claws (46.7 Newtons) (Student’s t-test, 

p=0.02), while no differences were found between maximum duration of the squeeze 

by crusher and cutter claws.  Also, there were no sex differences in the average force 

or duration from cutter or crusher claws when all pre-squeezes were analyzed.  The 

average force generated by male (43.1 N) and female (49.9 N) cutter claws were not 

significantly different (Student’s t-test, P= 0.3), nor were the average force generated 

by male (93.1 N) and female (93.7 N) crusher claws (Student’s t-test, P= 0.5). 
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Discussion: 

 Our results suggest alpha ecdysone causes a significant increase in the 

maximum force produced in female cutter and crusher claws.  This increase in force 

caused by alpha-ecdysone may contribute to the fact that lobsters are more successful 

in agonistic interactions immediately prior to the molt.  Levels of alpha-ecdysone and 

20E spike immediately prior to molt (Chang, 1985; Snyder and Chang, 1991a; Snyder 

and Chang, 1991b) so increased levels of alpha-ecdysone may increase the force 

generated by claws, which could help the lobster gain an advantage in a fight.  If a 

lobster is able to squeeze with a stronger force than its opponent, then the opponent 

may be able to sense that strength and withdraw from the confrontation.  Intermolt 

lobsters, who have lower levels of circulating alpha-ecdysone, may produce a lower 

closing force than premolt lobsters, which could be a reason they lose more encounters 

with premolt lobsters.  Since claws are an important factor in the outcome of an 

agonistic interaction, anything that changes the mechanisms of the claw could affect 

the agonistic interaction itself.          

 No differences were found in male cutter or crusher claws for force or duration 

with 20E or alpha-ecdysone.  The fact that no differences were found in male lobsters 

with either alpha-ecdysone or 20E suggests that ecdysteroids have differential effects 

on the closer muscle in males and females.  However, Cromarty et al. (1998) showed 

that 20E has a significant effect on the claw opener and abdominal flexor muscles in 

male lobsters.  Given that 20E affects the opener and abdominal flexor muscles in 

males, we expected the closer muscle to respond to 20E in males and females.  There 

were no changes in the closing force among male claws, but there was a potentially 
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significant response in females (see below).  It is possible that differential sexual 

responses occur in the claw closer muscle, as differential responses to ecdysteroid 

exposure have been shown in previous studies (Coglianese et al., 2008; Reinhart et al., 

submitted).  Coglianese et al. (2008) puffed 20E across the antennules of female 

lobsters engaged in an agonistic interaction, and Reinhart et al. (submitted) performed 

the same experiment with male lobsters.  Females responded to 20E exposure by 

becoming more aroused, increasing aggressive, defensive and avoidance behaviors, 

whereas males simply increased the frequency of defensive behaviors.  It is possible 

that a similar sex-dependent differential response to ecdysteroids may exist in the claw 

closer muscle. 

 One reason our results with 20E did not prove to be significant could be due to 

the high variance in our data.  In female crushers injected with 20E, the average 

difference between the post and pre-squeezes was 109.2 N, which was not significant 

at the 5% level when compared to saline (-55.5N), although a trend or potential 

significance at the 7% level was demonstrated (Student’s t-test, P=0.07).  However, 

the mean difference in 20E was actually greater than the difference between alpha-

ecdysone (96.9N) and saline (-55.5N), which was significant.  The standard error in 

crusher claws treated with 20E was ±96.9 N, while the standard error in crusher claws 

treated with alpha was only ±39.8N.  One cause of the large variance was the fact that 

there were instances where lobsters did not squeeze the transducer at all or squeezed 

with such low force that it did not register on the transducer.  Further, the fact that 

differences in the crusher claw of females were potentially significant but that 
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differences in the cutter claw were not could be attributed to the different muscle fiber 

types and motoneuron innervation in crusher and cutter claws, describe earlier.      

   A second reason that the effects of 20E were not significant may be due to 

metabolic considerations.  Since we injected 20E into the abdomen, but tested the 

effects at the periphery, it is possible the injected 20E became degraded or 

metabolized before it reached its target area.  In contrast, because alpha-ecdysone is 

converted into 20E in the peripheral tissues by 20-hydroxylase (Mykles, 2010), this 

conversion within the target tissue would result in an exposure to 20E in the muscle.  

It is possible that the alpha-ecdysone we injected made its way into the peripheral 

tissues and was converted into 20E, and once converted, it may be the 20E that is 

having the effect on the closer muscle, and not alpha-ecdysone.  In this regard, we 

have reported as unpublished observations in an earlier study that we were unable to 

show that alpha-ecdysone caused a change in the neuromuscular properties of the claw 

or abdomen (Schwanke et al., 1990).  It is also possible that the injected 20E was 

excreted so that its concentration would have been too low to have an effect on the 

claw closer muscle.  Cromarty et al. (1998) perfused 20E directly over the neuro-

muscular preparation, so there was no metabolism or excretion of 20E before it could 

have an effect, unlike our injections.      

 Although our data had a high variance, analysis of all pre-squeeze data 

revealed similar patterns and trends for force observed in other crustaceans.  In 

crustaceans, in general, larger animals have larger claws that generate greater force 

than smaller claws on smaller animals (Brown et al., 1979; Elner and Campbell, 1981; 

Lee, 1993; Gabbanini et al., 1995; Vye et al., 1997; Wilson et al., 2009).  In lobsters, 
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Vye et al. (1997) found a general increase in contraction force with an increase in 

claw dimensions, although results in that study were also highly variable.  Another 

characteristic of crustaceans is that crusher claws, or major chelae, generate a greater 

overall force than cutter, or minor, chelae (Brown et al., 1979; Elner and Campbell, 

1981; Govind and Blundon, 1985; Vye et al., 1997).  Our data indicates that crusher 

claws generate more force than cutter claws, on average; crusher claws have many 

slow twitch fibers with long sarcomeres, while cutter claws have fast twitch fibers 

with short sarcomeres (Lang et al., 1977; Govind and Lang, 1978; Kent and Govind, 

1981; Govind, 1984).  Finally, Elner and Campbell (1981) did not find any significant 

sexual differences in the force generated by the claws, a finding that is corroborated by 

our data. 

 In summary, alpha-ecdysone causes a significant increase in the force of 

crusher and cutter claws of female American lobsters, and a potentially significant 

increase in the force of female crusher claws treated with 20E, suggesting that 

circulating ecdysteroids could be a factor that leads to the success of premolt animals 

in agonistic interactions.    

 

 

 

 

 

 

 



 116 

Literature Cited: 

Atema, J. and J. S. Cobb. 1980. Social Behavior, Pp. 409-450 in The Biology and     

    Management of Lobsters Vol 1, J. S. Cobb and B. F. Philips, eds. Academic Press,   

    New York, NY. 

Bolingbroke, M., and G. Kass-Simon. 2001. 20-Hydroxyecdysone causes increased  

    aggressiveness in female American lobsters, Homarus americanus. Horm. Behav.  

    39: 144-156. 

Brown, S. C., S. R. Cassuto, and R. W. Loos. 1979. Biomechanics of chelipeds in   

    some decapod crustaceans. J. Zool. Lond. 188: 143-159. 

Chang, E. S. 1985. Hormonal control of molting in decapod Crustacea. Amer. Zool.  

    25: 179-185. 

Coglianese, D. L., S. I. Cromarty, and G. Kass-Simon. 2008. Perception of the  

    steroid hormone 20-hydroxyecdysone modulates agonistic interactions in Homarus   

    americanus. An. Behav. 75: 2023-2034.   

Cooper, R. L., and M. E. Ruffner. 1998. Depression of synaptic efficacy at  

    intermoult in crayfish neuromuscular junctions by 20-hydroxyecdysone, a moulting  

    hormone. J. Neurophysiol. 79: 1931-1941. 

Cooper, R. L., E. Ward, R. Braxton, H. Li, and W. M. Warren. 2003. The effects  

    of serotonin and ecdysone on primary sensory neurons in crayfish. Micr. Res. Tech.  

    60: 336-345. 

Costello, W. J., and C. K. Govind. 1983. Contractile responses of single fibers in  

    lobster claw closer muscles: correlation with structure, histochemistry and   

    innervation. J. Exp. Zool. 227: 381-393. 



 117 

Costello, W. J., R. Hill, and F. Lang. 1981. Innervation patterns of fast and slow   

    motor neurones during development of a lobster neuromuscular system. J. Exp.  

    Biol. 91: 271-284.  

Cromarty, S. I., and G. Kass-Simon. 1998. Differential effects of a molting  

    hormone, 20-hydroxyecdysone, on the neuromuscular junctions of the claw opener  

    and abdominal flexor muscles of the American lobster.  Comp. Biochem. Physiol.  

    120: 289-300. 

Elner, R. W., and A. Campbell. 1981. Force, function and mechanical advantage in  

    the chelae of the American lobster, Homarus americanus. J. Zool. Lond. 193: 269- 

    286. 

Gabbanini, F., F. Gherardi, and M. Vannini. 1995. Force and dominance in the  

    agonistic behavior of the freshwater crab Potamon fluviatile. Agg. Behav. 21: 451- 

    462. 

Govind, C. K. 1984. Development of asymmetry in the neuromuscular system of  

    lobster claws. Biol. Bull. 167: 94-119.  

Govind, C. K., and F. Lang. 1974. Neuromuscular analysis of closing in the  

    dimorphic claws of the lobster Homarus americanus. J. Exp. Zool. 190: 281-288. 

Govind, C. K., and F. Lang. 1978. Development of the dimorphic claw closer  

    muscles of the lobster, Homarus americanus. III. Transformation to dimorphic  

    muscles in juveniles. Biol. Bull. 154: 55-67. 

Govind, C. K., and F. Lang. 1979. Physiological asymmetry in the bilateral crusher  

    claws of a lobster. J. Exp. Zool. 297: 27-32. 

 



 118 

Govind, C. K., and J. A. Blundon. 1985. Form and function of the asymmetric  

    chelae in blue crabs with normal and reversed handedness. Biol. Bull. 168: 321-331.  

Herberholz, J., C. McCurdy, and D. H. Edwards. 2007. Direct benefits of social  

    dominance in juvenile crayfish.  Biol. Bull. 213: 21-27. 

Issa, F. A., D. J. Adamson, and D. H. Edwards.  1999.  Dominance hierarchy  

    formation in juvenile crayfish Procambarus clarkii. J. Exp. Biol. 202: 3497-3506. 

Jahromi, S. S., and H. L. Atwood. 1971. Structural and contractile properties of  

    lobster leg muscle fibers. J. Exp. Zool. 176: 475-486. 

Karnofsky, E. B., and H. J. Price. 1989. Dominance, territoriality and mating in the  

    lobster Homarus americanus: A mesocosm study. Mar. Behav. Physiol. 15:101- 

    121. 

Kent, K. S., and C. K. Govind. 1981. Two types of tonic fibers in lobster muscle  

    based on enzyme histochemistry. J. Exp. Zool. 215: 113-116.  

Lang, F., W. J. Costello, and C. K. Govind. 1977. Development of the dimorphic  

    claw closer muscles of the lobster, Homarus americanus. I. Distribution of muscle  

    fiber types in adults. Biol. Bull. 152: 75-83. 

Lee, S. Y. 1993. Chelae height is an acceptable indicator of chelae strength in  

    Carcinus maenas (Linnaeus, 1758) (Decapoda, Brachyura).  Crustaceana 65: 115- 

    116. 

Meiss, D. E., and C. K. Govind. 1979. Regional differentiation of neuromuscular  

    synapses in a lobster receptor muscle. J. Exp. Biol. 79: 99-114. 

Mello, J. J., S. I. Cromarty, and G. Kass-Simon. 1999. Increased aggressiveness in  

    gravid American lobsters, Homarus americanus. Agg. Behav. 25: 451-472.    



 119 

Mykles, D. L. 2011. Ecdysteroid metabolism in crustaceans.  J. Steroid Biochem. Mol.  

    Biol. 127: 196-203. 

Schwanke, M. L., J. S. Cobb, and G. Kass-Simon. 1990. Synaptic plasticity and  

    humoral modulation of neuromuscular transmission in the lobster claw opener  

    during the moult cycle. Comp. Biochem. Physiol. 97: 143-149. 

Scrivener, J. C. E. 1971. Agonistic behavior of the American lobster, Homarus 

    americanus (Milne-Edwards).  Fish. Res. Board Can. Tech. Rep. 235: 1-128.   

Snyder, M. J., and E. S. Chang. 1991a. Ecdysteroids in relation to the moult cycle of  

    the American lobster, Homarus americanus I. Hemolymph titers and metabolites.    

    Gen. Comp. Endocrinol. 81: 133-145.  

Snyder, M. J., and E. S. Chang. 1991b. Ecdysteroids in relation to the moult cycle of  

    the American lobster, Homarus americanus II. Excretion of Metabolites. Gen.    

    Comp. Endocrinol. 83: 118-131. 

Tamm, G. R., and J. S. Cobb. 1978. Behavior and the crustacean moult cycle:   

    changes in aggression of Homarus americanus. Science 200: 79-81. 

Vye, C., J. S. Cobb, T. Bradley, J. Gabbay, A. Genizi, and I. Karplus. 1997.  

    Predicting the winning or losing of symmetrical contests in the American lobster,  

    Homarus americanus (Mine-Edwards). J. Exp. Mar. Biol. Ecol. 217: 19-29.   

Wiersma, C. A. G. 1955. An analysis of the functional differences between the  

    contractions of the adductor muscles in the thoracic legs of the lobster Homarus  

    americanus. Arch. Neerl. Zool. 11: 1-13. 

 

 



 120 

Wilson, R. S., R. S. James, C. Bywater, and F. Seebacher. 2009. Costs and benefits  

    of increased weapon size differ between sexes of the slender crayfish, Cherax  

    dispar. J. Exp. Biol. 212: 853-858.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 121 

Figure 1. Sample Power Lab recording. 

 

  Each window represent the force exerted on one of the two strain  

  gauges.  The force from each window was added together to obtain the 

  overall force of the squeeze.  
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Figure 2. Average difference in force in female crusher claws. 

  Values are means + SEM, N = 8 for each treatment.  Asterisk indicates 

  significant difference from saline (P = 0.009). 
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Figure 3. Average difference in force in female cutter claws. 

  Values are means + SEM, N = 9 per treatment.  Asterisk indicates  

  significant difference from saline (P = 0.02). 
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APPENDIX A 

 

Ancillary material for Chapter 2: 

Effects of injected 20-hydroxyecdysone on the agonistic behavior of American 

lobsters, Homarus americanus 
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Summary Tables 
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Table 1. Summary of Aggressive behaviors.   

  Values are mean + SEM. Abbreviations: F=Frequency,  

  RF = Rank Frequency, AR = Average Rank. 
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Table 2. Summary of Defensive Behaviors. 

  Values are mean + SEM. Abbreviations: F=Frequency,  

  RF = Rank Frequency, AR = Average Rank. 
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Table 3. Summary of Avoidance behaviors 

  Values are mean + SEM. Abbreviations: F=Frequency,  

  RF = Rank Frequency, AR = Average Rank. 
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Table 4. Summary of All behaviors 

  Values are mean + SEM. Abbreviations: F=Frequency,  

  RF = Rank Frequency, AR = Average Rank. 
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Figures 
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Figure 1. Aggressive Behaviors of C vs. T for (a) Frequency, (b) Rank  

  Frequency and (c) Average Rank, with and without wall behaviors.  

  Values are mean + SEM, N = 10. 
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Figure 2. Aggressive Behaviors of OC vs. OT for (a) Frequency, (b)   

  Rank Frequency and (c) Average rank, with and without wall  

  behaviors.  Values are mean + SEM, N = 10. 
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Figure 3. Aggressive Behaviors of OC + C vs. OT + T for (a) Frequency,         

  (b) Rank Frequency and (c) Average rank, with and without wall  

  behaviors.  Values are mean + SEM, N = 10. 
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Figure 4. Aggressive Behaviors of OC - C vs. OT - T for (a) Frequency, (b)  

  Rank Frequency and (c) Average rank, with and without wall  

  behaviors.  Values are mean + SEM, N = 10.  
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Figure 5. Defensive Behaviors of C vs. T for (a) Frequency, (b) Rank Frequency 

  and (c) Average rank, with and without wall behaviors.  Values are 

  mean + SEM, N = 10. 
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Figure 6. Defensive Behaviors of OC vs. OT for (a) Frequency, (b) Rank  

  Frequency and (c) Average rank, with and without wall behaviors.  

  Values are mean + SEM, N = 10.  
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Figure 7. Defensive Behaviors of OC + C vs. OT + T for (a) Frequency,           

  (b) Rank Frequency and (c) Average rank, with and without wall  

  behaviors.  Values are mean + SEM, N = 10.   
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Figure 8. Defensive Behaviors of OC - C vs. OT - T for (a) Frequency, (b) Rank 

  Frequency and (c) Average rank, with and without wall behaviors.  

  Values are mean + SEM, N = 10.  Asterisk indicates significant  

  difference (P = 0.04).  
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Figure 9. Avoidance Behaviors of C vs. T for (a) Frequency, (b) Rank  

  Frequency and (c) Average rank.  Values are mean + SEM, N = 10.   
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Figure 10. Avoidance Behaviors of OC vs. OT for (a) Frequency, (b) Rank  

  Frequency and (c) Average rank.  Values are mean + SEM, N = 10.   
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Figure 11. Avoidance Behaviors of OC + C vs. OT + T for (a) Frequency,            

  (b) Rank Frequency and (c) Average rank.  Values are mean + SEM, 

  N = 10. 
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Figure 12. Avoidance Behaviors of OC - C vs. OT - T for (a) Frequency,           

  (b) Rank Frequency and (c) Average rank.  Values are mean + SEM, 

  N = 10. 
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Figure 13. All behaviors of C vs. T for (a) Frequency, (b) Rank   

  Frequency and (c) Average rank, with and without wall behaviors.  

  Values are mean + SEM, N = 10.  
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Figure 14. All behaviors of OC vs. OT for (a) Frequency, (b) Rank   

  Frequency and (c) Average rank, with and without wall behaviors.  

  Values are mean + SEM, N = 10.   
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Figure 15. All behaviors of OC + C vs. OT + T for (a) Frequency,                        

  (b) Rank Frequency and (c) Average rank, with and without wall  

  behaviors.  Values are mean + SEM, N = 10.   
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Figure 16. All behaviors of OC - C vs. OT - T for (a) Frequency, (b) Rank  

  Frequency and (c) Average rank, with and without wall behaviors.  

  Values are mean + SEM, N = 10.   
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Raw ANOVA Results for Aggressive Behaviors 
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 Treated vs. Control with Wall 

Anova: Single Factor Freq.     
       
SUMMARY       

Groups Count Sum Average Variance   
Control 10 1834 183.4 6957.6   
Treated 10 2152 215.2 7825.956   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 5056.2 1 5056.2 0.68403 0.419032 4.413863 
Within Groups 133052 18 7391.778    
       
Total 138108.2 19         
       
       
Anova: Single Factor Rank Freq.     
       
SUMMARY       

Groups Count Sum Average Variance   
Control 10 218346 21834.6 1E+08   
Treated 10 256334 25633.4 1.15E+08   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 72154407 1 72154407 0.669438 0.423947 4.413863 
Within Groups 1.94E+09 18 1.08E+08    
       
Total 2.01E+09 19         

       
       
Anova: Single Factor Avg. Rank     
       
SUMMARY       

Groups Count Sum Average Variance   
Control 10 1190.659 119.0659 12.80557   
Treated 10 1188.328 118.8328 11.35925   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 0.271552 1 0.271552 0.022475 0.882498 4.413863 
Within Groups 217.4834 18 12.08241    
       
Total 217.7549 19         
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 Treated vs. Control NO Wall 

Anova: Single Factor Freq.      
       
SUMMARY       

Groups Count Sum Average Variance   
Control 10 1607 160.7 5029.567   
Treated 10 1888 188.8 6793.289   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 3948.05 1 3948.05 0.667867 0.424482 4.413863 
Within Groups 106405.7 18 5911.428    
       
Total 110353.8 19         
       
       
Anova: Single Factor Rank Freq.     
       
SUMMARY       

Groups Count Sum Average Variance   
Control 10 197390 19739 79650944   
Treated 10 231950 23195 1.06E+08   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 59719680 1 59719680 0.642615 0.433221 4.413863 
Within Groups 1.67E+09 18 92932327    
       
Total 1.73E+09 19         
       

       
Anova: Single Factor Avg. Rank     
       
SUMMARY       

Groups Count Sum Average Variance   
Control 10 1224.533 122.4533 9.289223   
Treated 10 1224.987 122.4987 3.326318   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 0.010327 1 0.010327 0.001637 0.96817 4.413863 
Within Groups 113.5399 18 6.30777    
       
Total 113.5502 19         
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 Opponent Treated vs. Opponent Control with Wall 

Anova: Single Factor Freq.      
       
SUMMARY       

Groups Count Sum Average Variance   
OC 10 2424 242.4 9348.489   
OT 10 2256 225.6 9773.6   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 1411.2 1 1411.2 0.147599 0.705341 4.413863 
Within Groups 172098.8 18 9561.044    
       
Total 173510 19         
       

       
Anova: Single Factor Rank. Freq.     
       
SUMMARY       

Groups Count Sum Average Variance   
OC 10 287590 28759 1.4E+08   
OT 10 273734 27373.4 1.38E+08   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 9599436.8 1 9599437 0.06906 0.795694 4.413863 
Within Groups 2502010186 18 1.39E+08    
       
Total 2511609623 19         
       
       
Anova: Single Factor Avg. Rank      
       
SUMMARY       

Groups Count Sum Average Variance   
OC 10 1182.806 118.2806 22.80397   
OT 10 1216.8 121.68 6.786022   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 57.78159 1 57.78159 3.905482 0.063659 4.413863 
Within Groups 266.309914 18 14.795    
       
Total 324.091504 19         
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 Opponent Treated vs. Opponent Control NO Wall 

Anova: Single Factor Freq.      
       
SUMMARY       

Groups Count Sum Average Variance   
OC 10 1984 198.4 7588.711   
OT 10 2017 201.7 6134.9   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 54.45 1 54.45 0.007935 0.930002 4.413863 
Within Groups 123512.5 18 6861.806    
       
Total 123567 19         
       

       
Anova: Single Factor Rank Freq.     
       
SUMMARY       

Groups Count Sum Average Variance   
OC 10 246846 24684.6 1.24E+08   
OT 10 251550 25155 96546170   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 1106381 1 1106381 0.01002 0.921372 4.413863 
Within Groups 1.99E+09 18 1.1E+08    
       
Total 1.99E+09 19         
       
       
Anova: Single Factor Avg. Rank     
       
SUMMARY       

Groups Count Sum Average Variance   
OC 10 1239.048 123.9048 4.099544   
OT 10 1246.664 124.6664 1.390572   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 2.900365 1 2.900365 1.056577 0.317613 4.413863 
Within Groups 49.41104 18 2.745058    
       
Total 52.31141 19         
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 Opponent Treated + Treated vs. Opponent Control + Control with Wall 

Anova: Single Factor Freq.      
       
SUMMARY       

Groups Count Sum Average Variance   
OC + C 10 4258 425.8 10845.51   
OT + T 10 4408 440.8 3960.844   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 1125 1 1125 0.151962 0.701242 4.413863 
Within Groups 133257.2 18 7403.178    
       
Total 134382.2 19         
       
       
Anova: Single Factor Rank Freq.     
       
SUMMARY       

Groups Count Sum Average Variance   
OC + C 10 505936 50593.6 1.79E+08   
OT + T 10 530068 53006.8 60009835   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 29117671 1 29117671 0.244076 0.627252 4.413863 
Within Groups 2.15E+09 18 1.19E+08    
       
Total 2.18E+09 19         
       
       
Anova: Single Factor Avg. Rank     
       
SUMMARY       

Groups Count Sum Average Variance   
OC + C 10 1184.321 118.4321 15.17183   
OT + T 10 1202.438 120.2438 8.771298   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 16.41067 1 16.41067 1.370804 0.256941 4.413863 
Within Groups 215.4881 18 11.97156    
       
Total 231.8988 19         
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 Opponent Treated + Treated vs. Opponent Control + Control NO Wall 

Anova: Single Factor Freq.      
       
SUMMARY       

Groups Count Sum Average Variance   
OC + C 10 3591 359.1 11002.54   
OT + T 10 3905 390.5 3596.5   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 4929.8 1 4929.8 0.675359 0.421942 4.413863 
Within Groups 131391.4 18 7299.522    
       
Total 136321.2 19         
       
       
Anova: Single Factor Rank Freq.     
       
SUMMARY       

Groups Count Sum Average Variance   
OC + C 10 444236 44423.6 1.86E+08   
OT + T 10 483491 48349.1 58932064   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 77047751 1 77047751 0.628981 0.438059 4.413863 
Within Groups 2.2E+09 18 1.22E+08    
       
Total 2.28E+09 19         
       
       
Anova: Single Factor Avg. Rank     
       
SUMMARY       

Groups Count Sum Average Variance   
OC + C 10 1232.928 123.2928 4.933435   
OT + T 10 1237.312 123.7312 1.688359   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 0.96106 1 0.96106 0.290272 0.596647 4.413863 
Within Groups 59.59615 18 3.310897    
       
Total 60.55721 19         
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 Opponent Treated – Treated vs. Opponent Control – Control with Wall 

Anova: Single Factor Freq.      
       
SUMMARY       

Groups Count Sum Average Variance   
OC - C 10 590 59 21766.67   
OT - T 10 104 10.4 31238.27   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 11809.8 1 11809.8 0.445611 0.512895 4.413863 
Within Groups 477044.4 18 26502.47    
       
Total 488854.2 19         
       
       
Anova: Single Factor Rank Freq.     
       
SUMMARY       

Groups Count Sum Average Variance   
OC - C 10 68974 6897.4 3.03E+08   
OT - T 10 17400 1740 4.46E+08   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 1.33E+08 1 1.33E+08 0.355282 0.55856 4.413863 
Within Groups 6.74E+09 18 3.74E+08    
       
Total 6.87E+09 19         
       

       
Anova: Single Factor Avg. Rank     
       
SUMMARY       

Groups Count Sum Average Variance   
OC - C 10 1178.062 117.8062 97.42113   
OT - T 10 1187.947 118.7947 154.7494   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 4.885482 1 4.885482 0.038747 0.846155 4.413863 
Within Groups 2269.535 18 126.0853    
       
Total 2274.421 19         
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 Opponent Treated – Treated vs. Opponent Control – Control NO Wall 

Anova: Single Factor Freq.      
       
SUMMARY       

Groups Count Sum Average Variance   
OC - C 10 377 37.7 14234.01   
OT - T 10 129 12.9 22259.88   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 3075.2 1 3075.2 0.168532 0.686265 4.413863 
Within Groups 328445 18 18246.94    
       
Total 331520.2 19         
       
       
Anova: Single Factor Rank freq.     
       
SUMMARY       

Groups Count Sum Average Variance   
OC - C 10 49456 4945.6 2.22E+08   
OT - T 10 19600 1960 3.47E+08   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 44569037 1 44569037 0.156816 0.69676 4.413863 
Within Groups 5.12E+09 18 2.84E+08    
       
Total 5.16E+09 19         
       
       
Anova: Single Factor Avg. Rank     
       
SUMMARY       

Groups Count Sum Average Variance   
OC - C 10 1231.331 123.1331 50.29025   
OT - T 10 1206.857 120.6857 107.8314   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 29.94969 1 29.94969 0.378818 0.54594 4.413863 
Within Groups 1423.095 18 79.06081    
       
Total 1453.044 19         
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Raw ANOVA Results for Defensive Behaviors 
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Treated vs. Control with Wall 

Anova: Single Factor Freq.      
       
SUMMARY       

Groups Count Sum Average Variance   
Control 10 513 51.3 304.4556   
Treated 10 587 58.7 908.2333   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 273.8 1 273.8 0.451559 0.51013 4.413863 
Within Groups 10914.2 18 606.3444    
       
Total 11188 19         
       
       
Anova: Single Factor Rank Freq.     
       
SUMMARY       

Groups Count Sum Average Variance   
Control 10 27650 2765 1216754   
Treated 10 28416 2841.6 2496249   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 29337.8 1 29337.8 0.015803 0.901356 4.413863 
Within Groups 33417024 18 1856501    
       
Total 33446362 19         
       
       
Anova: Single Factor Avg. Rank     
       
SUMMARY       

Groups Count Sum Average Variance   
Control 10 501.8963 50.18963 24.18563   
Treated 10 482.4797 48.24797 13.62584   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 18.85016 1 18.85016 0.997061 0.331258 4.413863 
Within Groups 340.3032 18 18.90573    
       
Total 359.1533 19         
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 Treated vs. Control NO Wall 

Anova: Single Factor Freq.      
       
SUMMARY       

Groups Count Sum Average Variance   
Control 10 428 42.8 174.1778   
Treated 10 532 53.2 655.7333   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 540.8 1 540.8 1.303272 0.268577 4.413863 
Within Groups 7469.2 18 414.9556    
       
Total 8010 19         
       
       
Anova: Single Factor Rank Freq.     
       
SUMMARY       

Groups Count Sum Average Variance   
Control 10 19698 1969.8 343140   
Treated 10 24278 2427.8 1274736   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 1048820 1 1048820 1.29654 0.269775 4.413863 
Within Groups 14560879 18 808937.7    
       
Total 15609699 19         
       
       
Anova: Single Factor Avg. Rank     
       
SUMMARY       

Groups Count Sum Average Variance   
Control 10 464.9686 46.49686 12.86561   
Treated 10 459.6522 45.96522 2.967726   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 1.41317 1 1.41317 0.178506 0.677665 4.413863 
Within Groups 142.5 18 7.916669    
       
Total 143.9132 19         
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 Opponent Treated vs. Opponent Control with Wall 

Anova: Single Factor Freq.      
       
SUMMARY       

Groups Count Sum Average Variance   
OC 10 478 47.8 592.8444   
OT 10 528 52.8 1022.844   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 125 1 125 0.154733 0.698673 4.413863 
Within Groups 14541.2 18 807.8444    
       
Total 14666.2 19         
       
       
Anova: Single Factor Rank Freq.      
       
SUMMARY       

Groups Count Sum Average Variance   
OC 10 23036 2303.6 1247200   
OT 10 25218 2521.8 2107853   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 238056.2 1 238056.2 0.141909 0.710794 4.413863 
Within Groups 30195474 18 1677526    
       
Total 30433530 19         
       
       
Anova: Single Factor Avg. Rank      
       
SUMMARY       

Groups Count Sum Average Variance   
OC 10 484.1482 48.41482 13.74324   
OT 10 480.3356 48.03356 17.12279   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 0.7267952 1 0.726795 0.047094 0.830641 4.413863 
Within Groups 277.79431 18 15.43302    
       
Total 278.52111 19         
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 Opponent Treated vs. Opponent Control NO Wall 

Anova: Single Factor Freq.      
       
SUMMARY       

Groups Count Sum Average Variance   
OC 10 450 45 616.6667   
OT 10 486 48.6 933.3778   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 64.8 1 64.8 0.083611 0.775767 4.413863 
Within Groups 13950.4 18 775.0222    
       
Total 14015.2 19         
       
       
Anova: Single Factor Rank Freq.     
       
SUMMARY       

Groups Count Sum Average Variance   
OC 10 20978 2097.8 1242052   
OT 10 22184 2218.4 1726314   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 72721.8 1 72721.8 0.048998 0.827308 4.413863 
Within Groups 26715290 18 1484183    
       
Total 26788012 19         
       
       
Anova: Single Factor Avg. Rank     
       
SUMMARY       

Groups Count Sum Average Variance   
OC 10 469.3429 46.93429 3.299859   
OT 10 462.6269 46.26269 11.40981   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 2.255242 1 2.255242 0.306634 0.586567 4.413863 
Within Groups 132.387 18 7.354833    
       
Total 134.6422 19         
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Opponent Treated + Treated vs. Opponent Control + Control with Wall 

Anova: Single Factor Freq.      
       
SUMMARY       

Groups Count Sum Average Variance   
OC + C 10 991 99.1 817.2111   
OT + T 10 1115 111.5 2510.278   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 768.8 1 768.8 0.46209 0.505298 4.413863 
Within Groups 29947.4 18 1663.744    
       
Total 30716.2 19         
       
       
Anova: Single Factor Rank Freq.     
       
SUMMARY       

Groups Count Sum Average Variance   
OC + C 10 48844 4884.4 1784769   
OT + T 10 53634 5363.4 6017297   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 1147205 1 1147205 0.294077 0.59427 4.413863 
Within Groups 70218591 18 3901033    
       
Total 71365796 19         
       
       
Anova: Single Factor Avg. Rank     
       
SUMMARY       

Groups Count Sum Average Variance   
OC + C 10 494.9751 49.49751 12.35639   
OT + T 10 482.0354 48.20354 11.25684   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 8.371787 1 8.371787 0.709076 0.4108 4.413863 
Within Groups 212.5191 18 11.80662    
       
Total 220.8909 19         
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 Opponent Treated + Treated vs. Opponent Control + Control NO Wall 

Anova: Single Factor Freq.      
       
SUMMARY       

Groups Count Sum Average Variance   
OC + C 10 878 87.8 812.4   
OT + T 10 1018 101.8 2028.178   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 980 1 980 0.69 0.417047 4.413863 
Within Groups 25565.2 18 1420.289    
       
Total 26545.2 19         
       
       
Anova: Single Factor Rank Freq.     
       
SUMMARY       

Groups Count Sum Average Variance   
OC + C 10 40676 4067.6 1616163   
OT + T 10 46462 4646.2 3795323   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 1673890 1 1673890 0.618643 0.441785 4.413863 
Within Groups 48703378 18 2705743    
       
Total 50377268 19         
       
       
Anova: Single Factor Avg. Rank     
       
SUMMARY       

Groups Count Sum Average Variance   
OC + C 10 465.3583 46.53583 5.153623   
OT + T 10 460.2278 46.02278 5.021844   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 1.316095 1 1.316095 0.25868 0.617206 4.413863 
Within Groups 91.5792 18 5.087733    
       
Total 92.89529 19         
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 Opponent Treated – Treated vs. Opponent Control – Control with Wall 

Anova: Single Factor Freq.      
       
SUMMARY       

Groups Count Sum Average Variance   
OC - C 10 -35 -3.5 977.3889   
OT - T 10 -59 -5.9 1351.878   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 28.8 1 28.8 0.024729 0.876795 4.413863 
Within Groups 20963.4 18 1164.633    
       
Total 20992.2 19         
       
       
Anova: Single Factor Rank Freq.     
       
SUMMARY       

Groups Count Sum Average Variance   
OC - C 10 -2772 -277.2 2543793   
OT - T 10 -3198 -319.8 3190906   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 9073.8 1 9073.8 0.003165 0.955759 4.413863 
Within Groups 51612293 18 2867350    
       
Total 51621367 19         
       
       
Anova: Single Factor Avg. Rank         
              
SUMMARY             

Groups Count Sum Average Variance     
OC - C 10 606.8085 60.68085 521.5665     
OT - T 10 418.095 41.8095 205.7023     
              
ANOVA             

Source of Variation SS df MS F P-value F crit 
Between Groups 1780.639 1 1780.639 4.896783 0.040067 4.413863 
Within Groups 6545.419 18 363.6344       
              
Total 8326.057 19         
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 Opponent Treated – Treated vs. Opponent Control – Control NO Wall 

Anova: Single Factor Freq.      
       
SUMMARY       

Groups Count Sum Average Variance   
OC - C  10 22 2.2 769.2889   
OT - T 10 -46 -4.6 1150.044   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 231.2 1 231.2 0.240917 0.629475 4.413863 
Within Groups 17274 18 959.6667    
       
Total 17505.2 19         
       
       
Anova: Single Factor Rank Freq.     
       
SUMMARY       

Groups Count Sum Average Variance   
OC - C 10 1280 128 1554220   
OT - T 10 -2094 -209.4 2206775   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 569193.8 1 569193.8 0.302683 0.588968 4.413863 
Within Groups 33848960 18 1880498    
       
Total 34418154 19         
       
       
Anova: Single Factor Avg. Rank     
       
SUMMARY       

Groups Count Sum Average Variance   
OC - C 10 260.4619 26.04619 557.6866   
OT - T 10 421.5217 42.15217 78.91879   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 1297.012 1 1297.012 4.074777 0.05868 4.413863 
Within Groups 5729.448 18 318.3027    
       
Total 7026.461 19         
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Raw ANOVA Results for Avoidance Behaviors 
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Treated vs. Control 

Anova: Single Factor Freq.     
       
SUMMARY      

Groups Count Sum Average Variance   
Control 10 596 59.6 752.933333   
Treated 10 544 54.4 223.6   
       
ANOVA       
Source of Variation SS df MS F P-value F crit 
Between Groups 135.2 1 135.2 0.27689787 0.605165 4.413863 
Within Groups 8788.8 18 488.2666667    
       
Total 8924 19         
       
       
Anova: Single Factor Rank Freq.     
       
SUMMARY      

Groups Count Sum Average Variance   
Control 10 7802 780.2 65615.5111   
Treated 10 6760 676 19069.3333   
       
ANOVA       
Source of Variation SS df MS F P-value F crit 
Between Groups 54288.2 1 54288.2 1.28212316 0.272364 4.413863 
Within Groups 762163.6 18 42342.42222    
       
Total 816451.8 19         
       
       
Anova: Single Factor Avg. Rank     
       
SUMMARY      

Groups Count Sum Average Variance   
Control 10 138.312738 13.83127375 5.21350351   
Treated 10 127.668734 12.7668734 3.51846065   
       
ANOVA       
Source of Variation SS df MS F P-value F crit 
Between Groups 5.664740502 1 5.664740502 1.29747223 0.269608 4.413863 
Within Groups 78.5876774 18 4.365982078    
       
Total 84.2524179 19         
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 Opponent Treated vs. Opponent Control 

Anova: Single Factor Freq.      
       
SUMMARY       

Groups Count Sum Average Variance   
OC 10 479 47.9 46.1   
OT 10 539 53.9 292.1   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 180 1 180 1.064459 0.315865 4.413863 
Within Groups 3043.8 18 169.1    
       
Total 3223.8 19         
       
       
Anova: Single Factor Rank Freq.     
       
SUMMARY       

Groups Count Sum Average Variance   
OC 10 6602 660.2 9141.733   
OT 10 7386 738.6 52328.93   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 30732.8 1 30732.8 0.999918 0.330584 4.413863 
Within Groups 553236 18 30735.33    
       
Total 583968.8 19         
       
       
Anova: Single Factor Avg. Rank     
       
SUMMARY       

Groups Count Sum Average Variance   
OC 10 138.3155 13.83155 1.658761   
OT 10 138.0209 13.80209 1.67861   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 0.00434 1 0.00434 0.002601 0.959887 4.413863 
Within Groups 30.03634 18 1.668686    
       
Total 30.04068 19         
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 Opponent Treated + Treated vs. Opponent Control + Control 

Anova: Single Factor Freq.     
       
SUMMARY       

Groups Count Sum Average Variance   
OC + C 10 1075 107.5 515.3889   
OT + T 10 1083 108.3 531.5667   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 3.2 1 3.2 0.006113 0.938543 4.413863 
Within Groups 9422.6 18 523.4778    
       
Total 9425.8 19         
       
       
Anova: Single Factor Rank Freq.    
       
SUMMARY       

Groups Count Sum Average Variance   
OC + C 10 14414 1441.4 67371.6   
OT + T 10 14146 1414.6 71804.49   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 3591.2 1 3591.2 0.051607 0.822851 4.413863 
Within Groups 1252585 18 69588.04    
       
Total 1256176 19         
       
       
Anova: Single Factor Avg. Rank    
       
SUMMARY       

Groups Count Sum Average Variance   
OC + C 10 135.2344 13.52344 1.928329   
OT + T 10 131.8638 13.18638 1.332888   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 0.568024 1 0.568024 0.348351 0.562385 4.413863 
Within Groups 29.35095 18 1.630609    
       
Total 29.91898 19         
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Opponent Treated – Treated vs. Opponent Control – Control 

Anova: Single Factor Freq.      
       
SUMMARY       

Groups Count Sum Average Variance   
OC - C 10 -117 -11.7 1082.678   
OT - T 10 -5 -0.5 499.8333   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 627.2 1 627.2 0.792664 0.385041 4.413863 
Within Groups 14242.6 18 791.2556    
       
Total 14869.8 19         
       
       
Anova: Single Factor Rank Freq.     
       
SUMMARY       

Groups Count Sum Average Variance   
OC - C 10 -1200 -120 82383.11   
OT - T 10 626 62.6 70992.04   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 166713.8 1 166713.8 2.173935 0.157642 4.413863 
Within Groups 1380376 18 76687.58    
       
Total 1547090 19         
       
       
Anova: Single Factor Avg. Rank     
       
SUMMARY       

Groups Count Sum Average Variance   
OC - C 10 148.3986 14.83986 406.768   
OT - T 10 58.55238 5.855238 185.191   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 403.617 1 403.617 1.363665 0.258139 4.413863 
Within Groups 5327.631 18 295.9795    
       
Total 5731.248 19         
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Raw ANOVA Results for All Behaviors 
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Treated vs. Control With Wall 
 
Anova: Single Factor Freq.    
       
SUMMARY       

Groups Count Sum Average Variance   
Control 10 2943 294.3 6680.233   
Treated 10 3283 328.3 8926.9   
       
ANOVA       
Source of Variation SS df MS F P-value F crit 

Between Groups 5780 1 5780 0.740687 0.40076 4.413863 
Within Groups 140464.2 18 7803.567    
       
Total 146244.2 19         
       
       
Anova: Single Factor Rank Freq.    
       
SUMMARY       

Groups Count Sum Average Variance   
Control 10 251956 25195.6 95104594   
Treated 10 291510 29151 1.2E+08   
       
ANOVA       
Source of Variation SS df MS F P-value F crit 

Between Groups 78225946 1 78225946 0.726989 0.405064 4.413863 
Within Groups 1.94E+09 18 1.08E+08    
       
Total 2.02E+09 19         
       
       
Anova: Single Factor Avg. Rank    
       
SUMMARY       

Groups Count Sum Average Variance   
Control 10 845.7928 84.57928 192.8573   
Treated 10 864.2942 86.42942 164.9526   
       
ANOVA       
Source of Variation SS df MS F P-value F crit 

Between Groups 17.11509 1 17.11509 0.095666 0.760646 4.413863 
Within Groups 3220.289 18 178.9049    
       
Total 3237.404 19         
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Treated vs. Control NO Wall 

Anova: Single Factor Freq.     
       
SUMMARY       

Groups Count Sum Average Variance   
Control 10 2630 263 5132.222   
Treated 10 2964 296.4 8838.489   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 5577.8 1 5577.8 0.798499 0.383335 4.413863 
Within Groups 125736.4 18 6985.356    
       
Total 131314.2 19         
       
       
Anova: Single Factor Rank Freq.    
       
SUMMARY       

Groups Count Sum Average Variance   
Control 10 224806 22480.6 79026825   
Treated 10 262988 26298.8 1.18E+08   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 72893256 1 72893256 0.738384 0.401478 4.413863 
Within Groups 1.78E+09 18 98719975    
       
Total 1.85E+09 19         
       
       
Anova: Single Factor Avg. Rank    
       
SUMMARY       

Groups Count Sum Average Variance   
Control 10 843.1233 84.31233 226.0213   
Treated 10 860.4558 86.04558 191.4534   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 15.02066 1 15.02066 0.07196 0.791555 4.413863 
Within Groups 3757.272 18 208.7374    
       
Total 3772.293 19         
 

 



 196 

 Opponent Treated vs. Opponent Control with Wall 

Anova: Single Factor Freq.     
       
SUMMARY       

Groups Count Sum Average Variance   
OC 10 3381 338.1 9572.544   
OT 10 3323 332.3 11778.46   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 168.2 1 168.2 0.015756 0.901502 4.413863 
Within Groups 192159 18 10675.5    
       
Total 192327.2 19         
       
       
Anova: Single Factor Rank Freq.    
       
SUMMARY       

Groups Count Sum Average Variance   
OC 10 317228 31722.8 1.42E+08   
OT 10 306338 30633.8 1.34E+08   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 5929605 1 5929605 0.042969 0.838111 4.413863 
Within Groups 2.48E+09 18 1.38E+08    
       
Total 2.49E+09 19         
       
       
Anova: Single Factor Avg. Rank    
       
SUMMARY       

Groups Count Sum Average Variance   
OC 10 913.8978 91.38978 108.3895   
OT 10 914.2705 91.42705 93.27825   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 0.006944 1 0.006944 6.89E-05 0.99347 4.413863 
Within Groups 1815.01 18 100.8339    
       
Total 1815.017 19         
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 Opponent Treated vs. Opponent Control NO Wall 

Anova: Single Factor Freq.      
       
SUMMARY       

Groups Count Sum Average Variance   
OC 10 2912 291.2 8832.844   
OT 10 3042 304.2 7643.956   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 845 1 845 0.102568 0.752457 4.413863 
Within Groups 148291.2 18 8238.4    
       
Total 149136.2 19         
       
       
Anova: Single Factor Rank Freq.     
       
SUMMARY       

Groups Count Sum Average Variance   
OC 10 259758 25975.8 1.49E+08   
OT 10 281120 28112 91516793   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 22816752 1 22816752 0.189708 0.668337 4.413863 
Within Groups 2.16E+09 18 1.2E+08    
       
Total 2.19E+09 19         
       
       
Anova: Single Factor Avg. Rank     
       
SUMMARY       

Groups Count Sum Average Variance   
OC 10 868.2302 86.82302 247.2662   
OT 10 917.0062 91.70062 103.2282   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 118.9549 1 118.9549 0.678784 0.420789 4.413863 
Within Groups 3154.449 18 175.2472    
       
Total 3273.404 19         
 

 



 198 

 Opponent Treated + Treated vs. Opponent Control + Control with Wall 

Anova: Single Factor Freq.      
       
SUMMARY       

Groups Count Sum Average Variance   
OC + C 10 6324 632.4 18598.93   
OT + T 10 6606 660.6 13605.16   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 3976.2 1 3976.2 0.246938 0.625254 4.413863 
Within Groups 289836.8 18 16102.04    
       
Total 293813 19         
       
       
Anova: Single Factor Rank Freq.     
       
SUMMARY       

Groups Count Sum Average Variance   
OC + C 10 569112 56911.2 2.1E+08   
OT + T 10 597848 59784.8 1E+08   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 41287885 1 41287885 0.266763 0.611799 4.413863 
Within Groups 2.79E+09 18 1.55E+08    
       
Total 2.83E+09 19         
       
       
Anova: Single Factor Avg. Rank     
       
SUMMARY       

Groups Count Sum Average Variance   
OC + C 10 894.7054 89.47054 23.41045   
OT + T 10 895.6116 89.56116 32.16944   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 0.041059 1 0.041059 0.001477 0.969762 4.413863 
Within Groups 500.219 18 27.78995    
       
Total 500.2601 19         
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 Opponent Treated + Treated vs. Opponent Control + Control NO Wall 

Anova: Single Factor Freq.      
       
SUMMARY       

Groups Count Sum Average Variance   
OC + C 10 5542 554.2 18853.07   
OT + T 10 6006 600.6 11150.04   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 10764.8 1 10764.8 0.717579 0.408062 4.413863 
Within Groups 270028 18 15001.56    
       
Total 280792.8 19         
       
       
Anova: Single Factor Rank Freq.     
       
SUMMARY       

Groups Count Sum Average Variance   
OC + C 10 499148 49914.8 2.2E+08   
OT + T 10 544108 54410.8 86324436   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 1.01E+08 1 1.01E+08 0.658958 0.427533 4.413863 
Within Groups 2.76E+09 18 1.53E+08    
       
Total 2.86E+09 19         
       
       
Anova: Single Factor Avg. Rank     
       
SUMMARY       

Groups Count Sum Average Variance   
OC + C 10 892.57 89.257 30.78775   
OT + T 10 907.2821 90.72821 18.44761   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 10.8223 1 10.8223 0.439615 0.51571 4.413863 
Within Groups 443.1182 18 24.61768    
       
Total 453.9405 19         
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 Opponent Treated – Treated vs. Opponent Control – Control with Wall 

Anova: Single Factor Freq.      
       
SUMMARY       

Groups Count Sum Average Variance   
OC - C 10 438 43.8 13906.62   
OT - T 10 131 13.1 26131.66   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 4712.45 1 4712.45 0.235397 0.633403 4.413863 
Within Groups 360344.5 18 20019.14    
       
Total 365057 19         
       
       
Anova: Single Factor Rank Freq.     
       
SUMMARY       

Groups Count Sum Average Variance   
OC - C 10 65272 6527.2 2.64E+08   
OT - T 10 23548 2354.8 3.89E+08   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 87044609 1 87044609 0.26674 0.611814 4.413863 
Within Groups 5.87E+09 18 3.26E+08    
       
Total 5.96E+09 19         
       
       
Anova: Single Factor Avg. Rank     
       
SUMMARY       

Groups Count Sum Average Variance   
OC - C 10 1376.872 137.6872 1948.372   
OT - T 10 1089.487 108.9487 29563.6   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 4129.505 1 4129.505 0.262091 0.614911 4.413863 
Within Groups 283607.7 18 15755.99    
       
Total 287737.3 19         
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 Opponent Treated - Treated vs. Opponent Control - Control NO Wall 

Anova: Single Factor Freq.      
       
SUMMARY       

Groups Count Sum Average Variance   
OC - C 10 282 28.2 9077.067   
OT - T 10 78 7.8 21814.84   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 2080.8 1 2080.8 0.134715 0.717872 4.413863 
Within Groups 278027.2 18 15445.96    
       
Total 280108 19         
       
       
Anova: Single Factor Rank Freq.     
       
SUMMARY       

Groups Count Sum Average Variance   
OC - C 10 49536 4953.6 2E+08   
OT - T 10 18332 1833.2 3.33E+08   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 48684481 1 48684481 0.182541 0.674266 4.413863 
Within Groups 4.8E+09 18 2.67E+08    
       
Total 4.85E+09 19         
       
       
Anova: Single Factor Avg. Rank     
       
SUMMARY       

Groups Count Sum Average Variance   
OC - C 10 1622.696 162.2696 10396.03   
OT - T 10 528.7513 52.87513 222267.5   
       
ANOVA       

Source of Variation SS df MS F P-value F crit 
Between Groups 59835.75 1 59835.75 0.514354 0.482464 4.413863 
Within Groups 2093972 18 116331.8    
       
Total 2153808 19         
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Post-Hoc Summary Tables 
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Table 5. Summary of Aggressive behaviors for Bolingbroke vs. Sipala. 

  Values are means + SEM, N = 10.  Significant P-values are in bold. 

  Abbreviations: F=Frequency, RF = Rank Frequency, AR = Average 

  Rank. 
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Table 6. Summary of Defensive behaviors for Bolingbroke vs. Sipala 

  Values are means + SEM, N = 10.  Significant P-values are in bold. 

  Abbreviations: F=Frequency, RF = Rank Frequency, AR = Average 

  Rank. 
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Table 7. Summary of Avoidance behaviors for Bolingbroke vs. Sipala. 

  Values are means + SEM, N = 10.  Significant P-values are in bold.   

  Abbreviations: F=Frequency, RF = Rank Frequency, AR = Average 

  Rank. 
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Table 8. Summary of All behaviors for Bolingbroke vs. Sipala. 

  Values are means + SEM, N = 10.  Significant P-values are in bold. 

  Abbreviations: F=Frequency, RF = Rank Frequency, AR = Average 

  Rank. 
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Post-Hoc Figures 

Graphs of significant comparisons  
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Figure 17a. Comparison of Rank frequency of Aggressive behaviors for               

  CB vs. CS.  Values are means + SEM, N = 10.  Asterisk indicates  

  significant difference (P = 0.004). 

 

 

Figure 17b. Comparison of Rank frequency of Aggressive behaviors for                

  OCB vs. OCS.  Values are means + SEM, N = 10.  Asterisk indicates 

  significant difference (P = 0.007).   

 

 

Figure 17c. Comparison of Rank frequency of Aggressive behaviors for             

  OCB – CB vs. OCS – CS.  Values are means + SEM, N = 10.  Asterisk 

  indicates significant difference (P = 0.0009). 
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17a. 
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Figure 18a. Comparison of Rank frequency of Defensive behaviors for                 

  CB vs. CS. Values are mean + SEM, N = 10.  Asterisk indicates  

  significant difference (P = 0.000006).   

 

 

Figure 18b.  Comparison of Rank frequency of Defensive behaviors for              

  OCB + CB vs. OCS vs. CS.  Values are means + SEM, N = 10.  Asterisk 

  indicates significant difference (P = 0.0004).  

 

 

Figure 18c. Comparison of Rank frequency of Defensive behaviors for               

   OCB – CB vs. OCS – CS.  Values are means + SEM, N = 10.  Asterisk 

  indicates significant difference (P = 0.0004). 
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Figure 19a. Comparison of Rank frequency of Avoidance behaviors for CB vs.  

  CS.  Values are means + SEM, N = 10.  Asterisk indicates significant 

  difference (P = 0.01). 

 

 

Figure 19b. Comparison of Rank frequency of Avoidance behaviors for              

  OCB + CB vs. OCS + CS.  Values are means + SEM, N = 10.  Asterisk 

  indicates significant difference (P = 0.009). 
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19a. 
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Figure 20a. Comparison of Rank Frequency of All Behaviors for CB vs. CS.  

  Values are means + SEM, N = 10.  Asterisk indicates significant  

  difference (P = 0.04).  

 

 

Figure 20b. Comparison of Average rank of All Behaviors for CB vs. CS. Values are 

  means + SEM, N = 10.  Asterisk indicates significant difference          

  (P = 0.0003). 
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20a. 
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Figure 21a. Comparison of Frequency of All Behaviors for OCB vs. OCS.  Values 

  are means + SEM, N = 10. Asterisk indicates significant difference 

   (P = 0.009). 

 

 

Figure 21b. Comparison of Rank frequency of All Behaviors for OCB vs. OCS.  

  Values are means + SEM, N = 10. Asterisk indicates significant  

  difference (P = 0.007). 

 

 

Figure 21c. Comparison of Average rank of All Behaviors for OCB vs. OCS.   

  Values are means + SEM, N = 10. Asterisk indicates significant  

  difference (P = 0.01). 
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Figure 22a. Comparison of Frequency of All Behaviors for OCB - CB vs. OCS - CS.

  Values are means + SEM, N = 10. Asterisk indicates significant  

  difference (P = 0.01). 

 

 

Figure 22b. Comparison of Rank Frequency of All Behaviors for OCB - CB vs.  

  OCS - CS. Values are means + SEM, N = 10. Asterisk indicates  

  significant difference (P = 0.002). 

 

 

Figure 22c. Comparison of Average rank of All Behaviors for OCB - CB vs.       

  OCS - CS.  Values are means + SEM, N = 10.  Asterisk indicates  

  significant difference (P = 0.05). 
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22a. 
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Post-Hoc Figures 

Graphs of non-significant comparisons 
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Figure 23a. Comparison of Average rank of Aggressive behaviors for                

  CB vs. CS.  Values are means + SEM, N = 10. 

 

Figure 23b. Comparison of Average rank of Aggressive behaviors for                

  OCB vs. OCS.  Values are means + SEM, N = 10. 

 

Figure 23c. Comparison of Average rank of Aggressive behaviors for                

  OCB + CB vs. OCS + CS.  Values are means + SEM, N = 10. 

 

Figure 23d. Comparison of Average rank of Aggressive behaviors for                

  OCB - CB vs. OCS - CS.  Values are means + SEM, N = 10. 
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Figure 24. Comparison of (a) Frequency and (b) Rank frequency of Aggressive 

  behaviors for OCB + CB vs. OCS + CS.  Values are means + SEM,        

  N = 10. 
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24a. 

 

24b. 

 

 

 

 

 

 

 

 

 

 

 

380 400 420 440 460 480 500 
Frequency 

OC + C S 

OC + C B 

45000 50000 55000 60000 
Rank Frequency 

OC + C S 

OC + C B 



 229 

Figure 25a. Comparison of Average rank of Defensive behaviors for                

  CB vs. CS.  Values are means + SEM, N = 10. 

 

Figure 25b. Comparison of Average rank of Defensive behaviors for                

  OCB vs. OCS .  Values are means + SEM, N = 10. 

 

Figure 25c. Comparison of Average rank of Defensive behaviors for                

  OCB - CB vs. OCS - CS.  Values are means + SEM, N = 10. 

 

Figure 25d. Comparison of Average rank of Defensive behaviors for 

  OCB + CB vs. OCS + CS.  Values are means + SEM, N = 10. 
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25a. 
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Figure 26. Comparison of (a) Frequency and (b) Rank frequency of Defensive 

  behaviors for OCB vs. OCS.  Values are means + SEM. 
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Figure 27a. Comparison of Average rank of Avoidance behaviors for                

  CB vs. CS.  Values are means + SEM, N = 10. 

 

Figure 27b. Comparison of Average rank of Avoidance behaviors for                

  OCB vs. OCS.  Values are means + SEM, N = 10. 

 

Figure 27c. Comparison of Average rank of Avoidance behaviors for                

  OCB + CB vs. OCS + CS.  Values are means + SEM, N = 10. 

 

Figure 27d. Comparison of Average rank of Avoidance behaviors for                

  OCB - CB vs. OCS - CS.  Values are means + SEM, N = 10. 
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Figure 28a. Comparison of Rank frequency of Avoidance behaviors for 

  OCB vs. OCS.  Values are means + SEM, N = 10. 

 

Figure 28b. Comparison of Rank Frequency of Avoidance behaviors for 

  OCB - CB vs. OCS - CS.  Values are means + SEM, N = 10. 
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28a. 
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Figure 29a. Comparison of Frequency of All behaviors for CB vs. CS.  Values 

  are means + SEM, N =10. 

 

Figure 29b. Comparison of Frequency of All behaviors for OCB + CB vs.  

  OCS + Cs.  Values are means + SEM, N = 10. 

 

Figure 29c. Comparison of Rank frequency of All behaviors for OCB + CB vs. 

  OCS + CS.  Values are means + SEM. 

 

Figure 29d. Comparison of Average rank of All behaviors for OCB + CB vs. 

  OCS + CS.  Values are means + SEM. 
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APPENDIX B 

 

Ancillary material for Chapter 4: 

Effect of injected ecdysteroids on force generation in the claw closer muscle of the 

American lobster, Homarus americanus 
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Force transducer: 

 The force transducer (Figure 1) has two squeezing surfaces (top and bottom) 

with two different strain gauges, and each strain gauge was calibrated by hanging 

known weights.   The calibration graphs with subsequent best-fit equations for each 

strain gauge are given below (Figure 3 and Figure 4).  Two different force transducers 

were constructed green and red, based on the color of hook-up wire used.  Normally, 

on a given experimental night, I would use each transducer for half of the experiments 

in order to ensure that no one transducer was over-used.  The same transducer was 

used for pre- and post-squeezes on the same lobster.     

 Since there are two squeezing surfaces and two strain gauges, the total force 

exerted by the claw was obtained by adding the force of each strain gauge.  This 

accounts for the force that is exerted on each squeezing surface, and not just the top or 

bottom squeezing surface.  In order to accurately asses the force, it is necessary to 

include the force exerted on both squeezing surfaces.   

Analysis of integral of squeeze: 

 Along with force and duration described in the manuscript, we also analyzed 

the integral of the squeeze (area under the curve).  The integral was calculated using 

the Power Lab integral function, and the maximum pre-squeeze integral was 

subtracted from the maximum post-squeeze integral.  No significant differences were 

found for the integral for any parameters measured, however, a potentially significant 

trend was found in female cutter claws treated with 20E (Student’s t-test, p = 0.06) 

(Table 1).  These results suggest that 20E potentially lowers the force duration, which 
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is in contrast the fact that the force itself is potentially greater in the presence of 20E, 

and that the duration was not significantly affected.    
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Figures 
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Figure 1a. Force transducer. 

 

 

 

Figure 1b. Lobster squeezing transducer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 244 

1a. 

 

 

1b. 
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Figure 2a. Experimental set-up. 

  Force transducer is inside the Tupperware bin, connected to the  

  Wheatstone bridges on the table. 

 

Figure 2b. Wheatstone bridges and Power Lab. 

  Transducer is on the table, leading into the Wheatstone bridges, which 

  are connected to the Power Lab. 

  

Figure 2c. Diagram of entire measuring circuit.   

  Each strain gauge glued on the underside of the transducer squeezing 

  surface connect to their own Wheatstone bridge.  The first Wheatstone 

  bridge connects to Channel 1 on the Power Lab, the second   

  Wheatstone bridge connects to Channel 2.  The Power Lab connects to 

  the computer.   
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2a. 
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Figure 3. Wheatstone bridge circuit. 

   

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 248 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 249 

Figure 4. Calibration graph for (a) the top strain gauge and (b) the bottom strain 

  gauge of the green transducer. 

  Best-fit line equation is included in graph. 
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4a. 
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Figure 5. Calibration graph for (a) the top strain gauge and (b) the bottom strain 

  gauge of the red transducer. 

  Best-fit line equation is included in graph. 
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Summary and Raw Data Tables 
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Table 1. Summary of the average difference between post-squeezes and pre-

  squeezes for force, duration and integral. 

   

  Values are means + SEM.  Force measured in pounds, duration  

  measured in seconds and integral measured in lbs/sec.  Significant P-

  values are in bold.   
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FEMALE 20E Saline P FEMALE Alpha Saline P
Force Force
     Crusher 24.5 + 23.1 (N=8) -12.5 + 5.2 (N=8) 0.07      Crusher 16.1 + 9.5 (N=8) -12.5 + 5.2 (N=8) 0.009
     Cutter -6.63 + 4.9 (N=9) -3.98 + 2.9 (N=9) 0.3      Cutter 4.07 + 2.4 (N=9) -3.98 + 2.9 (N=9) 0.02

Duration Duration
     Crusher 0.44 + 0.8 (N=8) 1.71 + 1.2 (N=8) 0.2      Crusher 1.16 + 0.8 (N=8) 1.71 + 1.2 (N=8) 0.4
     Cutter -1.38 + 0.4 (N=9) -1.13 + 0.9 (N=9) 0.2      Cutter -0.32 + 0.7 (N=9) -1.13 + 0.9 (N=9) 0.2

Integral Integral
     Crusher 38.0 + 32.8 (N=8) -4.35 + 12.7 (N=8) 0.1      Crusher 17.6 + 8.3 (N=8) -4.35 + 12.7 (N=8) 0.08
     Cutter -1.38 + 8.1 (N=9) -12.35 + 8.1 (N=9) 0.06      Cutter -1.38 + 8.1 (N=9) -12.35 + 8.1 (N=9) 0.1

Male Male

MALE 20E Saline P MALE Alpha Saline P
Force Force
     Crusher -4.29 + 16.6 (N=7) -2.58 + 3.3 (N=8) 0.5      Crusher 1.32 + 4.7 (N=6) -2.58 + 3.3 (N=8) 0.2
     Cutter 2.7 + 3.4 (N=9) 0.93 + 3.7 (N=8) 0.4      Cutter 8.49 + 10.2 (N=7) 0.93 + 3.7 (N=8) 0.2

Duration Duration
     Crusher 1.03 + 0.8 (N=7) 0.39 + 0.6 (N=8) 0.3      Crusher -0.89 + 3.1 (N=6) 0.39 + 0.6 (N=8) 0.3
     Cutter -0.18 + 0.7 (N=9) 0.17 + 0.9 (N=8) 0.4      Cutter -0.58 + 0.7 (N=7) 0.17 + 0.9 (N=8) 0.3

Integral Integral
     Crusher -3.16 + 10.6 (N=7) -1.31 + 2.9 (N=8) 0.4      Crusher -2.91 + 12.7 (N=6) -1.31 + 2.9 (N=8) 0.4
     Cutter 2.54 + 3.6 (N=9) 1.91 + 11.5 (N=8) 0.5      Cutter 9.79 + 17.1 (N=7) 1.91 + 11.5 (N=8) 0.4
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Table 2. Raw data for female cutter claws treated with 20E. 

   

  Force is measured in pounds, duration is measured in seconds, and  

  integral is measured in lbs/sec. 
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Table 3. Raw data for male cutter claws treated with 20E. 

   

  Force is measured in pounds, duration is measured in seconds, and  

  integral is measured in lbs/sec. 
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Table 4. Raw data for female cutter claws treated with alpha-ecdysone. 

   

  Force is measured in pounds, duration is measured in seconds, and  

  integral is measured in lbs/sec. 
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Table 5. Raw data for male cutter claws treated with alpha-ecdysone. 

   

  Force is measured in pounds, duration is measured in seconds, and  

  integral is measured in lbs/sec. 
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Table 6. Raw data for female cutter claws treated with saline. 

   

  Force is measured in pounds, duration is measured in seconds, and  

  integral is measured in lbs/sec. 
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Table 7. Raw data for male cutter claws treated with saline. 

   

  Force is measured in pounds, duration is measured in seconds, and  

  integral is measured in lbs/sec. 
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#/01234' 5 6 7 8 5 6 7 !

" #$%&' "()(*+,- .)/.0((+, ()+1,0.0+ 9:;<57=>5 .)0,1"/++ ")1+/"-.+ .)"0-/,(* 7:<;?=@56
23%456$7 ")"-( 1)0-" ")-./ 5:6?>77777 .)/* /).(, ")(+0 6:@=>@@@@9
875'9%4: *),11+ /)11*0( ()1+(10 7:?>7>;@@9 "")*,1" ").(", ")0,."+ >:;76;5@@9

/ #$%&' .)(+11, ()(,,0((( "-),"*/+, =:>5=<6799 (0)*.01+ -)"+-00/ .)+++++0" 59:56;=@9
23%456$7 /),- /)1-- /)(0( 6:<<@@@@@9 ()1"+ 1)0... +)-"- 7:66><@@@9
875'9%4: ()(/,/ /).(1(" "0)(+-00 =:7965@@@9 -1)/""( /)/**(+ "/)-+,/ 6=:<55?>

( #$%&' ()-*(0+." ")0+-*,+* 6:=@;=5?=> .)+"(-, ")(+0,0*, ()"..*,(+ 7:;;@56;5
23%456$7 +)(,* 1)*," 7:;77> ()",* /)"(0 /)(+" 6:>>=@@@@9
875'9%4: "1)".01+ 1).0/"10 >:76;>9?> ")/,+*( 1).//.-+ ()-(/"*"0 5:=57<667

. #$%&' -)0,,(0. /)+("+** 0)1+(.(- @:>6<<@>@9 -)+/+-" .)***--1* +)/+..,0 >:=5>@>@>7
23%456$7 /)"/* 1),,/ ")+0, 5:>7>77777 +)(+- ()-"( +)",* <:9>6
875'9%4: -),1,/- 1).*,, +)1/,+" <:<7>5?777 /,),01, +).**/ //)"(0( 5=:=765

+ #$%&' ")",."0.- /)".,0,,/ ,),//0,00 <:;>6;>9@ (),*+1*. +)(/"/*". "),0-"./, 7:@?<<=?<
23%456$7 +)*(" +)1-+ ")11- 7:?;<77777 /)(10 +)+,/ .)+-+ <:5>>77777
875'9%4: 0)-(..0 -)+11/-* .)/-0+0" 9:595<>677 /)0(.0" "+),++," -)*.+-( =:=565>

* #$%&' +)-/,*."- .)+,1/,-" "*)+(,+0 =:?<?596?7 .).,-"-. +)0-.+(/0 /)-("1-1. <:7?9>?6<7
23%456$7 ()+(/ -).*, -),. @:6= ()+-" ()+00 /)+1+ 7:66>
875'9%4: "")(+"/ /1)10"0 -"),+," 7<:<779777 *)("00 -)"1*, ()-/"0 >:95@6

- #$%&' -),.,/(/0 .)*+-+1( "/)0(/"0* =:<9?75;@7 (),"*-/0+ "/)1*,*/1- 9:?<6@9>5
23%456$7 ()"1" /)+0 ().10 7:;7777777 .)+," .)/0+ <:<7=
875'9%4: 0)(-,, /)/+/,- /1)("*( 5;:@<?7677 +)*."(. "+).,+* 5;:>@7<9

, #$%&' 1).-1-**. ")"*,0+(/ /)0+(1+(( 5:>7;?6<7 "/)*0.(* -).0+(// -)1"/"110 ?:;@96@;?9
23%456$7 ")1.+ ")-+ ()/,( 6:;6@ ")/-+ 1)0/0 ").1" 5:6;5@@@@9
875'9%4: 1)1+,/ 1)/-"-+0 /)-,0-- 5:;7??;?@9 "")"-"** ()110. ")++,1" >:6<@7>@@9
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Table 8. Raw data for female crusher claws treated with 20E. 

   

  Force is measured in pounds, duration is measured in seconds, and  

  integral is measured in lbs/sec. 
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!"#$%&'(%)*+%,'-)#.)/01)#*&2,$)&#

3 & ) 3' , 4
156789:# ; ! < ( ; ! < (

! "#$%& '()*++!,- .()*+!)/+ <=>"<!<<"? !(+/+.0-- !+(+-/)', +(-)+'./ @=;>AA?B@
12$345#6 .(!,) )(+'' <=!AB? )(,0! '('/0 .(+,. B=<;
764&8$39 0(+0). /(!!0*' @=AB?@!? '(,+'+/ +)(/-+) )(--,'' ;?=;@>B<@A

. "#$%& !('-*)// .(.+'-+- ;=>"C;?! !(.+,!)' ;=!<>;B?
12$345#6 !(/,' *(0!/ ;=!"?? .(-+! !=C<;
764&8$39 *(,)/-./ *(*!*0' "=BACACC !(0.'+ ;=A!?<

+ "#$%& .(-'+.-, .(-!.0**0 *(.,!+!)) ;=>C?A@C"< +(,+)!)*) <=><B;B"B
12$345#6 !(/!! '(//. .(*.0 <=; !()0! ;=BA;
764&8$39 .(!0+0/!/ !!(,/./. *(-'*.. B=>>??<<CA .(.0!*) !=!A;"B

) "#$%& .,(-++.+- )(*.-.0/ ,,(,-)+/ BB=@;?!>;< !/.('0,- +(,!. C<=!B?>
12$345#6 /(.'. 0(+!' .(*++ ?=! /('0, +(*0) B=C!@?
764&8$39 /+(/'0'/ !.(-'/*,- ')(!'0,' B<=??A!"!A +!0(.'-, )(++!-)! ;@"=A>?<A;

' "#$%& ,+(0),!*' +(!*,0)+/ BC=B!>B!B< '(+'+)'' *().'+'' +(0-!-'+ <=;C@CCA@A
12$345#6 .()', +(!', !=C"> !(.,0 !(!)! '(-!- !=A?!
764&8$39 /,(0..' '(/0)*. <A=@>C!@ !().'*, *(+*'0- ,(-'0)! <=C@!A@

/ "#$%& )('000.,) +'(*0,,/- /(')*)'! ;?=<>><C!C !'+(**/). +/().!)-) !*(+.!+00 @@=?C<"><A
12$345#6 '(-!0 )(/. '()) ?=!>!<<<<< .(!.+ '(*0! -(,.- ?=<AB
764&8$39 !*(,+.0 '*(+)). !-(!.+/ !@=B@@C<<< ,+(./+, )-(.,.. )+(/'+) @;=A<@?

0 "#$%& /(!./... '(,*!.'.. /(./**-, @=">?C?BB /(,0!/ '()*,'*!. /()'--'.. @=!A>>CBBA
12$345#6 0()-0 /(0,' .(*0/ ?=B?!@@@@A /('-. '(*/' ,(*, @=>;!<<<<<
764&8$39 !-()-+.. !+(/.'), '(0*-) ;!=@"?A"<< .*(!+!. .*(!,-/ ))(0!'0 !C=<BC?

- "#$%& !(-)'. +(.,+*+/ +(/0'-'.. !=><C"!>B ,,(*-).,' -('.0--,. !*(++'//+ <>=<;?>B>;
12$345#6 )(!,0 +(+') 0(/,- ?="C< !(!). /(+-' .(!', <=!!C@@@@A
764&8$39 +(,/+0 /(-)!! .)(0!0/ ;;=CB"C )0()-+) .0('-!- !*(0!+! !C=?>!A@@A
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Table 9. Raw data for male crusher claws treated with 20E. 

   

  Force is measured in pounds, duration is measured in seconds, and  

  integral is measured in lbs/sec. 
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!"#$%&'()%*+&%,(-*#./0*#+'1,$*'

2 ' * 2( , 3
0456789# : ! ; ) : ! ; )

! "#$%& !'()!*+,- :<=>:?!@A .',/-*)- .'!..+* B<;>">!;?
01$234#5 !'+-+ :<!A! !'+/ +'(( !<"??
653&7$28 9'*9(*+* "<?"=?!? +'/*/) ,'9./, B<:>=A?

+ "#$%& 9 " 9 "
01$234#5 C&DEF"G C&DEF"G
653&7$28 C&DEF"G C&DEF"G

/ "#$%& ,9')!*!+) *',,()!( +'()!+9)! !;<:?=B:> /-',-,// !')(-+,/ :><=;:A>@?
01$234#5 !'/* *'*!+ +'-,/ ;<!"=;;;; !'99* !'(, :<B;!?
653&7$28 +)',- !!',()) /'**** :B<>A:= !.'-+,(( !'-!*!! =<!!">>?

. "#$%& -'*+.!9!- .'/-**+! /')(-(/!. ?<!>?=:= +'***9!), )'-+.-(* +'+./+., B<=B:":@=A
01$234#5 !'*(+ .'.)+ !')*, !<@A@@@@A *'+*, !'//( .'(,+ ;<=:=@@@@A
653&7$28 +'))!-!) +')-.// +'9-.(!/ !<@="!=A; .'(*++(* .'-..(, ,'/.,!. ?<;:BB!=;;

* "#$%& ,',(9).*/ !',)!,9.+ B<:=@!AB= ,.'.(**.! ('/*,/!!/ !'!+-*)/, !B<@?@B=!
01$234#5 !'+9. !')!! :<??A? !',() /'!!+ /'/-+ !<A!B;;;;;
653&7$28 *'-,,- 9'.*)** ;<::;:!? //'!*/* !-'9+9(* +')*9+/ :A<A"=:>;;

, "#$%& +')/(((( .('++.,** 9'(*/.+!( :A<;;=>== .!')(9/-! ,+'(,.9*( 9',(.*),( ;?<:A@;B:>
01$234#5 !',,+ +',. !'+,! :<=?B;;;; ,'9!/ /'(.( ,',,/ ?<?"=
653&7$28 9',!)!/ *9')(-( 9',).,) :A<B;;=A; .(')(*/ .('(+. -'+-!9! ;?<"!@AA

- "#$%& .-'(+!)!. !+*'9!),! 9'-,(--+ ?A<=A"">> /-',,*9( +-'(/-9(- +/'+./,( !><?=:>B>
01$234#5 !'*/, !'-(* /'+(/ !<!":;;;; *'..( .'-(. +'-* B<;!A;;;;;
653&7$28 +(').( ()'+9.+ +'!*/-/ B"<:":>AA /9'9.,- +!'9+,/ !+'**)+ !:<!:"A;;;

( "#$%& ('/)+(/, !'(,.((-/ !9'*,,,-/ @<>B:B@?B !/'-/-,!/ !'+*.** .'*+*-..! @<?"?>@>";
01$234#5 !'*/) *'+/ /',*+ ;<BA;@@@A *'(,- ,'9/, .',*, ?<?:>@@@@A
653&7$28 /'(!)-* -')/) !-'!+(( ><@!>:=;; /.'(.*- *'.(!) !!'),.- :A<B;"A@@A
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Table 10. Raw data for female crusher claws treated with alpha-ecdysone. 

   

  Force is measured in pounds, duration is measured in seconds, and  

  integral is measured in lbs/sec. 
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!"#$!%&'(!"'%)*+,$'*

# * ' #- , .
"/01234% 5 6 7 8 5 6 7 8

! "#$%& '(!)*)*)+ !(,)-'*)) 69:;<776<: *(.+)-)* -(*/!,. <9=5=>?5:
01$234#5 )(,'. !(!+/ 59=56 )(!*! -(6.+ <9?:@
753&8$29 !(.-+'. ,(**.!6 59?@;>7: )()++)) !)(/*!!! ;9<:<5=:

) "#$%& /('/),.)) !+()66-,'! 559>>?;@76 )()-/!/ !/(+,6+,! /()-'!'! >9<?===;77
01$234#5 )(/+6 *(!!' 69>@=: !(!/' '(*,6 /(/!' <9?6@
753&8$29 !!(,)-,- !*(6/6+. 569<@;<5: !()!*/! *+(,'.6 ))(!6- 6?95:6:?77

* "#$%& !6(,!/,,+ /(!6+6//. '(*.''-*6 @9>==5<6:; '/(!..*!* !.('-6'6 /(*)+*)6 679=:>7;;7
01$234#5 !(!-' !(+./ ,(./ 596======; !(,6! !(-* *(/6) 695?<77777
753&8$29 .(-6!,- )(/'..,- !())-6 <95::6:5=; ),()!/) !,(*+)'+ +(+6./! 569;@:;=

' "#$%& )(6!,)/,/ )(6,.,6,6 /('*),-) <9?>7<=;>7 .*(/!6/' )'(/,-*/ :<9556:
01$234#5 /(*!* '(.+* !('!- <96??77777 *(+.+ '(,/) 79@6<:
753&8$29 .(6'+)- !(!!)--. '('6,.+ <9>:?66= *6(6'-. !/(*+,! 6>95:;@:

- "#$%& !(*!/'/! '(.6-/-!) /(',-/!'' <96?:@?>>; !)(!6//. '(*/),*!/ '(/*--'6 ;9?=<;:7:7
01$234#5 '(+). -('*' /()/+ :9<;=77777 /('6) -(,)/ .(' =9=7@77777
753&8$29 !('.')) )*(.!!! !6(,6-! 5<9;@=>?=; )*(/,)- !6(!!/) !*('6/!+ 5>9;7>6@

/ "#$%& *(*!6)-) '(.//'+/ *(+')-),/ 79@;=?>6>; )'(-*6,,+ !)(-*.*// )(/.'-!!.+ 5796:7@=5=
01$234#5 -(.'. )('-' !(.,- 797=@ /('!- /(/+) '(,/- :9;5;77777
753&8$29 /(,'*6 !)('),. -(!,-+ ;9>:=> +6(++/* -6(///' *(!.6' <;9:<<?777

+ "#$%& '(+/6**- '('!.'+- -()/!6'/ <9>5=:>:77 ,(+,/),/' )(/,+-!! '(6/+*)*. 69;=?7<;?;
01$234#5 !(!6 *(/* '(--6 7956=77777 *(/6! !(,,) -(/66 79<=<
753&8$29 !(.'.'. /(+6*++ !,('+.' =97;7:: !(*/!' ,(.-.,' .(.6)+ 79;?<?<==;

. "#$%& )(+)/!'6 !(,/'--* 59>@:7:5 ,(/)+.6! ,(')6+--* ,(6./,-6! ?9=>567:57
01$234#5 !()6' *('/' 697;@ !(!.. ,(.+! !(-/* 596?;77777
753&8$29 ,(.-'/- !(+)*66/ 596>@767 ,(!!6/! ,(!..6' ,(!!../ ?95<6<;
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Table 11. Raw data for male crusher claws treated with alpha-ecdysone. 

   

  Force is measured in pounds, duration is measured in seconds, and  

  integral is measured in lbs/sec. 
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!"#$!%&!"'%()*+$')

# ) ' #, + -
"./0123% 4 5 6 7 4 5 6 7

! "#$%& '(')*+),* !(,,-+,!. !(!*)/-*+ 48955:6;:9 *()*!)-'+ .(-+,0'00 '(0,-0./* ;8:6:;5<:
12$345#6 !()!) !(.', !(/'- 48656 !(/, )(0.! '('', 585<5====9
764&8$39 !())00 !(/!'' /()!/)! >8??<=6==9 !(*!-)- !)(0,.0. !(*-*0- <8<6>;;==9

' "#$%& !(-,+//, *()**-,.* )(,)!*.+ 68=??<4949 / >
12$345#6 !(/!0 )(,.- '()/' 586=4====9 / >
764&8$39 /(,'.-. +(*/,+' 0(.!+.! ;8=499:==9 / >

) "#$%& )(/0/),! 68>;>694 ,(+)/**, '(*/-!!* <84=:?6=
12$345#6 '(.+- 58=?: '(//+ -(-'. <8:=9
764&8$39 0()+0- ;86?;: .(/'*0+ 0(-/0)- <8;=;:6<

0 "#$%& '0(+!0/,0 0(**,*+/) .(!/*+)'' 448?5<?5?? /(.!+/'.* ,(!*.0)!! '()*--,+ 6869?4;<5
12$345#6 )(.'+ !/()-* !,('*. 4>8;5=6666 !(./- /(-,+ /(+,, 484<;====9
764&8$39 '*(*)0' ))(/0+'! ..(!/+!* ;48<=6<5 /()+0)' '(/)/'. /('-/++ >8:>4?5

* "#$%& !(.,,.0) )(.0'.0!0 0(+'!0+0. 686?><?:=9 !()!*-)/' '(!!'00* )(/-.+)). 5849<>=:=
12$345#6 '(.)* /(-,. /(-0 48<49 -(0 '()*' )(,+0 <849?====9
764&8$39 /(0-'+' !('!!/' !('*/!' >8:?;=<666 +(-00+, '('/'!00 +(0+'0, =8<;64=466

. "#$%& /(,'.0.*0 >895=;=<; !(!/,.+-, 484>9=?:9
12$345#6 !()/' 486>5 !('** 485<<
764&8$39 /(),+--, >869?::9 /(-/0! >8:>;4

, "#$%& !,(/!/,+. *()**0+. )(0*+,,+ ?8=>?6< '(+.//,) )0().)** 4?8=44?44<
12$345#6 !(!'- '())+ )(-+) 58;?666666 0(/-! 0(//' ;8>;=<
764&8$39 ,()/+!- *(,**) -(,+.* 98=4===666 *(.'*!- )0(0/,) 5>8>4=5;<

+ "#$%& /(!*,+.'+ >84<9?=5? / >
12$345#6 !()!, 48649 / >
764&8$39 /(/)0!,' >8>6;495 / >
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Table 12. Raw data for female crusher claws treated with saline. 

   

  Force is measured in pounds, duration is measured in seconds, and  

  integral is measured in lbs/sec. 
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!"#$%&'(&)"#&'*+,!-&+

. + & ./ ! 0
#123456' 7 8 9 : 7 8 9 :

! "#$%& '()*(*+,- 8;<=;=>?9 .)+'(/. *)+*(*0', 0).(+.-0 9<?==@@A;
12$345#6 ')+./ 8<>A@ -)*.0 !)*'( *)+*- 7<;;7
764&8$39 '0)/.0*/ 8B<@AB=@ 0)//(( *)(0(/( *)'-/++ 7<??@77;;@

' "#$%& /)0!.-*.- '0)-0-!+, 7A<?@>8A7@ !)'('+0! 0)/-(((0 ')!/(!0- 8<@8A8B>99
12$345#6 !)*'0 ')-/, 7<@=7 *)+,. !)!.! .)+'+ 8<;??99999
764&8$39 0)**+, !-)*+*. ?<AA=7A *)0*-*( !)(./. /)+.(!. 9<99?>=999

- "#$%& -)-'-'(0 !')/+*(!.( ?<=A;>9>? !)/-+'', -)0((.(0 !)00'*'. 8<87A>9>
12$345#6 !)*0. ')/+, 7<>87A !)-/, *)+'( !)**- 7<7=899999
764&8$39 !)+(,, 0)/(-/ 9<9;;8A *).*(++ *)0!*!/ *).!-/( =<B@;>@999

0 "#$%& ,)*('//+ !)/'*!/(+ !*)!+0',0! ;<;A>=? ()(,!!,, ()!*.,(!/ -)-.+-++ A<9?87B>A@
12$345#6 0)*(/ *),(, !)!!' 8<=7A;;;;@ !-)'!+ +)/,0 ()!', ><@7=99999
764&8$39 !.)+-('( *)000!. -)!!,!, ;<B>>A9 /0),/,' .)!''!. !').*.., 9=<?9A97

. "#$%& *)(,'*-.. !)!,'+/.. =<>98A=AA -)0'**!, -)/00+,+ -)00'-(0 9<A9A@>=99
12$345#6 *)+./ 0),*0 8<??=A ()**, !)(*/ -).. 9<@87;;;;@
764&8$39 *)*.,-+, ')('(/ 7<9B8AB> +),((( ')*/,.+ 0)+-,*+ A<;8@@;

( "#$%& /+)(--/, ().++*-- ()('+0+!' 9=<>AB7=7B -()+/0(- !)(,-0! ')((.,/( 79<@@B;9?@
12$345#6 -)+, !)*0( -).*( 8<?BB 0)-*. -)--0 !),+ 9<7@;99999
764&8$39 !*-)'-+' ').0!+- !')-*-, 9><9;7;B99 -!)!+/ *)0'-!( *)!-+(' 7=<A?;A>99

/ "#$%& ()--./ *)!/,!'!, !)00+!,0- 8<;AB99A9@ ').*(**/+ !)(('0!0 *)-!-',, 7<B>9>=99
12$345#6 ')/(. -)'*' 0)'+ 9<B7> -)/*! !),,! 0)-(- 9<97A
764&8$39 *)((!/+ *)/+,! -)',,-, 7<A?8@A;;@ 0)0/', !)/!/,- !)/!.-. 8<;9A98;;@

, "#$%& -)(0((// 9<;B;;@@ *)'(-'*+ *)!./,(', =<87=A9A>
12$345#6 *)+-+ =<>9> !)(!0 !)./- 7<A>9A
764&8$39 *),!(-. =<?7;9A *)*!'*. *)*'0+- =<=7?B>
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Table 13. Raw data for male crusher claws treated with saline. 

   

  Force is measured in pounds, duration is measured in seconds, and  

  integral is measured in lbs/sec. 
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!"#$%&'("#&')*+!,&*

- * & -. ! /
#012345' 6 7 8 9 6 7 8 9

! "#$%& '('))*+,' +-(.''/0 )(,!-'/'! 76:8;6<;=6 /!(!!'.'- *0(-)0+, !0(-))+, <<:;7=<>7=
12$345#6 !(.)* !('!/ '(,+, 6:=8?????= !()!- !(!,+ !(')) 6:7<@????=
764&8$39 .().!.// '-(..!/ 0(/!.) 66:?=6>7A= ).(/,// '*(..*/ !'(,!-' 77:A=8A888

' "#$%& .(*+'',)0 .(*!.*'+ >:<868A;8 '(*)!*0+ 7:<86<?A
12$345#6 '(!!' !(*,) 6:@>7A !('/! 6:7=6
764&8$39 .(.))., .(.**.) >:>8@A? .(--)*, >:@@8<;

) "#$%& !*(-,/'+* !(!'*+ @:>6>@== '(')*/.'' '(-+,.0! !(+*!.',- 7:766A;=?=
12$345#6 '(')+ +(//! <:>>8 -(*,- -('/) *()-* =:>A6????=
764&8$39 !!(*,-!- !(0+'/0 ?:A=A<= -(./,'* !.('+!,0 +(!))+ =:@76A???=

* "#$%& '(+')-+/) 7:A78@A=8 .().+./-' >:8>A>=@7
12$345#6 *()!* <:86< *(++0 <:AA?
764&8$39 +(*)')0 A:<878? !(!''* 6:677<

+ "#$%& !,(-*+0/+ /(+-.!-'' 0(!0)''- 66:6;?8?6= *(.-'/.0 '(!,*)*', +()*.'+/ 8:@=7<8A8
12$345#6 !(+0! *(!*+ +(+)- 8:=<@ '(/)* !().- -(..+ <:>6A????=
764&8$39 !.(')+', /(!-,--0 !/(/**/* 66:=788>A8 '(+0'.* !(!/+.+* ''(/***- @:@7=6;688

0 "#$%& *(0,0.'!' '(//!-!,/ .(/'-''-- 7:=87>7878 !(//!/,00 .(',!.'* 6:>86<6>8
12$345#6 -()') +(++0 !(,/! A:7@888888 ,(** !(+!+ A:<==A
764&8$39 '/(++-/ !!(*''+ .(*/0/, 68:6A7??88 !.(+!)0! .('/0.' A:8;<@6A

/ "#$%& ,(/!)!-* !0(,0//+ /(-0.))*0 66:A68=A?7 /('0/!-, !(.*-!)'- '(!!',,!* 8:<=?6><<
12$345#6 '('- )(*- .(-,* 7:76@ )('/' )()++ !(*- 7:=>788888
764&8$39 /(,-),) !+(!')), '(,++* @:?@=A=888 -('//'' !(.0'/' .(-!!.+ 8:8@8??888

- "#$%& !(,+**/*! -(!'*0)0+ !(,.-'*.* 8:;;A=@8?= !)(-'+!/* *(++.+*), 0(*0)00+ @:7=;=;<8
12$345#6 )()++ !('+/ .(-,/ 6:@8?88888 '(+./ .(/-+ !(!-+ 6:<;788888
764&8$39 '()*,0* )('!'! .(*'0*0 6:;;?>???= !)(+00! !('-,*/ '().+/0 A:=7><<888



 280 

BIBLIOGRAPHY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 281 

Ache, BW and CD Derby. 1985. Functional organization of olfaction in crustaceans.  

    TINS 8:356-360. 

Asazuma, H., S. Nagata, M. Kono, and H. Nagasawa. 2007. Molecular cloning and   

    expression analysis of ecdysone receptor and retinoid X receptor from the kuruma  

    prawn, Marsupenaeus japonicas. Comp. Biochem. Physiol. B: Biochem. Mol. Biol.  

    148:139-150. 

Atema, J. and JS Cobb. 1980. Social Behavior, p. 409-450. In J.S. Cobb and B.F.   

    Philips [ed.] The Biology and Management of Lobsters. Vol 1. Academic Press,  

    New York, NY. 

Bolingbroke, M. and G. Kass-Simon. 2001. 20-Hydroxyecdysone causes increased 

    aggressiveness in female American lobsters, Homarus Americanus. Horm.   

    Behav. 39:144-156. 

Breithaupt, T. and J. Atema. 1993. Evidence for the use of urine signals in agonistic 

    interactions of the American lobster. Biol. Bull. 185:318. 

Breithaupt, T., DP Lindstrom and J. Atema. 1999. Urine release in freely moving   

    catheterised lobsters (Homarus americanus) with reference to feeding and social   

    activities. J. Exp. Biol. 202:837-844. 

Breithaupt, T. and J. Atema. 2000. The timing of chemical signaling with urine in   

    dominance fights of male lobsters (Homarus americanus). Behav. Ecol. Sociobiol.   

    49:67-78. 

Breithaupt, T. and P. Eger. 2002. Urine makes the difference: chemical  

    communication in fighting crayfish made visible. J. Exp. Biol. 205:1221-1231. 

 



 282 

Brown, SC, SR Cassuto, and RW Loos. 1979. Biomechanics of chelipeds in   

    some decapod crustaceans. J. Zool. Lond. 188:143-159. 

Chang, Ernest S. 1985. Hormonal control of molting in decapod Crustacea. Amer.  

    Zool. 25:179-185. 

Chung, AC-K, DS Durica, SW Clifton, BA Roe, and PM Hopkins. 1998. Cloning of   

    crustacean ecdysteroid receptor and retinoid-X receptor gene homologs and  

    elevation of retinoid-X receptor mRNA by retinoic acid. Mol. Cell. Endocrinol.   

    139:209-227. 

Cobb, JS, and GR Tamm. 1975. Dominance status and molt order in lobsters  

    (Homarus americanus). Mar. Behav. Physiol. 3:119-124. 

Coglianese, DL, SI Cromarty, and G. Kass-Simon. 2008. Perception of the  

    steroid hormone 20-hydroxyecdysone modulates agonistic interactions in Homarus   

    americanus. An. Behav. 75:2023-2034. 

Cooper, RL and ME Ruffner. 1998. Depression of synaptic efficacy at intermolt in  

    crayfish neuromuscular junctions by 20-Hydroxyecdysone, a molting hormone. J.  

    Neurophysiology 79:1931-1941. 

Cooper, RL, E. Ward, R. Braxton, H. Li, and WM Warren. 2003. The effects  

    of serotonin and ecdysone on primary sensory neurons in crayfish. Micr. Res. Tech.  

    60:336-345. 

Costello, WJ and CK Govind. 1983. Contractile responses of single fibers in  

    lobster claw closer muscles: correlation with structure, histochemistry and   

    innervation. J. Exp. Zool. 227:381-393. 

 



 283 

Costello, WJ, R. Hill, and F. Lang. 1981. Innervation patterns of fast and slow   

    motor neurones during development of a lobster neuromuscular system. J. Exp.  

    Biol. 91:271-284. 

Cromarty, SI and G. Kass-Simon. 1998. Differential effects of a molting hormone,  

    20-Hydroxyecdysone, on the neuromuscular junctions of the claw opener and  

    abdominal flexor muscles of the American lobster. Comp. Biochem. Physiol.     

    120A:289-300. 

Cromarty, SI, J. Mello, and G. Kass-Simon. 1999. Time in residence affects escape  

    and agonistic behavior in adult male American lobsters. Biol. Bull. 196:105-112. 

Cromarty, SI, K. Silva, and G. Kass-Simon. (unpublished) Steroid chemoreception in  

    the American lobster: Olfactory receptor neuron responses to 20-hydroxyecdysone  

    in non-gravid females.  

Durica, DS, AC-K Chung, and P. Hopkins. 1999. Characterization of EcR and RXR  

    gene homologs and receptor expression during the molt cycle in the crab, Uca   

    pugilator. Amer. Zool. 39:758-773. 

Doernberg, SB, SI Cromarty, R. Heinrich, BS Beltz and EA Kravitz.  2001. Agonistic 

    behavior in naïve juvenile lobsters depleted of serotonin by 5,7- 

    dihydroxytryptamine. J. Comp. Physiol. A 187:91-103. 

El Haj, AJ, P. Harrison, and ES Chang. 1994. Localization of ecdysteroid receptor  

    immunoreactivity in eyestalk and muscle tissue of the American lobster, Homarus  

    americanus. J. Exp. Zool. 270:343-349. 

 

 



 284 

Elmogy, M., M. Iwami, and S. Sakurai. 2004. Presence of membrane ecdysone  

    receptor in the anterior silk gland of the silkworm Bombyx mori. Eur. J. Biochem.  

    271:3171- 3179. 

Elner, RW and A. Campbell. 1981. Force, function and mechanical advantage in  

    the chelae of the American lobster, Homarus americanus. J. Zool. Lond. 193:269- 

    286. 

Fadool, DA, PR Brown, JS Cobb and G. Kass-Simon. 1989. HPLC analysis of lobster  

    haemolymph over the molt cycle.  Comp. Biochem. Physiol. 93:225-230.    

Fischer, L. and E. Florey. 1983. Modulation of synaptic transmission and excitation- 

    contraction coupling in the opener muscle of the crayfish, Astacus leptodactylus, 5- 

    hydroxytryptamine and octopamine. J. Exp. Biol. 102(1):187-198. 

Fujiwara, H., M. Jindra, R. Newitt, SR Palli, K. Hiruma, and LM Riddiford. 1995.  

    Cloning of an ecdysone receptor homolog from Manduca sexta and the  

    developmental profile of its mRNA in wings. Insect. Biochem. Mol. Biol. 25:845- 

    856.  

Gabbanini, F., F. Gherardi, and M. Vannini. 1995. Force and dominance in the  

    agonistic behavior of the freshwater crab Potamon fluviatile. Agg. Behav. 21:451- 

    462. 

Govind, CK. 1984. Development of asymmetry in the neuromuscular system of  

    lobster claws. Biol. Bull. 167:94-119.  

Govind, CK and F. Lang. 1974. Neuromuscular analysis of closing in the dimorphic  

    claws of the lobster, Homarus americanus. J. Exp. Zool. 190(3):281-288. 

 



 285 

Govind, CK and F. Lang. 1978. Development of the dimorphic claw closer  

    muscles of the lobster, Homarus americanus. III. Transformation to dimorphic  

    muscles in juveniles. Biol. Bull. 154:55-67. 

Govind, CK and F. Lang. 1979. Physiological asymmetry in the bilateral crusher  

    claws of a lobster. J. Exp. Zool. 297:27-32. 

Grunert, U. and BW Ache. Ultrastructure of the aesthetasc (olfactory) sensilla of the  

    spiny lobster, Panulirus argus. Cell. Tissue Res. 251:95-103.  

Herberholz, J., C. McCurdy, and DH Edwards. 2007. Direct benefits of social  

    dominance in juvenile crayfish.  Biol. Bull. 213:21-27.  

Hirano, M., H. Ishibashi, R. Yamauchi, J-W Kim, and K. Arizono. 2008. Expression  

    analysis of ecdysone receptor and ultraspiracle through molting period in Mysid  

    crustacean, Americamysis bahia. In: Interdisciplinary Studies on Environmental  

    Chemistry – Biological Responses to Chemical Pollutants. Murakami Y.,  

    Nakayama K., Kitamura S-I, Iwata H., Tanabe S., eds. TERRAPUB p. 303-310.  

Hoeppner, Susanne. 1997. The importance of chemoreception for the recognition of 

    dominance hierarchies in the American lobster, Homarus americanus. Bios  

    68(2):91-101. 

Horner, AJ, M. Schmidt, DH Edwards, and CD Derby. 2008. Role of the  

    olfactory pathway in agonistic behavior of crayfish, Procambarus clarkii. Invert.  

    Neurosci. 8:11-13.  

Huber, R., K. Smith, A. Delago, K. Isaksson, and EA Kravitz. 1997. Serotonin and  

    aggressive motivation in crustaceans: Altering the decision to retreat. Proc. Natl.  

    Acad. Sci. USA 94:5939-5942.  



 286 

Issa, FA, DJ Adamson, and DH Edwards. 1999.  Dominance hierarchy  

    formation in juvenile crayfish Procambarus clarkii. J. Exp. Biol. 202:3497-3506. 

Jahromi, SS and HL Atwood. 1971. Structural and contractile properties of  

    lobster leg muscle fibers. J. Exp. Zool. 176:475-486. 

Jindra, M., F. Malone, K. Hiruma, and L. Riddiford. 1996. Developmental profiles and  

    ecdysteroid regulation of the mRNAs for two ecdysone receptor isoforms in the  

    epidermis and wings of the tobacco hornworm, Manduca sexta. Devel. Biol.    

    180:258- 272.  

Johnson, ME and J. Atema. 2005. The olfactory pathway for individual recognition in   

    the American lobster Homarus americanus. J. Exp. Biol. 208:2865-2872.  

Johnson, BR and RM Harris-Warwick. 1990. Aminergic modulation of graded  

    synaptic transmission in the lobster stomatogastric ganglion. J. Neurosci.  

    10(7):2066-2076. 

Kamimura, M., S. Tomita, M. Kiuchi, and H. Fujiwara. 1997. Tissue-specific and  

    stage-specific expression of two silkworm ecdysone receptor isoforms. Eur. J.  

    Biochem. 248:786-793. 

Kaplan, LJ, C. Lowrance, J. Basil, and J. Atema. 1993. The role of chemical and  

    visual cues in agonistic interactions of the American lobster. Biol. Bull. 185:320- 

    321. 

Karavanich, C. and J. Atema. 1991. Role of olfaction in recognition of dominance in  

    the American lobster (Homarus americanus). Biol. Bull. 181:359-360. 

Karavanich, C. and J. Atema. 1998. Individual recognition and memory in lobster    

    dominance. Animal Behaviour 56:1553-1560. 



 287 

Karnofsky, EB and HJ Price. 1989. Dominance, territoriality and mating in the  

    lobster Homarus americanus: A mesocosm study. Mar. Behav. Physiol. 15:101- 

    121. 

Kato, Y., K. Kobayashi, S. Oda, N. Tatarazako, H. Watanabe, and T. Iguchi. 2007.  

    Cloning and characterization of the ecdysone receptor and ultraspiracle protein from  

    the water flea Daphnia magna. J. Endocrinol. 193:183-194. 

Kent, KS, and CK Govind. 1981. Two types of tonic fibers in lobster muscle  

    based on enzyme histochemistry. J. Exp. Zool. 215:113-116.  

Kim, H-W, S. Lee, and D. Mykles. 2005. Ecdysteroid-responsive genes, RXR and  

    E75, in the tropical land crab, Gecarcinus lateralis: differential tissue expression of  

    multiple RXR isoforms generated at three alternative splicing sites in the hinge and  

    ligand-binding domains. Mol. Cell. Endocrinol. 242:80-95.  

Kravitz, EA. 1990. Hormonal control of behavior: Amines as gain-setting elements  

    that bias behavioral output in lobsters. Amer. Zool. 30:595-608. 

Kravitz, EA. 2000. Serotonin and aggression: insights gained from a lobster model  

    system and speculations on the role of amine neurons in a complex behavior. J.  

    Comp. Physiol. A 186:221-238. 

Kravitz, EA, S. Glusman, RM Harris-Warwick, MS Livingstone, T. Schwarz and  

    MF Goy. 1980. Amines and a peptide as neurohormones in lobsters: Actions on  

    neuromuscular preparations and preliminary behavioural studies. J. Exp. Biol.  

    89:159-175. 

 

 



 288 

Lang, F., WJ Costello, and CK Govind. 1977. Development of the dimorphic claw  

    closer muscles of the lobster Homarus americanus: I. Regional distribution of  

    muscle fiber types in adults. Biol. Bull. 152:75-83.  

Lee, SY. 1993. Chelae height is an acceptable indicator of chelae strength in  

    Carcinus maenas (Linnaeus, 1758) (Decapoda, Brachyura).  Crustaceana 65:115- 

    116. 

Livingstone, MS, RM Harris-Warwick, and EA Kravitz. 1980. Serotonin and  

    octopamine produce opposite postures in lobsters. Science 208(4):76-79 

Losel, RF, E. Falkenstein, M. Feuring, A. Schultz, H-C Tillmann, K. Rossol-Haseroth,  

    and M. Wehling. 2003. Nongenomic steroid action: Controversies, questions, and   

    answers. Physiol. Rev. 83:965-1016.   

Meiss, DE and CK Govind. 1979. Regional differentiation of neuromuscular  

    synapses in a lobster receptor muscle. J. Exp. Biol. 79:99-114. 

Mello, JJ, SI Cromarty, and G. Kass-Simon. 1999. Increased aggressiveness in gravid  

    American lobsters, Homarus americanus. Aggr. Behav. 25:451-472 

Mykles, DL. 2011. Ecdysteroid metabolism in crustaceans.  J. Steroid Biochem. Mol.  

    Biol. 127:196-203. 

O’Neill, DJ and JS Cobb. 1979. Some factors influencing the outcome of shelter  

    competition in lobsters (Homarus americanus). Mar. Behav. Physiol. 6:33-45.  

Reinhart, VL., SI Cromarty, MW Sipala, and G. Kass-Simon. (submitted).  Exposure  

    to the steroid hormone 20-hydroxyecdysone modulates agonistic interactions in  

    male Homarus americanus: differential effects in males and females.  Horm. Behav. 

 



 289 

Ruffner, ME, SI Cromarty, and RL Cooper. 1999. Depression of synaptic efficacy in  

    high- and low-output Drosophila neuromuscular junctions by the molting hormone  

    (20-HE). J. Neurophysiol. 81:788-794. 

Schlattner, U., X. Vafopoulou, CGH Steel, RE Hormann, and M. Lezzi. 2006. Non- 

    genomic ecdysone effects and the invertebrate nuclear steroid hormone receptor  

    EcR – new role for an ‘old’ receptor? Molec. Cell. Endocrinol. 247:64-72. 

Schwanke, ML, JS Cobb, and G. Kass-Simon. 1990. Synaptic plasticity and humoral  

    modulation of neuromuscular transmission in the lobster claw opener during the  

    molt cycle. Comp. Biochem. Physiol. 97C(1):143-149. 

Scrivener, JCE. 1971. Agonistic behaviour of the American lobster Homarus  

    americanus (Milne-Edwards). Fish. Res. Board Can. Tech. Rep. 235:1-128. 

Snyder, MJ and ES Chang. 1991a. Ecdysteroids in relation to the molt cycle of the  

    American lobster, Homarus americanus: I. Hemolymph titers and metabolites.  

    Gen. Comp. Endocrinol. 81:133-145. 

Snyder, MJ and ES Chang. 1991b. Ecdysteroids in relation to the molt cycle of the  

    American lobster, Homarus americanus: II. Excretion of metabolites. Gen. Comp.  

    Endocrinol. 83:118-131. 

 Spencer, M. and JF Case. 1984. Exogenous ecdysteroids elicit low-threshold sensory  

    responses in spiny lobsters. J. Exp. Zool. 229:163-166. 

Srivastava, DP, EJ Yu, K. Kennedy, H. Chatwin, V. Reale, M. Hamon, T. Smith, and  

    PD Evans. 2005. Rapid, nongenomic responses to ecdysteroids and catecholamines  

    mediated by a novel Drosophila G-protein coupled receptor. J. Neurosci. 25:6145- 

    6155.   



 290 

Talbot, WS, EA Swyryd, and DS Hogness. 1993. Drosophila tissues with different  

    metamorphic responses to ecdysone express different ecdysone receptor isoforms.  

    Cell 73:1323-1337. 

Tamm, GR and JS Cobb. 1978. Behavior and the crustacean molt cycle: Changes in  

    aggression of Homarus americanus. Science 200:79-81. 

Tarrant, AM, L. Behrendt, JJ Stegeman, and T. Verslycke. 2011. Ecdysteroid receptor  

    from the American lobster Homarus americanus: EcR/RXR isoform cloning and  

    ligand binding properties. Gen. Comp. Endocrinol. 173:346-355.  

Thummel, CS and J. Chory. 2002. Steroid signaling in plants and insects - common  

    themes, different pathways.  Genes Devel. 16:3113-3129.  

Tomaschko, KH. 1999. Nongenomic effects of ecdysteroids. Arch. Insect Biochem.  

    Physiol. 41:89-98.   

Verhaegen, Y., K. Parmentier, L. Swevers, E. Renders, P. Rogue, W. De Coen, K.  

    Cooreman, and G. Smagghe. 2011. The heterodimeric ecdysteroid receptor complex  

    in the brown shrimp Crangon crangon: EcR and RXR isoform characteristics and  

    sensitivity towards the marine pollutant tributyltin. Gen. Comp. Endocrinol.  

    172:158-169.   

Vye, C., JS Cobb, T. Bradley, J. Gabbay, A. Genizi, and I. Karplus. 1997.  

    Predicting the winning or losing of symmetrical contests in the American lobster,  

    Homarus americanus (Mine-Edwards). J. Exp. Mar. Biol. Ecol. 217:19-29.   

Waddy, SL, DE Aiken, and DPV De Kleijn. 1995. Control of growth and  

    reproduction. In: Factor JR, editor. Biology of the Lobster, Homarus americanus.  

    Academic Press p. 217-266. 



 291 

Wiersma, CAG. 1955. An analysis of the functional differences between the  

    contractions of the adductor muscles in the thoracic legs of the lobster Homarus  

    americanus. Arch. Neerl. Zool. 11:1-13. 

Wilson, DM and WJ Davis. 1965. Nerve impulse patterns and reflex control in   

    the motor system of the crayfish claw. J. Exp. Biol. 43:193-210.  

 

 

 


	HORMONAL AND PHEROMONAL EFFECTS OF 20-HYDROXYECDYSONE IN THE AMERICAN LOBSTER, HOMARUS AMERICANUS
	Terms of Use
	Recommended Citation

	Microsoft Word - Sipala Dissertation.docx

