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Chaos in spin clusters: Correlation functions and spectral properties

Niraj Srivastava, Charles Kaufman, and Gerhard Mufler
Department of Physics, The University of Rhode Island, Kingston, Rhode Island 028801-0817

We investigate dynamic correlation functions for a pair of exchange-coupled classical spins
with biaxial exchange and/or single-site anisotropy. This represents a Hamiltonian system with
two degrees of freedom for which we have previously established the integrability criteria. We
discuss the impact of (non-)integrability on the autocorrelation functions and their spectral
properties. We point out the role of long-time anomalies caused by low-flux cantori, which
dominate the convergence properties of time averages and determine the long-time asymptotic
behavior of autocorrelation functions in nonintegrable cases.

Classical spin dynamics of magnetic insulators, which
employs classical counterparts of quantum mechanical ex-
change Hamiltonians, has proven to be very useful and illu-
minating in statistical mechanics and magnetic materials re-
search. For a direct connection to experimentally observable
quantities and for easy comparison with the results of quan-
tum spin dynamics, it is convenient io focus such classical
dynamical studies on the properties of dynamic correlation
functions. Nonintegrability effects in spin dynamics have re-
ceived their due share of attention only fairly recently.”” In
fact, spin dynamics lends itself ideally to the study of classi-
cal and guantum chaocs, which is necessarily numerical in its
nature, for the following reasons: The “phase space” of a
finite classical spin system is a compact manifold, and the
energy is bounded by a finite interval; the Hilbert space of a
finite guantum spin system has a finite dimensionality.
These special features allow for a numerical analysis with no
further truncations or approximations which are likely to
introduce ariificial effects. The object of the work reported
here is to study autocorrelation functions and their spectral
properties in integrable and nonintegrable spin clusters.

Consider a system of two localized classical three-com-
ponent spins 8, = (§7, 8%, §%), I = 1,2, specified by an in-
teraction Hamiltonian of the general form

H= 3 {-J,8¢5¢+44,[(SH*+ (9]

€ == XYZ
(H

which includes both exchange and single-site anisotropy. kts
time evolution is governed by the equation of motion

d8,/dt= —8,X0H /88, =1{HS,}, =12, (2)
where
{S?,S’s‘}: "“611! Zéaﬁ"ysz, (3)

7
are the Poisson brackets for classical spin variables. Their
structure guarantees that the Hamilton equation of motion
(2) is consistent with the Heisenberg eguation of motion for
quantum spin operators. If the classical spins §, are ex-
pressed in terms of spherical coordinates as

S, = S{sin &, cos @,,sin J, sin @,,cos ;)

then a set of canonical variables is given by p, = Scos &,
g, = @,. Hence, the classical two-spin system (1) represents
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an autonomous Hamiltonian system of two degrees of free-
dom. It is completely integrable if there exists an indepen-
dent integral of the motion in addition to H. In a previous
study,” we have determined the following integrability con-
dition for the two-spin model(1):

(A, —4,)(4, —4,) (4, —A4,)

+ z J2 (dg —4,)=0
affy = cycl{xyz;
and have constructed explicitly the second independent inte-
gral of the motion for the integrable cases.
In the present work, we study two types of autocorrela-
tion functions for classical spin clusters:
{1} autocorrelation function as a time average,

(4)

r
(SHDHSTyr= lim L dr’ S5+ 1)S§("),
T-« 1 Jo

(5}

where the quantity S 7(£)S §(0) is averaged over all points of
a single phase-space trajectory. Since the phase flow genera-
ted by Hamilionian (1) is not ergodic on the energy hyper-
surface even for nonintegrable cases, correlation functions
defined as (microcanonical) phase averages are in general
different from (5), but no less interesting in the context of
our study. Here we focus our discussion of phase averages on
canonical ensembles at infinite temperature:

{ii} autocorrelation function as a phase average,

=42, a=xy,z

(ST(OHSD»

= (477’)*2J§‘d31(0) deZ(O)S?(z)S?(O), (6}

where the gnantity S ¢ (£)5 F(0) is determined as a function
of the initial conditions {8,(0),8,(0)] and then averaged
over all initial conditions in phase space. Both types of auto-
correlation functions are real and even functions of time.

In integrable cases of the two-spin model { 1}, the course
of any trajectory is confined to an invariant torus, implying
that the correlation function {8 7(£).5 %), is either periodic,
if the two fundamental frequencies of the torus are commen-
surate, or quasiperiodic, if they are incommensurate. In ei-
ther case, the intensity spectrum of (S¢(2)S7), as deter-
mined by its Fourier {ransform
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is discrete, governed by these two frequencies and, unless the
time evolution of §7(¢) is harmonic, also by their sums and
differences.

Quite generally, a continuous frequency spectrum is
necessary to produce a correlation function which decays to
a constant asymptotically for long times. In integrable two-
spin models, this can only be realized in autocorrelation
functions of the type (§§(£).5 %) p, which draw on the com-
bined spectrurmn of the time evolution for olf initial condi-
tions. This spectrum is, in general, entirely continuous. For
the purpose of illustration, we present here the exact auto-
correlation functions (S 7(£)5 ¥} » for two integrable cases of
(1) for which the analysis is particularly simple.

(L) “Ising model” (J,=J,=0,F, =2, A, =4,=A4
=0):

(ST(HSTp =1 1sin(26)/2¢ ], {8a)
P (@), = (7/6)8(2 ~ |w]). (8b)

(II) Heisenberg model (J,=J,=J, =1, 4, =4
=4, =0):

Z

¥

(STHOSD» :2: +"§= (ZF sin(2#)

34287 3 —4¢2
— v + o cos(2t)>,(9a)

B (0)p = —;-’—5(w> + {le[m ~ 6102 — o))
(9b)

In both models, the correlation functions decay algebraical-
ly. The dominant term of the long-time asymptotic decay is
determined by the strongest singularity in the continuous
part of the intensity spectrum. In case (1}, this is a discontin-
uity at {w| = 2, which results in the 1/7 behavior of (8a). In
case {II) the linear cusps at w = 0 and |w| = 2 give rise to
the leading 1/¢ 2 terms in (9a). Note that in both models, the
intensity spectrum has an upper frequency cutoff. This is so
because the time evolution of $7(¢) is harmonic for any ini-
tial conditions. This property is no longer present in the next
simplest integrable case of the general two-spin model (1),
the XY model (J, =J, =1, J,=0,4, =4, =4, =0}.
Here the time evolution is expressible in terms of Jacobi el-
liptic functions for arbitrary initial conditions,’ and the in-
tensity spectrum of the autocorrelation functions has no up-
per frequency bound.

In the nonintegrable cases of the two-spin model (1),
i.e., for parameter values which do not satisfy the condition
(4}, only a subset of the phase-space trajectories is confined
to invariant tori. For these regular trajectories, the autocor-
relation functions (S 7(#) 8 Y) - have the same characteristic
properties as in the integrable cases discussed previously: no
decay, discrete spectrum, two fundamental frequencies.
However, in nonintegrable cases, the set of invariant tori is
nowhere dense in phase space, even though it has a nonzero
measure. Between any two tori, there is a region in which the
phase flow is chaotic. Quite different characteristic features
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are expected of autocorrelation functions defined as time
averages over chaotic trajectories.

For a specific example, we consider the nonintegrable
caseJ, =J, =L J, =04, =2,4,= — 1,4, =00f the
two-spin model (1). We have evaluated for a particular set
of initial conditions the three autocorrelation functions
(STNST) @ = x, p, z, via the average over a time interval
of length 7" = 100 000 from the time series of a chaotic tra-
jectory. Figure 1 shows the function (S7()§7), for0«s
<250 and the functions (S(0)S8 ), (§i(H)S7), for
time differences up to = 100. All three correlation func-
tions clearly decay to zerc. The rate of decay is slowest in
(ST(0)87)r and fastest in {5I(HS%)y. The yyp- and zz-
correlation functions exhibit distinct oscillations unlike the
xx-correlation function, which decays much more nniform-
ly. The decay of these correlation functions results as a con-
sequence of the chaotic nature of the trajectory and imphes
that the phase flow in the region sampled by the trajectory
has mixing character. The oscillations indicate that this mix-
ing flow is superimposed on a quasiperiodic flow which is
mostly perpendicular to the x, direction. They are signs of
quasiperiodicity over short times, i.e., periodicity subject to
continued phase slips. The inset to Fig. 1{a) shows
{(ST(£)S7), onalog-log scale. For 20 < ¢ < 100, the curve is
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FIG. 1. Normalized autocorrefation function {(SE()S) /(S5
a@ = X, ¥, z, for the nonintegrable classical two-spin model defined by Ham-
iftonian (1) with parameter valuesJ/, =J, = 1,J, =0, 4, =2,4, = — |,
A, = 0. The results are obtained from the chaotic trajectory specified by the
initial conditions ¢ {” = 1.0, "’ = 2.0, {2 = 3.0, 9 {» = 1.29, and evai-
uated by a fourth-order Runge-Kutta integration via the time average over
an interval of size 7 = 100 000. The inset to {a) shows the same correlation
fanction (ST(2)87);/{S7)*}, in 2 doubly logarithmic plot for times be-
tween t = 20 and ¢t = 200.
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nearly straight, indicating that the xx correlations decay al-
gebraically: (ST (£)ST),~t 712

It is interesting to compare our findings with existing
results for autocorrelation functions of area-preserving
maps. A numerical study of the standard map® yielded aige-
braic decay close to ~¢ ~ /%; a similar study of the quadratic
map’ also found algebraic decay, but the exponent value
could be placed only scmewhere between 1/2 and 3/2. On
the basis of a Markov chain model for transport in the
boundary laver of a chaotic region, Hanson, Cary, and
Meiss® predicted more rapid algebraic decay, ~r ~*%%; a
considerably slower algebraic decay, ~¢ ~ %%, was predict-
ed by the more elaborate calculation of Meiss and Ott” based
on a Markov tree model. We can place our result among
these others as discussed in the following.

In a previous comprehensive study’ of time averages in
classical two-spin systems, we have already found evidence
that the phase flow in chaotic regions is ergodic, but also that
the convergence of time averages can be extremely stow due
to long-time anomalies caused by low-flux cantori via two
different mechanisms: (i) In a region of widespread chaos,
the dominant mechanism is attributable {o the stickiness of
its boundaries. They typically consist of layers of cantori
separated by Birkhoff chains, in which chaotic trajectories
become temporarily trapped. We have found that the slow-
ing down of convergence due to this mechanism is consider-
able but not alarming. (ii) A different mechanism, which is
responsible for much stronger long-time anomalies, occurs
in situations where a chaotic region is tessellated by cantori
into roughly equal-sized compartments. A characteristic
feature of this case is that time averages appear to converge
slowly to some mean value, similar to case (1), but then sud-
denly start to converge toward a different value [again slow-
ly asincase (i} ], and that this abrupt change happens repea-
tedly but irregularly, each change occurring as the trajectory
switches compartments through one of the low-fiux cantorl.
The time scales of this process are fypically much larger than
in process (i). The averages over the trajectory at hand have
converged quite well. Thus the series must be long compared
to any anomalies encountered, and the time scale for the
remaining anomalies to be met must be very long compared
to the averaging time used here,

Evidently, these long-time anomalies must play an im-
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FIG. 2. Intensity spectra of the correlation functions (S¢(£)S%),,
a =X, y, z, shown in Fig. 1, as determined directly from the original time
series S (#) of the chaotic trajectory.
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portant role in dynamic correlation functions. In X systems,
which are characterized by a special type of mixing flow (a
phase flow associated with 2 positive Kolmogorov entropy
production ), and where none of the long-time anomalies de-
scribed above can occur, the autocorrelation functions decay
exponentially in time.'” In the model of Ref. 8, the effect of
only one sticky boundary is considered, and fast algebraic
decay ensues. In Ref. § the effects of a fractal structure of
sticky boundaries are included, which results in consider-
ably slower algebraic decay. Since we are, as described pre-
viously, in an intermediate region, the intermediate expo-
nent value is to be expected.

We have also determined the intensity spectra of
(SIS, a = x, , 2, directly from the time series of the
chactic trajectory (see Fig. 2}. Each spectrum is continuous,
as is characteristic of a chaotic trajectory. We observe
marked enhancements at w=~0.8 and w=1.3 in the spectra
of § { and §'7. These oscillations are, as noted above, appar-
ent in the correlation functions ($(}S4), and
(83083}, (seeFig. 1). Our results also indicate that none
of the spectra diverges in the low-frequency limit @0,
which is consistent with the rapid algebraic decay of the
correlation functions,

In summary, we have found that algebraic decay of au-
tocorrelation functions occurs in nonintegrable two-spin
systems already for time averages over single (chaotic) tra-
jectories. In integrable two-spin models, by contrast, auto-
correlation functions decay only as a result of phase averag-
ing.

A number of interesting questions remain to be an-
swered: What is the role of invariant tori in the correlation
functions (S 7(#)5 %), in nonintegrable models, given that
the tort are nowhere dense in phase space? How do the ef-
fects of nonintegrability identified here for classical spin
clusters make their appearance in autocorrelation functions
of quantum spin systems near the classical imit? A more
systematic study of dynamic correlation functions in inte-
grable and nonintegrable classical and guantum spin clus-
ters, which attempts to answer these and other guestions, 18
currently in progress.

We thank H. Thomas and R. Weber for their continued
interest in this project. This work was supported by a grant
from Research Corporation, by the U. S. National Science
Foundation, Grant No. DMR-86-03036 and by Sigma Xi,
the Scientific Research Scciety.

‘M. Feingold, N. Moiseyev, and A. Percs, Phys. Rev. A 38, 509 (1984); H.
Frahm and H. J. Mikeska, Z. Phys. B 68, 117 (1985); K. Nakamura and
A. R. Bishop, Phys. Rev. B 33, 1963 (1986).

2G. Miiller, Phys. Rev. A 34, 3345 (1986).

*E. Magyari, H. Thomas, R. Weber, C. Kaufman, and G. Miiller, Z. Phys.
B 65, 363 (1987).

“N. Srivastava, C. Kaufman, G. Miiller, E. Magyari, R. Weber, and H.
Thomas, J. Appl. Phys. 61, 4438 (1987).

*N. Srivastava, C. Kaufman, G. Miller, R. Weber, and H. Thomas, Z.
Phys. B (in press).

°B. V. Chirikov and D. L. Shepalyansky, Physica 13D, 395 (1984).

"C. F. F. Kamney, Physica 813, 360 (1983).

8J. D. Hanson, J. R. Cary, and J. . Meiss, J. Stat. Phys. 39, 327 (1985).

1. D. Meiss and E. Ott, Phys. Rev. Leit. 85,2741 (1985); Physica 20D, 387
(1986).

G, M. Zaslavsky, Chaos in Dynamic Systems (Harwood, New York,
1985).

Srivastava, Kautman, and Miiller 4158



	Chaos in Spin Clusters: Correlation Functions and Spectral Properties
	Citation/Publisher Attribution

	Chaos in Spin Clusters: Correlation Functions and Spectral Properties
	Publisher Statement
	Terms of Use


	tmp.1429194787.pdf.RaeD6

