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One-Dimensional Systems

K. K. Mon, Chairperson

Breakdown of scaling in the 1D spin-1/2 Heisenberg ferromagnet

Jitl C. Bonner and Gerhard Milier

Department of Physics, The University of Rhode Island, Kingston, Rhode Island 02881-0817

The problem of the critical behavior of the spin-1/2 Heisenberg ferromagnetic chain has
challenged many research workers since 1964. We discuss the critical exponents & and ¢
recently determined by Schlottmann and by Takahashi and Yamada in the context of
previously known 7, = O critical properties of the 1D s = 1/2 XXZ model and the classical
Heisenberg model, and we comment on the manifest breakdown of scaling in thes = 1/2

Heisenberg ferromagnet.

The critical behavior of the one-dimensional (1D)
s = 1/2 Heisenberg ferromagnet (HB FM) at 7= 0 has
been a problem of interest for more than 20 years. A variety
of numerical and approximate analytic approaches have
yielded a considerable diversity of values for some of the
T, = 0 critical exponents. In Table ¥ we list the nature of
these approaches and the resulting exponent values in chron-
ological order.'™ Very recently, Schiottmann,® and Taka-
hashi and Yamada’ have solved numerically the coupled
integral equations of the Bethe-ansatz formalism by differ-
ent and independent approaches. The fact that both calcula-
tions agree and predict the exponent values @ = — 1/2 for
the specific heat and y = 2 for the susceptibility is reasonable
evidence that these are the correct values. The purpose of
this communication is to discuss these inieresting results in
the broader context of 7. = O critical behavior of quantum
spin systems.” We wish to relate these new findings 1o the
known T, = 0 critical properties of other 1D spin models
sach as the s= i/2 Heisenberg antiferromagnet (HB
AFM}, the more general s = 1/2 XXZ model, and the classi-
cal Heisenberg model. We continue a recent discussion fo-
cusing on the scaling behavior at the critical point of the
5= 1/2 HB FM*® by pointing out that this system does not
only violate hyperscaling but scaling itself.” Finally, we
make some observations on the relative accuracy of various
numerical and approximate analytic approaches designed to
solve this problem.

The scaling and hyperscaling hypotheses for a contin-
uous phase transition imply that the six critical exponents &
{specific heat), B (order parameter), ¥ (susceptibility), &
(symmetry-breaking field), n (correlation function), and v
(correlation length) are expressible in terms of only two
scaling powers a, and @, as listed in Table IL Only the
relations for % and v, which are based on the (more strin-
gent) hyperscaling hypothesis, involve the dimensionality D
of the system. For 7, = O critical points, the temperature-
like scaling variable is the absolute temperature T, giving rise
to confluent singularities in the specific heat and the suscep-
tibility for T—0.'"° The modified dependence on the two
scaling powers @ and @y of the exponents ¢ and y is given at
the bottom of Table 11.
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It is most illuminating to discuss the validity of these
scaling relations for the 1D classical (s = « ) and quantum
s=1/2HBFM (J> ) and HB AFM (J < 0),

N
H=—J Y 8:8,,, (1

I—1
as well as for the more general s = 1/2 XXZ model,

N
H = —J % (887, +8I87,, +4SiST. ),
=1

— I<ALT, (2)

in the light of the new results mentioned above. In the classi-
cal limit, the free energy and the two-spin equal-time corre-
lation function are the same for the HB FM and the HB
AFM except for a trivial change in sign. Therefore, the
T, = O critical properties are identical in the two cases even
though the spectra of low-energy modes, specifically the lin-
ear spin-wave modes, are totally different: we have w, < k?
for the HB FM and w, « & for the HB AFM.

The following five critical exponent values can be in-
ferred directly from the exact solution'! of the classical Hei-
senberg chain:

(= —1}, v=1. (3)

Here the value § = oo reflects the discontinuity in the T =0
magnetization isotherm and 7 = 1 the lack of decay in the
correlation function due to the fully ordered ground state.
The vaiue @ = — 1 in parentheses is realized in the 1D »-
vector model for all n > lexcept for n = 3, which is the classi-
cal Heisenberg model. Due to an anomaly, the standard lin-
ear cusp (e = — 1} in the specific heat is replaced by an
expeonential cusp (@ = — w) in this particular case.'®
Hence, if we disregard the anomalous behavior of the specif-
ic heat, the exponent values (3) satisfy the scaling relations
of Table Il for @, = ay = 1. If the low-temperature specific
heat of the classical Heisenberg chain were dominated by the
spin-wave modes, the corresponding critical exponent
would be @ = — 1/2 for the HB FM and ¢ = — 1 for the
HB AFM. It is then interesting to note that the values
a= —1/2 and @ = — 1 are, in fact, realized in the quan-
tum spin-1/2 version of the Heisenberg chain i accordance

y=2, =100, =1,

© 1887 American institute of Physics 4429

Downloaded 29 Nov 2007 to 131.128.70.27. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



TABLE 1. Values of the critical exponents « and y resulting from various calculations.

Reference Method I3 ¥
Bonner and Fisher (1964) Finite chain extrapolations -—1/2 ~1.8
Baker, Rushbrooke, and Gilbert (1964) High Temp. Series s 1.67 4 0.07
Kondo and Yamaji (1972) Two-time Green’s functions —1/2 2
Cullen and Landau (1983) Suzuki-Trotter mapping co ~1.32
Lyklema {1983) Monte Carlo — 03401 1.75 +0.02
Schiottman { 1985) Numerical —0.49 - 0.02 2.00 + 0.02
Schiottman {1986) Bethe ansatz —1/2 2 4 log. corr.
Takahashi and Yamada (1985, 1986) Numerical 172 2

Bethe ansatz
Marcu, Miiller, & Schmatzer (1985) Monte Carlo —0.261 4+ 0.013 1.552 + 0.008

with the w, «k? and w, «k behavior of the lowest-lying
excitations of the HB FM and HB AFM, respectively. Thus
in the guantum case, the energy level distribution, which
dominates the nature of the specific-heat curve, is sensitive
to the dynamical properties of the mode! and therefore dif-
ferent at the FM and AFM ends of the spectrum. In contrast,
the classical energy density depends only on the structure of
the energy surfaces in phase space but not on the symplectic
structure which governs classical spin dynamics. In the case
of the Heisenberg model,” the energy density is the same for
J>0 (HBFM) and J <0 (HB AFM), but no such symme-
try exists for individual phase-space trajectories.

Letus have a closer look at thes = 1/2 HB AFM. There
exist exact results for the specific-heat exponent'>'* and the
correlation function exponent'>'®: ¢ = — 1, 57 = 2. If scal-
ing and hyperscaling hold, these exponents already deter-
mine the two scaling powers asa, = 1, ay = 1/2. The com-
plete list of exponents can then be inferred from Table IL:

y=1 =1 =2 wv=1. (4)

However, the exponents ¢, §, and v are still awaiting verifica-
tion by direct determination,

The specific-heat exponent value o = — 1 is, in fact,
known to be realized even for the more generals = 1/2 XXZ
model (2) throughout the regime — <A < 1, which corre-
sponds to a line of critical points with algebraically decaying
correlation functions. Along this line, the correlation func-
tion exponent is known to vary continuously with the anisot-
ropy parameter A.'>'® Under the assumption that scaling
and hyperscaling hold, one can infer from these exact results
the following values for the two scaling powers and the five
critical exponents'”:

a= —1,

ap =1, ay=1/24+p/27 with cosp= —A, (3a)
a= -1, y=1+pu/m,

8= (1/24+u/2m)/(1/2 —u/2ry,

p=2—p/m, v=1. (5b)
In the limit A = — 1, which is equivalent to the HB AFM,

the values (4) are recovered. At A = O, which represents the
XY model, we have

y=3/2, =3, n=3/2, v=1. (6)

For this special case, the exponents ¥ and v have been in-
ferred from direct studies of correlation functions,'®!® and

o= —1,
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the value § = 3 was confirmed by the analysis ¢f 7= O mag-
netization isotherms of finite chains.”® In all other cases, the
scaling predictions are still awaiting independent verifica-
tion.

Now we turn to the s = 1/2 HB FM (A = 1). [t is the
only case in the parameter range — 1< A< which is charac-
terized by the property that both the quantum s = 1/2 ver-
sion and the classical s = o version have the same type of
ground state, a state with saturated long-range order. In alf
other cases, quantum fluctuations destroy the long-range or-
der present in the classical version. Hence we obtain the
same exponent values 7 = 1 and § = o for thes = 1/2 HB
FM as for its classical counterpart {see Eq. {3)]. Both re-
sults are consistent with the value a;; = 1 for the magnetic
scaling power. However, the newly found exponent values®’
a = — 1/2 andy == 2 are mutually exclusive within the scal-
ing picture for given ay = 1.

Concerning the violation of the scaling hypothesis it can
be argued®’ that the specific heat (¢ = — 1/2) is again
anomalous, as in the classical case (¢ = — w0 ), and that the
remaining exponents are the same as in the classical case
thus causing no further problem.

Alternatively, the violation may signify a previously un-
anticipated complexity in the critical behavior of quantum
spin chains. A good test would be a reliable calculation of the
exponent v directly from the temperature-dependent corre-
lation functions.”

In any case, the s = 1/2 HB FM has a most vnusual
critical point. The violation of scaling is perhaps attributable
to the fact that some aspects of the transition have first-order

TABLE II. Dependence on the two scaling powers a4 {thermal) and a4
{magnetic} of the six most common critical exponents as implied by the
scaling and hyperscaling hypotheses. Alse given are the exponents o and ¢
for T, = O critical points, which have a modified dependence on the scaling
powers. The other four exponents remain the same.

a=(2a,; — 1)/ a,
= (2a,; —~1)/ar

B=(l—ay)/ar

Bemag /(1 —ay) Scaling hypothesis

n=24+D(1--2a4) v=1/Da, Hyperscaling hypothesis
Moadifications for 7, = 0 critical points

a= — 1/a, y= Qay +ar — D/ar
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character. The ground siate of the s = 1/2 XXZ model
changes at the HB FM point (A = 1) from a nondegenerate
singlet state in the easy-plane regime to a ferromagnetic
doublet in the easy-axis regime. At the transition point the
ground state is infinitely degenerate on top of its quasi-de-
generacy with gapless excitation continua. In the well-
known mapping of the 1D 5 = 1/2 XXZ model ground state
onto the 2D siz-veriex model,?’ the point A = 1 corresponds
to the critical point where the KDP model undergoes a tran-
sition from a critical phase at 7> 7, (A < 1) to a ferroelec-
trically ordered phase at T7< 7, {(A>1). The KDP transi-
tion is unusual, combining the characteristic features of both
a first-order transition and a Prokovskii-Talapov type tran-
sition. The 7—0 critical behavior of the HB FM (A= 1)
also displays Prokovskii-Talapov features combined with
characteristics of a first-order transition.”

The availability of new exact results such as the critical
exponents ¢ and y for the 1D s = 1/2 HB FM allows us to
assess the degree of accuracy of various approximate meth-
ods employed in attempts to determine these values. An im-
portant observation made by Schlottmann® is that the true
asymptotic critical behavior only sets in at very low tempera-
tures, lower than the temperature range in which previous
numerical studies could be expected to produce refiable re-
sults.?* We observe from Table I that computer simulations
and Monte Carlo calculations®*?® turned out to be rather
unreliable. The early high-temperature series expansions’
and finite-chain extrapolations’ were considerably more
successful. Finite-chain extrapolations even produced a rea-
sonable value for the critical amplitude of the specific heat.
This is illustrated by the following comparison of the leading
terms in an expansion of the entropy function as inferred (i)
by Schlottmann® and (ii} by Takahashi and Yamada’ from
the numerical analysis of the Bethe ansatz and (iii) by Bon-
ner and Fisher! from finite-chain extrapolations:

(1) S~1.5(k, T/ 4+ O(T¥?y {7a)
(i) S~1.563(k,T/N"? 4+ 0O(T); {7b}
(iil) S~1.2k, T/NV 4 ... (7c)

Finally, we should comment that the apparent exact values
obtained by Kondo and Yamaji® are clearly an artefact of
their Green’s function procedure, which treats spin-wave ex-
citations self-consistently and therefore produces, essential-
ly, the critical fluctuations of ferromagnetic spin waves in
1D.
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