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Nonintegrability and quantum spin chains

G. Miuller and J. C. Bonner

Department of Physics, University of Rhode Island, Kingston, Rhode Island 028817

J. B. Parkinson

Department of Mathematics, University of Manchester, Institute of Science and Technology, P. O. Box 88,

Manchester M6C 1QD, United Kingdom

This study concerns the concept of nonintegrability in quantum many-body systems, which is
related to the important and unresolved problem of quantum chaos. Our findings strongly
indicate that nonintegrability affects the reliability of many approximation techniques which
have proved to be successful in the study of integrable models. This report is based on finite-
size studies of the iow-lying spectral excitations of both integrable and nonintegrable 1D
guantum spin models. In integrable cases, the characteristic excitation pattern of the infinite
system is apparent even in relatively short chains. This is generally not the case in
nonintegrable systems where we observe several classes of excitations with qualitatively
different character. In some situations, the nature of the lowest-lying excitations actually
changes with increasing system size, which makes finite-size studies very vulnerable to

misleading conclusions if care is not taken.

Conformal invariance has indicated the existence of in-
finite classes of integrable models in statistical mechanics.™?
The discovery of this principle has focused attention on the
concept of integrability in classical and quantuom many-body
systems. It is well known that the role of integrability is quite
striking in the behavior of classical dynamical systems. The
dynamical properties of integrable systems undergo drastic
changes if subjected to nonintegrable perturbations, giving
rise to qualitatively new phenomena, which are well de-
scribed by the theory of deterministic chacs.? This raises a
question of considerable interest: what are the implications
of integrability and nonintegrability for guantum many-
body systems, and what is the relation to the important and
unresolved issue of quantum chaocs?® Interacting spin sys-
tems provide convenient models for the study of nonintegra-
bility effects in both classical and quantum mechanics.*" A
recent study of the nature of quantum chaos in spin systems
kas put the various concepts of integrability for classical and
guanium spin systems into perspective.’

For a system of NV localized classical three-component
spins 8,, / = 1,...,N specified by some interaction Hamiltc-
nian H(8,,...,S, ) there are two concepts of integrability in
use: Dynamical integrability: A system of N classical spins is
dynamically integrable (completely integrable, separable) if
there exist &V distinct integrals of the motion in involu-
tion.>*®" Thermodynamic integrability: A classical spin sys-
tem is thermodynamically integrable (exactly solvable) if it
is possible to determine its partition function

ZN:‘J-dSE‘”deNe—ﬁH(S[ ..... S -

exactly in the thermodynamic limit N— oo. Whereas ther-
modynamic integrability depends on the energy function
H{(Sy,...,Sy) alone, the concept of dynamical integrability
further depends on the specification of the Poisson brackets
for classical spin variables (the symplectic structure), which
determine their time evolution via the Hamilton equation of
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motion. Dynamical nonintegrability may be realized for N as
low as N = 2,57 but effects of thermodynamic nonintegrabi-
lity only in the thermodynamic limit. The existence of an
infinite set of conservation laws lies at the heart of any meth-
od to determine the thermodynamic properties of an infinite
classical spin system, most conspicucusly in the solutions
based on the diagonalization of the transfer operator. The
infinite quasi-degeneracy in the vicinity of the largest eigen-
value of the transfer operator is a crucial prerequisite for the
standard critical behavior at a continuous phase transition
with all the well-known scaling properties. Whether all the
scaling properties continue to hold in thermodynamically
nonintegrable models is an important vnrescived prob-
lem.** It is related to the phenomenon of quantum chaos in
many-body systems, and this report is based on cur current
comprehensive investigation of guantum chaos.

In contrast to classical spin systems, there is only a sin-
gle concept of integrability for quantum spin systems, which
relates to both thermodynamic and dynamical properties.
Model systems containing a finite number of interacting
quantum spins are always integrable, at least in principle.
Since the underlying Hilbert space has finite dimmensionality,
(25 + 1)7, the time evolution of any quantity is at most mul-
tiperiodic. Nonintegrability effects in quantum spin systems
are therefore expected to appear only in either of the follow-
ing two limits: Classical limit: & finite, s — 0. Thermody-
namic limit: s finite, N— oo. Nonintegrability effects ob-
served in small quantum spin clusters for large s can be re-
garded as precursors of classical dynamical chaos.* Noninte-
grability effects observed in quantum spin chains for large &,
on the other hand, may be interpreted as manifestations of
quantum chaos and are the focus of this report. Since chaotic
phenomena associated with nonintegrability are most dra-
matically apparent in dynamical as opposed to static proper-
ties, one might wish to study primarily the dynamical prop-
erties of quantum spin chains. The problem is that
dynamical properties of such systems are highly nontrivial
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even for integrable models,” which makes it very difficult to
identify nonintegrability effects there {see Ref. 4 for specific
predictions ). Here, we focus instead on unusual effects in the
spectral properties of nonintegrable quantum spin chains,
particularly in the spectrum of low-lying excitations.

We have investigated analytically and numerically a
variety of integrable and (apparently) nonintegrable 1D
spin models. Integrable 1D quantum spin models include,
most prominently, the class of Bethe-ansaiz solvable models
such as the 1D s = 1/2 Heisenberg model

N
H=J7% 8°8,, (2)
Pl
and some of its generalizations, such as the ID s = 1/2 XXZ
model

N
HZJE(S}‘ f—+1+S¥S';}+1+AS7TS§+1) (3)
=1

and the 1D 5 = 1 bilinear-biquadratic model'®

N
H=J z [Sz"sz.+ 1 (SI°SI4~ 1 )ZL {43

I=1

or the 11 s == 1/2 anisotropic XY model

N
H=JS{0+nSiSi  + G —78i8i. ]
I—1
whick maps onto a free-fermion system.

We have studied these models subjected to nonintegra-
ble perturbations by locking at finite-chain sequences, by
calculating in some cases all eigenstates, and by using Lanc-
z4s techniques to obtain results for special states of interest
at larger N. Nonintegrability effects resulting from the ab-
sence of a sufficient number of conservation laws are expect-
ed to make their appearance in the form of an increasing
level turbulence for increasing &, which would manifest it-
self, for example, in the form of changes in trend in extrapo-
lations with 1/N, in the failure of expected scaling behavior
and in the presence of unusual classes of excitations. In the
following, we summarize a number of cbservations which
are difficult to categorize in terms of familiar phenomena in
integrable models.

Thes = 1/2 X¥ model: response to an in-plane magnetic
field. Consider the integrable model described by Hamilto-
nian {5} with »=0. The addition of 2 Zeeman term

— h 2,87 makes it nonintegrable. Two numerical methods
have been used to calculate the 77 = 0 in-plane susceptibility
Yxx for i =0. One method was a2 T = 0 Padé analysis of
exact results for y.Y for finite chains with up to N =10
spins, yielding the extrapolated value Jy =’ ~0.055."" An
alternative approach based on extrapolations of 7> 0 calcu-
lations of y & for N = 2,...,10, yielded the very different val-
ue Jyl) ~0.117.">"® The lack of consistency of these nu-
merical approaches is unprecedented in its extent and most
puzzling in the light of numerical studies of the 7 = 0 sus-
ceptibility y., for the s = 1/2 Heisenberg chain, Eq. (2),
where the results of various numerical approaches were in
reasonable agreement with each other and with the exact
result."*'* The exact result Jy,, = 0.075 566... for the XY
model, on the other hand, which was calculated from exactly
known dynamic correlation functions in the integrable limit
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h = 0,'° proved to be in poor agreement with any of the nuo-
merical predictions. While it is true that a square-root cusp
singularity is present in the wave-number dependent suscep-
tibility v, (¢) at ¢ = 0, which might tend to slow numerical
convergence, the observed discrepancies of over 50% are
much toc large to ascribe solely to this cause.

The spin-s X¥Z model: Haldane prediction. Some time
ago, Haldane made the challenging prediction that the
T = O phase behavior of the spin-s YXZ model (3) as a func-
tion of A is gualitatively different for integer £ and half-in-
teger 5.'” Substantial evidence has accumulated in support of
Haldane’s picture as a result of several numerical studies.
However, some puzzling results have also appeared which
have in common the fact that they do not appear in known
integrable modeis. Specifically they are absent in the Bethe-
ansatz solvable s = 1/2 XXZ chain but not ins > 1/2 XXZ
chains of either integer or half-integer 5. Examples appear
below.

Spin-s Heisenberg chains: spectral crossover in a magnet-
ic field. The dispersion curves of low-lying excitations for the
Heisenberg chain are well known to have a qualitatively dif-
ferent magnetic-field behavior in the s = } case {(quantum
limit, Bethe ansatz) and in the s = o0 case (classical limit,
lingar spin-wave theory). The s =1 dispersion curves are
most prominently characterized by the existence of two dis-
tinct zero-frequency modes, one at ¢ =0 and one at
g = 2wM, where O<8f (h)<}isthe T = O magnetization as a
function of the external magnetic field.'®*” This latter soft
mode, which tracks across the Brillouin zone as /# increases
from zero to the saturation value /2, = 24, has no counter-
part in the classical spectrum. This raises the interesting
guestion as to how the guantum spectrum is transformed
into the classical spectrum for increasing. A detailed finite-
chain study of the 5> § Heisenberg models, which apparently
are nonintegrable, has revealed that the spectra of low-lyving
excitations fall into two distinet classes.’” Excitations with
quantum number §5=2,57 = Ns, Ns — 1,...,Ns/2 do ex-
hibit the tracking soft-mode characteristic of the integrable
s = } Heisenberg chain. Whereas for s = | all iow-lying exci-
tations belong to this category for the entire field range 4 = 0
to = h_, this is not so for s » §, where this type of excitation
dominates the low-energy spectrum only in a smaller /-in-
terval adjacent to 4, whose size shrinks with increasing s.
The second class of excitations, with quantum number S5

= Ns/2, Ns/2 —1,..,0, displays a qualitatively different
spectral behavior, which is more reminiscent of the classical
spin-wave dispersion curves. Fherefore, the spectrum of
low-lying excitations undergoes a very peculiar crossover for
increasing A, which is completely different from anything
observed in exactly solved models.

Cousider, for example, the bilinear-biquadratic Hamil-
tonian (4) which describes the integrable spin-1 model most
closely related to the spin-1 Heisenberg model (2), and
which is, in fact, just one member of a general class of Bethe-
ansatz solvable models for general spin s whose Hamilto-
nians have the general structure of a polynomia! of degree 2s
in 8,8, ,."° All members of this integrable family, which
includes the s = } Heisenberg model, show gualitatively the
same 7 = O phase behavior as a function of the external mag-
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netic field. It is a characteristic of integrable systems that the
general character of any particuiar class of low-lying excita-
tions is apparent even for relatively short chains, a feature
which has been explicitly observed in all integrable models
mentioned in this paper, but which is conspicuously absent
in the s> ] Heisenberg chains. In particular, the excitation
spectra of the integrable models do not exhibit the peculiar
crosscver phenomenon cbserved in the s> Heisenberg
chains.

The generalized bilinear-biquadratic model. If we take
the spin-1 bilinear-biquadratic model of Eq. (4} and inserta
variable parameter 5 multiplying the biquadratic term, we
cbtain a generalized spin-1 model with the following special
limits: the Heisenberg antiferromagnet is specified by the
point S =0, the integrable Russian model by the point
7 =1 and the model with purely biquadratic exchange by
the limit S— «. By using techniques of conformal invar-
iance, Affleck® predicted that as the parameter £ moves
away from the Russian point £ = 1, a gap opens in the exci-
tation spectrum of this model. The Affieck prediction has
been examined by means of scaled-gap,”' finite-size scal-
ing,”* and general finite-chain studies.”® An unusual cross-
over phenomenon, not previously encountered in finite-size
scaling calculations, occurs in the Russian-biguadratic re-
gime. Studies have revealed the presence of singlet excita-
tions*!*? which appear to extrapolate to zero over the entire
range > 1. In fact, the lowest singlet excitation lies lower
than the lowest triplet excitation for N»8 at 8 "' =0, for
Nz10atf "' «0.2andfor N>12atB ~! < 0.3. Here we have
amodel in which not even the character of the lowest excita-

tions can reliably be identified unless the detailed spectrum is.

scrutinized for relatively large systems.?*® No such phe-
nomenon has ever been observed in integrable models.

“Supersoft ” modes at the Heisenberg point (B=0). A
similar phenomenon seems to occur in the Heisenberg limit
(8 = 0) of this general spin-1 model. The predicted Haldane
gap has been investigated numerically almost exclusively for
the “primary” excitation gap involving a singlet ground
state at wave number & = 0 and a triplet excitation at k = 7.
The estimated size of the gap is quite large, namely AE /J
~0.41.%* However, an unusual class of excitations starts to
become prominent for N> 12. Their origin and significance
was not known at the time. In the case of the spin-1 XXZ
model for values of anisotropy A near the Heisenberg point
A = 1, these modes appear to extrapolate with 1/N to values
significantly below the corresponding extrapolations for the
primary singlet-triplet gaps. In the Heisenberg limit, they
may even extrapolate to zero.”* These are modes of interme-
diate k, and therefore finite-size effects are expected to be
more pronounced. However, since they apparently have the
potential for a radical modification of the accepted phase
diagram for the s = 1 XXZ model, these modes should re-
ceive further investigation.
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In summary, we have identified several unusual effects
in the excitation spectrum of nonintegrable 1D guantum
spin models which have not been observed in integrable
quantum chains. We conclude that numerical studies of such
models must proceed with extreme caution to avoid mislead-
ing conclusions. Some of the phenomena reported in this
paper might be interpreted as precursors of quantum chaos,
which is truly manifest only in the thermodynamic limit.
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search Corporation, and from the Council on Research of
the University of Rhode Island (for G. M.) is gratefully
acknowledged.
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