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Nature of quantum chaos in spin systems

Gerhard Miiller
Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881
(Received 27 January 1986)

A novel concept for quantum chaos in spin systems is proposed which differs distinctively from
concepts currently in use. It is argued (a) that the definition of quantum chaos cannot be based on
the correspondence principle and (b) that quantum chaos is not equivalent to statistical behavior.
Quantum chaos in spin systems implies the existence of a new type of spectrum consisting of excita-
tions which do not form regular patterns with a multiparameter continuum structure in the thermo-
dynamic limit, thus removing the constraint imposed by van Hove singularities that time-dependent
correlation functions for pure quantum states cannot decay more rapidly than as powers of 7. The
irregular spectrum is caused by strong level repulsion resulting from the lack of a sufficient number
of conservation laws in nonintegrable quantum many-body systems. The similarities and differences
between quantum and classical chaos and, more generally, between quantum (non)integrability and

classical (non)integrability are discussed in detail.

I. INTRODUCTION

The study of quantum chaos has been an area of inten-
sive research activity in recent years. However, no gen-
erally accepted agreement has been reached on its exact
nature. The two major points of view may be paraphrased
as follows:!

(i) Quantum chaos has its manifestations in spectral ir-
regularities and related phenomena observable in quantum
systems with few degrees of freedom whose classical coun-
terparts are dynamically nonintegrable.

(ii) Quantum chaos is that property which causes a
quantum system to behave statistically in the sense that
the time evolution of a dynamical variable approaches an
equilibrium value and that this value is the one predicted
by quantum statistical mechanics.

From the following critique of the two points of view,
embedded in a discussion of the various concepts of in-
tegrability for classical and quantum systems, a new defi-
nition for quantum chaos will naturally emerge. Its
characteristic properties and implications for the time
evolution of quantum systems will be outlined and its re-
lation to both the concept of classical deterministic chaos
and the concept of nonintegrability in classical statistical
models will be established.

For the sake of economy in the formalism and precision
in the language, the entire presentation will focus on sys-
tems of interacting (quantum and classical) spins. How-
ever, many of the concepts and conclusions are expected
to translate into corresponding concepts and conclusions
for dynamical systems of a different nature.

II. INTEGRABILITY IN CLASSICAL
SPIN SYSTEMS

There are two concepts of integrability in use for classi-
cal spin systems.
Dynamical integrability: A classical spin system is
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dynamically integrable (completely integrable, separable)
if there exist N distinct integrals of the motion in involu-
tion, where N is the number of degrees of freedom.>?

Thermodynamic integrability: A classical spin system is
thermodynamically integrable (exactly solvable) if it is
possible to determine its partition function exactly.*> The
following discussion of these two concepts of integrability
is intended to clarify their relationship to the concept of
integrability for quantum systems to be discussed in Sec.
I11.

A. Dynamical integrability

Consider a system of N localized classical three-
component spins S;, / =1,2, ..., N specified by some in-
teraction Hamiltonian #7S,,S,, . ..,Sy]. Its time evolu-
tion is determined by the Hamilton equation of motion

d
—S,={#,8,},
=178
where the right-hand side is the Poisson bracket defined

as

(2.1)

94 3B 3B 34

_ (2.2)
dp; 9q; 9p; g

{A,Bf=2

!

with respect to a set of canonical variables p; and g;. The
Poisson brackets for classical spin variables, i.e., the
sympletic structure for classical spin dynamics, can be
constructed by requiring that the resulting Hamilton
equation of motion (2.1) is consistent with the Heisenberg
equation of motion

d .
Esl=l[ﬁf,st]

for S, interpreted as quantum spin operators, whose com-
mutation relations

[Sr,SP1=i8y Sebrsy
7

(2.3)

(2.4)
are part of their intrinsic properties. Here €*?” is the
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Levi-Civita symbol and 8, the Kronecker symbol. For
the classical spins this leads to the result®

(S.SP)=—8y S ePrsy .
Y
If the classical spins S; are expressed in terms of polar
coordinates as

(2.5)

S;=s(sinf;cosd;,sinb;,sing;,cos6;) (2.6)

then a set of canonical variables which satisfy the relation

{psqr} =8, {pipr}=1{q1q9r}=0 (2.7)
are given by
pi=cost;, q=4¢; . (2.8)

Thus a system of N classical spins specified by an energy
functional #71S,,S,,...,Sy] represents an autonomous
Hamiltonian system of N degrees of freedom. The system
is dynamically integrable if there exist N distinct integrals
of the motion in involution

Ji[S1,8;, ... ,Sy]=const, k=1,2,...,N (2.9)
with

{(,;}=0, k=1,2,...,N, (2.10a)

{Je sk} =0, k,k'=1,2,...,N. (2.10b)

The existence of N such integrals of the motion confines
any individual trajectory in the 2N-dimensional phase
space’ to the intersection of the N (2N —1)-dimensional
hypersurfaces Jy=const, k =1,2,...,N. The resulting
N-dimensional hypersurface is called an invariant torus,
because it is possible to choose the Jj such that their nu-
merical values are determined by N action integrals of the
form

200 =P, pedar, k=12,...,N, 2.1

where the C, are N topologically independent closed
paths. For an autonomous system, the Hamiltonian itself
is an integral of the motion reflecting (in the present ap-
plication but not in general) the conservation of the total
energy. Equivalent to this fact is the property that the en-
ergy functional can be expressed in terms of the N action
variables J; alone

ﬁp[slrsb e ’SN]'_"%'[JINIZ; s ’JN] .

This is the classical spin Hamiltonian in the action-angle
representation, leading to 2N canonical equations which
have trivial solutions involving at most N distinct fre-
quencies

(2.12)

oy=—"—, k=12,...,N (2.13)
in the time evolution. The consequence is that the time
evolution of the spin variables is characterized by a
discrete spectrum.?

If the number of distinct integrals of the motion is
n < N, the constraints imposed on the trajectories in 2N-
dimensional phase space are more relaxed compared to
the integrable case. The foliation of the entire phase space
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by invariant tori is at least partially destroyed, the conse-
quence being that there exist, in addition to regular trajec-
tories, which are still confined to N-dimensional invariant
tori, also trajectories representing phase points moving
over hypersurfaces of dimensionality larger than N. Such
trajectories are chaotic in character. The Fourier spec-
trum of a chaotic trajectory is continuous as opposed to
the discrete spectrum of a regular trajectory.

For a brief illustration of the concept of dynamical in-
tegrability, consider a chain of N classical spins coupled
to one another by an isotropic Heisenberg exchange in-
teraction

N-—-1
F==J3 88, .

=1

(2.14)

There exist three obvious integrals of the motion which
are in involution.
(1) The total energy: E=27S,S,,...,Sy] N

(2) The z-component of the total spin: S7= ¥ S7.

=1

(3) The total spin: S;=[(SF)?+(S%)*+(5%)?]'/2.
Note that the three Cartesian components of the total
spin, S7, S%, S%, cannot simultaneously be used as action
variables although they are simultaneously conserved, be-
cause they violate the involution condition (2.10b). We
conclude that the Heisenberg spin cluster is dynamically
integrable at least for N =2 and 3. In the presence of a
uniaxial exchange anisotropy, the third conservation law
is destroyed: the system is still dynamically integrable for
N =2 but not necessarily for N >3.° Chaotic behavior
may even be found in autonous two-spin systems if the
energy functional #7S;,S,] is sufficiently asymmetric.
There exists numerical evidence that the following two
models are dynamically nonintegrable:

(i) The XY model with single-ion anisotropy,'®

H=—J(STS5+S98%) - A(STST+S35%) .  (2.19)
(ii) The Ising model in a transverse field,'"?
H=—JSiS5 —h(ST+S3). (2.16)

By contrast, any autonomous one-spin system is integrable
according to our preceding discussion. However, if a sin-
gle spin is coupled to a time-dependent field, integrability
is no longer guaranteed. Frahm and Mikeska'® indeed ob-

served chaotic trajectories in the nonautonomous'* one-
spin system
H =A(S*Y —h cos(wt)S* . (2.17)

B. Thermodynamic integrability

For a classical spin system consisting of N spins, the
partition function can be expressed as an N-fold integral

Zy= [ds, [ds, - [asye PSSl

As long as N is finite, Zy is a well-behaved, analytic
function. Unlike the integrals of the Hamilton equation
of motion (2.1), Zy is an integral over a compact mani-
fold, i.e., does not involve any asymptotic behavior which

(2.18)
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could give rise to surprises. It is therefore legitimate to
call finite classical spin systems thermodynamically integr-
able even though the execution of the integral (2.18) may
pose insurmountable technical problems for moderately
large N. Hence only in the limit N— o can thermo-
dynamic integrability be a meaningful attribute of classi-
cal spin systems. In the thermodynamic limit, the analyt-
ic properties of the partition function undergo a qualita-
tive change, and there exists no general theory from which
they can be inferred. Nevertheless, we have knowledge of
a large number of interacting classical spin models which
are thermodynamically integrable in the limit N —
They include, for example, all one-dimensional (1D)
models with nearest-neighbor interaction.!”> For these sys-
tems, thermodynamic integrability is established quite
generally by the transfer-operator technique.
Consider a general 1D spin Hamiltonian of the form

N
H= 3 US,8;41)
i=1

(2.19)

with periodic boundary conditions imposed. The partition
function (2.18) can then be expressed as the trace of the
Nt jterate of the integral operator whose kernel has the
form

—BU(S,,S,)

L(S;,8;)=e (2.20)

This is the transfer operator. In terms of its eigenvalues
An, which are determined from the equation

[ dS;L(81,8)9,(8) =29, (S1), n=0,1,2,..., (221)

the partition function can be rewritten as

1+ 3 (A, /A"

n=1

Zy= S A=) . (2.22)

n=0

In the thermodynamic limit N — «, the Gibbs free energy
per site is then determined by Ao, the largest eigenvalue of
L, alone,

G=—-kBTA}im (N~ 'InZy)=—kgTInk, . (2.23)
Analytic solutions are known for a large class of 1D
models.'®

In higher dimensions (D >1), thermodynamically in-
tegrable classical spin systems are probably the exception
rather than the rule. Even for 2D systems, transfer opera-
tors are at best infinite matrices or infinite-dimensional
integral operators, whose general properties are not known
and are therefore prone to surprises. Nevertheless, 2D
classical spin models which are thermodynamically in-
tegrable do exist. The Ising model is the prototype, and a
growsing number of further examples appear in the litera-
ture.

Thermodynamic integrability of an infinite classical
spin system implies the existence of an infinite set of con-
servation laws, which are at the basis of any method to di-
agonalize the transfer operator.>!” The available results
for a variety of exactly solved models show that the spec-
trum of their transfer operator can be expressed as com-

posites of quasiparticle excitations.” The critical behavior
of these exactly solved models can then be analyzed in
terms of the quasiparticle spectrum in the vicinity of the
largest eigenvalue Ay, which alone already determines the
free energy. Near a critical point, the gap between the
maximum eigenvalue and the upper threshold of the
remaining spectrum defines a correlation length.'® As the
critical point is approached, the gap goes to zero and the
correlation length diverges. Because of the quasiparticle
nature of the spectrum, an infinite quasidegeneracy of
eigenvalues builds up at Ay. This quasidegeneracy is a
crucial prerequisite for the standard critical behavior at a
continuous phase transition with all the well-known scal-
ing properties.

The preceding observations suggest that in thermo-
dynamically nonintegrable classical spin models the quasi-
particle structure is not a generic property of the spectrum
of the transfer operator, in analogy to the fact discussed
in Sec. II A that in dynamically nonintegrable classical
spin systems the foliation of the phase space by invariant
tori is at least partially destroyed. In both situations,
nonintegrability is attributable to the lack of a sufficient
number of conservation laws. In the dynamical system it
results in the existence of chaotic trajectories, whereas in
the thermodynamic system it is likely to lead to the
phenomenon of “level repulsion” in the spectrum of the
transfer operator. Whether this latter property is manifest
at the edge of the spectrum where it could affect the scal-
ing properties of a thermodynamically nonintegrable
model in the vicinity of a continuous phase transition is a
very important unsolved question.!” In Sec. IIIB it will
be argued that thermodynamic nonintegrability is related
to the question of quantum chaos in many-body systems.

III. INTEGRABILITY IN QUANTUM
SPIN SYSTEMS

In contrast to classical spin systems, there exists only a
single concept of integrability for quantum spin systems
which pertains to both its thermodynamic and its dynami-
cal properties. Both the thermodynamic properties of the
quantum system and the time evolution of any dynamical
variable depend on the structure of the Hamiltonian
operator and the spin-commutation relations. In classical
spin systems, on the other hand, the thermodynamic prop-
erties are determined by the energy functional
#718,,S,,...,Sy] alone, i.e.,, by what is commonly but
somewhat imprecisely called the ‘“classical spin Hamil-
tonian;” the dynamical properties further depend on the
specification of a symplectic structure, i.e., the specifica-
tion of Poisson brackets for classical spin variables or the
expression of #7S,,S,,...,Sy] in terms of canonical
variables.

Model systems containing a finite number of interact-
ing quantum spins are always integrable. The underlying
Hilbert space has a finite dimensionality (2s +1 YN where
N is the number of spins, each spin with the same quan-
tum number s. The time evolution of any physical quan-
tity is then either periodic or multiperiodic (quasiperiod-
ic). Effects of nonintegrability can therefore be expected
only in either one of the following two limits:
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Classical limit: N finite, s — .
Thermodynamic limit: s finite, N— o0.

It will be argued that nonintegrability effects observed in
small quantum-spin clusters for large s are precursors of
classical dynamical chaos and that nonintegrability effects
observed in quantum-spin systems for large N are precur-
sors of quantum chaos.

A. Classical limit: N finite, s —

The intensive search of recent years for realizations of
quantum chaos has focused almost exclusively on quan-
tum systems with few degrees of freedom whose classical
counterparts are known to be dynamically nonintegrable.!
To this category belong the nonintegrable spin-cluster
models discussed in Sec. IIA. Typical observations on
such small spin clusters have been the following.'’

The quantum spectrum, which is always discrete for
finite-spin systems, was found to have a qualitatively dif-
ferent structure in different energy intervals, depending on
whether the classical counterpart has predominantly regu-
lar or predominantly chaotic trajectories in that inter-
val.>121320 1p the regular parts of the spectrum, the ener-
gy eigenvalues have a tendency to cluster into sets of near-

1
(4m)N

):

which is a well-behaved piecewise smooth function ir-
respective of whether the classical spin cluster is dynami-
cally integrable or nonintegrable. True chaos can only be
found in quantities which relate to individual trajectories
of the classical spin clusters or, more generally, in quanti-
ties which depend on the symplectic structure of the clas-
sical model, not just on its energy functional.

Feingold, Moiseyev, and Peres'? studied the matrix ele-
ments of simple dynamical variables for the autonomous
two-spin system (2.16), which is dynamically nonintegr-
able in the classical limit. They found a striking differ-
ence in the role played by selection rules in the regular
and irregular parts of the spectrum, respectively. In the
regular spectrum a substantial fraction of matrix elements
is very close to zero as if subject to some hidden selection
rules. In matrix elements between states of the irregular
spectrum this effect is conspicuously absent.

The most direct link between an individual trajectory of
the classical spin cluster and any property of its quantum
counterpart is established by the time evolution of Wigner
distributions. This is what Frahm and Mikeska'® effec-
tively studied for the nonautonomous one-spin system
(2.17), which is dynamically nonintegrable in the classical
limit. They found that the width of a Wigner distribution
in the semiclassical regime (s>>1) increases roughly
linearly with time (o z/V's ) for initial conditions which
correspond to a regular trajectory in the classical limit.
This effect is attributable to quantum uncertainty; it
disappears in the classical limit. However, if the initial

[ds, [ds, - [dSy8e—#]S,S,, ...

ly equidistant levels. No such patterns of regularity can
be discerned in those parts of the spectrum (the irregular
spectrum) where choatic trajectories are predominant in
the classical system. If the spectrum is plotted as a func-
tion of some parameter which controls the integrability of
the model system,?! level repulsion in the regular parts of
the spectrum makes its appearance in the form of very
nearly avoided crossings with extremely narrow gaps. In
the irregular parts of the spectrum, on the other hand, the
levels tend to repel one another very strongly. Here, the
regions of avoided crossings are very broad and overlap.?°
The consequence is that any complete specification and
classification of energy levels in terms of the quantum
numbers assigned to them in one or the other integrable
limit of the model loses its meaning as they are traced suf-
ficiently far through the mesh of avoided crossings.

It is tempting to identify this “level turbulence” in the
spectral properties of small spin clusters as one of the
characteristic features of quantum chaos. However, we
should draw our attention to the fact that, in the extreme
classical limit s— o, the observed dramatic differences
between regular and irregular parts of the spectrum are
bound to fade away, at least on that energy scale for
which Js? is kept finite as s— 0. In that limit, the level
distribution function for the quantum spin cluster con-
nects to the energy density of its classical counterpart,

sSn1D) (3.1

conditions correspond to a chaotic trajectory in the classi-
cal limit, the width increases exponentially in time. Here,
the (relatively mild) quantum uncertainty is overwhelmed
by the much stronger precursors of classical dynamical
chaos. Even though these results do not represent true
long-time asymptotic properties for finite s, they
nevertheless reflect the well-known property of classical
dynamical systems that nearby trajectories separate
(roughly) linearly in time, whereas nearby chaotic trajec-
tories separate exponentially in time. True chaos is a
long-time asymptotic property of a dynamical system
which no quantum spin cluster can possibly exhibit, how-
ever, closely it approaches the classical limit.?? It seems
therefore more appropriate to name these effects of nonin-
tegrability precursors of classical dynamical chaos rather
than quantum chaos.??

B. Thermodynamic limit: s finite, N — o

Dynamical properties of infinite (N— o) quantum
spin systems are in general highly nontrivial even for in-
tegrable models. There indeed exist a number of 1D
models of interacting quantum spins which are integrable.
In some cases their dynamical properties have been
analyzed in great detail. Integrable 1D quantum-spin
models include, most prominently, the class of Bethe-
ansatz-solvable models such as the 1D s =+ Heisenberg
model?*
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N
= —J ZSI'S,H
=1

(3.2)

and some of its generalizations, such as the 1D
s =+ XXZ model®

N
H=—J 3 (SIS 1+SIST 1 +ASTSF L) (3.3)

=1

and the 1D spin-1 bilinear-biquadratic model?¢

N
H=—J 3[81°S141— (8181411 . (3.4)

I=1

Quantum integrability depends, like classical dynamical
integrability, on the existence of a sufficient number of
conservation laws. The complete set of quantum numbers
in integrable quantum-Hamiltonian systems plays a role
similar to the one played by the complete set of action
variables in integrable classical Hamiltonian systems.

The well-established fact that classical deterministic
chaos is a property of nonintegrable classical dynamical
systems as discussed in Sec. II A strongly suggests or
seems to dictate almost that quantum chaos is a property
of nonintegrable quantum many-body systems. Therefore
any serious attempt to discern the hallmarks of quantum
chaos must take account of the exactly known properties
of integrable quantum many-body models and identify
those properties which result as a consequence of integra-
bility. This strategy had its counterpart in classical
dynamical systems, where the foliation of the entire phase
space by invariant tori was recognized as an implication
of dynamical integrability, and where all the indicators of
classical deterministic chaos were recognized to imply
that this pattern is at least partially destroyed.

Van Kampen?? proposed that quantum chaos is that
property which causes a quantum system to behave sta-
tistically in the sense that the time evolution of a dynami-
cal variable approaches an equilibrium value and that this
value is the one predicted by quantum statistical mechan-
ics. Obviously, finite quantum-spin models do not behave
statistically: the time evolution of any dynamical variable
is, in general, multiperiodic. The thermodynamic limit
(N— o) is therefore a precondition for statistical
behavior as much as it is a precondition for nonintegrabil-
ity.

The test of statistical behavior for any given infinite
quantum-spin model is, in general, an extremely difficult
task. In practice it can be carried out only for rather spe-
cial situations and, with some rigor, only for the class of
integrable models. In the context of equilibrium statisti-
cal mechanics, statistical behavior can be tested by study-
ing the long-time asymptotic behavior of time-dependent
correlation functions. Consider, for example, the auto-
correlation function of a quantum-spin model specified by
a Hamiltonian 5. For a pure quantum state |¢) this
function is formally expressed as

(SHOSE) =(Y| i XIS —iXIGH iy

The criterion for statistical behavior of the autocorrela-
tion function of a given quantum-spin model can then be

(3.5)
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formulated as the following long-time asymptotic proper-
ty:

tlim (SH)Sf)y=(St)*. (3.6)

For this admittedly quite special situation, the question
whether a given many-body quantum system behaves sta-
tistically can be examined on a rigorous basis for certain
1D quantum spin models whose time-dependent correla-
tion functions have been analyzed in the thermodynamic
limit. Needless to say, all such results are restricted to in-
tegrable models. It turns out that, apart from some
anomalies which are of no serious concern,?”2® none of
the available exact results for the long-time asymptotic
behavior of time-dependent correlation functions of 1D
quantum spin models is in conflict with statistical
behavior. Examples will be presented below. The same
conclusion was reached, albeit on a much less rigorous
basis, from numerical integrations of the Schrodinger
equation for various dynamical variables and initial condi-
tions of a given quantum-spin model.?’

A property of dynamic correlation functions for infinite
quantum-spin systems which is likely to be more sensitive
to the integrability or nonintegrability of the underlying
model than the property of statistical behavior is the gen-
eral structure of its excitation spectrum. Characteristic
for all quantum-spin models which are integrable in the
thermodynamic limit, by means of the Bethe ansatz or re-
lated techniques, is that the entire excitation spectrum is
composed of multiparameter continua.’® These are struc-
tures with well-defined boundaries, which give rise to
power-law or logarithmic van Hove singularities in the
corresponding densities of states. Except for the unlikely
event®! that these singularities are wiped out by the effects
of matrix elements, they make their appearance also in the
frequency-dependent autocorrelation functions

0 .
buw)= [ "di el spost) (3.7
or any other frequency-dependent quantity. If this is the
case, it imposes the constraint that the corresponding
time-dependent autocorrelation functions {(Sf(z)Sf*) can-
not decay faster than by powers of ¢, asymptotically for
t— 0.

This peculiar property is very well documented for the

case of the 1D s = 5 anisotropic XY model

N
H=— J[(1+yISFSF L +(1—y)SPST . +hSF],  (3.8)
I=1
whose dynamical properties have been analyzed in great
detail. The pioneering work of McCoy, Barouch, and
Abraham®? on the general structure of the dynamic corre-
lation functions of this model led to the remarkable con-
clusion that the time-dependent two-spin correlation func-
tions (Sf'(£)Sf', g ) for T =0 and fixed R decay by powers
of ¢ to their long-time asymptotic values irrespective of
whether the corresponding equal-time correlation func-
tions (Sf'Sf, ) decay to their long-distance (R — o)
asymptotic values exponentially in R or by powers of R.3?
In the following, I should like to illustrate this charac-
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teristic long-time asymptotic behavior of two-spin correla-
tion functions and the general structure of their excitation
spectrum for two situations in the isotropic version of
(3.9),
N
H=— (SIS +SIST 1 +hS]) . (3.9)
=1
The first situation (h =1) corresponds to a state with
maximum magnetic long-range order and the second situ-
ation (4 =0) to a state without any such order; the second
situation represents a state with maximum spin fluctua-
tions and the first situation a state without any correlated
fluctuations.

At h =1 (first situation), the ground state of (3.9) is fer-
romagnetic with all spins aligned parallel to the magnetic
field. This state is characterized by the following equal-
time two-spin correlation functions:

(SiSFr)=(SI{Sfir) =7,
(SFSF r)=(SISt r) =48R0

The time-dependent autocorrelation functions, on the oth-
er hand, are readily determined to be

(SHDSH) =(SI(SF) =+,
(SHOSTY=7e"Jy(1),

(3.10a)
(3.10b)

(3.11a)
(3.11b)

where Jy(t) is a Bessel function. Both functions exhibit
statistical behavior. The first is a constant and the second
decays to zero for — . The leading term of the long-
time asymptotic expansion is

(SHOST) ~273 27— 12(j1)=1/2(] 4o 21 +1/2)) | (3.12)

The difference in behavior of the two functions (3.11)
arises from the fact that the ground state is an eigenstate
of the operator S} but not of the operator Si. Therefore
S/ does not couple to any states other than the ground
state itself, whereas S;° couples to the branch of spin-wave
excitations with dispersion

o(g)=1—cosq . (3.13)

As is well known, the XY model maps, via the Jordan-
Wigner transformation,3433

Sit =S¥ +iSt=a] exp |im > a;aj

i<l

R (3.14a)
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S =S —iS{=exp |—irm Eafaj ap, (3.14b)

Jj<l
Si=ala;—+ , (3.140)

onto a system of noninteracting fermions with the follow-
ing one-particle spectrum:

o =h+cosk . (3.15)

In the fermion language the ground state for 4 =1 is the
empty Fermi sea and the spin-wave excitations are essen-
tially one-fermion states. All this is reflected in the
frequency-dependent autocorrelation function Suu(@) de-
fined in (3.7). The Fourier transforms of (3.11) are

¢u(w)=§8(w) , (3.16a)

1
T 21—(1—w)?]2

The square-root divergences in (3.16b) at @ =0 and 2 obvi-
ously reflect the van Hove singularities of the spin-wave
density of states.

At h =0 (second situation), the ground state of (3.9)
corresponds to a T,=0 critical point with no magnetic
long-range order. The equal-time two-spin correlation
functions decay as powers of R asymptotically for large
distances,’*36:37

(SiSfir)~R7%,
(S{'Sf r)~R™12,

brx (@) (3.16b)

(3.17)

According to (3.14c), the time-dependent autocorrelation
function (S7(£)Sf) can be expressed as a density-density
correlation function of noninteracting fermions.>’ The re-
sult for T'=0,%"

(STOSEY =+[Jo(t)+iEy(0)]?, (3.18)
is again consistent with statistical behavior. Ey(2) is a
Weber function. The leading term in the long-time
asymptotic expansion is

(SHOS?Y ~ e =2t _jp)—1 | (3.19)

2r

The frequency-dependent Fourier transform of (3.18) can
be expressed in terms of elliptic integrals as follows:3#

4 .
$=(0)=—Flarcsin({ 7[1—(1—0%)2]}"2/k,),k,10(0)0(1 —0) + 2K [k, 10(0— )O(2—0) |
T

ki=[1—(0/4)1'?, ky=[1—(w/2)*]'72.

The ground state at & =0 corresponds to a half-filled Fer-
mi sea, and the operator Sf, (3.14c) couples to the
particle-hole excitations. These excitations form a two-
parameter continuum with upper and lower boundaries
given by

(3.21)

eylg)=2 , €.(q)=|sing | ,

ind
sin>)

(3.20)

I

respectively. Since all matrix elements (G | S | A) for the
operator

N
qu=N—1/2 zelqlslz
=1

(3.22)

between the ground state | G) and the particle-hole exci-
tations | A) have the same value,*
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| (G |S;|A)|*=2/N, (3.23)

the autocorrelation function ¢,(w) given in (3.20) is, in
fact, proportional to the density of particle-hole excita-
tions. It has finite (nondivergent) van Hove singularities
at 0 =0, 1,2 respectively, of the following form:*

lw@(w)
T

()~

—2520= (1 —)?0(1 —w) (3.24)

OR—-w).

The autocorrelation functions ¢, (®)=4¢,,(®), in con-
trast, have a much more complicated structure in the fer-
mion representation. As a result of the exponential opera-
tors in the Jordan-Wigner transformation (3.14), they in-
volve not just two-particle excitations as is the case for
¢ (®), but rather the excitation of arbitrarily many parti-
cles. This fact was first established by McCoy, Barouch,
and Abraham,’? who found that the time-dependent two-
spin correlation function (Sf(¢)S{"; g ) can be expressed in
terms of an infinite block Toplitz determinant. The struc-
ture of the autocorrelation function (R =0) and its
frequency-dependent Fourier transform was recently
analyzed in great detail.’®*"%? The long-time asymptotic
expansion of (Sf(¢)S{*) was found to have the following
structure:*®

J

(SIS ~27324%i""2 3 T, , (3.25a)
m=0
Ty =(2m) ™2 =imi(_it)™Pm  pm(_in=n (325p)
n=0
where
A =2""2exp[3¢'(—1)]=0.64500248. . . (3.26)

and the coefficients b\™ are positive rational numbers.
The exponents S, are given by

Bm=3[5(m*+1)],

where [v] denotes the integer part of v, and £(z) is the
Riemann zeta function.

In agreement with the requirement of statistical
behavior this function decays to zero asymptotically for
long times. The long-time asymptotic expansion (3.25)
consists of an infinite sum of terms T,,, m =0,1,2,...
each with a specific oscillatory ¢ dependence given by the
phase factor e "™, Each term T,,, which has been called
a tower, is itself an infinite sum of terms with ascending
powers of ¢!

Quite generally, the long-time asymptotic expansion of
(Sf(1)Sf*) determines the singularity structure of its
frequency-dependent counterpart ¢,,(w). Specifically,
each tower T, of (3.25b) determines the singularity of
¢ (@) at frequency w=m. The dominant contribution
for each m is the following:*®

(3.27)

1B T(+ —+m2)(@—m)"O(w—m), even m (3.28a)
Sl loam~1 1p 1 ™injo—m], odd m (3.28b)
[+(m?=D]

where

B, =A®2Q2x)" "™ (3.28¢)

and v,, = +(m?—2) for even m and v,, =+(m*—1) for
odd m. The characteristic properties of the results (3.25)
and (3.28), which are likely to reflect many generic
features of the dynamical properties of integrable quan-
tum many-body systems, may be summarized as follows.

(i) The function [¢,(®)]y—o has nonzero spectral
weight for arbitrarily high frequencies. In contrast, the
functions [@x ()]s -1, Eq. (3.16b), and [¢,(w)]; -0, Eq.
(3.20), are both of compact support.

(i) The function [¢,(®)],—o has an infinite set of
singularities at frequencies w=m, m =0,1,2,... of the
form (3.28). These singularities are alternatingly one-
sided power type (m even) and two-sided power type with
logarithmic corrections (m odd). In contrast, the function
[¢xx(@)]p =, has just two singularities and the function
[¢(®)]; —0 has three. This is reflected in the fact that
the long-time asymptotic expansions of the corresponding
time-dependent autocorrelation functions, Egs. (3.11b)
and (3.18), involve only two and three towers, respectively,
as opposed to the infinite series of towers in (3.25).

(iti) The regular pattern of singularities in [¢,,(®)]; —o

r
is attributable to the fact that the excitation spectrum can
be decomposed (in the fermion language) into sets of m-
particle excitations with energies

m m
Gm(kl,kz,...,km)zz [a)kl], q= zkl ’ (3.29)
I=1

I=1

and m arbitrarily large, whose densities of states have van
Hove singularities at exactly the frequencies w=m,
m =0,1,2,... . However, the exact nature (exponerts,
amplitudes) of the singularities as they appear in
[¢xx(®)]y —o is governed by the effects of matrix elements.
The two singularities of [¢,,(w)]; -, are due to the one-
particle excitations of the empty Fermi sea and the three
singularities of [¢,,(w)]; ¢ are due to the two-particle ex-
citations of the half-filled Fermi sea.

(iv) It is noteworthy that the function [@,,(w)]; —o can
be represented (by means of a coordinate transformation
in spin space) into a density-density correlation function
of interacting fermions. The coupling to the m-particle
excitations for m >2 can then be understood as being
caused by the infinite hierarchy of Green’s functions gen-
erated in the equation of motion for the two-particle
Green’s function by the interaction term of the fermion
Hamiltonian.
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In summary, we observe that the time-dependent auto-
correlation functions for the ground state of this inte-
grable quantum-spin model (3.9) decay by powers of ¢ to
their asymptotic values under vastly different cir-
cumstances. For a finite spin chain of length N, the num-
ber of excitations contributing to [d,,(@)]s—; is O(N),
for [¢,(@)]y—o it is O(N?) and for [d,.(@)]s—o it is
02V 1), out of a total of 2" eigenstates.

All existing exact results point to the following con-
clusion: The constraint that time-dependent two-spin
correlation functions for pure quantum states
(¢ | SH(1)St r | ¥) have a power-law long-time asymptot-
ic behavior is as much a universal feature of integrable
quantum-spin systems in the thermodynamic limit
N — « as the constraint that all trajectories are confined
to N-dimensional hypersurfaces in the 2N-dimensional
phase space is a universal feature of integrable classical
spin clusters. In the classical system, the constraint is the
consequence of the fact that the entire phase space is foli-
ated by invariant tori, whereas in the quantum system it is
the consequence of the fact that the entire excitation spec-
trum has a multiparameter continuum structure. This
strongly suggests that a characteristic property of nonin-
tegrable quantum-spin models might be the following:
there exist pure quantum states |i¥) (not necessarily
eigenstates of 2°) for which the time-dependent auto-
correlation function v | Sf/(1)Sf* | ¥) decays more rapidly
to its asymptotic value than a power law (possibly ex-
ponentially). This effect of nonintegrability would paral-
lel the well-known result that exponentially decaying au-
tocorrelation functions occur in nonintegrable classical
dynamical systems with few degrees of freedom.*>* This
has far-reaching consequences.

An exponentially decaying autocorrelation function
(¢ |Sf(2)Sf | ) implies the existence of new classes of
excitations with qualitatively different spectral properties,
spectra without (power-law or logarithmic) van Hove
singularities in their densities of states. Nonintegrable
quantum-spin systems would then possess two types of
spectrum, the regular spectrum and the irregular spec-
trum in analogy to the two types of spectrum of a nonin-
tegrable classical spin system: the discrete spectrum asso-
ciated with regular trajectories and the continuous spec-
trum associated with chaotic trajectories. For the quan-
tum many-body system, the two types of spectrum may be
characterized as follows.

(i) Regular spectrum. This part of the spectrum con-
sists of multiparameter continua. It is characterized by
the property that for increasing N individual excitations
belonging to a particular branch or continuum close up in
(q,) space as 1/N to an increasingly regular pattern.
This property was verified by exact calculations on inte-
grable 1D quantum-spin models*® and is, in fact, the very
basis for the usefulness of finite-chain calculations for the
determination of spectral properties and T =0 dynamic
structure factors of 1D quantum-spin models. The regu-
lar spectrum generally exists also in nonintegrable
quantum-spin models. For example, in a large class of 1D
spin-s models with ferromagnetic ground state, most of
which are believed to be nonintegrable, the regular spec-
trum includes the classes of excitations with one over-

turned spin (spin waves) and two overturned spins (two-
spin-wave continuum and branch of bound spin com-
plexes).*> These branches and continua of excitations play
a role similar to that of invariant tori for the classical spin
clusters. However, the spectrum of a quantum-invariant
torus is, in general, not discrete but continuous unlike the
spectrum of its classical counterpart, the reason being that
the quantum many-body system has an infinite number of
degrees of freedom. It is the regular multiparameter con-
tinuum structure which is the hallmark of a quantum-
invariant torus. Every excitation belonging to the regular
spectrum can be characterized unambiguously in terms of
a set of quantum numbers. In integrable spin models all
excitations belong to this class. Selection rules play a ma-
jor role in the regular spectrum. For example, the
particle-hole excitations contributing to [¢,(w)]; —o, Eq.
(3.20), comprise only a small subset of those excitations
which are not already excluded by selection rules associat-
ed wigh global symmetry properties of the Hamiltonian
(3.9).

(ii) Irregular spectrum. In nonintegrable quantum-spin
models there also exist excitations which do not form reg-
ular patterns with a multiparameter continuum structure
in the thermodynamic limit. For finite N, this part of the
spectrum is likely to share many characteristics of the ir-
regular spectrum observed in quantum-spin clusters for
large s (as described in Sec. III A). However, in contrast
to the case of a spin cluster in the classical limit s— oo,
the irregular spectrum of a quantum-spin model in the
thermodynamic limit N— oo is not describable by a piece-
wise smooth energy density with isolated singularities.
The absence in the irregular spectrum of individual
branches or continua with well defined boundaries, which
would invariably lead to van Hove singularities, must be
the result of strong level repulsion, which in turn is attri-
butable to the nonexistence of a sufficient number of con-
servation laws (expressible in terms of a complete set of
quantum numbers). It is highly suggestive to view in
these new classes of excitations manifestations of quan-
tum chaos.

Thus far we have pointed out the similarities and
differences between quantum integrability (the theme of
Sec. III) and classical dynamical integrability (the theme
of Sec. IIA). However, it is important to realize that
quantum integrability is also closely related to the thermo-
dynamic integrability of classical (many-body) statistical
models (the theme of Sec. II B). This relation is establish-
ed by the well-known exact mappings between Hamiltoni-
ans of 1D quantum-spin models and transfer operators of
certain 2D classical statistical models or, more generally,
between D-dimensional quantum models and (D +1)-
dimensional classical models.*”*® Some of the charac-
teristic features of nonintegrability in quantum many-
body systems (i.e., features of quantum chaos) as postulat-
ed in this paper can then be translated into corresponding
effects of thermodynamic nonintegrability in classical sta-
tistical models.*

In summary, the preceding discussion has naturally led
to the conjecture that quantum chaos in spin systems is an
intrinsic long-time asymptotic property of nonintegrable
quantum systems in the thermodynamic limit N— 0.
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This view of the nature of quantum chaos deviates dis-
tinctively from the two views paraphrased at the begin-
ning of this paper. In contrast to classical dynamical
chaos, which makes its appearance in systems with as few
as two degrees of freedom, quantum chaos requires an in-
finite number of degrees of freedom, and is therefore
much more difficult to analyze theoretically.®® In prac-
tice, the study of quantum chaos is limited for the most
part to the study of its precursors in finite-N systems of
nonintegrable quantum many-body models.

At present, the available evidence for nonintegrability
effects in 1D quantum-spin models which may be attri-
butable to quantum chaos is still somewhat circumstan-
tial. Systematic investigations are in progress. Two
pieces of evidence are briefly outlined in the following.

(i) Finite-chain extrapolations for various thermo-
dynamic quantities of 1D quantum-spin models have been
successfully tested on the integrable s =5 XY model (3.9).
However, recent attempts to determine the staggered sus-
ceptibility X,, (g=m) at T =0 by means of finite-chain
extrapolations have dramatically failed in an unprecedent-
ed way.’""3? X, () indeed represents the linear response
to a perturbation which renders the model nonintegrable.
The exact result for X, (), by which the finite-chain re-
sults could be tested, was determined from the exactly
known time-dependent correlation functions of the unper-
turbed, i.e., integrable model.*?

(i) A number of unusual and puzzling features have re-
cently been observed in the ground-state and spectral
properties of the 1D s>+ Heisenberg antiferromagnet
(3.2), which is believed to be nonintegrable in contrast to
its Bethe-ansatz-solvable s =+ counterpart. Various nu-
merical studies of this model, which have been motivated
by Haldane’s* challenging prediction (based to a large ex-
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tent on approximate mappings to continuum models) that
the integer-s Heisenberg antiferromagnetic chains have an
energy gap in the excitation spectrum while the half-
integer-spin counterparts do not, have resulted in a state
of controversy: Finite-chain extrapolations are incon-
clusive due to erratic behavior and slow convergence;*>>®
this makes finite-size scaling quite unreliable. Also the
results of different Monte Carlo studies are in disagree-
ment over important issues.”>® It is not surprising that
the phenomenon of level repulsion which is expected in
the irregular spectrum of a nonintegrable model makes
finite-chain extrapolations extremely difficult if not im-
possible. In the absence of a complete set of quantum
numbers by which every eigenstate can be uniquely identi-
fied, the tracking of a particular excitation in systems of
increasing N is an ambiguous process. Changes in trend
occurring at various states of finite-chain extrapolations
have indeed been observed in supposedly nonintegrable
quantum-spin chains.®!
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