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ABSTRACT 

 

There is an ever increasing demand for fossil fuels. Lithium ion batteries (LIBs) can 

effectively reduce the production of greenhouse gases and lessen the need for fossil 

fuels. LIBs also have great potential in electric vehicle applications as an alternative to 

petroleum modes of transportation. Understanding the chemical reactions between the 

electrolyte and electrodes in LIBs is very crucial in developing batteries which can 

work over a wide temperature range and also give a wide potential window. The Solid 

Electrolyte Interface (SEI), formed by the reduction of solvent molecules on the 

surface of electrodes, is an important component of LIBs. The SEI is very essential to 

the performance of LIBs. One electron reduction pathway products of solvent 

molecules was investigated using lithium-naphthalenide. Methylene ethylene 

carbonate, a high temperature additive has been synthesized and its performance has 

been tested at 60oC. 

Lithium-Oxygen batteries have an energy density ten times greater than that of LIBs. 

However, lithium-oxygen batteries have rechargability problems associated with them. 

The most common electrolyte used in this type of batteries is LiPF6 in carbonate or 

ether based solvents. LiPF6 inherently decreases electrolyte stability, since LiPF6 can 

undergo thermal dissociation into PF5 and LiF. PF5 being a strong Lewis acid, can 

react with electron rich species. The thermal decomposition reactions of LiPF6 based 

electrolytes are studied in detail with regard to LIBs. The comprehensive study has 

been conducted on the thermal degradation of several electrolyte systems in the 

presence of Li2O2.                                                                                      
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PREFACE 

This dissertation is written in manuscript format. The first chapter is an introduction 

about lithium ion batteries and lithium oxygen batteries. The second chapter is a 

manuscript that will be submitted to ECS electrochemistry letters. The third chapter is 

a manuscript published in The Journal of Power Sources. The fourth chapter is a 

manuscript that is published in ECS electrochemistry letters. The fifth chapter is a 

manuscript that is published in the Journal of polymer science A.  
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Chapter-1 Introduction 

Battery is an electrochemical devise which converts chemical energy to electric 

energy. The reduction-oxidation (red-ox) processes that occur in this electrochemical 

devise are responsible for the conversion of chemical energy to electrical energy. The 

major components of battery are: 

1. Anode is the active material of the battery which gives off electrons to external 

circuit and gets oxidized. 

2. Cathode is the active material that takes the electron from the external circuit 

and gets reduced. 

3. Electrolyte helps in transport of ions from anode to cathode and vice versa 

during the  

red-ox process. The electrolyte should be electrically nonconductive but 

conducts the ions between the electrodes. 

4. Separator prevents the direct electrical contact between anode and cathode. 

The separator should be permeable to electrolyte. 

An ideal combination of anode and a cathode is that which can give high voltage 

and also high energy density. Lithium is the most electropositive metal (-3.04V Vs 

SHE) and lightest metal (6.94 g/mole) makes it ideal choice as anode material1. 

Thus the lithium batteries (primary) have very high energy densities. The 

theoretical specific capacity of lithium metal is 3,884m.A.h.g-1. The 

rechargeability of such a battery is limited due to dendrite formation which on 

further cycling leads to the shorting of the cell. These safety issues lead to the 

development of rechargeable lithium ion batteries. Replacing lithium metal with 
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intercalation compounds for lithium ions solves many problems arising due to 

primary lithium batteries. Lithium-ion batteries are based on such interaction 

compounds2.  

Design of Lithium ion battery: 

With the demand for fossil fuels ever increasing the need for alternative energies is 

getting lot of attention in the scientific community. Lithium ion batteries can 

provide an alternative solution to petroleum based transportation3. A typical 

rechargeable lithium-ion battery (LIB) consists of a Lithium transition metal oxide 

cathode and a graphite anode. The lithium transition metal oxide is coated on an 

aluminum foil which act as current collector and the graphite is coated on copper 

foil which acts as current collector. The anode and cathode are separated by a thin 

polyolefin film (polyethylene or polypropylene) separator. The electrolyte used in 

LIB’s is usually a lithium salt (lithium hexafluorophosphate) dissolved in a blend 

of organic carbonates and esters. Table 1 shows the various solvents used in 

lithium ion batteries along with their physical properties.  This combination of 

electrodes not only gives wide voltage window but also higher capacities. Typical 

cathode interaction materials are transition metal oxides like LiCoO2, 

LiNi 1/3Co1/3Mn1/3O2, LiMn2O4, LiNi 0.5Mn1.5O4 and LiFePO4 etc. A fully lithiated 

graphite can provide a theoretical specific capacity of 372 mAh/g. At full state of 

charge graphite can only accommodate one lithium ion per six carbon atoms2.  

Figure 1 shows the typical construction and discharge process of the lithium-ion 

battery. Lithium ions are removed from the cathode metal oxide lattice and 

intercalated in to the anode during the charging process. The transition metal 
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undergoes an increase in oxidation state during this process and the reverse 

process occurs during discharge of the LIB.  The LIB is constructed in discharge 

state so, these batteries have to be charged before any useful electric work can be 

extracted out of them1. Scheme 1 represents the charge discharge reactions that 

occur in lithium ion battery. 

  
Cathode:     LiMOx  Li (1-y) MOx     +  yLi+   + ye- 

 

Anode: C + yLi+   + ye-  LiyC 

 

Overall reaction: LiMOx   + C  Li(1-y)MOx + LiyC 

Scheme-1  

Interface in Li-ion batteries 

One of the main reasons behind the cycleability of the present lithium ion battery 

is the solid electrolyte interface formed during the initial charging of the LIB. The 

lithiation process, which is insertion of lithium ions in to the graphene structure, 

occurs at a potential of ~0.2V vs. Li. So, during the charging process the potential 

of the anode is taken very close to the potential of lithium metal. This potential 

provides a highly reductive environment for the decomposition of electrolyte. 

Even before any intercalation can occur the electrolyte gets decomposed forming a 

thin film on the surface of the anode. This thin film is called solid electrolyte 

interface (SEI).  A similar film is formed on the surface of the cathode due to 

oxidation of the electrolyte. This SEI is very crucial for the performance of the 

lithium ion battery. The SEI prevents further reduction or oxidation of the 

Charging 

Discharging 

Charging 

Discharging 

Charging 

Discharging 
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electrolytes and supports intercalation and deintercalation of lithium ions. The SEI 

is permeable to lithium ion diffusion but prevents electron tunneling through it4, 5. 

The most commonly used electrolyte system consists of lithium 

hexafluorophosphate salt dissolved in a blend of ethylene carbonate (EC), 

dimethyl carbonate (DMC), Propylene carbonate (PC) and diethyl carbonate 

(DEC). During the early development of LIB PC was tried as the solvent for 

lithium ion batteries, but PC didn’t support interaction of graphite as it cannot 

form a stable SEI. This was overcome by using EC; the presence of EC supported 

intercalation by forming a stable SEI 4.  

The chemistry of the SEI has been extensively studied by various research groups. 

Aurbach et al proposed that the SEI consists of salts of lithium mono and 

dicarbonates formed by single electron reduction of the solvent molecules as 

opposed to a two electron reduction pathway 7. The cyclic carbonates (PC and EC) 

form dicarbonates of lithium while the linear carbonates (DMC and DEC) form 

mono carbonates. Chapter 1 in this thesis describes the one electron pathway for 

the reduction of PC, EC, DEC and DMC.  
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Scheme 2 6-8 Path A represents a two electron reduction of cyclic carbonates, path 

B and C represents one electron reduction of cyclic carbonate. 

Additives for Lithium-ion batteries: 

A major requirement for the lithium ion batteries for electric vehicles is long cycle 

life and also wide temperature window. The SEI formed by the standard 

electrolyte formulation ( 1M LiPF6 in 1:1:1 EC:DMC:DEC) is not stable at high 

temperatures (above 60oC). the ustable SEI can lead to parasitic reaction and 

accelerate the electrolyte degrardation. This leads to capacity fade in lithium ion 

batteries. To suppress this capacity fade and improve the cycle life, additives 

which can form a better SEI are used. Chapter 3 of this thesis deals with one of the 

additive that is developed by our research group which improved the high 

temperature performance of LIB. 

Lithium/oxygen battery: 

Most of the modern electronic devices have lithium-ion battery. This technology is 

being used in Hybrid electric vehicle to decrease the demand for fossil fuels10. The 

energy density of lithium ion batteries is dictated by the active material in the 

electrodes of these batteries.  Li/O2 battery has more energy density than the 

conventional Li-ion battery10,11. The theoretical energy density of Li/O2 battery is 

around 11680Wh/kg, but the current state of rechargeable lithium /O2 battery is 

limited to only few cycles1. The first rechargeable Li/O2 battery was invented by 

Abraham et-al in 1996 12. Li/O2 battery has lithium anode and a highly porous 

carbon cathode. Figure 2 shows the discharge process in Li/O2 battery. The anode 

and cathode reactions in Li/O2 battery are presented in scheme 4. 
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Li      Li+ +e- (anode)  
 

Li+ +O2 +2e-       Li2O2 (cathode) 
 

Li+ + O2 +4e-   2Li2O (cathode) 
 

Scheme 4: Anode and cathode reactions in Li/O2 battery 
 

During the discharge of lithium-oxygen battery the main products formed on the 

cathode are Lithium peroxide (Li2O2) and Lithium oxide (Li2O) and during 

charging the products go back to Li and oxygen 12. The most common electrolyte 

used in Li-O2 batteries is LiPF6 in carbonate or ether based solvents 13,14. The 

stability of this electrolyte system in Li/O2 battery is less since LiPF6 being 

thermal equilibrium with PF5 and LiF. PF5 being a strong Lewis acid reacts with 

electron rich compounds 15. Lot of the recent work is focused on the insoluble 

decomposition products formed during the discharge of Li/air battery 13, 14. One of 

the primary problems is the stability of the electrolyte in the presence of electrode 

material or reactive intermediate species generated during the reversible charging 

and discharging of the cell. Chapter 4 of this thesis deals with the stability of 

various electrolyte formulations in the presence of Li2O2.  
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       Figure 1-1. Schematic diagram of the lithium ion battery. 
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          Figure 1-2. Discharge and charge process in Li/O2 battery 
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Solvent Structure T
m 

(
o

C) T
b
 (

o

C) ε (25 
o

C) η (25 
o

C) 

Ethylene 

carbonate (EC)  

 

36.4 248 89.78 
1.90  

(40
 o

C) 

Dimethyl 

Carbonate (DMC)  

 

4.6 91 3.107 0.59 

Di ethyl 

Carbonate (DEC)  

 

-74.3 126 2.805 0.75 

Ethyl methyl 

carbonate (EMC)  

 

-53 110 2.958 0.65 

Propylene 

carbonate (PC)  

 

-48.8  242  64.92  2.53  

 

Table 1-1. Physical properties of various organic solvents used in lithium ion batteries  
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Chapter-2 
 
 Reduction products of Solid Electrolyte interface 
 
 Introduction 
  
Organic Carbonates are the major solvents used in lithium-ion batteries. The 

reversibility of the present Lithium-ion battery is mainly attributed to the electrolyte 

system used in these batteries 1.  Solid electrolyte interface (SEI) is formed by 

reduction of organic carbonates on the surface of the anode in lithium-ion batteries.  

The SEI has the properties of the electrolyte which permits only Li+ migration into and 

out of the electrodes but prevents electron tunneling through it 2. The growth of the 

SEI at the expense of the electrolyte at high temperatures leads to the capacity fade in 

lithium-ion batteries. Understanding the reactions that transform these organic 

carbonates to SEI is essential in developing better lithium-ion batteries. A two electron 

pathway for the reduction of ethylene carbonate was proposed initially 3, which was 

later challenged by Aurbach et. al. 1987. They proposed one electron pathway for the 

reduction of cyclic carbonates and later extended it to linear carbonates 5. The major 

products of one electron reduction are semi carbonates and gases 4,5. Other than semi 

carbonates the SEI also consists of lithium oxalates and alkoxides when cycled with 

carbon based anodes 6.  

 

 

 

 

Scheme-1: Two electron reduction of propylene carbonate. 

O O

O

O O

O

Li

Li 2CO3   + CH2CH=CH2
e- e-

Li
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R1= H (EC) or CH3 (PC) 

Scheme-2: Single electron reduction of cyclic carbonates (EC and PC). 

Tarascon et. al. analyzed the SEI products formed on the surface of the anode by NMR 

(nuclear magnetic resonance spectroscopy) and ESI-MS (electron spray ionization-

mass spectroscopy). They found that the major products of SEI are semi carbonates 

along with lithium alkoxides and phosphates 8, 9. In order to understand the structure of 

the components in the SEI, we used a Lithium napthalenide, a well known one 

electron transfer agent, as a modle compound for the lithiated graphite surface. 

Lithium napthalenide is reacted with various carbonate solvents including ethylene 

carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), and dimethyl 

carbonate (DMC). The products are analyzed by Nuclear magnetic resonance 

spectroscopy (NMR) and Fourier transform Infrared spectroscopy (FTIR). 

Experimental : 

Materials and methods: 

All reagents were used without further purification. Reagents and solvents were 

purchased from either Sigma-Aldrich or Novolyte technologies. Battery grade 

ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DMC) and 
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dimethyl carbonate (DMC) are obtained from Novolyte technologies. All the reactions 

and purifications are performed in a nitrogen filled glovebox. The analysis of evolved 

gases during the reaction is performed on Agilent 6890 GC equipped with 5973 mass 

selective detector and DB-1MS UI column. Helium is used as carrier gas with a flow 

rate of 1.0ml/min. The gas samples are analyzed in an isothermal run, the column 

temperature is maintained at 60oC with a run time of six minutes. The mass spectra 

obtained on these gases are compared with NIST library to determine the molecular 

structure. 

Synthesis of Lithium-Naphthalenide: 

 4 grams of Naphthalene (0.0312 moles) and 0.197g (0.0283 moles) of lithium metal 

are added to a 100ml round bottom flask containing 50ml of Tetrahydrfuran (THF). 

The reaction mixture is stirred over night at room temperature. A dark green color 

solution of Lithium-naphthalenide is obtained.                                               

            

 

 

       

     

Reaction of Li-naphthalnelide with organic carbonates: To a bottom flasks 

containing the solution of Li-naphthalenide ( 0.0283moles, ~25ml)  is added ethylene 

carbonate (EC) in 1:1 mole ratio. All the reaction was stirred over night. Immediately 

after addition of carbonates to lithium napthalide the solution turns reddish brown and 

precipitation is observed.  The solvent is removed by high vacuum and the resulting 

+   Li Li+
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reddish brown solid is washed with diethyl ether to remove the naphthalene and any 

residual organic carbonate solvent.  The solid is dried under vacuum to remove the 

solvent.  The solids were dissolved in deuterium Oxide (D2O) and 1H and 13C NMR 

spectra of the solutions were acquired on a Bruker 300Mz spectrometer. The water 

peak present as impurity in D2O is used for a reference at 4.7ppm to determine the 

chemical shifts. Similar reactions were conducted with propylene carbonate (PC), 

Dimethyl carbonate (DMC) and Diethyl carbonate (DEC). The Fourier transform 

infrared (FTIR) spectra of the solids were taken in an attenuated total reflection mode 

on Bruker tensor 27 instrument equipped with germanium crystal.  The gas analysis is 

performed by evacuating the head space of the reaction flask containing Li 

naphthalenide in THF followed by carbonate solvent addition.  The evolved gases are 

then sampled using a 10µL GC syringe. 

Results and discussion 

NMR analysis of precipitates 

The molecular structures of the precipitates formed in the reaction between lithium 

naphthalenide and various carbonates are analyzed via a combination of 1H, 13C NMR 

and FTIR. The 1H and 13C NMR spectra of the precipitates show spectral features 

similar to that of their parent carbonates but have a different chemical shift values.  

Figure 1 shows the 1H NMR of the precipitates formed by reaction between Lithium 

naphtahalenide with EC. The 1H NMR shows a singlet around 3.51 ppm which 

corresponds to methylene protons. Figure 2 contains the corresponding 13C NMR 

spectrum which contains a singlet at  62.5 ppm and another singlet around 168.3 ppm. 

The singlet around 62.5 ppm is due to methylene carbon (O-CH2-CH2-O-) and the 
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singlet around 168.3 due to carbonyl carbon. Figure 3 shows the 1H NMR of the 

precipitate formed by the reaction between Lithium naphthalenide and PC. 1H NMR 

shows a doublet around 1ppm due to –CH3 protons  coupled to a single proton and 

multiplet  around 3.3ppm which is due to -CH2 type protons. There is another 

multiplet around 3.7 ppm which is due to the asymmetric proton. This type of splitting 

pattern is similar to that of PC. Figure 4 shows the 13C NMR of the precipitate formed 

in the reaction between Lithium naphthalenide and PC which shows four peaks 

located at 17.7, 66.3, 67.9 and 168.3 which are due to –CH3,  -O-CH2-, -O-CH(CH3) 

and –C(O)- type carbons respectively. Figure 5 shows the  1H NMR of the precipitate 

formed in reaction between Lithium naphthalenide and DEC which shows a triplet at 

1.12 ppm which  is due to CH3 protons coupled with CH2 type protons and a quartet at 

3.5 ppm due to CH2 protons coupled with CH3 protons. Figure-6 contains the 13C 

NMR of the solid isolated from the reaction of lithium naphthalenide with DEC which 

contains three resonances at  18.73 ppm, 69.04 ppm and 154.26 ppm which are due to 

methyl, methylene and  carbonyl carbons respectively. Figure-7 contains the 1H NMR 

spectra of the reaction between Lithium naphtalaneide and DMC. There is single  1H 

NMR signal at 3.14 ppm  is due to CH3-O type protons and the corresponding 13C 

NMR (figure-8) has two signals at 48.7 and 168.59 due to methyl carbon and carbonyl 

carbon. All the precipitates have trace amount of diethyl ether which is seen in both 1H 

(t 1.1 and q 3.5 ppm) and 13C NMR (14.7 and 66.4 ppm). Table  1 shows all the 

chemical shifts of the precipitates formed in the reactions. 
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FTIR analaysis of precipitates 

Figure 9 contains the FTIR spectra of the precipitates formed in the Lithium 

naphthalenide reaction with various carbonate solvents.  All of the precipitates have 

similar structural features in the 2000- 700cm-1 region. Absorptions are observed at ~ 

1650cm-1, 1350cm-1, 1100cm-1 and 820cm-1 for all precipitates.  All the precipitates 

contain asymmetric and symmetric stretching modes around 3000 cm-1 corresponding 

to alkane or alkene groups present in these precipitates. Asymmetric stretching of 

carbonate O–C=O  groups around 1650 cm-1 and asymmetric stretching  mode of C–O 

–C group around 1100 cm-1 are present in all the precipitates.  The high intense peaks 

around 1300cm-1 to1400cm-1 are due to C-O symmetric stretching.  

The NMR and FTIR spectral features of the precipitates are identical to the pure 

compounds previously reported.7 The combination of spectral data from both NMR 

and FTIR indicates that the one electron reduction products of the carbonate solvents 

used in Li-ion battery are exclusively lithium mono and di alkyl carbonates. By the 

reduction of cyclic carbonates (EC and PC) the products formed are Lithium ethylene 

dicarbonate (LEDC) from EC and Lithium propyl dicarbonate from PC. By the 

reduction of linear carbonates (DMC and DEC) the products are exclusively lithium 

methyl carbonate and lithium ethyl carbonates respectively.  

GC-MS analysis of Gases 

Since gas evolution was observed during the reduction reaction of carbonates with 

lithium naphthalenide, the gasses evolved during reaction were analyzed by GC-MS.  

Upon reaction of lithium naphthalenide with EC the reaction mixture evolves gas 

which matches to the NIST library spectrum of ethylene.  Reaction of propylene 
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carbonate results in the generation of propylene gas.  Analysis of the gases evolved 

during the reaction of Li naphthalenide with DMC and DEC have not been fully 

characterized due to interference of Nitrogen and Oxygen gases in GCMS analysis.  

 

Conclusions: 

A model compound Li napthalenide has been used to simulate one electron reduction 

reaction of organic carbonates. The precipitates of the reactions were analyzed by a 

combination of NMR  and FTIR spectroscopy while the gases evolved during the 

reaction were analyzed by GCMS. Analysis of the products confirms that the 

previously reported reactions in Scheme 1 and 2 are the dominant reduction reactions 

of ethylene carbonate and propylene carbonate.  The primary products of the reduction 

of EC are LEDC and ethylene and the primary reduction products of PC are LPDC and 

propylene.  Analysis of the reduction products of diethyl and dimethyl carbonnate 

confirm that the primary products are lithium ethylcarbonate and lithium methyl 

carbonate.  Unfortunately, the gasses evolved from these reactions have not been fully 

characterized and thus the complete reaction cannot be determined. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



20 
 

 
References: 
 

1. Frong, R.; Von Sacken, U.; Dhan, J.R. J.Electrochem.Soc. 1990, 137, 2009 
 

2. Xu, K. Chem. Rev 2004, 104, 4303. 
 

3. A. N. Dey and B. P. Sullivan, J.Electrochem. Soc., 1990. 137, 2009. 
 

4. D. Aurbach, M. L. Daroux, P. W. Faguy and E. Yeager, J. Electrochem. Soc.,  
 
1987, 134, 1611. 
 

5. Ein-Eli, Y. Electrochem. Solid-State Lett. 1999, 2, 212 
 

6. G. V. Zhuang and P. N. Ross, Electrochem. Solid-State Lett., 2003,6, A136. 
 

7. Xu, K., G. V. Zhuang, et al.  J Phys Chem B   2006 110(15): 7708-7719. 
 

8. Gireaud, L.; Grugeon, S.; Laruelle, S.; Pillard, S.; Tarascon, J.-M,  
 
J.Electrochem.Soc. 2005, 152, A850 
 

9.  Laruelle, S.;  Pilard, S.;  Guenot,L.;   Grugeon,S.; Tarascona, J. –M,  
 
J.Electrochem. Soc 2004, 151  A1209  

  



21 
 

 

 

 

 1H NMR(D2O) 13C NMR (D2O) Gasanalysis   

EC  3.5(s),        62.5, 168.3 Ethylene   

PC 0.9 (d), 3.3 (m), 

3.7 (m) 

 17.7, 66.32,   

67.9, 168.3 

Propene   

DEC (Duterated acetone)  1.12 (t), 3.55(q)       154.2, 69.04, 

18.73 

   

DMC  3.14 (s)     48.7, 168.5    

 

Table 2-1. 1H NMR, 13CNMR and GC-MS of the precipitates and gases formed by 

reaction of Lithium-naphthalenide with various organic carbonates. 
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Figure 2-1. 1H NMR of the precipitate formed in the reaction between EC and 

Lithium naphthalenide. 

 

 
 
Figure 2-2. 13C NMR of the precipitate formed in reaction between EC and 

Lithium naphthalenide. 
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           Figure 2-4. 13C NMR of the precipitate formed in the reaction between PC and  
            
           Lithium  naphthalenide. 
 

 

  
 
Figure 2-3. 1H NMR of the precipitate formed in the reaction between PC and  
 
Lithium naphthalenide. 
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Figure 2-5. 1H NMR of the precipitate formed in the reaction between DEC 

and Lithium naphthalenide. 

 
 

Figure 2-6. 13C NMR of the precipitate formed in the reaction between DEC 

and Lithium naphthalenide in D6 Acetone. 
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Figure 2-7. 1H NMR of the precipitate formed in the reaction between DMC and  
 
Lithium naphthalenide. 
 
 

 
Figure 2-8.  13C NMR of the precipitate formed in the reaction between DMC  
 
and Lithium naphthalenide. 
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Figure 2-9. FTIR spectra of precipitates obtained by reaction of Lithium- 
 
naphthalenide with: (a) Propylene carbonate (b) Ethylene carbonate (c) Diethyl  
 
carbonate (d) Dimethyl carbonate 
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Chapter 3 Methylene ethylene carbonate: Novel additive to improve the high  
 
temperature performance of lithium ion batteries 
 
Introduction 
 
Lithium ion batteries are the dominant secondary battery tech-nology for portable 

electronic applications and there is great interest in the use of lithium ion batteries in 

electric vehicle (EV) applications. However, the performance requirements are much 

more stringent for EV application compared to portable electron-ics applications. EV 

applications require longer life and greater operational and survival temperature 

ranges. The more stringent requirements are often limited by the performance of the 

electrolyte [1]. In particular, the high temperature performance and calendar life are 

typically limited by the thermal stability of the electrolyte and reactions of the 

electrolyte with the protective anode solid electrolyte interphase (SEI) [2–4]. One 

method for improving the calendar life and high temperature stability of lithium ion 

batteries is the incorporation of additives which are sacrificially reduced on the surface 

of the anode to generate a more stable anode SEI. The most widely used additive in 

lithium ion batteries is vinylene carbonate (VC). Incorporation of VC into lithium ion 

batteries has been reported to improve cycling stability at elevated temperature (>50 

oC) [5–9]. Investigations into the source of performance improvements suggest that 

VC reacts on the surface of both the graphite anode and metal oxide cathode. 

However, the generation of poly(alkyl carbonate) on the graphite surface is typically 

cited as the primary source of performance enhancements. In this manuscript, we 

report a novel anode SEI film forming additive, methylene ethylene carbonate (MEC) 

[10,11]. MEC is readily synthesized via a mercury catalyzed cyclization reaction [12]. 
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Incorporation of MEC into lithium ion cells results in a signifi-cant improvement in 

capacity retention upon cycling at elevated temperature (60 oC). Ex situ surface 

analysis of the electrodes suggests that poly(methylene ethylene carbonate) is 

generated on the anode and cathode surfaces and is the likely source for performance 

enhancements. MEC is a promising thermal stabilizing additive for lithium ion 

batteries. 

Experimental  

All of the materials for the synthesis of MEC were purchased from Sigma Aldrich or 

Acros and used without further purifi-cation. Battery grade ethyl methyl carbonate 

(EMC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and lithium hexafluo-

rophosphate (LiPF6) were provided by Novolyte and used without further purification. 

MEC is purified by recrystallization and its purity is assessed from 1H and 13C NMR 

spectroscopy and gas chromatography. Prismatic cells (650 mAh) containing an 

artificial graphite anode and a LiNi1/3Mn1/3Co1/3O2 cathode were prepared with 1 M 

LiPF6 in EC:EMC (3:7 by volume) with and without added MEC. Related lithium ion 

coin cells are prepared with 1 M LiPF6 in 1:1:1 EC:EMC:DEC with and without 2% 

(wt) added MEC. The coin cells used for testing the electrolyte formulations con-

tained LiNi0.8Co0.2O2 (LNCO) as the active cathode material and mesocarbon 

microbeads (MCMB) graphite as the active anode material. The coin cells contained 

30  µL electrolyte and polyethy lene film for a separator and were used for the ex situ 

surface analysis of the electrodes. The coin cells were cycled with a constant current-

constant voltage charge and a constant current discharge between 4.1 V and 3.0 V 

using a battery cycler (BT-2000 Arbin cycler, College Station, TX). The cells were 
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cycled with the following formation procedures: first cycle at C/20, second and third 

cycle at C/10 and remaining two cycles at C/5. After the initial five formation cycles 

the cells were cycled at C/5 rate at room temperature.  

The cells were opened in an Ar glove box after cycling and the electrodes were 

extracted for surface analysis. The electrodes were rinsed with dimethyl carbonate 

(DMC) three times prior to surface analysis. The XPS spectra were acquired with a 

PHI 5500 system using Al Kα radiation (hν = 1486.6 eV) under ultra high vac-uum. 

Characterization of XPS peaks was made by recording XPS spectra for reference 

compounds, which would be present on the electrode surfaces: LiF, Li2CO3, LixPOyFz 

and lithium alkyl carbonate. The graphite peak at 284.3 eV was used as a reference for 

the final adjustment of the energy scale in the spectra. Lithium was not monitored due 

to its low inherent sensitivity and small change of binding energy. The spectra 

obtained were analyzed by Multipak 6.1A software and fitted using XPS peak 

software (version 4.1). A mixture of Lorentzian and Gaussian functions was used for 

the least-squares curves fitting procedure. Scanning electron microscopy (SEM) 

images were taken on a JEOL 5900 scanning electron microscope. Fourier transfer 

infrared spectroscopy (FTIR) was conducted on a Thermo Scientific Nicolet iS10 

Spectrometer with an attenuated total reflection (ATR) accessory. The spectra were 

acquired with a resolution of 4 cm−1 and a total of 128 scans. 

 2.1. Synthesis of t-BOC protected propargyl alcohol (Eq. (1))  

To a solution of propargyl alcohol 20 g (0.356 mol) in 30 mL methylene chloride are 

added N,N-diisopropylethyl amine 115.0 g (0.89 mol) and dimethyl amino pyridine 

4.34 g (0.0356 mol) at room temperature under nitrogen. The contents are stirred in an 
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ice bath while di-t-butyl dicarbonate 100 g (0.462 mol) is slowly added under nitrogen 

purge. The reaction mixture is allowed to stir for 3 h as the ice bath warms to room 

temperature. The reaction mixture is then washed with water, 10% HCl solution, 10% 

NaHCO3 solution, and NaCl solution (150 mL each) followed by drying with 

magnesium sulfate. The residual solvent is removed via rotary evaporation to yield the 

t-BOC propargyl alcohol (52.8 g, 95% yield). 

 2.2. Synthesis of MEC (Eq. (1)): 1 A suspension of mercury (II) triflate 6.36 g (12.7 

mmol) and tetra methyl urea 4.44 g (38.07 mmol) in 150 mL methylene chloride is 

stirred for 30 min in a round bottom flask in a nitrogen filled glove box. To that 

suspension is added t-BOC propargyl alcohol 40 g (0.256 mol) and stirred over night. 

The contents are filtered through silica gel to remove the mercury salts and tetra 

methyl urea. The residual solvent is removed via rotary evaporation followed by 

recrystallization in pentane to yield MEC (11.5 g, 45% yield). The purity of MEC as 

estimated by NMR spectroscopy is >99%. 1H NMR (300 MHz, CDCl3) δ 4.95 (t, 2H), 

4.79 (m, 1H), 4.38 (m, 1H). 13C NMR (75 MHz, CDCl3) δ 152.83, 148.93, 67.60, 

87.00. Melting point: 31–33 oC. 

 

 

        (1) 

 
 
Results and discussion 
  
Electrochemical testing on full cells The performance of MEC as a thermal stabilizing 

additive in full cells was examined in 650 mAh prismatic cells containing an artificial 
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graphite anode, LiNi1/3Mn1/3Co1/3O2 cathode, and 1 M LiPF6 electrolyte in EC:EMC 

(3:7 by volume) with and without added MEC. After typical cell formation cycling at 

room temperature, the cells were cycled at a 1 C rate between 3.0 and 4.2 V at 60 oC 

to simulate accelerated aging (Fig. 1). Cells containing 1 or 2% of MEC have 

outstanding capacity retention (~80%) after 270 cycles at 60 oC. Comparable cells 

containing standard electrolyte failed after less than 100 cycles at 60 oC. In order to 

better understand the source of the performance enhancement by MEC, related coin 

cells were cycled and ex situ analysis of the electrodes was conducted. The cycling 

performance of the coin cells after thermal storage was similar to that observed for the 

accelerated aging experiments on the 650 mAh cells.  

 Surface analysis  

The surfaces of three sets of electrodes were analyzed by X-ray photo electron 

spectroscopy (XPS), scanning electron microscopy (SEM), and infra-red spectroscopy 

with attenuated total reflectance (IR-ATR). The electrode samples were: fresh 

uncycled electrodes, electrodes after five formation cycles, and electrodes from cells 

with 30 cycles that were further stored at 60 oC for one week to simulate accelerated 

aging. The cells were dismantled at a full state of charge in an argon glove box and the 

anodes and cathodes were extracted. The electrodes were washed with DMC and dried 

under vacuum. 

  XPS analysis 

 The electrodes were analyzed by XPS. Figs. 2 and 3 contain XPS spectra of the 

anodes and cathodes while the elemental concentrations are summarized in Tables 1 

and 2. Analysis of the anode surface reveals that the concentration of carbon is 
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decreased and the concentration of oxygen is increased after cycling for both the 

standard electrolyte and the electrolyte with added MEC consistent with the formation 

of a solid electrolyte interphase (SEI). Anodes extracted from cells after formation 

cycling with the standard electrolyte have slightly lower concentrations of carbon and 

oxygen and a higher concentration of fluorine than the anodes extracted after 

formation cycling with the electrolyte containing MEC. The concentration of 

phosphorus is low for both cycled anodes. After additional cycling and storage at 60 

oC there are only small changes to the elemental concentration of the surface. The 

higher concentrations of C and O and lower concentration of F on the surface of the 

anode is consistent with a thicker anode SEI covering more of the electrode surface 

and the PVDF binder. The C1s spectra of fresh anodes contain peaks characteristic of 

graphite (284.3 eV) and PVDF (285.5 and 290.3 eV). The correspond-ing peak 

characteristic of PVDF is observed in the F1s spectrum (687.8 eV) while the O1s 

spectrum contains a weak peak attributed to graphite surface oxidation (~532 eV). 

Significant changes are observed on the electrode surface by XPS after formation 

cycling. The anode extracted from the cell cycled with standard electrolyte contains 

new peaks in the C1s spectrum consistent with the formation of C=O (288.2 eV) and 

C-O (289.5 eV) containing species  such as lithium alkyl carbonates, lithium 

alkoxides, and ethers, as previously reported on the anode SEI [8]. In addition, there is 

a small peak (282.9 eV) characteristic of LiCx. The F1s spectrum contains peaks 

characteristic of PVDF (687.8 eV) and LiF (684.5 eV). A weak P2p signal is observed 

for LixPFyOz (133.7 eV) while the corresponding F1s peak (687 eV) is similar in 

binding energy to PVDF. The O1s spectrum contains peaks characteristic of C-O and 
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C=O, consistent with the C1s spectra. Anodes extracted from cells containing MEC 

after formation cycling have similar XPS spectra to the anodes cycled with standard 

electrolyte. However, the relative intensity of the peak characteristic of LiF is slightly 

lower. XPS spectra of the anodes extracted from cells cycled and stored at 60 oC for 

both electrolytes are similar to the XPS spectra of the anodes after formation cycling 

suggesting only small changes to the structure of the surface species occur upon aging. 

The changes to the cathode surfaces upon cycling were smaller than those observed 

for the anode surfaces cycled in the presence of standard electrolyte. Analysis of the 

cathode surfaces after for-mation cycling with the standard electrolyte suggest very 

small changes to the concentrations of C, F, O, and Ni. More significant changes were 

observed for the electrolyte containing MEC. The concentrations of C and O are 

increased while the concentrations of F and Ni are decreased. This is consistent with 

the generation of a cathode surface film in the presence of MEC. The elemental 

concentrations of the cathode surface in both the standard electrolyte and the 

electrolyte containing MEC do not change significantly upon aging suggesting only 

small changes to the surface species. The C1s spectrum of the fresh cathode contains 

peaks characteristic of graphite (284.3 eV) and PVDF (285.5 and 290.3 eV). The F1s 

spectrum contains the corresponding PVDF peak (687.8 eV). The O1s spectrum 

contains peaks characteristic of metal oxide (528 eV) and residual lithium carbonate 

(531 eV). The cathodes extracted from cells containing standard electrolyte have only 

small changes after formation cycling. A new small peak characteristic of LiF is 

observed (684.5 eV) in the F1s spectrum and the peak in the O1 s spectrum 

characteristic of metal oxide (528 eV) has decreased intensity. The changes to the 
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surface of the cathode extracted from the cell cycled with electrolyte containing MEC 

after formation cycles are greater than those observed for the standard electrolyte. 

New peaks characteristic of C-O containing species including ethers and carbonates 

are observed (287.5 eV) in the C1s spectrum and (534 eV) in the O1s spectrum. In 

addition, the peak characteristic of metal oxide (528 eV) is no longer observable 

suggesting the presence of a relatively thick cathode surface film. Additional cycling 

and storage at 60 ◦C results in changes to the surface of the cathode extracted from the 

cell containing standard electrolyte. Peaks characteristic of C-O and C=O containing 

species are observed in the C1s and O1s spectra consistent with the formation of 

lithium alkyl carbonates. The peak of LiF has a slight increase in intensity while the 

peak of the metal oxide is no longer detectable. In addition, a new peak (136 eV) in 

the P2p spectrum is observed consistent with the presence of LixPFyOz. Additional 

cycling and storage at 60 oC results in only small changes to the surface of the cathode 

cycled in the presence of MEC containing electrolyte. A small peak characteristic of 

Li xPFyOz is observed in the P2p spectrum. 

FTIR analysis  

The IR spectra of both the anodes and cathodes are dominated by peaks from PVDF 

binder at 1400, 1170, 1070, 877, and 840 cm−1 (Fig. 4). The anodes extracted from 

cells containing standard electrolyte contain a new peak at 1600 cm−1 consistent with 

the presence of oxalates or lithium alkyl carbonates. The anodes of cells cycled with 

MEC contain the peak characteristic of oxalates and lithium alkyl carbonates along 

with an additional peak at 1750 cm−1 which is characteristic of polycarbonates. The 

cathodes extracted from cells containing the standard electrolyte have no new 
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absorptions (Fig. 5). However, the cathodes extracted from cells cycled with MEC 

containing electrolyte have an additional peak at ~1800 cm−1 consistent with the 

presence of polycarbonates. 

SEM analysis  

SEM analysis of the fresh anode materials reveal MCMB particles ranging in size 

from 0.5 to 5 µm diameter (Fig. 6). After formation cycling the surface of the MCMB 

particles appears to be coated with a surface film for both the standard electrolyte and 

the electrolyte containing MEC. The appearance of this surface film is similar for both 

electrolytes. SEM images of the anodes after thermal storage and cycling appear to 

have additional surface film coverage for both the standard and MEC containing 

electrolytes. However, the surface films appear similar for both electrolytes. SEM 

analysis of the cath-odes before cycling, after formation cycling, and after storage at 

elevated temperature with cycling are very similar suggesting that any surface films on 

the cycled cathodes are very thin (Fig. 7). 

Summary 

 A novel anode SEI film forming additive, methylene ethylene carbonate (MEC), has 

been reported. MEC is prepared in good yield and purity by mercury catalyzed 

cyclization. Addition of low concentrations of MEC (1–2%) to commercial lithium ion 

battery electrolytes (LiPF6 in carbonates) improves the capacity retention of lithium 

ion batteries cycled at elevated temperature (60 oC). Ex situ surface analysis (XPS and 

FTIR) of the electrodes suggests that generation of poly (methylene-ethylene 

carbonate) on the anode surface results in a anode SEI with superior thermal stability 
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and alters the surface chemistry of the cathode. MEC is a promising thermal 

stabilizing additive for lithium ion batteries. 
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Table 3-1.  Elemental composition of C, F, O and P on anodes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 C1s% F1s% O1s% P2p%  

Fresh 65 32 3 -  

1M LiPF6-formation cycling 47 33 19 1  

2% MEC-formation cycling 53 21 26 -  

1MLiPF6 (60
o
C) 48 33 17 2  

2% MEC(60
o
C) 51 22 26 2  
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                 Table 3-2. Elemental composition of C, F, O, P and Ni on cathodes 

 

 

 

 

 

 

 

 

 

 

 

 C1s% F1s% O1s% P2p% Ni2p% 

Fresh 43  31 11 - 15 

1M LiPF6-formation cycling 47 29 10 - 14 

2% MEC-formation cycling 52 23 16 - 9 

1MLiPF6 (60
o
C) 43 31 10 1 15 

2% MEC(60
o
C) 55 15 21 1 8 



 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-1. Discharge capacity vs cycle number for Li[Ni
 
containing 1 M LiPF6 
 
cycled at 1C rate between 3.0 and 4.2 V at 60 °C.
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Discharge capacity vs cycle number for Li[Ni1/3Co1/3Mn1/3

 in 3:7 EC/EMC with and without added MEC.  The cells were 

1C rate between 3.0 and 4.2 V at 60 °C. 

1/3]O2-based cells  

in 3:7 EC/EMC with and without added MEC.  The cells were  
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Figure 3-2.  XPS spectra of anodes (a)Fresh anode (b) 1MLiPF6 in 

EC:EMC:DEC(1:1:1) formation cycling; (c)1MLiPF6 in EC:EMC:DEC(1:1:1) +2% 

additive formation cycling; (d)  1MLiPF6 in EC:EMC:DEC formation cycling and 

stored at 60oC for seven days and cycled at C/5 rate for 30cycles; (e) 1MLiPF6 in 

EC:EMC:DEC(1:1:1) +2% additive formation cycling and stored at 60oC for seven 

days and cycled a C/5 rate for 30 cycles.  
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Figure 3-3. XPS spectra of cathodes (a)Fresh cathode (b) 1MLiPF6 in 

EC:EMC:DEC(1:1:1) formation cycling; (c)1MLiPF6 in EC:EMC:DEC(1:1:1) +2% 

additive formation cycling; (d)  1MLiPF6 in EC:EMC:DEC formation cycling and 

stored at 60oC for seven days and cycled at C/5 rate for 30cycles; (e) 1MLiPF6 in 

EC:EMC:DEC(1:1:1) +2% additive formation cycling and stored at 60oC for seven 

days and cycled at C/5 rate for 30 cycles.  
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Figure 3-4. FTIR spectra of anodes (a) fresh anode(b) 1MLiPF6 in 

EC:EMC:DEC(1:1:1) formation cycling; (c)1MLiPF6 in EC:EMC:DEC(1:1:1) +2% 

additive formation cycling; (d) ) 1MLiPF6 in EC:EMC:DEC formation cycling and 

stored at 60oC for seven days and cycled at C/5 rate for 30cycles; (e) 1MLiPF6 in 

EC:EMC:DEC(1:1:1) +2% additive formation cycling and stored at 60 oC for seven 

days and cycled a C/5 rate for 30 cycles.  
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Figure 3-5. FTIR spectra of cathodes(a)fresh anode (b) 1MLiPF6 in 

EC:EMC:DEC(1:1:1) formation cycling; (c)1MLiPF6 in EC:EMC:DEC(1:1:1) +2% 

additive formation cycling; (d)  1MLiPF6 in EC:EMC:DEC formation cycling and 

stored at 60 oC for seven days and cycled at C/5 rate for 30cycles; (e) 1MLiPF6 in 

EC:EMC:DEC(1:1:1) +2% additive formation cycling and stored at 60 oC for seven 

days and cycled a C/5 rate for 30 cycles.  
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Figure 3-6. SEM images of anodes (a) fresh, (b) after formation cycling, (c) after 

formation cycling with MEC, (d) after cycling and storage, (e) after cycling and 

storage with MEC 
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Figure 3-7. SEM images of cathode (a) fresh, (b) after formation cycling, (c) after 

formation cycling with MEC, (d) after cycling and storage, (e) after cycling and 

storage with MEC 
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Chapter-4 Reactivity of electrolytes for Lithium-Oxygen Batteries with Li2O2  

Introduction 

The development of a rechargeable Li-O2 battery could result in an electrochemical 

energy storage device with significantly greater energy density than the conventional 

Li-ion batteries.1-4 Thus, there has been significant recent interest in the development 

of Li-O2 batteries.3-9  Most currently investigated Li-O2 batteries are composed of a 

lithium metal anode, a organic electrolyte, and a porous carbon cathode.  The 

electrochemical reaction occurring within the cells during discharge has been reported 

to be O2 + 2 Li → Li2O2, while the reverse reaction occurs during charging.  

Unfortunately, there are several problems associated with rechargeablity of the current 

Li-O2 battery system.  One of the primary problems is the stability of the electrolyte in 

the presence of the electrode materials or reactive intermediate species generated 

during the reversible charging and discharging of the cell.10-13 

Initial investigations used electrolytes similar to those used in lithium ion batteries, 

LiPF6 in carbonates.1,2,9  However, carbonate solvents have been reported to be 

unstable to oxidation in Li-O2 cells.10-12 Other studies have investigated the use of 

glymes as solvents for Li-O2 batteries but problems with the solvents have still been 

encountered.3,11   In addition, the stability of the lithium salts used in the electrolyte 

has also been questioned.  One reactive species which is generated during cycling, 

lithium superoxide (LiO2), has recently been reported to react with lithium bis(oxalato 

borate) (LiBOB).13 

In order to develop a superior electrolyte system for Li-O2 batteries, a better 

understanding of the reactivity of the electrolytes with cell components and reactive 



50 
 

intermediate species must be developed.  Li2O2 is the species generated within the 

pores of the carbon cathode during discharge.  Thus, the electrolyte must be stable in 

the presence of Li2O2 to afford long term cyclability of Li-O2 batteries.  We have 

conducted a detailed analysis of the reaction of common electrolytes with Li2O2 at 

moderate temperatures (55 oC) to simulate accelerated aging..  Electrolytes 

investigated include solutions of salts (LiPF6, LiBF4, LiBOB, and lithium 

Bis(trifluoromethanesulfony)limide (LiTFSI)) in different solvents (carbonates, 

glymes, and nitriles).  Significant differences in the reactivity of different salts was 

observed suggesting that LiPF6 should not be used in Li-O2 battery electrolytes.  

Experimental 

Battery grade LiPF6, LiBF4, Lithium bisoxalatoborate (LiBOB), and lithium 

trifluorosulfonylimide (LiTFSI) were obtained from Novolyte or Aldrich.   Propylene 

carbonate (PC), Ethylene carbonate (EC), Ethyl methyl carbonate (EMC), Diethyl 

carbonate(DEC), Dimethoxyethane (DME), tetraethylene glycol dimethyl ether 

(TGDME), and Acetonitrile (ACN) were obtained from Novolyte or Acros. All the 

solvents were dried over 4Ao molecular sieves for one week prior to use. Li2O2 (99.9 

%) was purchased from Alfa-aeser and used without any further purification.  Li2O 

(97 %) was obtained from Aldrich. NMR tubes were prepared with 1M salt in ternary 

solvent (EC: EMC: DEC), PC, TGDME or ACN.  Various concentrations of Li2O2 (1, 

0.5 and 0.25eq) were added to the above prepared electrolyte systems. All NMR tubes 

were prepared in an argon filled glove box and flame sealed under nitrogen. NMR 

tubes were then stored at 55 oC. NMR spectra were acquired with a Bruker 300-MHz 

NMR spectrometer. The NMR data was processed by mestrenova software.  The solid 
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residue present after thermal storage of Li2O2 in LiPF6 in ACN or TGDME and 

LiTFSI in ACN or diglyme was analyzed by X-ray photoelectron spectroscopy (XPS) 

and Raman spectroscopy. XPS spectra were acquired on PHI5500 system using Al Kα 

radiation (hν = 1486.6 eV) under ultra high vaccum. The C-H peak (285 eV) is used as 

a reference peak for final adjustment of energy spectra. The spectra obtained were 

analyzed by Multipak (6.1A) software and fitted with XPS peak software (version 

4.1). The Raman spectroscopy is performed on a Bruker optics FT-Raman microscope 

using a 785 nm excitation wavelength and 50x microscope objective. The Raman 

shifts were collected in a range of 3500-150cm-1. 

 

Results and Discussion 

The reactivity of a LiPF6 in a 1:1:1 mixture of ethylene carbonate (EC)/dimethyl 

carbonate (DMC)/diethyl carbonate (DEC) electrolyte with Li2O2 was investigated by 

1H, 19F and 31P NMR spectroscopy.  NMR spectra of fresh samples of electrolyte 

contain a single 19F resonance centered at 65 ppm (doublet, 709 Hz) and a single 31P 

resonance at -145 ppm (septet, 709 Hz) characteristic of a single P atom bound to six F 

atoms as expected for LiPF6.
14 The 1H NMR spectrum contains two singlets at 4.51 

and 3.72 ppm, characteristic of EC and DMC, respectively, and a broad quartet and 

triplet at 1.24 and 4.14 ppm characteristic of DEC, respectively.  Upon addition of 0.5 

molar equivalents of Li2O2 to 1 M solutions of LiPF6 in 1:1:1 EC/EMC/DEC gas 

evolution was initiated.  The samples were stored at 55 oC for 20 hrs.  Two new sets of 

resonances are observed in the 19F NMR spectrum.  The singlet at -17 ppm in the 19F 

spectrum is attributed to LiF.  The second set of resonances in the 19F NMR spectrum 
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is a doublet at 54 ppm (940 Hz).  The appearance of the new doublet in the 19F NMR 

spectrum coincides with the appearance of a new triplet in the 31P NMR spectrum at -

20 ppm (940 Hz).  A 19F doublet coupled to a 31P triplet is consistent with a P atom 

bound to two F atoms supporting the formation of OPF2OLi (Figure 1).  There were 

no observable changes in the 1H NMR spectra (Figure 2).  Continued storage of the 

electrolyte for two weeks results in only small changes to the spectra supporting a 

slow increase in the concentration of LiF and O=PF2OLi but no changes to the 

carbonate solvents were observed. Extended storage in carbonate based solvents at 55 

oC (two weeks) results in the generation of OPF(OLi)2 evidenced by a doublet in 19F 

spectra ~60 ppm (920 Hz) and a doublet in 31P spectra -10 ppm (920 Hz) consistent 

with further thermal decomposition of the LiPF6/carbonate electrolyte as previously 

reported.15 Additional storage experiments were conducted with different ratios of 

Li 2O2 to LiPF6 in 1:1:1 EC/EMC/DEC and provide the same decomposition products.  

The concentration of OPF2(OLi) determined by integration of the 19F NMR signals is 

consistent with quantitative decomposition of the Li2O2.  Similar reactions conducted 

at room temperature support the generation of the same products at a slower rate.  

Storage for 20 hrs at room temperature results in the generation of approximately 50 

% of the OPF2(OLi) generated upon storage for 20 hrs at 55 oC. 

Similar investigations were conducted on LiPF6 in other solvent systems.  The spectral 

features of LiPF6 are largely independent of the solvent (EC/DEC/DMC, PC, 

tetraglyme, and ACN).  Storage of 1 M solutions of LiPF6 in PC resulted in very 

similar spectral changes as observed in EC/DMC/DEC.  New 19F and 31P NMR 

resonances were observed characteristic of LiF and OPF2OLi and no changes were 
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observed to the 1H NMR signals for PC.  Storage of of 1 M LiPF6 solutions of 

tertraglyme provided slightly different results.  The reaction of Li2O2 with LiPF6 was 

very slow at 55 oC.  However, upon increasing the temperature of the mixture to 90 oC 

for 24 hours a rapid reaction between LiPF6 and Li2O2 occurs.  The changes to the 19F 

and 31P NMR spectra were very similar to that observed for the carbonates consistent 

with the formation of LiF and OPF2OLi.  The small difference in reactivity for 

tetraglyme compared to carbonates is likely due to the lower solubility of Li 2O2 in 

tetraglyme inhibiting reaction initiation.  Since both carbonates and glymes contain 

oxygen, related investigations of the reactivity of LiPF6 with Li2O2 were conducted in 

acetonitrile, a polar aprotic solvent containing no oxygen.  The spectral changes were 

very similar to those observed in carbonates and glymes.  New peaks were observed in 

the 19F and 31P NMR spectra characteristic of LiF and O=PF2OLi and no changes were 

observed in the 1H spectra of the solvent (Figure 3). The reaction products observed in 

ACN confirm that Li2O2 is the source of oxygen.  The thermal stability of LiPF6 

electrolytes in the presence of Li2O2, the discharged cathode material for lithium-

oxygen batteries, is considerably worse than in the presence of discharged metal oxide 

used in lithium ion batteries.16  

The reaction of other salts including LiBOB, LiBF4 and LiTFSI with Li2O2 were 

investigated in the presence of PC and DME. The reactions were monitored by 11B, 

19F and 1H NMR spectroscopy of the salts and solvents. The spectral features, after 

storage at 55 oC for two weeks, were identical to the pure individual components 

indicating no deterioration of the electrolyte. Subsequent 19F and 1H NMR 
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experiments suggest that there is no degradation of LiTFSI in DME upon storage for 

an additional two weeks at 85 oC (Figure 4). 

Surface analysis  

The surfaces of the residual solid after storage of Li2O2 at elevated temperature were 

analyzed via a combination of XPS and Raman spectroscopy.  Analysis of commercial 

Li 2O2 reveals a strong peak in the O1s spectrum at 531 eV characteristic of Li2O2.  

Trace quantities of lithium carbonate as a surface impurity were also evidenced by C 

1s (290 eV) and O 1s spectra (532.7 eV) along with the universal carbon 

contamination peak at 285 eV in the C1s spectrum (Figure 5).   The surface of the 

solid residue recovered from the reaction of 0.5 eq Li2O2/ 1 eq LiPF6/ACN has very 

low concentrations of C (4.2 %) and O (8.6 %) and a very high concentration of F 

(87.2 %), as determined by XPS.  The C 1s XPS spectra of the solid residue recovered 

from the reaction of 0.5 eq Li2O2/1 eq LiPF6/ACN contains only the universal carbon 

contamination peak. The O1s spectrum has low intensity suggesting a low 

concentration of Li2O2, Li2O, and LixPOyFz on the surface of the residue. The F 1s 

spectrum contains significant peaks consistent with LiF (685 eV) along with lower 

concentrations of LixPOyFz (687eV) and LiPF6 (688 eV).  The XPS spectra of solid 

residues of 0.5 eq Li2O2 in LiTFSI/DME are very similar to the XPS spectra to a 

mixture of Li2O2, LiTFSI and residual DME, suggesting that there is no 

decomposition of Li2O2 upon storage at elevated temperature (Figure 6). 

Raman spectra (Figure 7) of the residual solid recovered from the reaction of LiPF6 

with Li2O2 in acetonitrile does not contain peaks characteristic of Li2O2.  New 

absorbances are observed consistent with decomposition to low concentrations of Li2O 
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(516 cm-1) and other species. Similar analysis of the residual solid recovered from the 

storage of LiTFSI in DME with Li2O2 suggests that the Li2O2 is intact and has not 

reacted, consistent with NMR and XPS results. 

Reaction Mechanism 

The data presented above suggests that LiPF6 has very poor thermal stability in the 

presence of Li2O2 while other salts including LiTFSI, LiBOB, and LiBF4 have 

excellent stability in the presence of Li2O2.  The proposed mechanism for reaction of 

LiPF6 with Li2O2 is presented in Scheme 1.  While many solvents have been reported 

to be reactive in the presence of lithium super oxide (LiO2
.),10-12 all of the solvents 

investigated (carbonates, glymes, and nitriles) have excellent stability in the presence 

of Li2O2.   

 

 

Conclusions 

The thermal stability of several potentially interesting electrolytes for lithium air 

batteries in the presence of Li2O2 was investigated.  Stability of the liquid electrolytes 

was probed by NMR spectroscopy.  Electrolytes containing LiPF6 experienced a rapid 

decomposition of the salt to generate OPF2(OLi) in solution and solid LiF.  

LiPF6
LiF + PF5

PF5 + 2 Li2O2 OPF3 + 2 LiF + Li2O + O2

OPF3 + Li2O OPF2(OLi) + LiF

Scheme 1
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Investigation of the residual solids via XPS and Raman spectroscopy supported the 

decomposition reactions observed in solution for LiPF6 electrolytes.  However, all 

solvents investigated have excellent stability in the presence of Li2O2.  In addition, 

other salts including LiTFSI, LiBOB, and LiBF4 are also very stable in the presence of 

Li 2O2.  The results suggest that LiPF6 is a poor salt for rechargeable Li-O2 batteries. 

The addition of Li2O2 to LiPF6 in carbonates results in a dramatic decrease in the 

thermal stability of the electrolyte. 
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Figure 4- 1. 19F NMR (left)  and 31P (right) of 0.5 eq Li2O2 with 1M LiPF6 in 

EC:DMC:DEC stored at 55 oC for 2 weeks (top) and 20 hours (bottom). 
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Figure  4-2.  1H NMR of 0.5 eq Li2O2 with 1M LiPF6 in EC:DMC:DEC stored at 55 

oC for 2 weeks (top) and 20 hours (bottom). 
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Figure  4-3. 19F NMR (left)  and 31P (right) of 0.5 eq Li2O2 with 1M LiPF6 in ACN 

stored at 55 oC for 2 weeks (top) and 20    hours (bottom). 
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Figure 4-4. 1H (left) and 19F (right)  of 0.5 eq Li2O2 with 1M LiTFSI in DME stored at 

55 oC for 2 weeks (top) and 20 hours (bottom). 
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Figure 4-5. XPS spectra of the precipitate formed by reaction of 0.5 eq Li2O2 with 

LiPF6 in ACN (top) pure Li2O2 (bottom). 
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Figure 4-6. XPS spectra of the precipitate formed by reaction of 0.5 eq Li2O2 with 

LiTFSI in DME (top), and pure LiTFSI (bottom). 
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Figure 4-7.  Raman spectra of solid residues from Li2O2 reaction with various  
 
electrolyte systems in comparison with pure Li2O2 and Li2O. 
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Chapter 5 Two-Step Thermochromism in Poly(3-docosoxy-4- 
 
methylthiophene):Mechanistic Similarity to Poly(3-docosylthiophene) 
 

Introduction 

The unique electronic and spectroscopic properties of conjugated polymers have 

resulted in significant academic and industrial interest.1 Polythiophenes are one of the 

most widely investigated conjugated polymers because of the ease of synthesis and 

modification of solubilizing substituents.2 One of the interesting properties of 

substituted polythiophenes is thermochromism. Although there have been many 

investigations of the mechanism of the thermochromic transition, there are still 

questions relating to how the structure of the polythiophene (regioregularity,3,4 

substitution pattern,5 molecular weight,6 impurities,7 precipitation method,8,9 etc.) 

affects the mechanism.10 Although most polythiophenes have a simple two-phase 

thermochromic transition, mesophase formation is observed in some poly (3-

alkylthiophene)s with long side chains.11,12  

In an effort to better understand the thermochromic properties of polythiophenes with 

different types of substitution patterns, we have prepared poly(3-docosoxy-4-

methylthiophene) (PDMT). On heating thin films of PDMT, the color of the polymer 

changes from purple to yellow. When the samples are rapidly quenched, a red-orange 

mesophase is generated. On heating a second time, the mesophase changes color 

irreversibly. This two-step thermochromism was investigated by reflection and 

fluorescence spectroscopies and differential scanning calorimetry (DSC). 
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Experimental 
 
Materials 

All reagents were used without further purification. Reagents and solvents were 

purchased from either Sigma-Aldrich (St.Louis, MO) or Fisher Scientific (Rockford, 

IL). Synthesis of 3-Docosoxy-4-methylthiophene Twenty grams (61 mmol) of n-

docosanol was added to a 500-mL three-necked flask at 100 oC. To this flask was 

added 2.0 g of 60% NaH (50 mmol) under positive nitrogen pressure. The reaction 

mixture was stirred until the reaction with sodium hydride was complete. In a separate 

100-mL flask, 4.5 g (25 mmol) of 3-bromo-4-methyl thiophene, 80 mg (0.80 mmol) of 

CuCl, 70 mg (0.74 mmol) of 2-aminopyridine, and diglyme (15 mL) were dissolved 

and transferred to the three-necked flask containing the alkoxide under positive 

nitrogen pressure using a cannula.13 The reaction mixture was stirred at 120 oC for 2 

days followed by cooling to room temperature, extraction with methylene chloride, 

and filtration through celite. Column chromatography over silica gel in hexanes 

provides 3-docosoxy-4-methylthiophene (6.0 g, 57% yield) after rotary evaporation. 

1H-NMR (300 MHz, CDCl3): d 6.84 (d, 1H), 6.15 (d, 1H), 3.96 (t, 2H), 2.13 (s, 3H), 

1.82 (m, 2H), 1.49 (m, 2H), 1.31 (m 36H), 0.93 (t 3H). 13C-NMR (75 MHz, CDCl3): 

d 156.36, 129.00, 119.62, 95.78, 69.99, 32.10, 29.74, 29.36, 26.23, 22.72, 14.10, 

12.53. 

Synthesis of PDMT 

Six grams (14 mmol) of 3-docosoxy-4-methylthiophene was added to a dry round 

bottom flask under N2. To this flaskvwas added 50 mL of methylene chloride. To this 

solution was added 4.0 g (25 mmol) of FeCl3 followed by stirring overnight. The 
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reaction mixture was precipitated in methanol to obtain PDMT (2.1 g, 33% yield) as a 

deep violet powder. 1H-NMR of PDMT (300 MHz, CDCl3): d 3.8 (m, 2H), 2.3 (s, 

3H), 1.72 (m, 2H), 1.56 (m, 2H), 1.24 (m 36H), 0.87 (m 3H). The molecular weight of 

the polymer, estimated by SEC, gave Mn and Mw values of 1.32 x 104 and 3.1 x 104, 

respectively. 

Measurements 

DSC thermograms were acquired on a TA Instruments Q100 instrument in aluminum 

pans at 10 oC/min under flowing nitrogen atmosphere. The polymer sample was 

prepared for DSC by drip-coating a solution of the polymer in tetrahydrofuran (THF) 

onto aluminum foil and evaporating the solvent. The polymer film was heated with a 

heat gun and rapidly quenched with liquid nitrogen to form the mesophase. The 

polymer film was then scraped off the aluminum foil and transferred into a 

preweighed DSC aluminum pan. Reflection spectra were measured on an Ocean 

Optics S2000 instrument using a cylindrical fiber optics probe containing one source 

fiber and seven collecting fibers. The spectra were taken in reference to white 

background and dark background between 400 and 800 nm using a tungsten halogen 

lamp. Variable-temperature fluorescence spectra are recorded on Ocean Optics S2000 

instrument with a blue LED light source (λ = 470 nm). The polymer films for 

reflection and fluorescence spectroscopy were prepared by drip-coating the polymer 

solution in THF onto a piece of white paper and evaporating the solvent with a heat 

gun. The mesophase was generated by heating the paper containing the polymer film 

and rapidly cooling with a cold metal plate. The polymer film was placed on 

aluminum block containing the thermometer. 
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The aluminum block was placed on a hot plate and heated at 2 oC/min. NMR spectra 

of monomer were recorded on a Bruker 300-MHz NMR spectrometer using CDCl3 as 

solvent. Molecular weight of the polymer was estimated by size exclusion 

chromatography in THF. 

Results and discussion 

Copper (I) chloride-catalyzed Ullmann coupling of 3-bromo - 4-methylthiophene with 

1-docosanol was used to prepare 3-docosoxy-4-methylthiophene. Oxidative 

polymerization of 3-docosoxy-4-methylthiophene was afforded by addition of FeCl3 in 

methylene chloride followed by precipitation in methanol. PDMT was isolated as a 

deep violet powder. Thin films of PDMT are violet at room temperature and bright 

yellow at high temperature. The rapidly quenched film exhibits a red-orange color. 

The red-orange color is indefinitely stable at room temperature. On heating the rapidly 

quenched films, the red-orange color first changes to violet and then changes to yellow 

at high temperature. Related thermochromic responses have been observed for poly(3-

alkylthiophene)s with very long linear alkyl side chains (>C22) and is consistent with 

the formation of a mesophase on quenching.11,12Variable-temperature reflectance 

spectra (Fig. 1) of a rapidly quenched PDMT film were acquired. The variable-

temperature reflectance spectra of a PDMT film containing the mesophase film, 

percent reflection versus temperature, can be fit to a double sigmoidal function of the 

form  

                          ���� � �� �
�	


�����	�/��	
�  

��


�������/���
      (1) 

 
Where T1 and T2 are the transition temperatures, ∆T1 and ∆T2 are the width of the 

transitions, a1 and a2 are the reflection changes through the transition, and R0 is the 
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baseline reflection. The transition temperatures as determined from reflectance data at 

600 nm are summarized in Table 1. The reflection spectra of the mesophase are 

similar to the annealed ground-state phase, but the two low-temperature phases are 

quite different from the high-temperature phase. Related variable temperature 

fluorescence experiments were conducted on PDMT films containing the mesophase 

(Fig. 2). The fluorescence spectrum (excited at 470 nm) of the mesophase contains a 

weak, broad emission with a maximum centered at ~ 650 nm. On heating, the 

emission intensity decreases at intermediate temperatures (60–110 oC), followed by an 

increase in intensity at high temperature (>120 oC). The emission band of the high 

temperature phase has peaks at 540 and 565 nm, with much greater intensity than the 

emission band of the mesophase. The temperature-dependent intensity of the emission 

spectra of a PDMT film containing the mesophase at 650 nm is provided in Figure 3. 

The transition temperatures as determined from fitting the emission data to eq 1 are 

similar to the transition temperatures determined from the reflection data (Table 

1).The thermal behavior of the polymer was investigated by DSC. The DSC 

thermogram of the PDMT in the mesophase (Fig. 4) was conducted starting at -10 oC 

and ramped at 10 oC/min to 140 oC. The first heating cycle contains three peaks. The 

first peak at ~38 oC corresponds to a melt transition of the side chain, the second peak 

at ~48 oC corresponds to the loss of the mesophase, and a high-temperature peak at 

~111 oC corresponds to the reversible thermochromic transition associated with main-

chain melting.11,12 Unlike the alkyl analogues, PDMT does not show an unusual peak 

shape in the central transition, suggesting that the melting/recrystallization proposed 

for the poly(3-alkylthiophene)s does not occur in PDMT. After a slow cooling cycle to 
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anneal to the polymer, the second heating cycle contains only two peaks. The absence 

of one transition is consistent with a loss of the mesophase on slow cooling. The two 

transitions are consistent with side chain melting and main chain melting. The DSC, 

reflection spectra, and emission spectra indicate the presence of a partially disordered 

mesophase of PDMT that is structurally and electronically different from the ordered 

annealed low-temperature phase and the high-temperature disordered phase. The 

mesophase is generated via rapid cooling of the high-temperature phase. All three 

techniques are in agreement regarding the transition temperatures: the lower transition 

from the mesophase to the annealed state occurs at ~40 oC, whereas the transition to 

the hightemperature phase occurs at ~120 oC. The different phases of PDMT have 

differing degrees of π-π stacking and extended π conjugation. The annealed low-

temperature phase has the most extended p conjugation as evidenced by the longest 

wavelength reflection spectrum and the greatest π-π stacking as evidenced by the weak 

fluorescence intensity.2 The hightemperature phase has little extended conjugation and 

weak π-π stacking interactions as evidenced by the shortest wavelength reflection 

spectra and greatest intensity fluorescence spectra. The mesophase has an intermediate 

extent of conjugation and π-π stacking. The spectral and thermal properties of PDMT 

are very similar to those previously reported for poly(3-docosylthiophene), suggesting 

similar mechanisms of thermochromism for poly(3-alkylthiophene)s and poly (3-

alkoxy-4-methylthiophene)s.11,12 A mechanism for the phase transitions is provided in 

Figure 5. 
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Conclusions 
 
PDMT was synthesized via oxidative polymerization. Variable-temperature reflection 

and fluorescence spectroscopy of thin films and DSC support a two-step 

thermochromic transition with a very similar mechanism to that reported for poly(3-

docosylthiophene)s. 
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      Uncertainties are ±3 oC for the spectroscopy measurements and ±1 oC  for the DSC  
 
      measurements. 
 
     Table 5-1. Summary of measured properties. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Property Tsm (
oC) T1(

oC) T2(
oC)   

Reflection spectra - 43    111   

Fluorescence Spectra -      36    120   

DSC first heating cycle 38 48    111   

DSC second heating cycle 45 -    111   
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Figure 5-1. Reflectance spectra of poly(3-docosoxy-4-methylthiophene). 
 
The inset shows the percent reflectance at 600 nm versus temperature for a sample  
 
starting with the mesophase heated at 2 oC/min. 
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Figure 5-2.  Emission intensity at 650nm as a function of temperature. 
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Figure 5-3.  Emission intensity at 650 nm as a function of temperature. 
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Figure 5-4.  DSC thermogram of poly(3-docosoxy-4-methylthiophene) of sample  
 
containing mesophase (red dashed line, first heating/cooling cycle) and with no  
 
mesophase (blue, solid line). 
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Figure 5-5.  Proposed mechanism for the two-step thermochromic transition for  
 
poly(3-docosoxy-4-methylthiophene). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


	IMPROVING ELECTROLYTES FOR LITHIUM-ION AND LITHIUM OXYGEN BATTERIES
	Terms of Use
	Recommended Citation

	Microsoft Word - $ASQ167786_supp_undefined_36886AD2-DA5A-11E1-824C-531EEF8616FA.docx

