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Deterministic and stochastic spin diffusion in classical Heisenberg 
magnets 

Jian-Min Liu, Niraj Srivastava, V. S. Viswanath, and Gerhard MUller 
Department of Physics, The University oj- Rhode Island, Kingston, Rhode Island 02881-0817 

This computer simulation study rjrovides further evidence that spin diffusion in the one- 
dimensional classical Heisenberg ‘model at T = o is anomalous: ( Si( t) * Si) - t - “1 with 
at > l/2. However, the exponential instability of the numerically integrated phase-space 
trajectories transforms the deterministic transport of spin fluctuations into a 
computationally generated stochastic process in which the global conservation laws are still 
satisfied to high precision. This may cause a crossover in <Sj( t) *Sj), from anomalous 
spin diffusion (at. > l/2) to normal spin diffusion (a1 = l/2) at some characteristic time lag 
that depends on the precision of the numerical integration. 

For magnetic insulators with isotropic exchange inter- 
action between nearest-neighbor spins on a d-dimensional 
lattice, such as the Heisenberg model: 

HZ - J C. Si*Sj, (1) 
(ij) 

the dominant transport mechanism of spin fluctuations is 
diffusion. Spin diffusion is a phenomenological concept 
widely employed in the analysis and interpretation of dy- 
namical experiments (NMR,’ ESR2) on insulating mag- 
netic compounds. 

Theoretically, it has turned out to be extremeIy diffi- 
cult to establish, under what circumstances the rapid de- 
terministic transverse spin motion; specified by the equa- 
tions of motion 

$i= - SIX aH/dSi, (2) 

for individual classical 3-component spins Si, gives rise to 
slow stochastic longitudinal spin motion, specified by the 
diffusion equation 

& S(s,t) = - m%J) 

for the spin variables314 

(3) 

S(q,t) =+ F exp(iq*r$Si(t). 

The validity of the phenomenological Eq. (3) implies that 
the correlation function C(W) = (S(w) 
.S( - q,O)) decays exponentially in time, 

C(q,t) -e - D4’t, .i 
- (4) 

for small 4 and large t, and that the spin autocorrelation 
function Co(t) = <Sj( t) *Si(0) ) exhibits a distinctive 
power-law long-time tail, 

Co(t)-t-a< (5) 
The characteristic exponent predicted by spin diffusion 
phenomenology has the value c@~’ = d/2. 

In a recent computer simulation study,5 the function 
C,-,(t) at T = CO for the classical Heisenberg model ( 1) in 
dimensionalities d = 1,2,3 was analyzed in some detail, and 

the diffusive long-time tail was clearly identified for the 
first time. However, the,characteristic exponent ad inferred 
from the simulation data was found to deviate significantly 
from the value aisD’. The largest deviation was found for 
the case d = 1. This was *interpreted as evidence for anom- 
alous spin diffusion. But that conclusion was challenged by 
Gerling and Landau617 whose more extensive simulation 
study of the d = 1 case demonstrated that the slope E1 of 
CO( 3) in a log-log plot has a trend of decreasing magnitude 
for increasing t. The extrapolation of that trend was inter- 
preted to be consistent with normal spin diffusion: 
a l+a[sDD= l/2. 

Our own conclusions drawn from the two simulation 
studies5-’ -may be summarized as follows: (i) The anoma- 
lous character of the diffusive long-time tail persists out to 
the largest value of t for which a quantitative analysis of 
the slope yields reliable results. (ii) The slope Crt inferred 
from the simulation data decreases from a value 
<, N 0.60 at small t to a value Cri = 0.57-0.58 at Jt = 80 
(depending on the data used and the type of analysis em- 
ployed) 1 ‘(iii) The question of whether the truly asymptotic 
behavior of the long-time tail is anomalous (at > l/2) or in 
agreement with spin diffusion phenomenology 
(a1 = l/2) has eluded a conclusive answer thus far. The 
present study yields additional evidence in support of the 
conclusion that anomalous spin diffusion is real, as tie shall 
see. j 

How does the computational error in the numerical 
integration of the simulation affect the decay of the spin 
autocorrelation function? From a superficial ljoint of view 
the matter seems simple and straightforward. If it wasn’t 
for the conservation law ST = const, the function Co(t) 
would decay exponentially in t instead of algebraically. 
Hence a numerical error in the integration which causes a 
violation of the conservation law (albeit small) amounts to 
a partial removal of the constraint that prevents exponen- 
tial decay. The effect to be expected is a more rapidly de- 
caying function Cs( t), reflected in the data analysis by a 
larger (more anomalous) value of E1. In reality, the con- 
nection between cause and effect is more subtle, and may 
produce a more slowly decaying function C,(t). 

The subtlety that allows for such a. paradoxical result 
derives from the nature of the.Liouvillian flow in the 2N- 
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FIG. 1. Computat ional error A,(t) tangential to global invariants (main 
plot) and  computational error A,(t) perpendicular to global invariants 
(inset) for a  randomly chosen phase-space trajectory. The integration was 
performed by RK4 with fixed time step: Jdt =  0.05, 0.025, 0.01, respec- 
tively, for the three lines For better visual effect, the curves in the inset 
have different vertical scales. The horizontal dashed line in the main plot 
indicates the value of the spin autocorrelation function C,(t) at Jr =  80. 

dimensional phase space of the Heisenberg mode l with N 
classical spins. That phase space is foliated by lower-di- 
mensional invariant surfaces. Their dimensionality de- 
pends on  the number  of existing analytic invariants: the 
total energy H, the total spin ST, and perhaps some less 
obvious ones. In a  nonintegrable many-body system the 
dimensionality of the invariant surfaces is believed to be  
not much lower than 2N. The motion of any individual 
phase point is confined to an  invariant surface, but the flow 
of phase points on  an  invariant surface is chaotic. 

The  numerical integration of the equations of motion 
(2) is subject to two different types of computational error: 
q Deviations AT(t) tangential to the invariant surface: 
The  (chaotic) trajectories of two nearby phase points tend 
to separate exponentially in t. This implies an  exponential 
error propagation in the numerical integration. It causes a  
loss of M  significant digits per time  interval MAtin on 
average. q Deviations AP( t) perpendicular to the invariant 
surface: A computational trajectory also tends to stray ofI 
the invariant surface on  which it starts.out, but at a  much 
slower rate, namely linearly in t. The  associated loss of M  
significant digits occurs on  a  time  interval l@- ‘Atr’ on  
average. 

For the purpose of illustration, we have determined the 
time-dependence of the following two quantities for a  sin- 
gle phase-space trajectory: 

l/2 
[sy(t)-S;(0)12 

;6) 

Ap(t)=?(t/2)]H(t) - H(O)[,’ (7) 

where !?(t/2) symbolizes the property that the spin mo- 
tion is reversed at time  t/2 in the numerical integration. 
W e  have used a  4th-order Runge-Kutta method with fixed 
time  step. The  two quantities in Rqs. (6) and (7) are 
plotted in F ig. 1, the former with an  exponential scale on  
the vertical axis (main plot) and the latter with a  linear 

vertical scale (inset). The  three curves in each plot repre- 
sent data from integrations with different time  step dt. 

The results clearly demonstrate the exponential and 
linear error propagation in the two quantities A,(t) and 
Ap(t), respectively. In both quantities, the rate of error 
propagation increases with increasing time  step dt. The 
function A,(t) is observed to level off when its size reaches 
0( 1). The  value of C,(t) at Jt = 80 is about 0.023 (indi- 
cated by a  dashed line in F ig. 1). The  computational error 
AT(t) is expected to become non-negligible when it has 
grown to a  size comparable to Co(t). This is the case at 
Jt < 80 at least for the two larger time  steps used. The 
function Ap(t), by contrast, stays orders of magn itude be- 
low the value of C’s(t) at Jt = 80 for all three time  steps 
used. The important point for the analysis of simulation 
data is that the two types of computational error, AT(t) 
and Ap(t), have a  quite different effect on  the diffusive 
long-time tail of the spin autocorrelation function. 

W e  have performed a  simulation on  systems with N 
= 250 spins and periodic boundary conditions, using RK4 

integrations with time  step Jdt = 0.01 and another simula- 
tion with the larger time  step Jdt = 0.05. For both simu- 
lations, the function Co(t) has been computed from some 
200 000 independent integrations with randomly chosen 
initial conditions. It is customary to plot the long-time tail 
of C’s(t) in a  log-log graph and determine the exponent 
aI from the slope Crt (see Refs. 5-7). Here we go one step 
further in the analysis before plotting the results: W e  de- 
termine the slope E1 by linear regression from 15 1  consec- 
utive data points (In[Ce(t)], ln(Jt) ) (amounting to an  in- 
terval Jt,” = 30) and plot the result versus l/Jt (midpoint 
of interval). This representation is very useful and accurate 
for the determination of al, but it requires a  fairly low level 
of statistical fluctuations in the simulation data. In our 
case, the simulation data are sufficiently smooth up  to Jt 
-60, yielding data points in F ig. 2  up  to Jt-45. A some- 
what similar plot of simulation data can be  found in F ig. 2  
of Ref. 7. 

Consider first the results shown in the ma in plot of our 
F ig. 2, obtained from RK4 with Jdt = 0.01. The  value of 
Crr, decreases monotonically, almost linearly with decreas- 
ing l/Jt, and extrapolates to an  asymptotic value a1 be- 
tween 0.56 and 0.57. These simulation data represent the 
most unambiguous numerical evidence to date in support 
of the proposition that spin diffusion in the spin autocor- 
relation function of the classical d = 1  Heisenberg mode l is 
anomalous. 

Looking now at the results shown in the inset to F ig. 2, 
obtained from RK4 with dt = 0.05, we observe that a  very 
similar trend persists for exactly as long as the computa- 
tional error ALT has not yet caught up  with the value of 
C,,(t). That happens at Jt-45 (see Fig. 1). The  first in- 
terval of size Jt,, = 30 which overlaps with this point has its 
m idpoint at Jt-30. This is the data point marked by an  
arrow in F ig. 2. Here the slope function G1 (t) changes 
trend toward a  smaller asymptotic value of the exponent 
al. 

There are two interrelated properties of these data 
which call for an  explanation: (i) The  value of the char- 
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FIG. 2. Effective characteristic exponent a1 as determined from the slope 
of the long-time tail of C,,(r) in a log-log plot. Each data point for a1 is 
determined by linear regression from 151 consecutive data points 
(ln[C&)], In(&)) spaced at JAt = 0.2 and plotted versus l/Jt at the 
midpoint of the total interval. Shown are results for two independent 
simulations. The number of random initial conditions used is 199 SO0 
(main plot) and 200 000 (inset). Both simulations employ a 4th-order 
RungeKutta integration, one with fixed time step Jdt = 0.01 (main 
plot), the other with fixed time step Jdt = 0.05 (inset). 

acteristic exponent (Y~ appears to be affected by the com- 
putational error A,(t) associated with the exponential in- 
stability of numerically integrated phase-space trajectories. 
(ii) The simulation which uses higher precision in the nu- 
merical integration tends to yield a more rapidly decaying 
long-time tail in Co(t) than the one which uses lower pre- 
cision. That is the paradox mentioned previously. 

These properties are in contradiction to the assump- 
tions underlying spin diffusion phenomenology. Note that 
at the point where the computational error A,(t) has 
grown to a size comparable to that of C,(t), all global 
conservation laws including the one (ST = const) on which 
the spin diffusion phenomenon hinges are still satisfied to 
high precision. Moreover, the robustness of the spin diffu- 
sion phenomenology derives from the fact that it depends 
(in addition to the aforementioned conservation law) only 
on the m ixing character of the phase flow and on certain 
rather weak requirements for the transport coefficient (dif- 
fusivity), but not on such detailed properties of the phase 
flow as m ight be affected by the computational error 
A,(f). 

The properties (i) and (ii) of our data, if they can be 
confirmed by more extensive and systematic simulation 
studies, suggest the following intriguing scenario: The fact 
is that the exponential instability of numerically integrated 
phase-space trajectories alters the nature of the m icro- 
scopic dynamics from a nonlinear deterministic process to 
a computationally generated stochastic process. This is a 
consequence of the inevitable deterministic randomness, an 
intrinsic property of Hamiltonian chaos. Since both m icro- 
scopic processes satisfy the same global conservation laws, 
both support a diffusive long-time tail (5) in the spin au- 
tocorrelation function. That function represents a con- 
tracted-level description for either of the two processes. On 
that level of description, the two are indistinguishable at 
least until the computational error AT(t) has grown to 
significant size. When this happens, such as near the arrow 
in Fig. 2, we may see the crossover between two different 
spin diffusion processes, which we call deterministic spin 
diffusion and stochastic spin diffusion, respectively, in ref- 
erence to the nature of the underlying m icroscopic dynam- 
ics. While the manifestly anomalous long-time tail of the 
deterministic process implies a singular transport coeffi- 
cient, it may well be that its stochastic counterpart pro- 
duces a well-behaved transport coefficient and thus gives 
rise to normal spin diffusion. 

This scenario, if it is valid, resolves the paradox quite 
elegantly. However, it does still not solve the puzzle which 
provoked the paradox: an understanding of anomalous 
spin diffusion. More theoretical and computational efforts 
are clearly needed. 
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