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ABSTRACT 
 

 The dynamic response and damage evolution of composite materials subjected to 

underwater explosive loading has been studied. The study utilizes both experimental and 

numerical techniques to aid in the understanding of the behavior of these materials under shock 

loading conditions.  The objective of the project is to develop a better understanding of the 

response of composite materials when subjected to shock loading conditions leading to more 

efficiently designed structures.  The focus of the work is on performing high fidelity experiments 

under controlled shock loading and corresponding finite element simulations of the experiments.  

The work is divided into three phases, each of which build and expand upon the preceding work.  

 In the first phase of the research the transient response and development of damage 

mechanisms of E-Glass / Epoxy composite plates is studied. The plates are bi-axial laminates 

consisting of a non-woven, parallel fiber construction, and are round, flat disks.  The work 

consists of experiments, utilizing a water filled conical shock tube and computational 

simulations, utilizing the commercially available LS-DYNA finite element code.  Two series of 

experiments have been performed and simulated: (1) a reduced energy series which allowed for 

the use of strain gages and (2) a series with increased energy which imparted material damage.  

The strain data obtained from the reduced energy experiments and the corresponding simulations 

are correlated using the Russell Error measure, a mathematical technique which evaluates the 

differences in two transient data sets by quantifying the variation in magnitude and phase.  It is 

shown that there is a high level of correlation between the experiments and the simulations when 

using this measure.  Additionally the extent of the damage, including the individual mechanisms, 

from the high energy experiments and simulations are compared and show good agreement.  

  



 

 The objective of the second phase of the project was to increase the geometrical 

complexity of the composite plates by shifting from flat to curved mid-sections.  The plates 

utilized in the second part of the study are E-Glass / Vinyl Ester, 0/90 biaxial laminates.  The 

water filled conical shock tube is utilized to impart shock loading to the plates.  Computational 

finite element simulations are performed with the LS-DYNA finite element code.  The transient 

response of the plates was measured using a three-dimensional (3D) Digital Image Correlation 

(DIC) system, which included high speed photography and specialized post processing software.  

This ultra high speed system records full field shape and displacement profiles in real time.  The 

transient response of the plates is compared to the simulation results using both point-wise time 

histories as well as full field deformation profiles.  The DIC data and the computational results 

show a high level of correlation using the Russell Error measure.   

 The third phase of the project investigates the relative response of three different laminate 

constructions.  The objective is to determine the effectiveness of the laminate variations on 

increasing the performance of the laminate used in the second phase.  Specifically, to improve 

the dynamic response and mitigate the damage mechanisms that were observed in the 

experiments from phases one and two.  Three laminate constructions have been investigated: (1) 

a baseline 0°/90° biaxial layup, (2) a 0°/90° biaxial layup that includes a thin glass veil between 

plies, and (3) a 0°/90° biaxial layup that has a coating of polyurea applied to the back face.  The 

digital image correlation system is used to capture the real-time deformation and velocity 

response of the plates.  The use of polyurea is shown to improve the material performance, while 

the inclusion of lightweight veils between the plies is shown to negatively affect the response.  
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PREFACE 
 

This dissertation is prepared using the manuscript format. 

The current study is an investigation into the dynamic response and damage evolution of 

composite materials subjected to underwater explosive (UNDEX) loading conditions.  The 

research consists of experimental and numerical components to study the material behavior.  The 

composite plates which are used in the study are round discs with both flat and curved mid-

sections.  A water filled conical shock tube is utilized to impart the shock loading conditions to 

the plates.  The transient response of the plates is captured in real time with strain gages and 

digital image correlation (DIC).  Finite element modeling of the experiments has been performed 

utilizing the LS-DYNA code available from the Livermore Software Technology Corporation 

(LSTC).  The experimental data and the computational results show a high level of correlation 

using the Russell Error measure.   

 Chapter 1 provides a survey of historical and current published literature of subject 

matter relevant to this dissertation.  The topics covered include methods for imparting shock 

loading to materials, investigations of the effects of shock loading on both metallic and 

composite materials, and the use of advanced materials to improve the shock response of these 

materials.  The studies which examine the effect of shock loading on materials consist of 

experimental and computational work.  This chapter serves to lay the groundwork for the 

dissertation and highlight the work that has been done in this field to date.    

Chapter 2 presents the effects of underwater shock loading on flat, E-Glass / Epoxy 

composite plates.  The work consists of experiments, utilizing the water filled conical shock tube 

and computational simulations, utilizing the commercially available LS-DYNA finite element 

code.  Two experimental series have been performed and simulated: (1) a reduced energy series 
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which allowed for the use of strain gages and (2) a series with increased energy which imparted 

material damage.  The strain gage data and the computational results show a high level of 

correlation using the Russell error measure.  The finite element models are also shown to be able 

to simulate the onset of material damage by both in-plane and delamination mechanisms.  The 

chapter will follow the formatting guidelines specified by Composite Structures. 

 Chapter 3 presents the response of E-Glass / Vinyl Ester curved composite panels 

subjected to underwater explosive loading.  The work consists of experimental work utilizing the 

water filled conical shock tube facility and computational simulations with the commercially 

available LS-DYNA finite element code.  The composite specimens are 0/90 biaxial laminates 

with a thickness of approximately 1.3 mm.  The samples are round panels with curved 

midsections.  The transient response of the plates is measured using a three-dimensional (3D) 

Digital Image Correlation (DIC) system, including high speed photography.  This ultra high 

speed system records full field shape and displacement profiles in real time.  The DIC data and 

the computational results show a high level of correlation using the Russell Error measure.  The 

chapter will follow the formatting guidelines specified by Composite Structures. 

Chapter 4 investigates the relative response of three E-Glass / Vinyl ester laminates 

subjected to underwater explosive loading.  The plates are round plates with curved midsections.  

The constructions are: (1) a baseline 0°/90° biaxial layup, (2) a 0°/90° biaxial layup that includes 

a thin glass veil between plies, and (3) a 0°/90° biaxial layup that has a coating of polyurea 

applied to the back face.  The work consists of experiments utilizing the water filled, conical 

shock tube facility.  The samples are round panels with curved midsections, and are 

approximately 2.54 mm in thickness.  The transient response of the plates is measured using a 

three-dimensional (3D) Digital Image Correlation (DIC) system, along with high speed 
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photography.  The results show that the performance of the baseline laminate is improved when 

coated with the polyurea material, but conversely is degraded by the inclusion of the glass veils 

between plies. The chapter will follow the formatting guidelines specified by International 

Journal of Impact Engineering. 
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CHAPTER 1 
 

INTRODUCTION AND LITERATURE REVIEW 
 

1. INTRODUCTION 

Composite materials have been widely used in a variety of applications in the marine, 

automotive, and transportation industries.  These materials offer the advantages of high strength 

to weight ratios, reduced maintenance costs, and improved corrosion resistance.  Recently, there 

has been an increased interest in composite materials for use in military applications including 

land vehicles (structural components and armor solutions), advanced ship hull designs, and 

submarine components.  The use of these materials in wartime environments requires that they 

not only be able to withstand the loads produced by everyday use but also those imparted from 

explosions and high speed projectile impacts.  In particular, when used in submarine applications 

these structures must be able to survive underwater explosion (UNDEX) events.  Currently, the 

response of these materials at static and quasi-static loading rates is well understood.  However, 

the response at the high strain rates that shock and ballistic events can induce is not well 

understood.  This leads to an inherent conservative approach to be taken when these structures 

are designed and constructed.  Typically this results in structures which do not fully realize the 

weight savings afforded by these materials.  This results in a need to understand the behavior of 

these materials not only at strain rates associated with static load levels (10-4 – 10-3) but also at 

loading rates many orders of magnitude higher (10-1 - 103).  The focus of the current research is 

on the response of composite materials subjected to underwater explosions, UNDEX. 

The objective of this project is to develop a better understanding of the characteristics of 

composite materials subjected to shock loading conditions, specifically the dynamic response 

and damage evolution.  The goal was to develop both experimental techniques and 
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computational modeling methods to aid in the understanding.  The experimental aim was to 

formulate a procedure which subjects the composite material to shock loading conditions in a 

repeatable and controlled manner while measuring the transient response on the surface of the 

material.  The damage imparted due to the load is also studied.  Well instrumented, quality 

experiments will facilitate and aide in the development of finite element techniques for modeling 

the dynamic response of composite materials, which can then be extended to large or 

complicated structures that cannot be easily tested due to size or cost constraints.  Validation of 

these techniques in a controlled laboratory environment and then transitioning them to real 

structures can make this a powerful tool, equivalent to the currently available prediction tools for 

metallic structures.  Computational modeling techniques utilizing the commercial finite element 

code LS-DYNA are developed to accurately simulate the experiments.  The goal of the 

development of this methodology was to develop a process which can be applied early in the 

design phase of new structures to identify any structural inadequacies.  An understanding of the 

ability of these materials to sustain damage while retaining structural integrity is necessary.  As 

the navy is involved in the design and operation of vehicles such as UUV’s and composite 

structures external to the hull of submarines this research would allow for better design of these 

structures without increasing the danger to personnel or equipment.  The over design of these 

structures could be reduced, resulting in the ability to carry more equipment or simply stronger 

and lighter structures.  

This project is an initial step in bringing the understanding of composite response to 

UNDEX loading to the maturity level of metallic materials.  The behavior of metallic materials 

during and after a shock event is sufficiently understood such that structures can be designed in a 

manner which ensures they are not significantly over designed so as to avoid the addition of 
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unnecessary weight. This work is important as composite structures are rapidly replacing their 

metallic counterparts as they lend themselves well to manufacturing of complex geometries in a 

more cost effective manner.   

The work is an extension of the previous work in that it includes real time observations of 

the material response during the loading event itself.  These real-time measurements are made 

using strain gages and digital image correlation.  The digital image correlation technique allows 

for full field shape and displacement profiles to be measured on the composite plates in real time 

rather than the single point measurements provided by strain gages.  Prior work in this field has 

been limited to observing the amount of damage present after a loading event whereas this work 

strives to capture the damage progression and transient response of the structure through 

experimental and computational methods.  Furthermore the development and validation of finite 

element models to simulate the transient response and damage progression in composite plates, 

with comparison to experimental data, is an area in which there have been minimal publications 

on which knowledge can be drawn. 

2. LITERATURE REVIEW 

Interest in the dynamic response of materials and structures to shock loading has 

continued to increase in recent years.  Traditionally, this work has focused on the behavior of 

metallic materials; however there is now an increased interest in advanced materials including 

composites. A wide variety of techniques and methods have been developed to aid in the 

understanding of materials under shock loading conditions.  These include experimental 

methods, development of analytical models, and computational simulations. 

Historically, there have been two experimental methodologies used to impart shock 

loading conditions to structures: (1) explosives and (2) shock tubes.  Although the use of 
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explosives offers an ease of use, there are associated deficiencies such as spherical wave fronts 

and pressure signatures which are often spatially complex and difficult to capture.  Shock tubes 

offer the advantage of plane wave fronts and wave parameters that are easily controlled and 

repeated.   The current study utilizes a water filled, conical shock tube that replicates the free 

field pressure wave expansion of an underwater explosion.   

Conical shock tubes have historically been designed and built with the intent to replicate 

the pressure wave propagation as generated by the open water, free field explosion of a spherical 

charge.  The guiding principle is that if the walls of the tube are sufficiently rigid then the radial 

distribution of the free field pressure wave can be replicated in laboratory setting (Coombs, 

1967).  Tubes of this type are typically horizontally mounted and water filled, with a conical 

internal shape. An explosive charge is located at the apex of the cone and is subsequently 

detonated.  The tube geometry represents a solid angle segment of the pressure field that results 

from the detonation of a spherical, explosive charge.  In an open water environment the pressure 

expands from the charge location as a spherical wave.  In the shock tube the rigid wall acts to 

confine the expansion of the pressure wave in a manner that simulates a conical sector of the 

pressure field.  Using this type of tube, a small amount of explosive is able to replicate the effects 

of much larger charges in free field environments.  An effective amplification factor is typically 

utilized to relate the weight of the charge in the tube to the weight of a free field charge.  This 

factor is defined by Poche and Zalesak (1992) as the ratio between the weight of a spherical 

charge, W, required to produce the same peak pressure at a given standoff distance as that 

produced in the shock tube by a segment of charge weight, w.  Further discussion on the 

development and history of the water filled conical shock tube is provided by Coombs et al 

(1967) and Filler (1964). 
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The response of materials subjected to shock and impact loading has been studied over a 

wide range of loading rates. The effect of shock loading on steel plates subjected to underwater 

impulsive loads has been presented by Espinosa et al (2006).  Nurick et al (1995, 1996) have 

studied the effects of boundary conditions on plates subjected to blast loading and identified 

distinct failure modes depending on the magnitude of the impulse and standoff.  Studies by 

Jacinto et al. (2001) and Stoffle et al. (2001) have focused on the dynamic response of plates 

when subjected to varying levels of blast and shock loading.  Experimental studies performed 

Wierzbicki et al. (1996) aimed at studying the large deformations and failure modes of thin 

plates subjected to blast loads. 

Work by Zaretsky et al (2004) and Yuan et al (2007) has studied the damage 

characteristics of composite materials when subjected to low velocity impacts.  Franz et al. 

(2002) and Mouritz et al. (1995) studied the effects of an underwater explosion at different 

standoff distances on a glass composite laminate.  The amount of explosive and the standoff 

distance were varied in order to see the effect of both variables on plate damage.  The response 

of E-Glass and Carbon based composite laminates under shock and explosive loading (including 

the effects of heat generation during combustion) has been presented by Tekalur et al (2008).  

Mouritz (2001) studied the effectiveness of adding a light weight, through thickness stitching 

material to increase the damage resistance of composites subjected to UNDEX loading.  LeBlanc 

et al (2007) have studied the effects of shock loading on three-dimensional woven composite 

materials.  Recently, there has been an increased interest in the study of the effect of shock 

loading on sandwich structures.  These studies include the effects of shock and impact loading 

conditions (Jackson et al (2011), Schubel et al (2007), Arora et al (2010)).        
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When composite materials are subjected to loading conditions they may experience 

damage in the form of several distinct mechanisms occurring in the in-plane and through 

thickness directions.  The in-plane mechanisms consist of fiber breakage and matrix cracking, 

while the through thickness damage is dominated by delamination of the plies.  Composite 

materials typically have high in plane strengths due to their construction using oriented layers of 

continuous fibers.  The weakness of these materials is found in the through thickness direction.  

In this direction the material strength is governed by the resin as there are no fibers oriented in 

this direction.  The resin has lower tensile and shear strengths as compared to the fibers. This 

through thickness weakness typically leads to delamination damage when the plates are 

subjected to through thickness loading or flexural conditions.  Recently, weaving processes have 

evolved to where it is possible to make structural cloth materials which also include through 

thickness fibers and show the ability to improve this through thickness weakness (LeBlanc et al 

(2007), Tekalur et al (2009), Bogdanovich et al (2001)).  This damage is increasingly found in 

composite materials subjected to shock or impact loading.  Under shock loading a compression 

wave will pass through the thickness of the material and then be reflected off of the back face as 

a tensile wave.  Simultaneously there is also a tensile unloading wave passing from the front face 

of the material toward the back.  This unloading wave (also referred to as a release wave) 

corresponds to the decay phase (negative slope) of the incident loading (Wang, 2004).  In reality 

the incident wave is composed of a loading front followed by an unloading front.  If the 

unloading wave and the reflected wave meet in a ply interface, de-bonding may occur if the 

waves combine to exceed the tensile strength of the resin.  These waves have a greater chance of 

meeting in composite materials due the lower wave speed compared to metallic parts (Dyka et al. 
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(1998)).  The interaction of the tensile release and reflected waves is the same phenomenon that 

is often responsible for the formation of surface spalling in metallic materials. 

Analytical damage models for composites have been widely developed and are 

continually being refined and updated.  These models typically assign an internal damage 

variable to each of the types of damage of interest (ie. matrix cracking, fiber rupture) which, in 

simple form, are ratios of the stress state to a failure criteria (Matzenmiller et al (1995), Zako et 

al (2003), Dyka et al (1998)).  Matzenmiller et al (1995) have presented a mathematical model 

for damage of composite materials that develops a relationship between the level of material 

damage and the effective elastic properties of the material.  For each of the significant damage 

mechanisms (fiber rupture, fiber buckling, matrix crushing, and matrix cracking) an internal 

variable describes the evolution of the damage as a function of loading.  Based upon the 

expression representing each damage variable the effective elastic properties can be degraded 

when the variable reaches a critical value.  Based upon the expression representing each damage 

variable, the effective elastic properties can be degraded when the variable reaches a critical 

value.  As the mechanical properties must be continually updated to account for the damage 

degradation this methodology lends itself well to implementation into finite element codes.   

The finite element modeling of damage in composites has been performed primarily on 

models simulating strain rates up to those representing drop test experiments with some work 

performed at the high strain rate regimes expected in shock loading.  Material models are 

currently being implemented into existing commercial finite element codes (O’Daniel et al 

(2005), McGregor et al (2007), Williams and Vaziri (2001)) however the validation work with 

these models has been limited to the low strain rate regime not experienced under blast / shock 

loading conditions.  Recent publications involving computational modeling of damage 
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progression in composites have utilized LS-DYNA and the Mat_162 

(Mat_Composite_OPTION) material model which simulates fiber breakage, matrix cracking and 

delamination damage.  This material model combines the progressive failure theory of Hashin 

and the damage mechanics approach of Matzenmiller et al (1995).  Gama et al (2004) and Xiao 

et al (2007) have published results from quasi-static punch shear loading experiments which 

correlate well with simulations utilizing the Mat_162 material model.  Simulations of low 

velocity impact experiments have been documented in the work by Donadon et al (2008) and 

Hosseinzadeh et al (2006).  Furthermore, Batra and Hassan (2007) have studied the response of 

composites to UNDEX loading through numerical simulations; however there are no 

comparisons to experimental results.  Although the dynamic experiments have been simulated, 

the results taken from these models have been limited to the prediction of damage area and final 

deformations rather than comparisons to transient response.  Historically the material inputs are 

determined from quasi-static test data, an assumption which has been shown to be reasonable in 

simulations of composite materials subjected to high velocity impacts, Chan et al. (2007).  This 

observation has been supported in the current work which investigates the underwater shock 

loading of composites. 

The use of polyurea materials to enhance the failure resistance of materials subjected to 

explosive loading has recently become a topic of interest.  Polyurea is a synthetic, high strength / 

high elongation coating that is typically spray cast onto existing structures to increase their 

resistance to shock and ballistic/shrapnel loading events such as those of a bomb blast.  The 

armed forces have begun to investigate the suitability of these materials for use on military and 

naval vehicles such as Humvees, troop carriers and ship hulls, Hodge (2004).  Research efforts 

have focused on the use of polyurea coatings on steel plates, composite plates, and as inner 
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layers of sandwich composites.  Amini et al (2010, 2010, 2010) have studied the effects of 

monolithic and polyurea coated steel plates subjected to impulsive loads and showed that 

polyurea has a positive damage mitigation effect when applied to the back face of the material.  

They also found that polyurea can enhance the loading and damage levels if applied on the 

impact side of the plates.  Gardner et al (under review, 2011) studied the effect of polyurea in 

sandwich composites.  It was observed that when a layer of polyurea is placed between the foam 

core and the back face of the sandwich the blast resistance is improved, while conversely if the 

polyurea is placed between the front face and the foam core the performance is degraded.   
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Abstract 
 

The effect of underwater shock loading on an E-Glass / Epoxy composite material has 

been studied.  The work consists of experimental testing, utilizing a water filled conical shock 

tube and computational simulations, utilizing the commercially available LS-DYNA finite 

element code.  Two test series have been performed and simulated: (1) a reduced energy series 

which allowed for the use of strain gages and (2) a series with increased energy which imparted 

material damage.  The strain gage data and the computational results show a high level of 

correlation using the Russell error measure.  The finite element models are also shown to be able 

to simulate the onset of material damage by both in-plane and delamination mechanisms. 

 
1. Introduction 

 
Within the naval community there is an interest in constructing new vehicles and 

structures from composite materials to exploit their high strength to weight ratios, resulting in 

lighter structural components.  In a military environment these structures must be designed in a 

manner in which they will be able to survive an underwater explosion (UNDEX) event.  This 

results in a need to understand the behavior of these materials not only at strain rates associated 

with static load levels (10-4 – 10-3) but also at loading rates many orders of magnitude higher (10-

1 - 103).  The static response of composite materials is well understood while there is less of an 

understanding in terms of what happens to the same composite material when subjected to high 

loading rates.  Currently the composite structures in use by the navy are designed with large 

safety factors to ensure that damage will not occur during a shock event.  Due to these large 

safety factors the structures are often significantly over designed to the point that the full weight 

savings afforded by composite materials is not realized. 
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Historically there have been two experimental methodologies used to impart shock 

loading from a fluid to a structure: (1) explosives and (2) shock tubes.  Although the use of 

explosives offers an ease of use, there are associated deficiencies such as spherical wave fronts 

and pressure signatures which are often spatially complex and difficult to measure.  Shock tubes 

offer the advantage of plane wave fronts and wave parameters that are easily controlled and 

repeated.   

When composite materials are subjected to loading conditions they may experience 

damage in the form of several distinct mechanisms occurring in the in-plane and through 

thickness directions.  The in-plane mechanisms consist of fiber breakage and matrix cracking, 

while the through thickness damage is dominated by delamination of the plies.   

 Relevant experimental studies on composite materials have studied the material response 

over a range of loading rates.  Work by Zaretsky et al [1] and Yuan et al [2] has studied the 

damage characteristics of composite materials when subjected to low velocity impacts while 

Mouritz [3] has studied the damage resulting from high rate UNDEX loading.  LeBlanc et al [4] 

have studied the effects of shock loading on three-dimensional woven composite materials.  The 

results of these experimental studies however are limited to the study of post mortem properties 

of the materials.  Once the loading, low or high rate, has been used to induce damage to the 

materials, the residual strength or fatigue properties are determined. 

  
The study of damage mechanisms in composite materials can be grouped into three 

categories: (1) Mathematical formulations, (2) Numerical implementation into finite element 

software and (3) Experimental studies.  Matzenmiller et al [5] have presented a mathematical 

model for damage of composite materials that develops a relationship between the level of 

material damage and the effective elastic properties of the material.  For each of the significant 
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damage mechanisms (fiber rupture, fiber buckling, matrix crushing, and matrix cracking) an 

internal variable describes the evolution of the damage as a function of loading.  Based upon the 

expression representing each damage variable the effective elastic properties can be degraded 

when the variable reaches a critical value.  As the mechanical properties must be continually 

updated to account for the damage degradation this methodology lends itself well to 

implementation into finite element codes.   

 
 The finite element modeling of damage in composites has been performed 

primarily on models simulating strain rates up to those representing drop test experiments with 

some work performed at the high strain rate regimes expected in shock loading.  Material models 

are currently being implemented into existing commercial finite element codes (O’Daniel et al 

[6], McGregor et al [7], Williams and Vaziri [8]) however the validation work with these models 

has been limited to the low strain rate regime not experienced under blast / shock loading 

conditions.  Recent publications involving computational modeling of damage progression in 

composites have utilized LS-DYNA and the Mat_162 (Mat_Composite_OPTION) material 

model which simulates fiber breakage, matrix cracking and delamination damage.  This material 

model combines the progressive failure theory of Hashin and the damage mechanics approach of 

Matzenmiller et al [5].  Gama et al [9] and Xiao et al [10] have published results from quasi-

static punch shear loading experiments which correlate well with simulations utilizing the 

Mat_162 material model.  Simulations of low velocity impact experiments have been 

documented in the work by Donadon et al [11] and Hosseinzadeh et al [12].  Furthermore Batra 

and Hassan [13] have studied the response of composites to UNDEX loading through numerical 

simulations; however there are no comparisons to experimental results.  Although the dynamical 

experiments have been simulated, the results taken from these models have been limited to the 
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prediction of damage area and final deformations rather than comparisons to transient response.  

Historically the material inputs are determined from quasi-static test data, an assumption which 

has been shown to be reasonable in simulations of composite materials subjected to high velocity 

impacts, Chan et al. [14].  This observation has been supported in the current work which 

investigates the underwater shock loading of composites. 

2. Composite Material 
 
The composite material studied in this investigation is Cyply® 1002, a reinforced plastic 

manufactured by Cytec Engineered Materials.  The material is a cured epoxy composite which 

utilizes a non-woven, parallel fiber construction.  The fibers are continuous E-Glass filaments.  A 

cross-ply construction has been utilized in this study and has alternating plies of 0° and 90° with 

each ply having a thickness of 0.254 mm (0.01 in.).  The cured material has an areal weight of 

0.46 kg/m2 (0.85 lb/yd2) per ply (0.254 mm) and a specific gravity of 1.85.  The resin content is 

36 ± 3%.  Thicknesses of 3.3 mm (0.130 in.) and 4.82 mm (0.190 in.) have been chosen for use 

in the current project with each thickness having 13 and 19 plies, respectively.  Due to the odd 

number of plies there is an additional ply in the 0° direction.  The laminate schedule for the 3.3 

mm (0.130 in.) material is as follows [0/90/0/90/0/90/0/90/0/90/0/90/0] with a similar schedule 

for the 4.82 mm (0.190 in.) material, only with 3 more additional 0/90 layers.  The material 

properties for the material are provided in table 1. 

Table 1 - Cyply 1002 Crossply - Mechanical Properties 
 N/m2 (lb/in2) 

Tensile Modulus (0°) 23.4e9 (3.4e6) 
Tensile Modulus (90°) 23.4e9 (3.4e6) 
Tensile Strength (0°) 482e6 (70e3) 
Tensile Strength (90°) 482e6 (70e3) 

Compressive Strength (0°) 689e6 (100e3) 
Compressive Strength (90°) 689e6 (100e3) 
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3. Shock Loading Apparatus 

 
A conical shock tube (CST) facility located at the Naval Undersea Warfare Center, 

Division Newport was utilized in the shock loading of the composite materials.  The shock tube 

is a horizontally mounted, water filled tube with a conical internal shape, Figure 1.  The internal 

cone angle of the tube is 2.6 degrees and simulates the free field pressure wave expansion in an 

open water environment.  The tube is 5.25 m (207 in.) long from the charge location to the 

location of the test specimen and internally contains 98.4 L (26 gallons) of water at atmospheric 

pressure.  The pressure shock wave is initiated by the detonation of an explosive charge at the 

breech end of the tube (left side of figure) which then proceeds down the length of the tube.  A 

typical pressure profile obtained from the use of the tube is shown in figure 2.   

 
The shock tube has the ability to be configured in two ways: (1) Utilizing a sliding piston, 

and (2) the piston removed and replaced by a fixed end cap.  The purpose of the sliding piston is 

to absorb energy in order to reduce the loading that the specimen will experience when the 

weight of the explosive charge cannot be reduced further.  The fixed end cap configuration 

allows the test specimen to absorb the full energy of the pressure wave.  Both configurations 

have been utilized in this study.  The reasons will discussed later in the paper.   

 
Mounting fixtures have been designed such that the test specimens are air backed with 

fully clamped edges.  The specimens are 26.54 cm (10.45 in.) in overall diameter with a 22.8 cm 

(9 in.) unsupported middle section.  The mounting arrangments for both tube configurations, 

slider included and fixed end cap, are shown in figures 3a and 3b respectively.   
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Figure 1 - Conical Shock Tube Schematic 
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Figure 2 - Shock Tube Pressure Profile 
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Figure 3 - (a) Slider Mounting Configuration, (b) Fixed Base Mounting Configuration 

 

4. Experimental Testing 
 
Shock testing of the composite material has been performed with the CST in each of the 

two configurations, slider included and fixed end cap.  The reason for utilizing the slider is that a 

lower loading level of the plates was desired than was possible utilizing the smallest amount of 

charge permissible (blasting cap only).  Although this does not decrease the pressure loading that 

the plate experiences, the slider does absorb some of the energy that otherwise would be directed 

into the plate.   Lower energy testing was used to decrease the loading level on the plates to the 

point where it would be possible to instrument the dry face of the test samples with strain gages 

with the expectation that they would remain attached during the shock event.  The strain gage 

data served to provide a link for correlation between the experimental results and the finite 

element results to be discussed later.  The use of the fixed end cap configuration allows the plate 

to absorb the full energy level and sustain a suitable level of damage for comparison to the finite 

element model results. 

 
4.1 Testing with Slider Assembly 

 
A series of two tests was performed utilizing the slider mechanism in order to capture 

strain gage data on the dry side of test samples.  One test was performed with each of the two 
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thickness materials, 3.3 mm (0.130 in.) and 4.82 mm (0.190 in.).  The dry (non-impact) face of 

each of the samples was instrumented with four (4) tri-axial strain gages, which measured strains 

in the 0°, 45°, and 90° gage directions.  The gages were mounted as seen in figure 4, with one 

gage located at the center of the panel and three gages located at a 7.62 cm (3 in.) radius from the 

center along the 0°, 45°, and 90° material directions.   For all tests the strains were recorded at a 

sampling rate of 200 KHz. 

  
For the test performed with the 4.82 mm (0.190 in.) thick test sample 9 of the 12 gages 

provided suitable output, while the other 3 suffered from de-bonding.  In the case of the test 

performed with the 3.3 mm (0.130 in.) plate only one suitable gage reading was obtained.  This 

being the 0° gage direction on the gage located at a 7.62 cm (3 in.) radius along the 0° material 

direction.  The low survival rate of the gages on the 3.3 mm (0.130 in.) plate can be expected as 

this plate has more out of plane flexure during the loading than the case of 4.82 mm (0.190 in.) 

plate.  The strain profiles obtained from the test of the 4.82 mm (0.190 in.) plate for the three 

gages located along the 0° material direction are shown in figure 5. 
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90˚
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Figure 4 - Strain Gage Mounting Pattern 

 
 

 

0˚

90˚
7.6 mm

 
Figure 5- Strain Gage Results, 4.82 mm (0.190 in.) Plate at 9.65 MPa (1400 lb/in2) Shock 

Pressure 
 
 
5. Finite Element Modeling 

 
Finite element modeling of the testing has been performed utilizing the LS-DYNA code 

available from the Livermore Software Technology Corporation (LSTC).  All simulations are 

generated with Version 971, Release 3.1 and are run in double precision mode.   

 
The composite plate in the simulations is modeled using solid brick elements with a 

constant stress element formulation (Type 1).  The model of the 3.3 mm (0.130 in.) plate is 
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shown in figure 6 and consists of 7 layers of solid elements.  Each layer represents a 0° and 90° 

combined ply (0.508 mm (0.02 in.) thick) with an additional single 0° layer (0.254 mm (0.01 in.) 

thick) in the middle of the layup.  The holes represent the through bolt holes present in the test 

samples used for mounting the plate to the fixture.  In the through thickness material direction 

the elements have an edge length of 0.508 mm (0.02 in.).  The in plane element edge lengths are 

approximately 2.54mm (0.1 in.) with 95% of elements having an aspect ratio of 5:1 or less.  

 
 

 

10.45”26.5 cm

 
Figure 6 - Finite Element Model of Composite Plate 

 
 
The LS-DYNA material model that is utilized in this work is 

Mat_Composite_Failure_Option_Model (Mat_059, Option=Solid).  This is an orthotropic 

material definition capable of modeling the progressive failure of the material due to any of 

several failure criterion including tension / compression in the longitudinal and transverse 

directions, compression in the through thickness direction, and through thickness shear.  

Published descriptions of how each failure mode is handled are scarce, however there is some 

informal documentation available from LSTC.  For each possible failure mode there is an 

internal variable which is checked throughout the analysis to determine if failure in that mode is 

present.  Once failure due to one mode is triggered the load carrying ability of the material in that 
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direction is reduced to zero.  It is important to note that failure in one direction does not cause the 

element to be deleted.   An element is only deleted from the analysis after it has failed in all 

directions and can no longer carry any load.  The input material properties are those provided in 

table 1.    The material model inputs are derived from static tensile and compression testing with 

no modifications for strain rate effects.  It was seen that the static properties provide reasonable 

results for shock loading conditions.  This observation has been seen in literature addressing the 

ballistic impact problem as well.  Chan et al. [14] have shown that the use of static properties is 

reasonable when applied to composite materials subjected to strain rates associated with high 

velocity impacts.  

 
In the current modeling effort delamination damage is considered and is taken into 

account through the use of a surface-to-surface tiebreak contact definition.  Using this approach 

each ply is modeled as a solid layer of elements but the nodes between plies are not equivalenced 

but rather tied together.  The tie break definition initially ties the nodes between plies together to 

inhibit sliding motion.  The nodal force at each node is monitored and checked against a 

predefined normal and shear force designated in the contact definition.  If either the normal or 

shear force exceeds the defined value then the tie definition for that node is deleted and the node 

is free to slide.  It is important to note that once the tie component of the contact definition is 

deleted the contact for that node transitions to a standard definition.  This allows the slave node 

to slide and separate from the master surface but not pass through it.  Therefore, individual plies 

can separate but not pass thorough one another. 

 
The complete finite element model of the CST test setup is shown in figure 7.  The model 

consists of the internal fluid of the shock tube, the composite test sample, and the mounting plate 
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/ slider assembly.  No numerical damping has been applied to the model.  The fluid within the 

tube is considered in the simulation so as to capture the fluid structure interaction (FSI) at the 

interface of the fluid and test plate.  As will be shown later, this is a critical interaction to 

consider as the pressure loading on the plate is not uniform across its face.  Only the first 1.01 m 

(40 in.) of the fluid extending from the test sample towards the charge location are modeled. This 

was deemed to be acceptable for 2 reasons: (1) the fluid is loaded with the pressure profile 

measured 50.8 cm (20 in.) from the test sample and (2) a non-reflecting boundary layer is applied 

at the charge side boundary of the fluid domain.  The non-reflecting boundary allows the wave 

that is reflected from the plate to leave the fluid domain but not reenter.  The fluid is modeled 

with solid elements and a null material definition.  The use of the null material allows for the 

material to be defined with an equation of state (EOS) definition.  A linear polynomial EOS is 

utilized for this model for which only the bulk modulus and density of the water is defined.  This 

allows for an accurate propagation of the pressure wave in the water in a computationally 

efficient manner.  The pressure load is applied as a plane wave at the location of the test pressure 

transducer.  The pressure profile that was measured for each test is applied to the respective 

model.  The fluid structure interaction is handled through the use of a tied-surface-to-surface 

(LS-DYNA keyword *Contact_Tied_Surface_To_Surface) contact definition.  In this method 

two contact surfaces (*Set_Segment) are defined for which the nodes are tied together.  For the 

coupling of the fluid and composite plate the two surfaces are (1) the fluid face where it contacts 

the plate, and (2) the plate face where it contacts the fluid.  The mounting plate is simulated by a 

nodal constraint set that forces the nodes in the clamped area of the plate, figure 8, in the first 

and last ply to move together in the normal direction while they are free to move in-plane 

independently.   The slider mechanism is accounted for through the use of a spring-damper beam 
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definition.  The stiffness and damping properties were determined by running a series of 

simulations in which the displacement of the mounting plate was compared to the response 

measured during the test with a linear variable displacement transducer (LVDT) which measured 

the displacement of the slider during the test. 

 
 

Fluid ElementsNon-Reflecting Boundary Composite Plate

Mounting Plate

and Slider Assembly

Prescribed pressure at this cross section

 
Figure 7 - CST Finite Element Model 

 

 
Figure 8- Composite Plate - Clamped Nodes 

 

 
6. Finite Element Simulation Results 

 
The finite element simulation of the shock tube testing allows for a visual full field 

representation of the interaction between the pressure wave and the composite plate, whereas the 

pressure profile obtained from the transducer gives only a single point history.  The pressure 
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field in the fluid as it interacts with and loads the plate, for the case of the 4.82 mm (0.190 in.) 

plate with the slider mechanism, is shown in the left side of figure 9.   The associated plate 

response is shown in right side of the figure.  The time as shown in these figures, is the analysis 

time with zero taken at the initiation of the pressure field 50.8 cm (20 in.) from the test sample.  

Figure 9 illustrates several key points.  First, although the pressure wave is uniform (planar) prior 

to its impact with the test plate, the pressure becomes both complex and non-uniform when it 

interacts with and loads the plate itself.  It is evident that there is a low pressure area that 

develops in the center of the plate while the clamped edge is loaded with high pressure.  This can 

be attributed to the relatively low stiffness of the unsupported area of the plate as compared to 

the clamped edge of the plate where it is supported by the mounting ring. It is seen that the 

arrival and full reflection of the pressure wave take place over approximately 0.2 ms.  The 

second point is that the loading of the plate and the associated response can be separated into two 

distinct time regimes.  Where the pressure wave is fully reflected by 0.53 ms, the plate does not 

start to deform until 0.6ms.  The plate reaches full deformation at 1.8 ms and returns to its initial 

shape at 3 ms.  Therefore there is clearly a time lag from when the plate is fully loaded due to the 

pressure wave, to when plate structurally responds.  A similar result is seen for the case of the 

3.3 mm (0.130 in.) plate test with the slider, as well as the testing done with the fixed end cap 

fixture.   
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Figure 9- (a) Fluid - Plate Interaction , (b) Plate response (Units of Pa) 

 

 
6.1 Strain Gage Data – Simulation correlation to Test 

 
The strain gage data that was captured during the experiments performed with the slider 

assembly is used as a basis to correlate and validate the finite element model results.  The quality 

of the correlation between the test data and numerical results in this study is quantified using the 

Russell Comprehensive Error measurement.  The Russell error technique is one method which 

evaluates the differences in two transient data sets by quantifying the variation in magnitude and 

phase.  The magnitude and phase error are then combined into a single error measure, the 

comprehensive error factor.   The full derivation of the error measure is provided by Russell [15] 

with the phase, magnitude, and comprehensive error measures respectively given as: 
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In the above equations ci and mi represent the calculated (simulated) and measured 

responses respectively.  Excellent, acceptable, and poor correlation using the Russell error 

measure is given as: Excellent - RC≤0.15, Acceptable – 0.15<RC≤0.28, and Poor RC>0.28.  The 

definition of these criteria levels are the result of a study that was undertaken to determine the 

correlation opinions of a team in support of a ship shock trial.  A summary of the process used to 

determine the criteria is presented by Russell [16]. 

 
The strain gage data comparisons for the shock test performed with the 4.82 mm (0.190 

in.) thick plate and slider assembly is shown in figures 10, 11, and 12 for the 0° and 90° gage 

directions.  A summary of the Russell error for each of these tests as well as the gage that 

survived from the 3.3 mm (0.130 in.) test is provided in table 2.  From these graphical 

comparisons and error summary it is seen that there is a high level of correlation between the 

experimental results and the computational simulations.  Five of the six strain profiles that are 

compared from the 4.82 mm (0.190 in.) plate thick test fall within the acceptable regime, 

including 4 in the excellent regime.  The gage that remained attached from the 3.3 mm (0.130 

in.) test also shows acceptable correlation.  This level of agreement between the test and finite 

element data is encouraging since strain gage data is notoriously difficult to correlate to and 

match with simulations.  
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0˚

90˚
7.6 mm

Russell Comprehensive Error = 0.134
(<0.15 Considered Excellent)

Russell Comprehensive Error = 0.124
(<0.15 Considered Excellent)  

 
Figure 10- Material 0 Degree Gage Results 

0˚

90˚

7.6 mm

Russell Comprehensive Error = 0.318
(>0.28 Considered Poor)

Russell Comprehensive Error = 0.147
(<0.15 Considered Excellent)  

Figure 11- Material 90 Degree Gage Results 
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0˚

90˚7.6 mm

Russell Comprehensive Error = 0.130
(<0.15 Considered Excellent)

Russell Comprehensive Error = 0.249
(<0.28 Considered Acceptable)  

Figure 12- Material 45 Degree Gage Results 
 

 
 

Table 2 - Russell Error Summary 

Russell Error Summary
4.82 mm Plate – 9.65 Mpa Shock Pressure

Gage Comprehensive

4 0.124

6 0.134

7 0.249

9 0.130

10 0.147

12 0.318

3.3 mm Plate – 9.65 MPa Shock Pressure

6 0.187

<0.15 Excellent

<0.28 Acceptable

>0.28 Poor
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7. Damage Mechanisms – Simulation Correlation to Test 

 
The series of testing performed using the fixed end cap mounting fixture allowed for the 

full energy generated by the explosion to be absorbed by the test panel, as opposed to the slider 

mechanism which absorbed a portion of the energy.  As a result of this increased load on the test 

plates in this configuration the panels sustained more severe surface and internal damage.  The 

damage that was imparted to the sample during a typical test is shown in the left image of figure 

13.  This figure is from the 3.3 mm (0.130 in.) thick plate that was tested at a shock pressure of 

11.7 MPa (1700 lb/in2).  The corresponding finite element model result is shown in the right side 

image.  The image of the test sample has been backlit to highlight the internal delamination that 

has occurred.   

 
From these two images several qualitative observations can be made.  First, both the 

experimental and computational results show that there are 2 cracks that initiate from the through 

holes located at the top and bottom (0° material direction) of the sample.  These cracks propagate 

to a final length of approximately 6.35 cm (2.5 in.) in the experimental test sample and 

approximately 7.62 cm (3 in.) in the computational result.  In both results the cracks run along 

the 0° material direction.  The second observation is that there is material damage located 

between each of the holes and the edge of the sample, which was also predicted by the 

simulation.  It is important to note that an initial finite element model of the plate was made in 

which the holes were omitted.  This model developed neither the localized damage near the hole 

locations nor the crack along the 0° direction.  This highlights 2 key aspects of this type of 

experimental and computational work.  The first is that the damage that is observed is likely 

initiated due to the stress concentrations induced by the interaction of the mounting bolts and the 
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plate as the material flexes and pulls towards the center of the plate during deformation.  The 

second is that when undertaking small scale testing, where edge effects and geometric 

discontinuities can play a key part in the material response, it is important to include these 

features in the computational model.  Otherwise the amount of damage predicted by the 

simulation will be less than that seen in the experimental component.   

In the left image of figure 13 there is a region of delamination damage that developed 

along the top edge of the test specimen.  This delamination zone extends from the edge of the 

plate inward to a radial distance of ~50.8 mm (2 in.) between the 10 to 3 O’clock positions. In 

the computational model this delamination zone also develops, figure 14, but it occurs both along 

the top and bottom edges.  The delamination in the finite element model extends from the edge 

inward to a radial distance of 7.62 cm (3 in.).  Although the amount of delamination is somewhat 

larger in the computational model than is observed in the test it is encouraging that the model is 

able to predict the onset of the delamination itself and propagate it to a comparable distance.   In 

the current model the choice of a delamination criterion was taken to be 34.4 MPa (5000 lb/in2) 

for both tensile and shear stresses.  The choice of this value was based on discussions of the 

developer of the material model (Materials Sciences Corporation).  Based on these discussions it 

was determined that based on past experience an appropriate knock down factor for the 

delamination criteria is approximately one-half of the tensile strength of the pure epoxy.  The 

degradation by ½ of the tensile strength accounts for voids and interfacial defects / flaws 

between the layers of fibers during the manufacturing of the material.  The exact epoxy resin 

formula is held as proprietary by the material manufacturer however published values for the 

tensile strength of epoxy place the value between 27.5-82.7 MPa (4,000-12,000 lb/in2).  

Therefore the choice of 34.4 MPa (5000 lb/in2) is reasonable.  During the development of the 
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models several values as high as 82.7 MPa (12,000 lb/in2) were utilized to determine the effect of 

this value.  When a high value is chosen the delamination damage does not occur and all plies 

remain in tied contact.  If a low value is taken then the plies completely delaminate early on in 

the simulation and the results do not agree with the experimental results.  More work is planned 

into the most efficient way to model the delamination parameters but is outside of the scope of 

the current study.   

 
 

 
Figure 13- (a) Material Damage during Test, (b) Material Damage from Simulation 
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~ 3”

~ 3”

~ 7.6 mm

~ 7.6 mm
 

Figure 14 - Finite Element Model Delamination 
 
 
8. Conclusions 

 
A conical shock tube has been used to study the response of an E-Glass / Epoxy 

composite material subjected to underwater shock loading.  Two test series have been performed 

along with corresponding finite element model development.  One test series was performed in 

which a slider mechanism was used with the shock tube to absorb a portion of the shock energy.  

This allowed the energy imparted to the test specimen to be reduced to the point where strain 

gages bonded to the back face of the specimen would remain attached during the event.  The 

strain gage data recorded during the experiments was correlated to the computational models by 

utilizing the Russell error.  The Russell error comparisons showed that 6 out of 7 of the gages 

that survived the testing had acceptable error measures with 4 of the gages exhibiting excellent 

correlation.  A second series of testing was performed in which the slider was replaced with a 

fixed base mounting fixture which allowed for all of the shock energy to be imparted to the 

specimen.  The samples tested with this mounting fixture showed significant damage areas 

including fiber / matrix breakage as well as internal delamination.  The corresponding finite 
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element simulations were able to simulate the appropriate forms and extents of the damage areas.  

This work has shown the ability of the LS-DYNA material model 

Mat_Composite_Failure_Option_Model to realistically model the behavior of a composite 

material under shock loading conditions.  It was shown that the static elastic and strength 

material properties provide reasonable results for shock loading conditions.  This work has 

served to show that computational tools can serve to support experimental test results and show 

promise for use as an alternative to testing to support structural designs utilizing composite 

materials.   
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Abstract 
 

The response of E-Glass / Vinyl ester curved composite panels subjected to underwater 

explosive loading has been studied.  The work consists of experimental testing utilizing a water 

filled conical shock tube facility and computational simulations with the commercially available 

LS-DYNA finite element code.  The composite specimens are 0/90 biaxial laminates with a 

thickness of approximately 1.3 mm.  The samples are round panels with curved midsections.  

The transient response of the plates is measured using a three-dimensional (3D) Digital Image 

Correlation (DIC) system, along with high speed photography.  This ultra high speed system 

records full field shape and displacement profiles in real time.  The DIC data and the 

computational results show a high level of correlation using the Russell Error measure.   

 
1. Introduction 

 
The use of composite materials is becoming increasingly prevalent in naval applications 

such as advanced ship hull designs, unmanned underwater vehicles (UUVs), and submarine 

components.  The advantages of composite materials include high strength to weight ratios, 

improved corrosion resistance, and reduced maintenance costs.  However, the use of these 

materials in a military environment, particularly submarine applications, requires that they be 

able to survive underwater explosion (UNDEX) events.  Currently, the response of these 

materials at static and quasi-static loading rates is well understood.  Conversely, the response at 

the high strain rates that UNDEX/shock events can induce is not well understood.   This typically 

results in composite structures being conservatively designed with large safety factors to ensure 

that damage will not occur.  This inherent conservativeness leads to overdesigns which do not 

afford the full weight savings possible with composites.  
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Historically, there have been two experimental methodologies used to impart shock 

loading conditions to structures: (1) explosives and (2) shock tubes.  Although the use of 

explosives offers an ease of use, there are associated deficiencies such as spherical wave fronts 

and pressure signatures which are often spatially complex and difficult to capture.  Shock tubes 

offer the advantage of plane wave fronts and wave parameters that are easily controlled and 

repeated.    

 
When composite materials are subjected to loading conditions they may experience 

damage in the form of several distinct mechanisms occurring in the in-plane and through 

thickness directions.  The in-plane mechanisms consist of fiber breakage and matrix cracking, 

while the through thickness damage is dominated by delamination of the plies.   

 
Experimental studies on shock loading of materials have examined the material response 

over a range of loading rates.  Espinosa et al [1] studied the effects of shock loading on stainless 

steel when subjected to underwater impulsive loads.  Nurick et al [2,3] have studied the effects of 

boundary conditions on plates subjected to blast loading and identified distinct failure modes 

depending on the magnitude of the impulse and standoff.  Tekalur et al [4] investigated the 

effects of shock loading on both E-Glass and Carbon based laminates.  This study used a shock 

tube to impart pure shock loading as well as a small scale explosion tube to consider the shock 

load combined with the effects of the heat generated during combustion of the explosive 

materials.  Mouritz [5] studied the effectiveness of adding a light weight, through thickness 

stitching material to increase the damage resistance of composites.  LeBlanc et al [6] have 

studied the effects of shock loading on three-dimensional woven composite materials.   Recently, 

there has been an increased interest in the study of the effect of shock loading on sandwich 
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structures.  These studies include the effects of shock and impact loading conditions (Jackson et 

al [7], Schubel et al [8], Arora et al [9]).   

   
Analytical damage models for composites have been widely developed and are 

continually being refined and updated.  These models typically assign an internal damage 

variable to each of the types of damage of interest (ie. matrix cracking, fiber rupture) which, in 

simple form, are ratios of the stress state to a failure criteria (Matzenmiller et al [10], Zako et al 

[11], Dyka et al [12]).  Based upon the expression representing each damage variable, the 

effective elastic properties can be degraded when the variable reaches a critical value.  As the 

mechanical properties must be continually updated to account for the damage degradation this 

methodology lends itself well to implementation into finite element codes.   

 
 The finite element modeling of damage in composites has been performed primarily on 

models simulating strain rates up to those representing drop test experiments with some work 

performed at the high strain rate regimes expected in shock loading.  Material models are 

continually being implemented and refined in existing commercial finite element codes 

(O’Daniel et al [13], McGregor et al [14]).  Recent publications involving computational 

modeling of damage progression in composites have utilized LS-DYNA and the Mat_162 

(Mat_Composite_OPTION) material model which simulates fiber breakage, matrix cracking and 

delamination damage.  This material model combines the progressive failure theory of Hashin 

and the damage mechanics approach of Matzenmiller et al [10].  Gama et al [15] have published 

results from quasi-static punch shear loading experiments which correlate well with simulations 

utilizing the Mat_162 material model.  Simulations of low velocity impact experiments have 

been documented in the work by Donadon et al [16] and Hosseinzadeh et al [17].  Furthermore, 
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Batra and Hassan [18] studied the response of composites to UNDEX loading through numerical 

simulations; however, there are no comparisons to experimental results.  LeBlanc et al. [19] have 

presented a modeling methodology which simulates composite plates subjected to underwater 

explosive loading with comparisons to both the transient strain response as well as post mortem 

damage.  

 
2. Composite Material 

 
The material used in this study is an E-Glass / Vinyl ester composite with a 0°-90° biaxial 

layup.  The glass fabric is a balanced construction of 0° and 90° fibers with the two layers being 

stitched together rather than woven.  The areal weight of the dry fabric is 0.406 kg/m2 (12 

oz/yd2).  The panels which are utilized in the study consist of 3 plys of the fabric, with each ply 

oriented in the same direction, i.e. the 0° fibers in each ply are parallel.  The panels are 

manufactured using the vacuum infusion process with a vinyl ester resin, AOC Hydropel R015-

AAG-00.  The finished part thickness is 1.37 mm (0.054 in.) and has a fiber content of 62% by 

weight.  All panels were manufactured by LBI Fiberglass located in Groton, CT.  The 

mechanical properties for the material are provided in table 1.  Furthermore, the mechanical 

properties of the vinyl ester resin are provided in table 2.  The pure vinyl ester properties are key, 

in that they determine the through thickness mechanical properties  (modulus, strength) of the 

laminate.  

 
 

Table 1 – E-Glass /Vinyl Ester Biaxial Laminate -Mechanical Properties (ASTM 638) 
 MPa (lb/in2) 

Tensile Modulus (0°) 15.8e3 (2.3e6) 
Tensile Modulus (90°) 15.8e3 (2.3e6) 
Tensile Strength (0°) 324 (47,000) 
Tensile Strength (90°) 324 (47,000) 

 



 

40 
 

Table 2 – AOC Hydropel R015 Vinyl Ester - Mechanical Properties (ASTM 638) 
 MPa (lb/in2) 

Tensile Modulus  3.44e3 (500,000) 
Tensile Strength  72.4 (10,500) 

 
 

 
The geometry of the plates consists of a curved midsection with a flat boundary as shown 

in figure 1.  The convex face of the plate represents the mold line in the manufacturing and has a 

radius of curvature of 18.28 cm (7.2 in.), an outer diameter of 26.54 cm (10.45 in.), and the 

curved portion of the plate is 22.86 cm (9 in.) in diameter. 

 

18.28 cm
26.54 cm

22.86 cm

 
Figure 1 – Composite Plate Geometry (Section View) 

 
3. Shock Loading Apparatus 

 
A conical shock tube (CST) facility located at the Naval Undersea Warfare Center, 

Division Newport was utilized in the shock loading of the composite materials.  The shock tube 

is a horizontally mounted, water filled tube with a conical internal shape, Figure 2.  The tube 

geometry represents a solid angle segment of the pressure field that results from the detonation 

of a spherical, explosive charge, Figure 3.  In an open water environment the pressure wave 

expands from the charge location as a spherical wave.  In the shock tube the rigid wall acts to 

confine the expansion of the pressure wave in a manner that simulates a conical sector of the 

pressure field.  In order to compare free field and shock tube pressure values, it is useful to 
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define an amplification factor which is the ratio between the volume of a spherical charge to the 

volume of the conical sector charge and is defined by Poche and Zalesak [20] as: 

 

 
α is the cone angle 

 
This equation assumes perfectly rigid wall conditions which are not fully realized.  

Therefore, the actual amplification factor is less than the calculated value and is typically 

reported as an effective weight amplification factor.  This is defined by Poche and Zalesak [20] 

as the ratio between the weight of a spherical charge, W, required to produce the same peak 

pressure at a given standoff distance as that produced in the shock tube by a segment of charge 

weight, w. The reduction in the amplification factor is typically attributable to elastic 

deformation of the shock tube walls.  Further discussion on the development and history of the 

water filled conical shock tube is provided by references 21 and 22. 

 
The internal cone angle of the tube is 2.6 degrees.  The tube is 5.25 m (207 in.) long from 

the charge location to the location of the test specimen and internally contains 98.4 L (26 gal.) of 

water at atmospheric pressure.  The pressure shock wave is initiated by the detonation of an 

explosive charge at the breech end of the tube (left side of figure) which then proceeds down the 

length of the tube.  Peak shock pressures from 10.3 MPa (1500 lb/in2) to 20.6 MPa (3000 lb/in2) 

can be obtained depending on the amount of explosive charge.  A typical pressure profile 

obtained from the use of the tube is shown in figure 4.  This figure illustrates the rapid pressure 

increase associated with the shock front followed by the exponential decay of the wave.  This 

profile was obtained using a M6 Blasting Cap – 1.32g (.00292 lb) TNT Equivalency and is 
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measured 0.508 m (20 in.) from the impact face of the test specimen.  The length of the tube is 

sufficient so that plane wave conditions are nearly established at the test specimen. 

 
 

Water Filled 
Conical Chamber

Mounting Plate

Test Plate

Pressure 
Transducer

Pressure Shock Front

Explosive Charge

0.5 m

5.25 m  
Figure 2 – Conical Shock Tube Schematic (not to scale) 

 
 
 

 
Figure 3 – Explosive Charge in Shock Tube (Poche and Zalesak, 1992) 
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Figure 4 – Typical Pressure Profile Generated in the Conical Shock Tube 

 
 
A mounting fixture has been designed so the test specimens are air backed with fully 

clamped edges.  The specimens are 26.54 cm (10.45 in.) in overall diameter with a 22.86 cm (9 

in.) unsupported middle section.  The mounting arrangement is shown in figure 5.  The 

specimens are mounted with the convex surface towards the incoming shock fronts.  This is 

chosen so that the test will represent geometries commonly used in underwater applications with 

curved surfaces typically facing into the the fluid (i.e. submersible vehicle hull forms).  
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Composite Plate

Bolting RingCharge 
Location

 
Figure 5 – Shock Tube Mounting Configuration 

 

 
4. Experimental Procedure 

 
Shock testing of the composite material has been performed with the CST utilizing a 

fixed end cap.  The use of the fixed end cap configuration allows the plate to absorb the full 

energy level and sustain a suitable level of damage for comparison to the finite element model 

results.  The tube can also be configured with a sliding piston end cap [19] to lower the level of 

energy the plates absorb, but is not utilized in this study.  In the current study high speed 

photography coupled with a 3D digital image correlation system is utilized to capture the back 

face transient response during the shock event.  This system offers the advantage that it is a 
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noncontact measurement technique which gives whole field information and eliminates the 

difficulties of strain gages debonding from the specimens at high shock levels and large plate 

flexures.  The explosive charge used in the study is an M6 blasting cap with a net TNT 

equivalence of 1.32grams.  This yields peak pressures at the sensor location (.508 m in front of 

the test specimen) of approximately 10.3 MPa (1500 lb/in2). 

 
The Digital Image Correlation (DIC) technique is used to capture the transient response 

of the back face (dry) of the plates.  DIC is a non-intrusive, optical technique for capturing the 

full field, transient response of the panels through the use of high speed photography and 

specialized software.  Capturing the three dimensional response of the plates requires that 2 

cameras be used in a stereo configuration.  To record the transient response with this system the 

cameras must be calibrated and have synchronized image recording throughout the event.  The 

calibration of the cameras is performed by placing a grid containing a known pattern of dots in 

the test space where the composite sample is located during the test.  This grid is then translated 

and rotated in and out of plane while manually recording a series of images.  As this grid pattern 

is predetermined, the coordinates of the center of each dot is extracted from each image.  The 

coordinate locations of each dot extracted uniquely for each camera allows for a correspondence 

of the coordinate system of each camera (Tiwari et al [23]).  The DIC is then performed on the 

image pairs that are recorded during the shock event.  Prior to testing the back face of the sample 

is painted white and then coated with a randomized speckle pattern, Figure 6.  The post 

processing is performed with the VIC-3D software package which matches common pixel 

subsets of the random speckle pattern between the deformed and un-deformed images.   The 

matching of pixel subsets is used to calculate the three dimensional location of distinct points on 
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the face of the panel throughout time.  This technique has been applied as a full field 

measurement technique in many applications including shock loading (Tiwari, et al [24])  

 
Two high speed digital cameras, Photron SA1,   are positioned behind the shock tube, 

figure 6. The use of two cameras allows for the out-of-plane behavior to be captured.  If a single 

camera is utilized the data would be limited to the in-plane results.  The distance from the lens of 

the camera to the specimen is 1.44 m (57 in.) and each camera is angled at approximately 7° with 

respect to the symmetry plane, figure 7.   A frame rate of 20,000 was used with an inter-frame 

time of 50μs.   

 

DIC System

View Window

Specimen

Speckle 
Pattern

 
Figure 6 –Digital Image Correlation Schematic 
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7°

1.44 m

 
Figure 7 –Digital Image Correlation Setup (Not to Scale) 

 
 
5. Finite Element Modeling 

 
Finite element modeling of the experiment  has been performed utilizing the LS-DYNA 

code available from the Livermore Software Technology Corporation (LSTC).  All simulations 

are generated with Version 971, Release 4.2 and are run in double precision mode.   

 
The composite plate in the simulations is modeled using shell elements with a fully 

integrated element formulation (Type 16).  The model of the 1.37 mm (0.054 in.) plate is shown 

in figure 8 and consists of 3 layers of shell elements.  Each layer represents a 0° and 90° 

combined ply with a thickness of 0.457 mm (0.018in.).  The mid-surface of each ply is meshed 

and the individual shell layers are offset by the ply thickness.  There are five through thickness 

integration points for all elements.  The holes represent the through bolt holes present in the test 

samples used for mounting the plate to the fixture.  The in-plane element edge lengths are 

approximately 2.54 mm (0.1 in.) and the maximum element aspect ratio is 2.7:1.  
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The LS-DYNA material model utilized in this work is 

Mat_Composite_Failure_Option_Model (Mat_059, Option=Shell).  This is an orthotropic 

material definition capable of modeling the progressive failure of the material due to any of 

several failure criterion including tension / compression in the longitudinal and transverse 

directions, compression in the through thickness direction, and through thickness shear.  

Published descriptions of how each failure mode is handled are scarce, however, there is some 

informal documentation available from LSTC.  For each possible failure mode, there is an 

internal variable which is checked throughout the analysis to determine if failure in that mode is 

present.  Once failure due to one mode is triggered the load carrying ability of the material in that 

direction is reduced to zero.  It is important to note that failure in one direction does not cause the 

element to be deleted.   An element is only deleted from the analysis after it has failed in all 

directions and can no longer carry any load.  The input material properties are those provided in 

table 1.    The material model inputs are derived from static tensile testing with no modifications 

for strain rate effects.  It was seen that the static properties provide reasonable results for shock 

loading conditions.  The DIC strain measurements made during this study show that the in-plane 

strain rates are on the order of 10-50/s.  Although the through thickness strain rate was not 

measured it is expected to be higher than the in-plane strain rate.  Similar observations were 

made by Chan et al [19] for the ballistic impact problem and by LeBlanc et al for shock loading 

of flat composite plates [25]. 
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Figure 8 –Finite Element Model of Composite Plate 

 
In the current modeling effort, delamination damage is considered and is taken into 

account through the use of a surface-to-surface tiebreak contact definition.  Using this approach, 

each ply is modeled as a shell layer of elements representing the mid-surface of each ply and the 

shell layers are offset by the ply thickness.   The tie break definition initially ties the nodes 

between plies together to inhibit sliding motion.  The force at each node is monitored by the 

software and the corresponding normal and shear stresses are computed.  Failure is defined by 

the following formula: 

 

 
 
where:  σN and σS are the computed normal and shear stresses, respectively 

NFLS and SFLS are the failure normal and shear stresses, respectively 
 
  If the current stress state at any node in the contact definition exceeds the failure criteria 

then the tie definition for that node is deleted and the node is free to slide.  It is important to note 

that once the tie component of the contact definition is deleted, the contact for that node 
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transitions to a standard definition.  This allows the slave node to slide and separate from the 

master surface but not pass through it.  Therefore, individual plies can separate but not pass 

thorough one another. 

 
The complete finite element model of the CST test setup is shown in figure 9.  The model 

consists of the internal fluid of the shock tube and the composite test sample.  The fluid within 

the tube is considered in the simulation so as to capture the fluid structure interaction (FSI) at the 

interface of the fluid and test plate.  As will be shown later, this is a critical interaction to 

consider as the pressure loading on the plate is not uniform across its face.  Only the first 1.01 m 

(40 in.) of the fluid extending from the test sample towards the charge location is modeled. This 

was deemed to be acceptable for 2 reasons: (1) the fluid is loaded with the pressure profile 

measured 0.508 m (20 in.) from the test sample and (2) a non-reflecting boundary layer is 

applied at the charge side boundary of the fluid domain.  The non-reflecting boundary allows the 

wave that is reflected from the plate to leave the fluid domain but not re-enter.  This assumption 

holds as long as the duration of the plate deformation is small enough such that the wave which 

is reflected off the plate cannot reach the end of the tube and reflect back to the plate location 

during this time.  A simple calculation shows that the time for a wave to travel from the plate to 

the end of the tube and back again is 7 ms and the duration of the plate deformation is 5.5 ms.  

The fluid is modeled with solid elements and a null material definition.  The use of the null 

material allows for the material to be defined with an equation of state (EOS) definition.  A 

linear polynomial EOS is utilized for this model for which only the bulk modulus and density of 

the water is defined.  This allows for an accurate propagation of the pressure wave in the water in 

a computationally efficient manner.  The pressure load is applied as a plane wave at the location 

of the test pressure transducer.  The pressure profile that was measured for the test is applied to 
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the model. The fluid–structure interaction is handled through the use of a tied-surface-to-surface 

(LS-DYNA keyword *Contact_Tied_Surface_To_Surface) contact definition. In this method, 

two contact surfaces (*Set_Segment) are defined for which the nodes are tied together. For the 

coupling of the fluid and composite plate the two surfaces are: (1) the fluid face where it contacts 

the plate, and (2) the plate face where it contacts the fluid.  The mounting plate is simulated by a 

nodal constraint set that forces the nodes in the clamped area of the plate, shown in figure 10, to 

have zero displacement.  There is no numerical damping applied to the model. 

 
 

Fluid ElementsNon-Reflecting 
Boundary

Composite Plate

Prescribed pressure at this cross section

 
Figure 9 –Finite Element Model of CST 
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Figure 10 – Composite Plate Clamped Nodes 

 

 
6. Finite Element Simulation Results 
 

The finite element simulation of the shock tube testing allows for a visual full field 

representation of the interaction between the pressure wave and the composite plate, whereas the 

pressure profile obtained from the transducer gives only a single point history.  The pressure 

field in the fluid as it interacts with and loads the plate, for the case of the 1.37 mm (0.054 in.) 

plate is shown in the left side of figure 11.   The associated plate response is shown in the right 

side of the figure.  The time as shown in these figures is the analysis time, with zero taken at the 

initiation of the pressure field 0.508 m (20 in.) from the test sample.  Figure 11 illustrates several 

key points.  First, although the pressure wave is uniform prior to its impact with the test plate, the 

loading on the plate itself is complex and not uniform.  It is evident that there is a low pressure 

area that develops in the center of the plate while the clamped edge is loaded with high pressure.  

This can be attributed to the relatively low stiffness of the unsupported area of the plate as 

compared to the clamped edge of the plate where it is supported by the mounting ring.  The 
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second point is that the loading of the plate and the associated response can be separated into two 

distinct time regimes.  Where the pressure wave interacts with the plate over 0.2 ms, the plate 

does not start to deform until the wave is nearly fully reflected and takes approximately 5.5 ms to 

complete.   

The plate deformation in the current study can be described as a full inversion, taking 

approximately 5.5 ms to complete.  At 1 ms, a hinge forms at the outer edge of the plate at the 

clamped boundary.  This hinge then continues to propagate towards the center of the plate as 

seen in the deformation progression images in figure 11.  The deformation is completed when the 

plate has fully inverted itself at 6.5 ms.  At this point it is seen that there is a high pressure region 

that develops at the apex of the inverted shape.  During the inversion process of the plate the 

fluid at the plate boundary is also moving along with the plate surface.  Once the inversion of the 

plate is complete, the velocity is rapidly arrested, resulting in the development of this high 

pressure region. It is noted that the magnitude of this pressure is small compared to the initial 

shock wave pressure. 
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Figure 11 – (a) Fluid Structure Interaction, (b) Plate Deformation Progression 

 
7. Simulation Correlation to Test 
 

The displacement and velocity data that was captured during the experiments is used as a 

basis to correlate and validate the finite element model results.  The quality of the correlation 

between the test data and numerical results in this study is quantified using the Russell 

Comprehensive Error measurement.  The Russell error technique is one method which evaluates 

the differences in two transient data sets by quantifying the variation in magnitude and phase.  

The magnitude and phase error are then combined into a single error measure, the 

comprehensive error factor.   The full derivation of the error measure is provided by Russell [26] 

with the phase, magnitude, and comprehensive error measures respectively given as: 
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In the above equations ci and mi represent the calculated (simulated) and measured 

responses, respectively.  Excellent, acceptable, and poor correlation using the Russell error 

measure is given as: Excellent - RC≤0.15, Acceptable – 0.15<RC≤0.28, and Poor RC>0.28.  The 

definition of these criteria levels are the result of a study that was undertaken to determine the 

correlation opinions of a team in support of a ship shock trial.  A summary of the process used to 

determine the criteria is presented by Russell [27]. 

 
The DIC technique allows for the extraction of a large amount of data from the surface of 

the plates.  The two variables that are used for correlation of the simulations to the experiments 

are the out of plane displacement and velocity.  Time histories are extracted from the DIC data 

for two points on the measurement surface: (1) the center of the plate, and (2) a point located half 

way between the center of the plate and the clamped boundary along the vertical axis.  Full field 

data comparisons will be discussed later in the paper.  The displacement comparisons are shown 

in figure 12 and the velocity comparisons are provided in figure 13.  A summary of the Russell 

error for each of these comparisons is provided in table 3.  From these graphical comparisons 

and error summary it is seen that there is a high level of correlation between the experimental 

results and the computational simulations.  It is noted here that the times of the simulation and 

experiments are arbitrary but are displayed using the simulation time.  The two events are 
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matched temporally by adjusting the experiment time until the first motions of the center point 

align.  This time offset is then held constant for all other comparisons, i.e. there is not a different 

time offset to align the velocity comparisons.  

 
The displacement comparison shows that the experiment and simulation results agree 

nearly exactly until 2.5 ms at which point the displacement in the experiment occurs slightly 

faster than the simulation. This is the same for both the center point and the point halfway 

between the center and the boundary.  It is also seen that the displacement takes place in a linear 

fashion.  The peak deflection is both cases is just under 80 mm for the center point and 55 mm 

for the point along the vertical axis.  In the velocity comparison, it is seen that there is an initial 

out-of-plane velocity of just less than 20 m/s which then settles to about 10 m/s for the remaining 

duration of the event.  This near constant velocity supports the linearity of the displacement 

profile.  It is seen that the simulation is able to capture the peak velocities seen in the 

experiments.  Overall, it is shown that the Russell error values for the displacement comparisons 

show excellent correlation as well as the velocity for the point halfway between the center and 

the boundary.  The velocity comparison at the center point falls just outside the excellent 

agreement criteria but well within the acceptable level (<0.28).  Table 3 summarizes the Russell 

error values for magnitude, phase, and comprehensive for each data comparison.   

 
In addition to the point wise time histories, full field comparisons are made between the 

experiment and simulations.  A comparison of the full field, out of plane displacement evolution 

is shown in figure 14.  From this figure, it is seen that the experiment and simulation show good 

correlation in terms of the displacement evolution.  The experiment shows some un-symmetric 

behavior in that the displacements are slightly higher along a line at 135 degrees.  However, the 
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values of these displacements are only a few millimeters more than the rest of the plate.  As 

expected, the simulation shows symmetric behavior.  It is possible that this would not be the case 

if initial thickness variations were built into the model.  Overall, the displacements over the 

surface of the plate correlate well between the experiment and the simulation.  

 

 
Figure 12 –Time History Deformation Comparison of Experiment and Simulation 
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Figure 13 – Time History Velocity Comparison of Experiment and Simulation 

 
 
 
Table 3 – Russell Error Summary 
 

Magnitude Error Phase Error Comprehensive Error
Center Point Deflection 0.03 0.03 0.04
Center Point Velocity 0.1 0.16 0.17

Half Way Along Vertical Axis Deflection 0.03 0.03 0.04
Half Way Along Vertical Axis Velocity 0.03 0.12 0.11

RC<0.15 Excellent
.15<RC<0.28 Acceptable
RC>0.28 Poor  
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Figure 14 – Full Field Deformation Comparison of Experiment and Simulation 
 

 
 In addition to the transient response correlations, the relationship between the material 

damage observed during the test and the damage level predicted by the simulations is of interest.  

In the experiment the main damage mechanism that was observed is delamination between the 

plies.  There was minimal fiber rupture or matrix cracking.  The final damage state from the 

shock test is shown in figure 15a.  Here it is seen that the extent of the delamination ranges from 

approximately 1.27 cm (0.5 in.) in the lower left region of the plate to 5.08 cm (2 in.) at the 3 

O’clock position.  In the corresponding computational model, figure 15b, the delamination area 

is highlighted by the black area at the edge of the plate and propagates inwards from the edge 1 

cm (0.4 in.).  In the simulation results there are also 4 larger delamination zones at the 45° 
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directions.   These areas indicate the weaker material directions (fibers run in the 0° and 90° 

directions) and extend 3.81 cm (1.5 in.) from the edges.  Although the amount of delamination is 

somewhat larger in the experiment than is observed in the computational model, it is 

encouraging that the model is able to predict the onset of the delamination itself and propagate it 

to a comparable distance 

 
 In the current model the choice of a delamination criterion was taken to be 36 MPa 

(5250 lb/in2) for both tensile and shear stresses.  The choice of this value was based on 

discussions with the Material Sciences Corporation (MSC) who have developed composite 

damage models currently in use within the LS-DYNA code (Mat_162).  Based on these 

discussions it was determined that the delamination criteria should be set to approximately one-

half of the tensile strength of the pure vinyl ester.  The degradation by ½ of the tensile strength 

accounts for voids, and interfacial defects / flaws between the layers of fibers during the 

manufacturing of the material.  Therefore the failure criteria was set to 36 MPa (5,250 lb/in2) 

based on the values for the resin provided in table 2.  The degradation by one-half was also used 

in similar shock loading work by LeBlanc et al [19] for an E-Glass/Epoxy laminate.  This 

observation is provided to aid in the development of delamination modeling best practices but is 

not meant to be definitive.  More work is planned into the most efficient way to model the 

delamination parameters but is outside of the scope of the current study. 
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Figure 15 – (a) Material Damage during Test, (b) Material Damage from Simulation 

 
 
8. Conclusions 
 

A conical shock tube has been used to study the response of curved E-Glass / Vinyl ester 

composite panels subjected to underwater shock loading.  The material is a bi-axial laminate 

with fibers balanced in the 0 and 90 degree directions.  The round plates are curved in shape with 

the convex surface oriented towards the incoming shock front with fully clamped boundaries.  A 

3D Digital Image Correlation system is used to capture the full field, transient response of the 

back (dry) surface of the plates.  This allowed for real time recording of the displacement and 

velocity history of this surface.  The displacement and velocity data for the center point and a 

point halfway between the center and boundary are correlated to the computational models by 

utilizing the Russell error. The Russell error value for the deflection correlation at these two 

points is excellent.  The velocity correlation at the point halfway between the center and the 

boundary is also excellent, while the center point velocity has acceptable correlation.  The full 

field displacement evolution is also shown to agree between the experiment and the simulations.  
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The computational model was also able to predict the onset of delamination damage and predict 

its growth to a reasonable degree.   This work has shown the ability of the LS-DYNA material 

model Mat_Composite_Failure_Option_Model to realistically model the behavior of a composite 

material under shock loading conditions.  This work has served to show that computational tools 

can serve to support experimental test results and show promise for use as an alternative to 

testing to support structural designs utilizing composite materials.   
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Abstract 
 

The response of E-Glass / Vinyl ester curved composite panels subjected to underwater 

explosive loading has been studied.  Three laminate constructions have been investigated to 

determine their relative performance when subjected to shock loading.  These constructions are: 

(1) a baseline 0°/90° biaxial layup, (2) a 0°/90° biaxial layup that includes a thin glass veil 

between plies, and (3) a 0°/90° biaxial layup that has a coating of polyurea applied to the back 

face.  The work consists of experimental work utilizing a water filled, conical shock tube facility.  

The samples are round panels with curved midsections, and are approximately 2.54 mm in 

thickness.  The transient response of the plates is measured using a three-dimensional (3D) 

Digital Image Correlation (DIC) system, including high speed photography.  This ultra high 

speed system records full field shape and displacement profiles in real time.  The results show 

that the performance of the baseline laminate is improved when coated with the polyurea 

material, but conversely, is degraded by the inclusion of the glass veils between plies. 

 
1. Introduction 

 
Composite materials have been widely used in a variety of applications in the marine, 

automotive, and transportation industries.  These materials offer the advantages of high strength 

to weight ratios, reduced maintenance costs, and improved corrosion resistance.  Recently, there 

has been an increased interest in composite materials for use in military applications including 

land vehicles (structural components and armor solutions), advanced ship hull designs, and 

submarine components.  The use of these materials in wartime environments requires that they 

not only be able to withstand the loads produced by everyday use but also those imparted from 

explosions and high speed projectile impact.  Currently, the response of these materials at static 
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and quasi-static loading rates is well established.  However, the response at the high strain rates 

that shock and ballistic events can induce is not well understood.  This leads to an inherent 

conservative approach to be taken when these structures are designed and constructed.  Typically 

this results in structures which do not fully realize the weight savings afforded by these 

materials.  The focus of the current research is on the response of composite materials subjected 

to underwater explosions, UNDEX. 

 
Historically, there have been two experimental methodologies used to impart shock 

loading conditions to structures: (1) explosives and (2) shock tubes.  Although the use of 

explosives offers an ease of use, there are associated deficiencies such as spherical wave fronts 

and pressure signatures which are often spatially complex and difficult to capture.  Shock tubes 

offer the advantage of plane wave fronts and wave parameters that are easily controlled and 

repeated.   The current study utilizes a water filled, conical shock tube that replicates the free 

field pressure wave expansion of an underwater explosion.   

 
The response of materials subjected to shock and impact loading has been studied over a 

wide range of loading rates. The effect of shock loading on stainless steel plates subjected to 

underwater impulsive loads has been presented by Espinosa et al [1].  Nurick et al [2,3] have 

studied the effects of boundary conditions on plates subjected to blast loading and identified 

distinct failure modes depending on the magnitude of the impulse and standoff.  The response of 

E-Glass and Carbon based composite laminates under shock and explosive loading (including the 

effects of heat generation during combustion) has been presented by Tekalur et al [4].  Mouritz 

[5] studied the effectiveness of adding a light weight, through thickness stitching material to 

increase the damage resistance of composites.  LeBlanc et al [6] have studied the effects of shock 
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loading on three-dimensional woven composite materials.  Recently, there has been an increased 

interest in the study of the effect of shock loading on sandwich structures.  These studies include 

the effects of shock and impact loading conditions (Jackson et al [7], Schubel et al [8], Arora et 

al [9]).        

 
The use of polyurea materials to enhance the failure resistance of materials subjected to 

explosive loading has become a topic of interest.  Polyurea is a synthetic, high strength / high 

elongation coating that is typically spray cast onto existing structures to increase their resistance 

to shock and ballistic/shrapnel loading events such as those of a bomb blast.  The armed forces 

have begun to investigate the suitability of these materials for use on military and naval vehicles 

such as Humvees, troop carriers and ship hulls, Hodge [10].  Research efforts have focused on 

the use of polyurea coatings on steel plates, composite plates, and as inner layers of sandwich 

composites.  Amini et al [11, 12, 13] have studied the effects of monolithic and polyurea coated 

steel plates subjected to impulsive loads and showed that polyurea has a positive damage 

mitigation effect when applied to the back face of the material.  They also found that polyurea 

can enhance the loading and damage levels if applied on the impact side of the plates.  In this 

study it was shown that coating the front face of the panels with the polyurea increased the 

amount of impact energy transmitted to the plate as compared to when the back face was coated.  

Gardner et al [14] studied the effect of polyurea in sandwich composites.  It was observed that 

when a layer of polyurea is placed between the foam core and the back face of the sandwich the 

blast resistance is improved, while conversely if the polyurea is placed between the front face 

and the foam core the performance is degraded.   

 
 
 



 

69 
 

2. Composite Material 
 
Three composite material constructions are utilized in this study: (1) 0°/90° biaxial layup, 

(2) 0°/90° biaxial layup with a glass veil between plies, and (3) 0°/90° biaxial layup with a 

coating of polyurea.  All of the composite material in the study is E-Glass / Vinyl ester.  The 

panels are manufactured using the vacuum assisted resin transfer molding (VARTM) process 

with a vinyl ester resin, AOC Hydropel R015-AAG-00.  All panels were manufactured by LBI 

Fiberglass located in Groton, CT. 

 
 The baseline laminate (1) is a balanced construction of 0° and 90° continuous fibers with 

the two layers being stitched together rather than woven.  The areal weight of the dry fabric is 

0.406 kg/m2 (12 oz/yd2).  The baseline panels in the study consist of 6 plies of the fabric, with 

each ply oriented in the same direction, i.e. the 0° fibers in each ply are parallel.  The finished 

part has a thickness of 2.54 mm (0.10 in.), areal weight of 4.25 kg/m2 (126 oz/yd2), and a fiber 

content of 63% by weight. 

 
The second laminate (2) which is studied is a modified version of the baseline (1).  This 

layup includes the addition of a lightweight glass veil in between layers of the 0°/90° fabric.  The 

addition of the glass veil layers would have increased the overall part thickness and areal density, 

so in an effort to maintain these parameters only 5 layers of the 0°/90° fabric, and 

correspondingly 4 layers of the veil  are utilized in these parts.  This laminate is meant to aid in 

the understanding of what the best laminate choice is (when shock is a concern) if part thickness 

and areal weight are concerns.  The dry glass veil has an areal weight of 0.054 kg/m2 (1.62 

oz/yd2).  The finished part has a thickness of 2.54 mm (0.10 in.), areal weight of 4.32 kg/m2 (128 

oz/yd2), and a fiber content of 60% by weight.  This construction is being investigated because 
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although fiberglass cloths of continuous, oriented fibers have high in-plane strengths when the 

fibers are oriented in the loading direction, they can suffer from low through thickness strength, 

meaning they are susceptible to delamination damage.  The incorporation of a glass veil of 

chopped fibers is meant to serve as a resin rich layer to improve the inter-laminar strength of the 

laminates.  The practice of alternating plies of fiberglass cloth and chopped strand mats has 

historically been used in the boat building industry [15, 16].  This practice is common enough 

that many manufactures of fiberglass reinforcing fabrics make products which are combinations 

of continuous unidirectional fibers with a chopped mat / veil backing. 

 
The final laminate construction (3) utilized in this study is identical to the baseline 

laminate; however the back face of the panel is coated with polyurea.  This laminate is chosen to 

represent what would typically be found in a real world application where structures are 

retrofitted (spray coated) with this material as opposed to being incorporated into the original 

design (Hodge [10]).  The polyurea material is applied to the composite panel after 

manufacturing and is not part of the infusion process.  A 4 mm (0.160 in.) thick layer of the 

material is applied to the back face (concave) of the panels resulting in a total part thickness of 

6.6 mm (0.26 in.) and an areal weight of 8.31 kg/m2 (246 oz/yd2).  The polyurea is sprayed on 

the panels and then post cured for 48 hours at a temperature of 160°F.  In the current study the 

polyurea is only applied to the back face of the composite panels.  This location is chosen based 

on the prior work by Amini et al [11, 12, 13] and Gardner et al [14].  These studies have shown 

that applying the polyurea layer on the back face of shock loaded panels and sandwich 

composites results in improved performance while, locating the material on the front face can 

degrade performance. 
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 The polyurea material that is used for coating the panels is Dragonshield-BC available 

from Specialty Products, Inc. of Lakewood, WA.  This is a 2 part material that can be spray 

applied to a wide range of surface materials.  The product is typically used for blast mitigation 

and fragment containment in applications ranging from walls, structures, and vehicle protection.  

The manufacturer provides a tensile strength of over 37.9 MPa (5500 lb/in2) and an elongation of 

344%. 

 
      A summary of the panel thicknesses and areal weights is provided in table 1, and a 

schematic of the laminate designs are shown in figure 1. The mechanical properties for the 

0°/90° baseline and 0°/90° laminate with glass veil inter-laminar plies are provided in tables 2 

and 3. Comparing the values in these tables it is seen that the introduction of the glass veils 

between plies reduces the in-plane tensile modulus and strengths by 35% and 34% respectively. 

 
Table 1 – Thickness and Areal Weight of Laminates 

 Thickness, mm (in) Areal Weight, kg/m2 (oz/yd2) 
0°/90° Baseline Laminate 2.54 (0.10) 4.25 (126) 
0°/90° with Inter-Laminar 

Veils 
2.54 (0.10) 4.32 (128) 

0°/90° Baseline with Polyurea 6.6 (0.26) 8.31 (246) 
 
 

Table 2 – 0°/90° Baseline Laminate - Mechanical Properties (ASTM 638) 
 MPa (lb/in2) 

Tensile Modulus (0°) 15.8e3 (2.3e6) 
Tensile Modulus (90°) 15.8e3 (2.3e6) 
Tensile Strength (0°) 324 (47,000) 
Tensile Strength (90°) 324 (47,000) 

 
 

Table 3 – 0°/90° Laminate with Inter-Laminar Glass Veils -Mechanical Properties (ASTM 638) 
 MPa (lb/in2) 

Tensile Modulus (0°) 10.3e3 (1.5e6) 
Tensile Modulus (90°) 10.3e3 (1.5e6) 
Tensile Strength (0°) 213 (31,000) 
Tensile Strength (90°) 213 (31,000) 



 

72 
 

 
 

 
 

Figure 1 – Composite Plate Construction - Schematic 
 
The geometry of the plates consists of a curved midsection with a flat boundary as shown 

in figure 2.  The convex face of the plate represents the mold line in the manufacturing process 

and has a radius of curvature of 18.28 cm (7.2 in.), an outer diameter of 26.54 cm (10.45 in.), and 

the curved portion of the plate is 22.86 cm (9 in.) in diameter. 

 

 
 

Figure 2 – Composite Plate Geometry (Section View) 
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3. Shock Loading Apparatus 
 
A conical shock tube (CST) facility located at the Naval Undersea Warfare Center, 

Division Newport was utilized in the shock loading of the composite materials.  The shock tube 

is a horizontally mounted, water filled tube with a conical internal shape, Figure 3.  The tube 

geometry represents a solid angle segment of the pressure field that results from the detonation 

of a spherical, explosive charge, Figure 4.  In an open water environment the pressure wave 

expands from the charge location as a spherical wave.  In the shock tube the rigid wall acts to 

confine the expansion of the pressure wave in a manner that simulates a conical sector of the 

pressure field.  In order to compare free field and shock tube pressure values, it is useful to 

define an amplification factor which is the ratio between the volume of a spherical charge to the 

volume of the conical sector charge and is defined by Poche and Zalesak [17] as: 

 

 
α is the cone angle  
 
This equation assumes perfectly rigid wall conditions which are not fully realized.  

Therefore, the actual amplification factor is less than the calculated value and is typically 

reported as an effective weight amplification factor.  This is defined by Poche and Zalesak [17] 

as the ratio between the weight of a spherical charge, W, required to produce the same peak 

pressure at a given standoff distance as that produced in the shock tube by a segment of charge 

weight, w. The reduction in the amplification factor is typically attributable to elastic 

deformation of the shock tube walls.  Further discussion on the development and history of the 

water filled conical shock tube is provided by references 18 and 19. 
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The internal cone angle of the tube is 2.6 degrees.  The tube is 5.25 m (207 in.) long from 

the charge location to the location of the test specimen and internally contains 98.4 L (26 gal.) of 

water at atmospheric pressure.  The pressure shock wave is initiated by the detonation of an 

explosive charge at the breech end of the tube (left side of figure) which then proceeds down the 

length of the tube.  Peak shock pressures from 10.3 MPa (1500 lb/in2) to 20.6 MPa (3000 lb/in2) 

can be obtained depending on the amount of explosive charge.  A typical pressure profile 

obtained from the use of the tube is shown in figure 5.  This figure illustrates the rapid pressure 

increase associated with the shock front followed by the exponential decay of the wave.  This 

profile was obtained using a M6 Blasting Cap – 1.32g (.00292 lb) TNT Equivalency and is 

measured 0.508 m (20 in.) from the impact face of the plate.  The length of the tube is sufficient 

so that plane wave conditions are nearly established at the specimen. 

 

 
 

Figure 3 – Conical Shock Tube Schematic (not to scale) 
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Figure 4 – Explosive Charge in Shock Tube (Poche and Zalesak, 1992) 
 

 
 

Figure 5 – Typical Pressure Profile Generated in the Conical Shock Tube 
 
A mounting fixture has been designed so the test specimens are air backed with fully 

clamped edges.  The specimens are 26.54 cm (10.45 in.) in overall diameter with a 22.86 cm (9 

in.) unsupported middle section.  The mounting arrangement is shown in figure 6.  The 
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specimens are mounted with the convex surface towards the incoming shock fronts.  This is 

chosen so that the experiment will represent geometries commonly used in underwater 

applications with curved surfaces typically facing into the fluid (i.e. submersible vehicle hull 

forms).  

 
Figure 6 – Shock Tube Mounting Configuration 

 
4. Experimental Procedure 

 
Shock testing of the composite material has been performed with the CST utilizing a 

fixed end cap.  The use of the fixed end cap configuration allows the plate to absorb the full 

energy level of the shock and sustain a suitable level of damage.  The tube can also be 

configured with a sliding piston end cap (LeBlanc et al. [20]) to lower the level of energy the 

plate absorbs, but is not utilized in this study.  All experiments were performed two times to 

ensure repeatability.  High speed photography coupled with a 3D digital image correlation 

system is utilized to capture the back face transient response during the shock event.  This 
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system offers the advantage that it is a noncontact measurement technique which gives full field 

information and eliminates the difficulties of strain gages debonding from the specimens at high 

shock levels and large plate flexures.  The explosive charge used in the study is an M6 blasting 

cap with a net TNT equivalence of 1.32grams.  This yields peak pressures at the sensor location 

(.508 m in front of the test specimen) of approximately 11 MPa (1600 lb/in2). 

 
The Digital Image Correlation (DIC) technique is used to capture the transient response 

of the back face (dry) of the plates.  DIC is a non-intrusive, optical technique for capturing the 

full field, transient response of the panels through the use of high speed photography and 

specialized software.  Capturing the three dimensional response of the plates requires that 2 

cameras be used in a stereo configuration.  To record the transient response with this system the 

cameras must be calibrated and have synchronized image recording throughout the event.  The 

calibration of the cameras is performed by placing a grid containing a known pattern of dots in 

the test space where the composite sample is located during the experiment.  This grid is then 

translated and rotated in and out of plane while manually recording a series of images.  As this 

grid pattern is predetermined, the coordinates of the center of each dot is extracted from each 

image.  The coordinate locations of each dot extracted uniquely for each camera allows for a 

correspondence of the coordinate system of each camera (Tiwari et al [21]).  The DIC is then 

performed on the image pairs that are recorded during the shock event.  Prior to the experiment, 

the back face of the sample is painted white and then coated with a randomized speckle pattern, 

Figure 7.  The post processing is performed with the VIC-3D software package (Correlated 

Solutions) which matches common pixel subsets of the random speckle pattern between the 

deformed and un-deformed images.   The matching of pixel subsets is used to calculate the three 

dimensional location of distinct points on the face of the panel throughout time.  This technique 
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has been applied as a full field measurement technique in many applications including shock 

loading (Tiwari, et al [22])  

 
Two high speed digital cameras, Photron SA1,   are positioned behind the shock tube, 

figure 7. The use of two cameras allows for the out-of-plane behavior to be captured.  If a single 

camera is utilized the data would be limited to the in-plane results.  The distance from the lens of 

the camera to the specimen is 1.44 m (57 in.) and each camera is angled at approximately 7° with 

respect to the symmetry plane, figure 8.   A frame rate of 20,000 was used with an inter-frame 

time of 50μs.   

 

DIC System

View Window

Specimen

Speckle 
Pattern

 
Figure 7 –Digital Image Correlation Schematic 
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7°

1.44 m

 
Figure 8 –Digital Image Correlation Setup (Not to Scale) 

 
 

 
5. Results 

 
The determination of the effectiveness of the two laminate modifications in comparison 

to the baseline laminate will focus on deformation and velocity time histories, as well as the level 

of post mortem damage.  The deformation and velocity histories are presented for distinct points 

on the back face of the panels, and are extracted from the DIC post processed data.  The post 

mortem damage levels are assessed from visual observations of the damage mechanisms.   

The pressure profile obtained from the experiment with the baseline laminate is shown in 

figure 9.  The pressure history can be separated into three distinct time regimes.    The first is the 

initial shock front which has time duration of less than 1 ms from peak pressure to full decay to 

ambient.  The second set of pressure effects arrives at the pressure transducer at approximately 

10.5 ms after the initial shock front.  This secondary wave is formed when the velocity of the 

plate is brought to rest.  During the initial deformation of the plate, the water that contacts the 

plates moves along with the plate surface.  When the movement of the plate is brought to rest, 
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the momentum of this water causes it to compress against the plate and a high pressure wave is 

developed.  This wave then propagates down the length of the tube and is reflected back towards 

the plate.   The time delay from this secondary wave reaching the transducer, traveling down the 

tube, and arriving back at the transducer is expected to be on the order of 5.5ms based on the 

distance of travel from the transducer to the charge location.  This time delay is clearly seen in 

figure 9.  The bubble pulse for the charge weight and conditions that are used in this study is 

expected to be on the order of 30 ms, and is confirmed by the high pressures seen in the pressure 

profiles at this time.  From figure 10 it is seen that the initial peak pressure for each shot is nearly 

identical.  It is important to note the absence of a reflection of the incident pressure wave in the 

pressure signal.  This is attributable to the similar acoustic impedance values of the water and the 

composite plate as well as the fluid structure interaction of a plane wave with a curved surface.  

Consider the case of a dilatation wave arriving at the interface between two dissimilar materials 

(Water-Composite interface).  The wave will be partially transmitted into the plate and partially 

reflected back into the water.  The magnitudes of the reflected (A2) and transmitted (A4) waves 

as a function of the incident wave (A1) are given as: 
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Where C1 and ρ are the longitudinal wave speed and the density of the water (A) and the 

Composite (B).  For the water the wave speed and density are 1500 m/s and 1000 kg/m3 and for 

the composite material the values are 3064 m/s and 1680 kg/m3.  These parameters yield a 

reflected wave magnitude that is 55% of the incident wave.  The development of these equations 

(Sadd, 2009) assume that the surfaces are perfectly bonded with matching of displacements and 

stresses at the interface.  It is likely that these conditions are not fully realized with one of the 
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mediums being water which carries no shear stress, and has the possibility of separating from the 

composite forming a cavitiation region during the initial deformation of the plate.  The 

development of cavitiation at the water / plate interface has been observed by Espinosa et al. 

(2006) for experiments with steel plates.  If perfect matching conditions are not fully realized 

then the reflected wave has the possibility of further magnitude reduction from the analytical 

value of 55%. Furthermore, these equations assume a flat interface normal to the incident wave.  

In the current configuration the wave is interacting with a convexly curved surface which will act 

to disperse the wave front, further reducing the magnitude of the reflected wave that the pressure 

transducer would measure.  Previous work has observed similar reduced reflection waves.  

Experiments performed by Espinosa (2006) with steel plates measured reflected waves on the 

order of 60% of the incident, whereas the theory predicts a value on the order of 95% reflection. 

 

 
Figure 9 – Pressure – Deformation History Correlations 
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Figure 10 – Pressure Profiles (Peak Pressure Comparison) obtained from CST 

 
 

The center point deformation time history along with the corresponding pressure profile 

for the case of the base line laminate is shown in figure 9.  It is seen in this figure that the initial 

shock causes a deformation of the center point (0–5 ms), a small recovery (5–10 ms), and finally 

a temporary arresting of the motion (10–15 ms).  After this arresting of the motion, the secondary 

pressure wave arrives (15 ms) and restarts the deformation process of the plate.  The effect of the 

secondary pressure wave is sufficient to carry the deformation process to full inversion of the 

plate.  A similar trend is seen for the other two laminates in this study.    

The comparison of the displacement –time history for the three laminates is shown in 

figure 11.  The top plot shows the deflection for the center point and the bottom plot shows the 

deflection for a point located halfway between the center and the clamped edge along the 

horizontal axis.  Using the baseline laminate as a reference, the panel which is coated with 

polyurea on the back face shows a distinct performance increase in terms of the displacement 

sustained after the arrival of the first pressure peak.  Conversely, the performance is degraded 

when glass veil is incorporated between plies but the panel thickness is maintained constant.  
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After the first pressure peak the baseline laminate sustains a center point displacement of 33.5 

mm (1.31 in.) while the deflection for the polyurea sample is 11 mm (0.43 in.), a decrease of 

67%.  In the case of the veil laminate the center point displacement is 48 mm (1.88 in.), an 

increase of 43% over the baseline.  In table 3 it was shown that the this laminate has a 34% 

reduction in modulus over the baseline, which likely is the cause for this reduction on 

deformation behavior, especially since the primary loading mechanism is flexure.   In all cases it 

is seen that the effects of the secondary pressure waves are sufficient to continue the 

displacement to full plate inversion.  This is attributable to the plates being weakened and 

partially inverted by the initial peak pressure effect.   

 

 
 

Figure 11 –Time History Deformation Comparison 
 

The velocity time history comparison for the center point of each of the three laminates is 

shown in figure 12.  The top plot of this figure shows the velocity history for the total time 
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duration of the event, whereas the bottom plot focuses on the velocity resulting from the initial 

shock pressure.  From the bottom figure it is seen that the magnitude of the kick off velocity for 

each of the laminates is nearly the same, approximately 16 - 17 m/s (52.5 – 55.7 ft/s).  There is a 

difference, however, in the time that it takes for the velocity to decay back to zero for each of the 

panels.  The velocity of the baseline laminate fully decays over 4.5 ms while the panel with 

polyurea decays faster, taking only 2.4 ms to return to rest.  Conversely, the panel with the glass 

veil layers takes 5.5 ms, 1 ms longer than the baseline panel.  An alternative way to compare the 

decay rate of the velocity is to represent the initial velocity profile as an exponential function as 

shown below and compute the decay constant, θ, from an exponential curve fit for each panel.  

The decay constants respectively for the baseline, polyurea, and the glass veil panels are:   -1.9 

sec, -2.6 sec, and -1.0 sec. 
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Figure 12 –Velocity History Deformation Comparison 

 
The final damage states of the three laminates are shown in figure 13.  From this figure it 

is seen that for all of the laminates the primary damage mechanism is delamination, indicated by 

the lighter regions of the plates.  There is minimal matrix cracking or fiber breakage observed in 

any of the panels.  There is a small 76.2 mm (3 in.) crack towards the center of the baseline panel 

but this is limited to the surface of the plate and is does not extend through the thickness of the 

laminate.  It is important to note that these are the final states of damage after the entire shock 

event occurs, including the secondary deformation process later in time.  It was not possible to 

separate which damage occurs during the initial shock loading and which occurs as a result of the 

secondary deformation process.  Similarly it is not known what the exact damage state after the 

initial deformation process is and how this initial damage state compares between the three 

laminates.  The only conclusion that can be drawn from these figures is that among the three 

laminates the final level of damage is comparable, and consists primarily of delamination.  This 
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indicates that for these loading conditions and plate geometries, the inclusion of glass veils 

between plies does not improve the delamination performance of the composite laminate as 

compared to the baseline. 

 
 

 
Figure 13 – Material Damage Comparison 

 
6. Conclusions 
 

A conical shock tube has been used to study the response of curved E-Glass / Vinyl ester 

composite panels subjected to underwater shock loading.  Three laminate constructions have 

been investigated and consist of (1) a baseline 0°/90° biaxial layup, (2) a 0°/90° biaxial layup 

that includes a thin glass veil between plies, and (3) a 0°/90° biaxial layup that has a coating of 

polyurea applied to the back face.  The round plates are curved in shape with the convex surface 

oriented towards the incoming shock front with fully clamped boundaries.  A 3D Digital Image 

Correlation system is used to capture the full field, transient response of the back (dry) surface of 

the plates.  This allowed for real time recording of the displacement and velocity history of this 

surface.   
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The deformation and velocity time histories at several unique points on the back face of 

the sample are used to evaluate the effectiveness of each laminate subjected to shock loading 

conditions.  Using the deformation response to the initial peak pressure it was shown that the 

polyurea reduced the center point deflection by 67%, while the inclusion of glass veils increased 

the deflection by 43%.  In all cases it is seen that the effects of the secondary pressure waves are 

sufficient to continue the displacement to full plate inversion.  It is also observed that the 

magnitude of the kickoff velocity for all panels was the same at around 16 m/s, however the 

polyurea panel showed the fastest decay of this peak velocity back to zero.  Overall damage 

levels in each of the panels were comparable but it was not possible to separate which damage 

occurs during the initial shock loading and which occurs as a result of the secondary deformation 

process.  The results show that the performance of the baseline laminate is  degraded by the 

inclusion of the glass veils between plies but improved when the back face is coated with the 

polyurea material. 
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CHAPTER 5 
 

CONCLUSIONS AND FUTURE WORK 
 

1. CONCLUSIONS 

This research has studied the dynamic response and damage evolution of composite 

materials when subjected to underwater explosive loading conditions.  The work consisted of 

both experimental work and computational simulations to aid in the understanding of the 

behavior of these materials.  The objective of the study was to develop a better understanding of 

the shock response of composite materials leading to more efficiently designed structures.  The 

relevant findings resulting from the present study are presented below. 

(1) An experimental methodology has been developed which subjects composite plates of 

both flat and curved geometries to shock loading resulting from an underwater 

explosion.  A conical shock tube facility is utilized which replicates the free field 

expansion of pressure waves resulting from the explosion.  The plates are air backed and 

held with fully clamped boundary conditions.  The dynamic response of the back face of 

the specimens is captured through the use of strain gages and digital image correlation.   

The use of digital image correlation allowed for the capture of the full field deformation 

and velocity histories. 

(2) A modeling methodology has been developed that is able to accurately simulate the 

response of the composite material as observed during the experiments.  The modeling is 

performed utilizing the commercially available LS-DYNA explicit finite element code.  

The finite element models consist of both the water within the conical shock tube and 

the composite plate.  The models are able to capture the fluid structure interation 

between the water and the plates as well as the transient response of the plates.  
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Additionally the models are able to simulate the onset of material damage including both 

in-plane and through thickness mechanisms.   

(3) The results from the shock experiments and the computational simulations have been 

correlated using both the dynamic response histories as well as the final damage states.  

The time histories obtained from the strain gages and the digital image correlation 

results have been correlated to the simulation results using the Russell Error.  This is a 

method which evaluates the differences in two transient data sets by quantifying the 

variation in magnitude and phase.  The correlation between the strain, deflection, and 

velocities for the respective experiments were found to fall within the acceptable criteria 

with some comparisons being excellent.  Additionally, comparisons between the final 

material damage state in the experiment and the simulation were agreeable both in terms 

of the type and extent of the individual mechanisms.   

(4) The effects of laminate modifications were studied to determine the effectiveness of 

each on improving the response to shock loading.  Three laminate constructions were 

investigated: (1) a baseline 0°/90° biaxial layup, (2) a 0°/90° biaxial layup that includes 

a thin glass veil between plies, and (3) a 0°/90° biaxial layup that has a coating of 

polyurea applied to the back face.  It was found that coating the back face of the material 

with a layer of polyurea improved the damage mitigation performance of the composite 

plates, while conversely including a glass veil between plies degraded the material 

performance.  

2. FUTURE WORK 

The current investigation has provided a basis for experimental and computation techniques 

which can be applied to the study of the dynamic response of composite materials subjected to 
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underwater explosive loading conditions.  There however, remains a significant body of work to 

be completed in this area before the dynamic response of these materials matures to an 

equivalent level of understanding as that for metallic materials.  This work includes further 

experimental and computational studies as well as work which correlates the two.  This will 

effectively lead to validated modeling practices that can be applied during the design phase of 

composite structures.  The proposed potential future projects are summarized as follows: 

 

1. Perform small scale underwater explosive experiments in which the charge is located much 

closer to the composite plates than what was performed in this study.  In the current study 

the standoff distance was large compared to the plate geometry, whereas future work should 

examine the effects of charge standoffs which are smaller than the plate dimensions.  At 

smaller standoff distances the pressure wave will have a much more spherical shape when it 

interacts with the plates as opposed to the current study where near planar conditions were 

achieved and the plate was loaded over its entire surface area.  Smaller standoffs will 

examine the localized effects of UNDEX loading as only a portion of the plate surface may 

be loaded. 

2.  Conduct shock experiments in which the complexity of the geometry of the test articles is 

further increased.  In the current study plates that were flat or had a smooth curve to them 

were utilized.  More complex geometries could include oblong spheroids, cylinders, and 

plates with abrupt angle changes.  The goal should be to incorporate real world design 

shapes into the test article geometry.  The current finite element modeling methodology 

should also be expanded to simulate these experiments to ensure it is able to accurately 

simulate the geometrical effects. 
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3. Conduct an experimental and computational study to more effectively model delamination 

damage and determine the appropriate governing parameters.  The current study utilized a 

tiebreak surface to surface contact definition to model the ply interfaces where the 

delamination value was taken to be percentage of the resin properties.  This modeling 

methodology has the potential to be improved through other representations of this interface 

including the use of cohesive elements or constraint sets.  An experimental method should 

be employed to provide a basis to which the simulations can be compared to and validated 

against.   

4. Investigate the effects of underwater explosive loading on other materials and laminate 

constructions.  In the current study E-Glass was used as the structural fibers in all of the 

laminates.  The performance of other materials such as S-Glass, Carbon, and Kevlar should 

be examines as well as the possibility of hybrid materials such as Glass / Carbon 

constructions.  The performance of these materials needs to be understood as they inherently 

have different characteristics.  For example carbon fibers have higher tensile strengths and 

modulus but fail much more catastrophically than glass fibers which have more elongation.  

Additionally the response of other laminate constructions should be examined.  The current 

research utilized laminates which were constructed using individual layers of continuous 

fibers.  There now exist three dimensional (3D) fabrics which include through thickness 

fibers which are inter-woven through the cloth.  These through thickness fibers may 

improve the performance of the laminates in terms of reducing the delamination damage. 

5. Conduct an investigation into the response of submerged composite structures to high 

hydrostatic pressures.  This would provide insight as to how a composite structure would 

implode as compared to a corresponding metallic structure.  For example the implosion 
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process for metallic cylinders is well understood including collapse pressure and final shape.  

However there is little understanding of how a composite cylinder of equivalent strength 

would collapse. 
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