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The recursion method applied to the T=Q dynamics of the 1 D s= l/2 
Heisenberg and XY models 

V. S. Viswanath and Gerhard Mliller 
Department of Physics, The University of Rhode Island, Kingston, Rhode IsIand 02881-0817 

The frequency-dependent spin autocorrelation functions for the 1D s = l/2 Heisenberg and 
XY models at zero temperature are determined by the recursion method. These 
applications further demonstrate the efficacy of a new calculational scheme developed for the 
termination of continued fractions. A special feature of the recursion method highlighted 
here is its capability to predict the exponent of the infrared singularities in spectral densities. 

The key to obtaining useful and reliable results from 
applications of the recursion rnethodlA to quantum many- 
body dynamics is the use of an appropriate termination 
function in the continued-fraction representation of the 
corresponding relaxation function. In a recent study,” we 
have presented a general recipe for the construction and 
use of such termination functions along with two applica- 
tions in quantum spin dynamics. Meanwhile we have fur- 
ther refined this calculational technique, which will be 
demonstrated and illustrated with more applications in 
quantum spin dynamics. The focus here is on spectral den- 
sities 

@$p(w) = JJI dte’“‘Agp(t>, (1) 

of symmetrized spin autocorrelation functions 

A~W)=~@~WS~) + csjtc -wg">l/2w5LS5"), (2) 
of the 1D s = l/2 Heisenberg and XY models at T = 0. 
These models are specified by the cases A = 0 (XY 
model), A = 1 (Heisenberg ferromagnet) and A = - 1 
(Heisenberg antiferromagnet ), respectively, of the Hamil- 
tonian 

H=- i [S;s;,l+S~~~+l+~~~+ll. (3) 
I=1 

The recursion method as formulated in Ref. 4 is based 
on an orthogonal expansion of the wave function 
I@(t)) = 5’?(t) IO), where 10) represents the ground-state 
of (3), and its most immediate result is a sequence of 
recurrents, Ah k = 1,2,... These numbers determine the 
relaxation function u&‘(z), the Laplace transform of Eq. 
(2), in the continued-fraction representation 
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* 
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The spectral density [Eq. ( 1 )] can be recovered directly 
from Eq. (4): 

~~(~)=lim2Re[a~(~--iw)]. 
c-0 

(5) 

In most applications of interest, only a limited number 
of recurrents Ak can be evaluated. The continued fraction 
in Eq. (4) must therefore be completed artificially if we 

wish to recover a meaningful expression for the relaxation 
function. For this purpose we construct a termination 
function according to the general scheme that was intro- 
duced in Ref. 4. 

Our first application is a test run on the spectral den- 
sity @g(w) for the case A = 0, a quantity which is exactly 
known5 [see Eq. (3.9) of Ref. 6 for a closed-form expres- 
sion]. In Fig. l(a) we have plotted the recurrents Ah k 
= 1,...,15, as determined by the recursion method. For the 

reconstruction of the spectral density, we first extract two 
important pieces of information directly from that 
Ak-sequence. 

(i) The Ak tend to converge toward the value Am 
= 1. The implication is that @g(o) has compact support: 
the spectral weight is confined to the frequency interval 
101 <coo = 2 A,, e = 2. (ii) The convergence toward the as- 
ymptotic value A, is alternating in character. This indi- 
cates that the spectral density is singular at w = 0: 
@PO”(o) - Ircaln. Th e ex p onent a of that singularity deter- 
mines the leading-order term of the large-k asymptotic ex- 
pansion of the Ak-sequence? 

,/&=fi,[l- (- l)$x/2k> + . . . ] . (6) 

In Fig. 1 (b) we have plotted the quantity 

ak= ( - l>k2k[ 1 - 4-1 (7) 
versus k. The sequence ak tends to converge to the value 
a = 1 (the exact result), albeit slowly and irregularly. 

For the reconstruction of the spectral density @f(w) 
from the first 15 recurrents Ak according to the method 
outlined in Ref. 4, we need to select a model spectral den- 
sity Qo(w) which satisfies two conditions: (i) its spectral 
weight is confined to frequencies 101 6 o. = 2; (ii) it has a 
singularity at o = 0, preferably with a = 1. Our choice is 
the function 

how =; 101 (a,” - 02)8(oo - @I>. (8) 

The associated model relaxation function is obtained from 
Eq. (8) by Hilbert transform: 

(9) 

Next we expand this function into a continued fraction 
down to the nth level: 
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FIG. 1. The two upper panels display the recurrents Ab k = 1,...,15, vs k 
for the T = Cl spectral density @g(o) of (a) the 1D s = l/2 XY model 
(A = 0) and (c) the 1D s = l/2 Heisenberg ferromagnet (A = 1). The 
two lower panels show the sequences crk, k = 1,...,15, plotted vs l/k for 
these recurrents. 

u-o(z) = 
1 
AI 

z-t- z + . . . A,-I 
(10) 

‘-’ + z + A,r,(z) . 
This defines the &r-level termination function T’,(z). The 
model recurrents Ak are the following in this case: 

L\l&&( 1+&) , z2k=;“:( l-&-J . 

(11) 
The termination function l?,(z) is then used in the contin- 
ued-fraction representation of the actual relaxation func- 
tion G(z), also expanded down to the nth level. In other 
words, we start with &(z) in the representation of ECq. 
(lo), replace the model recurrents Ak, k = l,...,n, by the 
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FIG. 2. Spectral density @g(o) for the 1D s = l/2 XY model (A = 0) at 
T = 0. The full line represents the result derived from the continued- 
fraction representation of C$(E - io) (with E = 0.001) terminated at 
level n = 15 as described in the text. The dashed line represents the exact 
result. 
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FIG. 3. Spectral density @g(o) for the 1D s = l/2 Heisenberg antifer- 
romagnet (A = - 1) at T = 0. The result shown is derived from the 
continued-fraction representation of @(E - iw) (with E = 0.001) ter- 
minated at level n = 11 as described in the text. The recurrents Ak, k 
= l,...,ll, are shown in the inset along with the regression line 
hk = 0.807 k. 

actual ones [those from Fig. 1 (a)] and use EQ. (5) to 
arrive at the spectral density we set out to determine. 

The result is shown in Fig. 2 along with the exact 
result. The agreement is not perfect, but very satisfactory if 
one takes into account that the reconstruction is based on 
a mere 15 numbers. The agreement is best at small w, 
where both the exact result and our model spectral density 
have the same singularity exponent, a = 1, previously in- 
ferred from the Ahk-sequence directly. The agreement be- 
tween the two curves is somewhat less than perfect near 
w = 2, where the exact spectral density has a discontinuity, 
whereas the model spectral density goes to zero linearly. 
Despite this mismatch in singularity exponent, the recon- 
structed spectral density reproduces the discontinuity 
fairly well. The agreement between the two curves is worst 
near w = 1, where the exact result has one more singular- 
ity, but the model spectral density has none. 

The same spectral density (P?(o) evaluated for the 
case A = 1 of Hamiltonian (3) and for the ground state 
with all spins aligned parallel to the x-axis is the familiar 
spin-wave result, 

s 
+?-I 

q(o) = dql/2[6(w - 1 + cos q) 
--IT 

+S(w+ 1 -cosq)l 

=0(2 - IWI )/Jiqc-pq. (12) 

We only want to use it here for the purpose of demonstrat- 
ing one more time how the singularity exponent at w 2 0 
can be extracted from the first few recurrents. Figure 1 (c) 
shows the Ak-sequence for that function up to n = 15 as 
obtained by the recursion method. The sequence again 
tends to converge toward the value A, = 1 in an alternat- 
ing approach. The associated sequence ak, plotted versus 
l/k in Fig. l(d), converges rather uniformly toward the 
value a = - l/2, in agreement with the exact result. 
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Now we turn to the case A = - 1 of Hamiltonian Eq. 
(3), for which the spectral density @g(a) is not known 
exactly. We have employed the recursion method to deter- 
mine the Ak-sequence up to n = 11. These recurrents, 
which are plotted in the inset to Fig. 3, have the tendency 
to increase roughly linearly in k, albeit with considerable 
scattering. In Ref. 4 we have already analyzed a similar 
Ak-sequence, namely that for the spectral density (al;“(w) 
of the case A = 0. Here we use the same criterion for the 
selecticn of the model spectral density: the model recur- 
rents Ak must follow the average linear-rowth of the ac- 
tual Ak, indicated by the regression line Ak = 0.807 k in the 
inset to Fig. 3. This condition is satisfied by the functions 

(Po(o)=(2~;/wo) exp( -w’/c&, &=k&2, 
(13) 

Zo(z> =( J;;/w,> exp@/&)erfC(z/0a), (14) 
with the parameter w. chosen to match the average growth 
rate of the Ak. The model relaxation function (14) is then 
used to determine the nth-level termination function 
l?,(z). Inserted (at level it = 11) into the continued frac- 
tion representation of the relaxation function ag(z) pro- 
duces the spectral density shown in the main plot of Fig. 3. 
This result is in qualitative agreement with all properties of 
the function @g(w) that can be inferred from exact infor- 
mation on the Heisenberg model: (i) the first three singu- 
larities in the spectral density occur at frequencies w 
= O,?r/;?,r; (ii) the leading singularity exponent at o = 0 

is a = 0. In a previous study,s an approximate expression 
for the function @r(o) was proposed. That result is finite 
and nonzero at o =.O, has a logarithmic divergence at w 
= ?r/2 and a square-root cusp at w = r (see Fig. 5 of Ref. 

8). Its shape is qualitatively very similar to that of the 
result obtained by the recursion method. 

How can we extract the exponent value a of the infra- 
red singularity directly from the Ak-sequence if that se- 
quence grows linearly in k on average? Consider the model 
spectral density 

5&l> = 
2a 

UO~[ (a/2) - 11 
[w/uoIa exp( Y w2/&). (15) 
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The associated &-sequence reads 

- 
AZk-,=i&2k- 1 -~-a), &;;,=$&2k). (16) 

The&ngularity exponent2 determines the displacement of 
the Atk- 1 from the line A2k = c&k. In most applications, 
this easy-to-read signature of infrared singularities is ob- 
scured by the effects of further singularities at o#O in the 
spectral density (see inset to Fig. 3 of this paper and inset 
to Fig. 2 of Ref. 4). Under these circumstances, we could, 
for example, determine the value of a from the average 
difference in vertical displacement of the recurrents A2k 
and the recurrents Ah2k _ I from the linear regression line, 
which was derived from the entire sequence. For the two 
cases mentioned we thus obtain the exponent values a 
=0.3AO.7 (A= - 1) and a= -0.5~0.4 (A=O). 

Both values are consistent with the exact results a = 0 and 
a = - l/2, respectively, but have little predictive power. 
We are currently exploring more sophisticated techniques 
for the analysis of these exponents. 
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