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Recursion method in quantum spin dynamics: The art of terminating

a continued fraction
V. 8. Viswanath and Gerhard Muller

Department of Physics, The University of Rhode Island, Kingston, Rhode Island 02881-0817

The results obtained from applications of the recursion method to quantum many-body
dynamics can be greatly improved if an appropriate termination function is employed in the
continued-fraction representation of the corresponding relaxation function. We present a
general recipe for the construction and use of such termination functions along with two
applications in spin dynamics. The method can be adapted to any other problem in quantum

many-body dynamics.

The recursion method! as applied to problems in the
dynamics of guantum and classical Hamiltonian model sys-
tems” is essentially a modern version of the projection op-
erator formalism designed by Mori and Zwanzig, formulat-
ed in a language which makes it directly accessible to
computational methods, However, the old problem of ade-
guately terminating a continued fraction has resurfaced in
recent dynamical studies which employ one or the other var-
iant of the recursion method or the closely related moment
method.* The present work was motivated in particular by a
study of Gagliano and Balseiro,” in which they use the recur-
sion method for the calculation of the dynamic structure
factor S, {g,@) of the one-dimensional {1D) s = 1/2 XXZ
model

N
H= — % (S7S7, +87871, + A5 )
b= 1
at zerc temperature. The case A =0 (XY model) can be
taken as a convenient test case, since the function ¥, (g,w) is
exactly known®:

S, (gw) Ef

— =

+ o

dte (ST(1S7_,)

—q
=2[4sin’(g/2) — 0*] "V*@(w — sing)

X 8[2sin(g/2) — w]. (1)

For the implementation of the recursion method at T =0, it
is convenient to use the fermion representation of the XXZ
model; it has the advantage that the ground state has a sim-
ple structure in the limit A = O (noninteracting fermions).
S, (g.,w) is then related to a fermion density correlation
function.

The formulation of the recursion method used in Ref. 2
is based on an orthogonal expansion of the wave function

B(H)Y=6W[0) = T D(Dlfi, 2
k= Q

where |0) is the ground-state wave function of a given guan-
tum model Hamiltonian H and G is the dynamical variable
whose time-dependent correlation function

S(1)={0|G ()G |0} = (O|GGT|0)DE( — )
we wish to determine. The orthogonal vectors |/, } are gener-

ated recursively via the Gram-Schmidt orthogonalization
procedure with initial condition |f,) = G |0), [f ) =0:
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Itis assumed that the ground-state energy £, and wave func-
tion |0} have been determined as accurately as possible. The
sequences of recurrents ¢, 8, then contain all information
necessary to recomstruct the function D, (¢) as follows. In-
sert the orthogonal expansion (2) into the Schridinger
equation, (3 /31)|¥(1}) = (H — E,)|¥(8)), to obtain an
infinite set of difference-differential equations for the func-
tions D, (), which, upon Fourier—Laplace transform,

k 9 k=

d (&) Ef dreD, (1),
(1]

can be sclved for &, (¢} in the continued-fraction representa-
tion

{
do (g) = .\ ® (3)
&= Oy — g
g— —g, —
and from which the frequency-dependent correlation func-
tion can be directly recovered:

S{w) = -

— oz

Mow consider the symmetrized correlation function
B(r) = [S(2) + 85— 11/2 = (0|GG 110y 4, (1)

and its Fourier transform, the fluctuation function ®(@).
@(t) is equal to the real part of 5’(:). In Fourier space we
have (at T=0) S{w) = 2P(w)O(w). The relaxation func-
tion a, {2}, which is the Laplace transform of 4, (¢), can be
expressed in a more concise continued-fraction represenia-
tion than that of &, (£):

dte'8(1) = 2{0/GG T|0)Re lim &, (@ + i€).
€0

w = [ ety =A@
(83 1
N D
. A,
A =
Z"'%"...

The associated spectral density is recovered as

B, (w) =2 Relimg, (€ — iw)
e--0
and the fluctuation function as ®(w) = (0|GG T|0) P, (w).
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The first » members of the seguence A, are expressible in
terms of the first n pairs of the sequences o, §, and vice
versa by elementary transformation formulas.® In a different
formulation of the recursion method,” the sequence A, is
obtained directly. In most practical applications of the re-
cursion method, only a limited number of recurrents o, §;
or recurrents A, can be calculated, which makes it necessary
to terminate the continued fractions (3) or (4) artificially.
The main goal of this report is to demonstrate a way to termi-
nate (3) in such a way that the information content of the
known A, is exploited to the fullest extent without introdue-
ing artificial features.

For the dynamical structure factor S, {g,@) at fixed
wave numbers ¢ = 37/4 and 7 for the XY modef at T= 0,
the first 13 recurrents A, are displayed in the inset to Fig. 1.
They can be obtained directly from Lee’s® formulation of the
recursion method or indirectly from the o, 8, in the ap-
proach taken by Gaglianc and Balseiro.’ The relatively sim-
ple patterns revealed by the two A; sequences can be inter-
preted as follows: The almost uniform sequence for ¢ = 7,
whichis A, =2, A, = A, = ... = 1, is readily recognized as
that of the Bessel function 4,{(¢) = J,(2r) or its Fourier
transform, the speciral density ®, (@) = 2//4 — °; it is
consistent (for ¢ = 7) with the exact result {1).” For
g = 3u/4, the A,, , and the 5, converge (fairly rapidiy)
to different values, A‘” and A'?, respectively, whick is the
unmistakable signature of a spectral deasity whose spectral
weight is confined 1o a finite interval with a gap in the center,
B i < 0] <D oy » and With the two cut-off frequencies deter-
mined by

Opax = \/@ + A«(x?‘): Dypin = ‘\/b‘(—;) - \/—@

The next step in the procedure proposed here is to choose the
simplest model spectral density which is consistent with
these conditions,

, - — —fi_
i s q=3r/4 ] I e
T gew il & o
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FIG. 1. Dynamic structure factor S_(qw) (normalized by

(887 ) =q/2x) for fixed g =nn/4, n = 2,34, of the IDs=1/2 XY
model at 7 = 0. The full lines represent the result derived from the contin-
ued-fraction representation for @, (€ — fw} (with ¢ = 0.001) terminated at
level 7 = 5 as explained in the text. The dashed lines represent the exact
result (1). The inset shows the recurrents A, k= 1,..,13, for ¢ = 3=/4
and g = 7.
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B, (w) = i

4]

G(w = @pyin )(wmax

min

- 61)),
—

max
and determine, via Hilbert transform, the associated model
relaxation function

1 ( Z + Iy

N ln °

2l(ajmax — @yin ) zZ— la)max
A good approximation of the relaxation function ¢, {z}, of
which we only know a continued fraction (4) down to level
n, is then consiructed as follows: First expand the known

mode! relaxation function @, (z} into a continued fraction
down to the nth level,

i
A,
A

Gy (2) = —In

z + [wmin )

zZ — iw

min

Gofz) =
zZ+

g B
z+4,T,(2)

which defines the nth-level termination function [, (z)
along with the model recurrents &, , k£ = 1,... ,n. Then insert
this termination function into the continved-fraction repre-
sentation of the actual relaxation function @, (2}, again at the
nth level. In other words, approximate a,(z) by taking
@, {z) in the representation (5) and replacing the model re-
currents A, kK = 1,... ,n, with the known recurrents A, of
the dynamical guantity under investigation. The termi-
nation can be performed at any level for which the true re-
currents are known, and it can be expected that the degree of
approximation improves systematically as more model re-
currents are replaced by exact ones.

In the case of the dynamic structure factor S, (g,2) for
the XY model, only few exact recurrents are needed o re-
cover a good representation of the exact result (1}. Our re-
sults shown in Fig. 1 for S, (g,@) atg = an/4,n = 2,3 ,4, are
based on a continued fraction terminated by I, (z) at the
level n = S. Comparison of these results with those of Fig. §
in Ref. 2 demonstrates that there is much more information
contained in the first few recurrents than can be retrieved
from a finite continued fraction alone. The additional infor-
mation is retrievable through the construction of a matching
termination fanction.

For one more application of the method proposed here,
consider the spin autocorrelation function {(S7(2)S7) of the
same model (the XY model at 7 = 0), which can be rigor-
ously expressed in terms of the solution of a nonlinear ODE
as described in Refs. 8 and 9. The assaciated spectral density
D) (w) was determined in Ref. 9 on the basis of an exact
fong-time asymptotic expansion of {§7(#)S7) in conjunc-
tion with a precision numerical solution for short times.
That spectral density, which is replotied in Fig. 2 (dashed
line), has three singularities on the frequency range shown:
an @ ? divergence at w = 0, a logarithmic divergence at
w=1,and anw'? cusp at w = 2.

The same nonlinear ODE from which these exact re-
sults were derived with much effort can be used to determine
with relative ease a number of recurrents A, from which the
spectral density can be reconstructed approximately accord-
ing to our scheme. These recurrents up to A,; are shown in
the inset to Fig. 2. They have a linear average growth rate,

(5)
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FIG. 2. Spectral density &j*{w) for the spin autocorrelation function
(ST()E7) of the 1D 5 = 1/2 XY model at 7'= 0. The full line represents
the result derived from the continued-fraction representation for
a, (€ — iw) (with € = 0.001} terminated at level n == 13 as described in the
text. The recurrents A, , £ = 1,...,13, are shown in the inset along with the
regression fine A, == 0.574k. The dashed line represents the exact result
from Ref. 9.

A, =~0.574%, with considerable scattering about that line. In
this case we select the model spectral density ®3*(w) by the
requirement that its A, sequence reproduces the average be-
havior of the actual A, sequence. This condition is satisfied
by a pure Gaussian®:

B (w) = (Wm/w, yexp( — 0¥/ 6l), b, = kal/2.
The associated model relaxation function,
G, (2) = (Vi /w, Yexp(Z/w? Yeric(z/w, ),

with the parameter w, chosen to match the average growth
rate of the A, is then used to determine the nth-level termi-
nation function F, {2).'% Inserted (at level n = 13) into the
continued-fraction representation of the relaxation function
dg (z) yields the spectral density shown as solid line in Fig. 2.
The approximate result reproduces all the major features of
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the exact spectral density at least qualitatively. Note in par-
ticular that our scheme of approximation has not produced
any artificial features which may invite misinterpretation, a
problem with which less sophisticated termination methods
have been plagued almost inevitably.

In summary, we have outlined a practical method to
terminate a continued fraction as it arises from the recursion
method for two particular test cases. That procedure can be
adapted to virtually any situation which one is likely to en-
counter in quantum many-body dynamics.

This work was supported in part by the U.S. National
Science Foundation, Grant DMR-86-03036 and by a Grant-
in-Aid from the Council on Research of the University of
Rhode Island. The numerical calculations were performed
on the CRAY-2 at the National Center for Supercomputing
Applications, University of Illinois at Urbana-Champaign.

'D. G. Pettifor and D. L. Weaire, Eds., The Recursion Method and its Ap-
plivations (Springer, New York, 1985).

2E. R. Gagliano and C. A. Balseiro, Phys. Rev. Lett. 58, 2999 (1987);
Phys. Rev. B 38, 11766 (1988).

‘M. H. Lee, Phys. Rev. B 26, 2547 (1982); J. Florencio and M. H. Lee,
Phys. Rev. A 31, 3231 (1985); Phys. Rev. B 35, 1835 (1987).

*I. Oitmaa, M. Plischke, and T. A. Winchester, Phys. Rev. B 29, 1321
(1984).

*T. Niemeijer, Physica 36, 377 (1967); S. Katsura, T. Horiguchi, and M.
Suzuki, Physica 48, 67 (1970).

°G. Miiller (unpublished).

7J. M. R. Roldan, B. M. McCoy, and J. H. H. Perk, Physica 1364, 255
(1986).

*B. M. McCoy, J. . H. Perk, and R. E. Shrock, Nucl. Phys. B 220, 35
(1983}

°G. Miiller and R. E. Shrock, Phys. Rev. B 29, 288 (1984).

¥ Mote that our procedure is guite distinct from phenomenological approxi-
mations (reviewed in Ref. 7) which employ one- or two-parameter Gaus-
sians for the termination function itself. Such approximations almost al-
ways result in a mismatch between the average slope of the A, and the
slope of the A, even if the average growth rate of A, is, in fact, linear in &.
‘This is, however, not generally the case. We have positive evidence for the
occurrence of quadratic and cubic growth rates, which require entirely
different types of termination functions.
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