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The classical equivalent-neighbor XXZ model: Exact results for dynamic

correlation functions
Jian-Min Liu and Gerhard Muller

Department of Physics, The University of Rhode Island, Kingston, Rhode Island 02881-0817

The dynamics of the classical XXZ model with uniform interaction is nonlinear for N2 spins
and nonintegrable for N>3. However, the nonlinearities disappear in the thermodynamic limit
N— «, and the spin autocorrelation functions can be determined exactly for infinite
temperature. The function {S?(7)S?) exhibits a Gaussian decay to a nonzero constant, and the
function (S7(#)S7) decays algebraically to zero or like a Gaussian, depending on the type
(easy axis or easy plane) and amount of uniaxial anisotropy.

Equivalent-neighbor spin models consist of an array of
N spins interacting via some model specific spin-pair interac-
tion of uniform strength J*. Such models play a role in statis-
tical mechanics of phase transitions as microscopic realiza-
tions of mean field theory.' In order to ensure that the free
energy is an extensive quantity, the coupling strength must
be scaled like J ' = J /N. The consequence is that the system
loses its intrinsic dynamics. For classical spins, this mani-
fests itself in that the right-hand side of Hamilton’s equation
of motion for individual spins, dS,/dt = — S, XJdH /38S,,
vanishes in the limit ¥— o . For quantum spins, the same
effect results from more subtle properties.>

However, a nontrivial dynamics (for N— « ) can be re-
stored in equivalent-neighbor spin models if the spin cou-

pling is scaled differently: J' = J /y/N . The origin of these
different scaling regimes is that the thermodynamic proper-
ties of the equivalent-neighbor model are governed by the
mean value of the magnetization vector (which is the basis
for Landau theory), while the dynamical properties are de-
termined by the fluctuations about the mean value. A consis-
tent description of dynamic correlation functions for equiva-
lent-neighbor spin models in the canonical ensemble is then
only possible at infinite temperature. Our dynamical study is
thus strictly confined to the paramagnetic regime, specifical-
lytoT= .

The classical equivalent-neighbor XXZ model is speci-
fied by the Hamiltonian

N
H= ———-—1- Z [J(SIS7+ 8IS +J,.5i87]. (n
N T

The equations of motion for classical spin variables S,
(three-component vectors of unit length) then read

St=J,0,87—Jo,8% — (1/{N)(J,SiS! — JS!SH),

(2a)
§=Jo0,8:—J,0.87— (1/N)(JS:S: - J.S:8%),
(2b)
S:=J(0,5F — 0.5, (2¢)
where the variable
1 N
o= T Sl
\/N i;l

represents the vector of instantaneous magnetization fluctu-
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ation. Given the fact (to be demonstrated later) that the
length of o is of O(1), it follows that the 1/{N terms in Egs.
(2) become negligible in the thermodynamic limit. The dy-
namical problem then reduces to an effective two-spin model
consisting of the collective spin o and a single spin S,. The
equations of motion for the collective spin variable o,

g, =U~-J)o
obtained from summing Egs. (2) over all sites /, dividing by

o, =, —No,o, g, 0,=0,

X

VN, and taking the limit N~ o, prescribe a uniform preces-
sional motion about the symmetry axis:

O'((t) = Ul COS(QZI+¢())y
o,(t) =0 sin(Q,t+¢,),

with o} + 02 =0’ =const and precession frequency
Q, = (J - J,)o.. Foragiven solution of &(¢), the equations
of motion (2) for the individual spins S, are then (for
N— ) linear first-order ODEs with time-periodic coeffi-
cients which are readily solved by standard methods:

o, = const,

P -
SO = b~ sin[(@ + Q)0+ 6, + 4
2 U+Uz
1 g, . o)
_—} O —Q. ;=
: 'o—asm[( M+ B —dy ]

o,
+ 2z, —cos(Q.1+ d,),
ag.

z

(3a)

, 1 o O
S¥H1) = ——b, ——cos[ (A + Q)1+, + 4]
2 o+o,
1 o &
__._bl ! COS[(Q—QZ)t+ﬁ,"¢()]
2 o—o0,
g, .
+z, —sin(§,1 + dg ), (3b)
2P
S:(t) = b, sin(Q + B,) + z,, (3¢)

in terms of three integration constants z,,,,5, and the pa-
rameters of the driving field o(¢). The time evolution is har-
monic, governed by two independent frequencies
Q, = (J—J,)o,, ! = Jo. Note, however, that for finite N,
the 1/YN corrections in Egs. (2) render the time evolution
not only anharmonic but, in fact, nonintegrable, and are thus
likely to ensure ergodicity and mixing.
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The single-spin autocorrelation functions (S (¢)S %)
can then be evaluated by using the exact solutions (3) and
performing the ensemble average in two steps. In the expres-
sions

(SHDOSH =(S1(nHSH
1 <22 o’ — o
2 a2

Z

cos(f}, t)>

_l_<b2 Z(:os[(§~t—ﬂz)t]>
8 o+ o0,

w1 <b$a+az cos[ (1 — nz)z]>, (4a)
8 og—o0,

(S3(1)S?) = K(blcos(Qn)) + (22, (4b)

we have already performed a time average over one period of

the closed orbit of the variable S, (¢). The remaining average
over all initial conditions is complicated by the fact that the
expressions on the right-hand side of (4) contain both local
variables, z,,b,, and collective variables, g,0,.

We can eliminate the local variables by exploiting the
absence of any correlation between the instantaneous direc-
tion of a single spin and that of the coiiective spin: Express
in terms of the initial

the integration constants z,,b,
conditions S“(0) and use the result (S“S/(a))
= (1/3){f(0) )84, which holds for an arbitrary function
f(0o), to obtain the relations

(zZifla)) = W{(ai/d))fle)),

(bf(a)) = (1 —oi/0") (o).

We use these relations to derive from (4) expressions for
(5%(1)S ) which are phase averages over functions that de-
pend only on the collective variables 0,0, in addition to :

X
|
R

o —
(ST(HST) = 1 <-———£ cos(ﬂzt)>
6 o

+_é,<f_‘7_;"_z);cos[(ﬁ + nz)z]>, (5a)

(S:(1)S7) =1 <02 — ﬁz)> ! <ai>

(D87 = 3 = cos( + 3 \z/
For the evaluation of these expressions we need to know the
joint probability distribution P(o,0,). The distribution
function for the Cartesian components S ¢ of an individual
spin is rectangular with variance 1/3:

P (S%) =101 — |S9)). (6)
In the absence of any instantaneous correlations between
different spins, the central limit theorem implies that the

collective spin variable is distributed according to a Gaus-
sian distribution with the same variance:

P (0,) =Cexp( —30°/2), C=\3/2r.

The length of the vector o is then characterized by a Max-
wellian distribution

P(o) = 4w C 0% exp( — 30°/2). (7)

Note that the collective spin has the same mean-square
length, (0°) = 1, as the single spin. The joint probability
distribution P(o,0, ) can now be constructed from (7) and
the conditional probability distribution [in generalization of
(6)] Plo,|lo) =(1/20)8(o — |o,|) via the relation
P(o,0,) = P(o,|0)P(0) as

P(g,0,) =2uC 0 exp( — 30/2)@(a — |0,]). (8)

This reduces the determination of the spin autocorrelation
functions (S ¢(¢)S ) or their spectral densities

' u a
>, (o) =f e (S7(ST)
- (5:5¢)
to the evaluation of elementary integrals. The results for the
spectral densities are given by the following general closed-
form expressions in terms of Gaussians, exponential inte-
grals and error functions (for J, »0):

(5b)

_iwﬁ’z__)
2 (J-J,)?

(4}

—sgn(2J — J, )exp( — —;—Tﬂ

et7)

(9a)

r

tion (2c). The associated spin autocorrelation function,

|
~C* (2 3 o @*
O, (0) = 2 N
SO =TT [3 e"p( RV )) J=J.)
1 ZJA-J_,JZJmJZ}[ ( 3 't
4+ —- — |l exp[ - = —T—
3 J—-J. J—J. 2 (.’ZJ—J,)2
(2J J.)/C » ‘( 3 B
TAYE AR
1 w" -
vl o R332 senr-uE( -2 2
2 (J—JZW—J:J[ ( 2 J;) snt 2 (21 J))”
47Co’ 3 &
-. = ) - — . (9b)
¢ (w) (w) + 7 exp( > Jz)

We observe that the function @, (@) is independent of J,, a
peculiarity which is already present in the equation of mo-
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SIS =1+ 31 = Wi Pexp( —J17/6),

decays like a Gaussian to a nonzero constant, 1/3. For the
special case J, = J, which represents the Kittel-Shore mod-
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el, expression (9a) reduces to (9b). A special property of
this model is that the time evolution is harmonic even for
finite N.>* The spectral density @, (@), by contrast, de-
pends very sensitively on the uniaxial anisotropy. In the
limiting case J = 0, expression (9a) reduces to a simple
Gaussian,

b, (w) = (4772C/3J, Yexp( — 30’/ 2).

The associated correlation function is then also a Gaussian,
3(ST(1)ST) =exp( — J2t2/6). As it turns out, the long-
time asymptotic decay of (S 7(¢)S T is Gaussian throughout
the regime J, > 2J of easy-axis anisotropy. In the regime
0<J, <2, J, #J, the spectral density @, («) has a singu-
larity at @ = O of the form ®__ (w) ~w’ In(w), which im-
plies that the correlation function decays algebraically for
long times, {(S7(#)S) ~¢ ~* In the limit J, = 0, a stronger
singularity in the spectral density makes its appearance,
&, (@) ~|w|, implying a slower long-time asymptotic de-
cay of the associated correlation function, (S7(£)S}) ~7 ~*.

Some time ago, Lee, Dekeyser, and Kim®~’ studied the
dynamical properties of the quantum spin-1/2 equivalent-
neighbor XXZ model, using quite different calculational
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techniques. Their analysis of the spin autocorrelation func-
tions is not as complete as the one presented here for the
classical model, but they found essentially the same long-
time asymptotic behavior of the function {(S7(£)S7).” We
can in fact prove that quantum effects are completely negli-
gible in the dynamics of equivalent-neighbor spin models.’
A study of the more general equivalent-neighbor XYZ mod-
el is currently in progress. The T = « dynamics of that
model can also be mapped onto an effective two-body prob-
lem, but one with nonlinear time evolution. Not surprising-
ly, these anharmonicities add a considerable amount of com-
plexity to the structure of the dynamic correlation functions.

This work was supported in part by the U.S. National
Science Foundation Grant No. DMR-86-03036.
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