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Chaos in spin clusters: Quantum invariants and level statistics

Niraj Srivastava, Charles Kaufman, and Gerhard Muiller
Department of Physics, The University of Rhode Island, Kingston, Rhode Island 02881-0817

The energy-level sequence, whose spacings distribution is the most frequently invoked
indicator of quantum chaos, can be derived (for systems with two degrees of freedom) from a
two-dimensional representation of quantum invariants by projection. In this representation,
such properties of level sequences as effective randomness in integrable models and level
repulsion in nonintegrable models can be more directly interpreted in terms of physical
properties. In integrable models, anharmonicities convert quasiperiodic level sequences into

effectively random sequences.

While the frequently used term quantum chaos has still
not completely emerged from obscurity, many quantum
nonintegrability effects have been identified in recent years
and are currently being studied in great detail." Among
them stands out the striking correlation between the fluctu-
ation properties of the energy spectrum of a quantum model
system and the (non-) integrability of the corresponding
classical model.'"" Quantitative descriptions of these fluctu-
ations, primarily in terms of level-spacings distributions, ex-
ist for the cases of complete integrability and complete global
chaos.

In this paper we shall report some insights into the ori-
gin of different energy-level statistics which have resulted
from our ongoing study of chaos in spin clusters.** All re-
sults presented here are for a system of two localized quan-
tum spins interacting via an anisotropic exchange coupling
and subject to crystal-field torques. Our model Hamiltonian
reads

H=# S {-J.06505 + 4. [(&) + (8]} (D
a= xyz

In the limit -0, 0—w, #o(o+ 1) =s, A6 =57, H
turns into the energy function H(S,,S, ) of an autonomous
classical Hamiltonian system of two degrees of freedom for
two three-component vectors of length s, S,
= s(sin ¥, cos @,sin J,, sin @,,cos ¥,), specified by the
equation of motiond S,/dt = — S, X dH /dS,. Each classi-
cal spin S, is expressible in terms of a pair of canonical co-
ordinates p, = s cos 1%, ¢, = @,. The classical two-spin sys-
tem is completely integrable if there exists an independent
integral of the motion in addition to H. In a previous study*
we have determined the integrability condition

(A4, —A4,)(A, —4,)(4, — 4,)

+ 3 Jiy—A,)=0 2)
af3y = cycl(xyz)

and have constructed explicitly the second independent inte-
gral of the motion 7(S,,S, ) for the integrable cases. The goal
here is to gain further insight into the connection between
(a) the manifest dependence of the energy-level statistics on
the integrability property of the underlying system and (b)
the presence or absence of well-understood dynamical phe-
nomena associated with Hamiltonian chaos. For integrable
and near-integrable systems, it is useful and natural to look
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at the energy level sequence as the projection onto a line (the
energy axis) of a two-dimensional (2D) representation of
quantum invariants. In this representation, the origin of the
physical effects which give rise to different level spacings
distributions are more directly accessible to intuitive under-
standing and quantitative analysis.

Integrability of the classical two-spin cluster implies
that the flow in four-dimensional (4D) phase space is con-
fined to 2D tori. The phase space is densely foliated by such
invariant tori. Each torus is specified by the values of two
action variables J, ,J,, and the two independent analytic in-
variants are functions of these two action variables:
H(S,,S,) =EWU,,J;,), I(S,,S;,)=1I'(J,.J,). The corre-
sponding quantum energy spectrum £, is then naturally ca-
talogued as a two-parameter family in terms of quantum
numbers m, ,m,, each representing one of two action vari-
ablesJ, =m#,m, = —0, —o+ 1, ,gfork=12in
accordance with semiclassical quantization.

This implicit 2D order of the eigenvalue sequence E, in
terms of the two quantized action variables can be displayed
even if we do not know the function E(J,,J,) explicitly:
Consider the energy eigenvalues £, and the eigenvalues 7,
of the quantum invariant I, the quantum version of
I(S,,S,). Inadiagram I, vs E,, the 2D array of points then
form a regular pattern, which, however, is likely to be visual-
ly distorted due to the generally complicated nonlinear de-
pendence of E and I’ on J,,J,.* We expect that the points
representing any particular symmetry class of eigenstates
can be connected to a fully intact 2D web with four bonds per
vertex. Locally, the web should resemble a square lattice
with spacing of O(#). Figure 1(a) shows such a web. There
we have plotted the eigenvalues / (™ of the second invariant
1., (tobe specified) versus the energy eigenvalues £, for the
integrable case J, =12, J, =08, J =0, 4, =4,
= A, = 0 of the two-spin model (1). The vertices represent
all eigenvalues of those states of H (for o = 35,5 = 1) which
transform according to the irreducible representations A1A
and BIS of the symmetry group D,®S,, where S, is the
permutation group of the two spins and D, contains all two-
fold rotations about the coordinate axes.” Each vertexiathe
web represents a quantized torus claiming an area AQ ~#7,
the size of one mesh, in accordance with the uncertainty
principle. Connecting the points by bonds to a complete web
amounts to assigning a pair of quantum numbers to each
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FIG. 1. Quantum invariant /"' vs energy E, for all eigenstates (with

E, > 0) of symmeiry classes A1A and B1S of two special cases of the quan-
tum two-spin model (1) for o = 35, s = 1: (a) integrable model J, = 1.2,
J,=08.J,=0,4, = A, = A, =0; (b) nonintegrablemodel J, = J, =1,
J =0 A = —A = ~05A4, =0

eigenstate, i.e., chaosing a particular szt of action variables.
We could have constructed our zacond invariant 7 di-
rectly from the classical mtegral of the motion as derived in
Ref. 4. Instead we pick up Peres’® idea and construct 1 from
some arbitrary dynamical variable viz time average Take
any dynamical variable A which is independent of H (e.g.,
choose A such that [A H 1#0), and consider the matrix ele-
ments of A(1) in the energy represeniation, (A |A(t) [A")
= A, exp[ (E, - E,.)t/#]. Performing the time average
wipes out all off-diagonal elements and thus defines the
quantum invariant ?A , which is diagonal in the energy repre

sentation as it should be: (A |A(t)|/l )
={(A]|41]A)8,, =I5, . In the case where degenerate
energy levels occur, the eigenvectors in the invariant sub-
spaces must be chosen such that all off-diagonal elements
A, are zero. Throughout this study we use the quantum
invariant

I = . M, =H( +8)/2, (3)

which is, for the mtegrable cases of (1), a valid substitute for
the invariant operators derived from the explicitly known
classical analytic invariant 7(S,,S, ). However, the quan-
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FIG. 2. Histogram plots of level spacings distributions (a) for the integra-
ble modelJ, =12,J, =08.J. =0,4, =4, = A4. =0 (8115 states were
used for statistics) and (b) for the nonintegrable model J, =J = 1.
J.=0,4, = —A. = —0.7,4. =0 (two windows of 6791 and 3724 states
from the quantum web corresponding to a regular region and a chaotic re-
gion in phase space, respectively ). The solid lines represent the exponential
distribution P, (€) and the Wigner distribution Py, (€) for comparison. The
data are for systems with o = 65.

tum invariant (3) can also be constructed for nonintegrable
cases of our two-spin model, i.e., for cases where the classical
analytic invariant 7(S,,S, ) does not exist. Not surprisingly,
the properties of 7™ depend sensitively on whether the
classical integrability condition is satisfied or not. Figure
1(b) shows a 2D representation of the quantum invariants
I1'* vs E; for the nonintegrable model specified by param-
etersJ, =J, =1,J,=0,4, = —A4,= — 05,4, =0. We
observe two large regions in which the web of quantized tori
is fully intact. In between, the web is clearly interrupted by a
broad band of chaos. Classical Hamiltonian chaos, which is
dense everywhere in phase space, does not manifest itself in
quantum mechanics as long as the chaotic regions are small
compared to the mesh size #° ~5’/0” of the quantum web.
This describes the situation in the two regular regions of Fig.
1(b). If the chaotic region is sufficiently large, however, or
the mesh size sufficiently small, then quantum nonintegrabi-
lity effects are indeed quite dramatic in appearance. Within
the chaotic region, the quantum states tend to cluster in
short strips along one of the interrupted lines of constant
action, leaving sizeable areas of the web depleted of states.
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Within any one of these small clusters, the quantum states
are slightly displaced sideways, enough to account for the
effect of level repulsion after projection onto the E, axis.

The 2D representation of quantum invariants has the
advantage of making it possible to sample parts of the total
spectrum for energy-level statistics in a very controlled man-
ner and of enabling us to identify the nature of the classical
phase flow associated with those individual parts. We have
selected one window of states from the quantum web of the
integrable  model J, =12, J, =03, J, =0,
A, =A,=A4,=0, and two windows of states from the
(I{*.,E,) representation of the nonintegrable model
Jo=J,=1,/,=04, = —-4,= — 0.7, 4, = 0, one each
in a regular and a chaotic region. For states within each one
of the three windows we have determined the level spacings
distribution P(€). That analysis was performed for systems
with o = 65, yielding a total of 17 161 states. The E; se-
quences were unfolded to take into account the nonuniform
classical energy density. The results, averaged over all eight
classes of the symmetry group D, ®S,, are displayed in Fig. 2
in the form of histograms. For comparison we have included
as solid lines the exponential distribution function
P, (€) = exp( — €), which is predicted to describe the data
for an integrable model, and the Wigner distribution func-
tion Py, (€) = (me/2)exp( — me2/4), which is expected to
describe the data for a globally chaotic model."* Our results
for the three windows of states are in good qualitative agree-
ment with the theoretical predictions. There is not a hint of
level repulsion in the regular regions of the nonintegrable
model, but in the chaotic window that phenomenon is al-
most as pronounced as one might expect for random matri-
ces.

The 2D representation of quantum invariants also pro-
vides the basis for an intuitive understanding of the different
level-spacings statistics: Level repulsion is a general phe-
nomenon for states of a particular symmetry class, irrespec-
tive of whether the system is integrable or not. In integrable
models and in regular regions of chaotic models, level repul-
sion is a 2D phenomenon, manifesting itself in the quantum
web. Upon projection of the states onto the energy axis, the
effect of 2D level repulsion is totally lost in the level-spacings
distribution P(¢), if not necessarily so in more sensitive sta-
tistical tools. In chaotic regions of nonintegrable models, on
the other hand, level repulsion is a 1D phenomenon to begin
with, because of the presence of only one quantum number,
and is therefore unaffected by the projection of the states
onto the E, axis.

We conclude this report with a remark on the important
role of anharmonicities for the energy-level statistics.” Con-
sider the classical energy function E(J,,/, ) for an integrable
case of our two-spin model (1). Pick any invariant torus
specified by action variables J §,J9 and use it as a reference
point for semiclassical quantization. In the neighborhood of
the point (J?,J9) on the action plane, the function E(J, ,J, )
can then, upon semiclassical quantization, be expanded in
powers of i as follows® :

Em,mz = E(J?,J(z)) -+ ﬁz m, v,
k
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kK

where v, =JdE/dJ,, w,,. =3°E/dJ, dJ,., kk' =1,2,
etc., and the m, are unconstrained integers. The quantum
states on the (E,,/, ) plane thus obtained from (4) and a
corresponding expansion for the second analytic invariant
1(J, J,) then form an infinite array which approximates, in
the vicinity of (J9,J9), the exact quantum web discussed
previously. For an analysis of the associated level statistics,
set v=v, /v, and consider the distribution of the rescaled
energy levels, _E_,,,I,,,z =E, . /v;, on the interval
0< E’mlmz < 1. To O(#) that distribution is equivalent to the
distribution of the fractional part of nv, n = 1,--- N, where
Nis proportional to M for |m, |<M, |m,|<M.Ifv=p/qisa
rational number, only a single spacing (of size € = 1/¢) oc-
curs provided N>gq. If vis an irrational number, all levels are
nondegenerate and spread uniformly over the interval. The
counterintuitive result, however, is that the number of differ-
ent level spacings (on the unit interval wrapped around to a
ring) never exceeds 3, no matter how large Vis. 1 This result
holds for all irrationals. While the resulting spacings distri-
bution P, (€) thus simply consists of three & functions, there
is, in fact, a considerable amount of complexity in the spac-
ings sequence, which strongly depends on the choice of the

irrational number v. For example, if v = (V5 + 1)/2, the
golden mean, and N is a Fibonacci number, then only two
distinct spacings occur and form a perfect Fibonacci se-
quence. As it turns out, any such peculiar and highly singu-
lar distribution of level spacings is extremely unstable
against slight perturbations. If one introduces a weak modu-
lation in v such as is expected from terms O(#?) in expansion
(4) and attributable to anharmonicities in the classical time
evolution, Py (€) collapses immediately into a continuous
distribution. For almost all types of perturbations, this is the
exponential distribution P (€). In other words, the slightest
anharmonicities in the (integrable) classical Hamiltonian,
transform a quasiperiodic sequence of energy levels into an
effectively random sequence.
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