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ABSTRACT

The main goal of this project was to study the use of the acoustic vector

field, separately or in combination with the scalar field, to estimate the depth

dependent geoacoustic properties of the seafloor via non-linear inversion. The

study was performed in the context of the Sediment Acoustics Experiment 2004

(SAX04) conducted in the Northern Gulf of Mexico (GOM) where a small number

of acoustic vector sensors were deployed in close proximity to the seafloor. A variety

of acoustic waveforms were transmitted into the seafloor at normal incidence. The

acoustic vector sensors were located both above and beneath the seafloor interface

where they measured the acoustic pressure and the acoustic particle acceleration.

Motion data provided by the buried vector sensors were affected by a suspension

response that was sensitive to the mass properties of the sensor, the sediment

density and sediment elasticity (e.g., shear wave speed). The suspension response

for the buried vector sensors included a resonance within the analysis band of

0.4 to 2.0 kHz. The suspension resonance represented an unknown complex transfer

function between the acoustic vector field in the seabed and data representing

that field. Therefore, inverse methods developed for this study were required to

1) estimate dynamic properties of the sensor suspension resonance and 2) account

for the associated corruption of vector field data. A method to account for the

vector sensor suspense response function was integrated directly into the inversion

methods such that vector channel data corruption was reduced and an estimate of

the shear wave speed in the sediment was returned. Inversions of real and synthetic

data sets indicated that information about sediment shear wave speed was carried

by the suspension response of the buried sensors, as opposed to being contained

inherently within the acoustic vector field.
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CHAPTER 1

Introduction

1.1 Background

Estimation of seabed sediment properties by inversion of acoustic field data

has been the subject of considerable attention. A substantial body of literature

[1], [2], [3] exists on inversion of scalar acoustic field data (pressure) for various

properties of the seabed. Most of this work has been centered on the inversion of

one or more acoustic quantities derived from scalar field measurements. Inversion

of the acoustic vector field data has received much less attention. The vector field,

defined here as the acoustic particle displacement (and its temporal derivatives),

has the potential to convey information about the medium through which the wave

field propagates that may not available using the scalar field alone.

Instruments that sense both the acoustic scalar and vector fields continue to

evolve as two distinct classes. The class of pressure gradient vector sensors employ

a spatial array of scalar measurements. The scalar field is estimated as the mean

of the individual measurements. The gradient of the scalar field is estimated using

finite differences computed from pairs of scalar measurements arranged to resolve

the gradient in one or more spatial directions. Finally, the acoustic vector field is

computed from the estimated gradient using the momentum equation

∂u

∂t
=

−∇p

ρ◦
(1)

where u and p represent the acoustic vector (particle velocity) and scalar (acoustic

pressure) fields. The density of the medium is ρ◦.

The class of inertial vector sensors combines a hydrophone with one or more

motion sensors. Motion sensing is typically provided by piezoelectric accelerome-

ters or moving coil geophones [4] arranged to measure three orthogonal components
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of the acoustic vector field. Acoustic vector sensors employing accelerometers have

benefited from recent advances in single crystal piezoelectric materials. These ma-

terials have facilitated the design and manufacture of accelerometers with high

sensitivity, thus significantly reducing the quantity of material required to achieve

a given sensitivity. As a result, the size of the contemporary (accelerometer based)

acoustic vector sensor has been dramatically reduced [5] relative to previous designs

based on piezoelectric ceramic materials. Much of the work to develop and employ

acoustic vector sensors [6], [7], [8] has been directed toward naval applications.

Relatively few investigations on use of the acoustic vector field in geoacoustic

inversions have been published. In one study [9], a small vertical array of acoustic

vector sensors was used to record a series of broad band (e.g., explosive) signals

at a variety of ranges in a shallow water wave guide. The inversion was based on

a matched field process where the bottom was parameterized as a homogeneous

fluid half space with unknown sound speed and attenuation. Sediment density

was provided by a nearby core sample. An objective function was defined that

compared the transmission loss for acoustic pressure and the vertical component of

the acoustic particle velocity. In addition to providing an estimate of the sediment

attenuation, information in the vector field was successfully used to reduce the

variance in the estimates for water depth and sediment sound speed relative to

inversions based on the scalar field alone.

A similar experiment [10] was conducted near Hawaii where instead of invert-

ing the observed transmission loss, an objective function was defined to operate on

complex representations of the acoustic scalar and vector field data. A sensitivity

study using synthetic data showed that the method should provide good sensitivity

to sediment compression wave speed and density. Experimental results appear to

have been consistent with the sensitivity study, however a comparison with results
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obtained by inversion of scalar field data alone was not provided. As before, the

seabed was parameterized as a homogeneous fluid half space.

A distinctly different approach was employed [11] for an experiment conducted

in shallow water near Monterey Bay in 2006. In this experiment, a horizontal line

array composed of acoustic vector sensors was deployed on the seabed in 85 meters

of water. An inversion method operating on data provided by a conventional plane

wave beamformer was used to track a moving source. The bottom was parame-

terized as three fluid layers overlying a homogeneous fluid half space. Geoacoustic

parameters reported included layer thickness, compression wave speed and gradi-

ent, attenuation and density. Results obtained by inversion of the scalar channels

(e.g. hydrophone data) and one component of the vector field (e.g. acoustic par-

ticle acceleration parallel to the longitudinal axis of the array) were reported to

have been consistent with one another. Results obtained by inversion of vector field

data provided no performance advantage relative to results obtained by inversion

of scalar acoustic field data alone.

1.2 Objectives

The primary objective of this work was to test the postulate that the acoustic

vector field contains information that could be used to invert for the geoacoustic

properties of the seafloor, and that this same (or equivalent) information was not

available in the scalar field alone.

It is a simple matter to show that this postulate is correct for the simplest case

of measurements relating to a plane propagating wave. Consider an experiment

in which two hydrophones, separated by a known distance, observe the passage

of a plane propagating wave. Countless students of acoustics have inverted the

equation for propagation x = ct where x, c and t represent the distance traversed,

phase speed and elapsed time to yield an estimate of the phase speed based on the

3



known separation and measurement of the time taken to traverse that separation.

If the experimental apparatus were also to include a measurement of the acoustic

vector field, our student could then estimate the density of the medium using the

characteristic impedance p = ρ◦cu where p, u, ρ◦ are the (scalar) acoustic pressure,

the (vector) acoustic particle velocity and density, respectively.

This example highlights an important distinction with respect to the param-

eter estimates. The method for estimation of the phase speed resembles many

traditional approaches to geoacoustic inversion in that the estimate represents an

average over some spatial domain, such as between two hydrophones. However,

the density estimate was derived from knowledge of the scalar and vector fields at

a point. The density estimate does not represent a spatial average, nor would it

be influenced by properties of the medium at locations removed from the measure-

ment (neglecting for the moment contributions from reflection and backscatter).

Thus, the acoustic vector field provided information that was not available in the

scalar field. This information allowed our student to estimate a geoacoustic pa-

rameter that could not be estimated using the scalar field alone. However, it is

important to note that this result represents a point estimate and not an average

over the experimental domain.

There is also the potential for vector field data provided by an instrument to

contain information exceeding that carried by the vector field in the absence of

the instrument. Specifically, the distorted measurement of a real instrument may

contain information about the environment that is not available to the undistorted

measurement of a hypothetical ideal instrument. It will be shown that the motion

of an instrument, in this case an inertial acoustic vector sensor, may not equal

that of the material in which the instrument is in direct physical communication.

The instrument motion may be influenced by a transfer function between itself
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and the propagating medium. In other words, a suspension response may exist

between the instrument and the material with which it is in direct contact. Since

the vector field data reflect the motion of the instrument case, not necessarily that

of the propagating medium, the suspension response may carry useful information

about the environment.

In light of these considerations, the primary objective was expanded to better

characterize the value that knowledge of the vector acoustic field may have for a

particular geoacoustic inverse problem.

• Does the vector acoustic field carry exploitable information about the envi-

ronment that is not available in the scalar field?

• Is information carried by the acoustic vector field useful only at the point

of measurement, or can it also be used to formulate parameter estimates at

locations removed from the point of measurement?

• Can the suspension response of an acoustic vector sensor be used to improve

geoacoustic parameter estimates? Does the improvement apply to only cer-

tain parameters and not others?

1.3 Analysis Approach

Data to support this work were collected during the Sediment Acoustic Ex-

periment 2004 (SAX04) conducted in the Northern Gulf of Mexico as shown in

Fig. 1. The overall objective of the experiment was to better understand acoustic

detection at low grazing angles for objects buried in sandy marine sediments. As

one component of the experiment, data were collected to study sound penetration

into, propagation within, and scattering from the seafloor.

The data used for this work were collected as part of the study to measure

sound speed dispersion in sandy sediments using several independent methods.
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Figure 1. Sediment Acoustics Experiment 2004. Coastline data were extracted
from the Global Self-consistent, Hierarchical, High-resolution Shoreline Database
(GSHHS) [12].
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These experiments were designed for a relatively benign environment where the

bottom was parameterized as a homogeneous, sandy sediment half space. The

experiments were not specifically designed to collect data to be used for the esti-

mation of sediment properties via geoacoustic inversion. Plans to investigate the

potential for inversion of the acoustic vector field were formulated subsequent to

the experiment, and the SAX04 data set represented a convenient opportunity to

test these ideas. Thus, a method was developed to invert data collected during

this experiment to investigate the potential for use of acoustic vector field data.

Figure 2 illustrates the experimental arrangement and geoacoustic parameter-

ization used for this study. The experiment was conducted in a water depth of

16.7 m. An acoustic projector was suspended above the seafloor at a height above

bottom of 8.4 m. Directly beneath the projector were located four acoustic vector

sensors arranged in a vertical line that spanned the seafloor. Two sensors were

suspended above the bottom at heights of 10 and 25 cm. Two sensors were buried

in the sediments. The intended burial depths were 50 and 100 cm, although there

was uncertainty in the actual burial depths as will be discussed later. Acoustic

waveforms were transmitted at a variety of frequencies. Data used for this work

ranged from 400 to 2000 Hz with a pulse width of 100 ms. All data were collected

at normal incidence.

The environment was parameterized as an isospeed water column with un-

known sound speed and depth. The seabed was parameterized as three finite

layers with unknown thickness overlying a sediment half space. Unknown geoa-

coustic properties in all sediment layers included density, compression wave speed

and shear wave speed. Thus, the inverse methods developed for this study at-

tempted to estimate a total of 17 unknown parameters using data collected with

four acoustic vector sensors that spanned an aperture of about one wavelength at

7



Figure 2. Experimental arrangement. Source and sensor locations were as illus-
trated. The geoacoustic parameterization used for the inversions is also illustrated.
A total of 17 unknown parameters were estimated.

the highest frequency analyzed.

Methods to invert the complex acoustic transfer functions between pairs of sen-

sors were developed. A method to invert the specific acoustic impedance observed

by the acoustic vector sensors was also developed. Central to these methods was

the definition of an objective function that was normalized to facilitate sensitivity

comparisons among data vectors of differing lengths and magnitudes. A sensitiv-

ity analysis was performed using synthetic data generated by a seismo-acoustic

propagation model. Performance of the inversion methods were also tested using

synthetic data to verify the performance of the global optimization method, and

to provide a comparison between results of the sensitivity study and the inversions

8



of synthetic data. Finally, the data collected during the SAX04 experiment were

inverted for a bottom that was parameterized as a horizontally stratified environ-

ment with multiple, elastic layers.

1.4 Outline

Chapter 2 provides a review of seismo-acoustic propagation in a horizontally

stratified, range independent waveguide. The numerical code used for this re-

search was the Ocean Acoustic and Seismic Exploration Synthesis (OASES) [13].

The code implements a full wave solution to the Helmholtz equation including

numerical methods to evaluate the integral transforms. The resulting numerical

model provided several features required by this research including treatment of

both the scalar and vector acoustic fields, solutions for propagation in layered vis-

coelastic media, and accurate calculations in the acoustic near field. This chapter

reviews the theory for the generation and propagation of seismo-acoustic waves

implemented by OASES and used to support this research.

Chapter 3 discusses measurement of the acoustic vector field. The functional

design of the Wilcoxon Research TV–001, an inertial acoustic vector sensor, is

introduced. A dynamic model for the response of the vector sensor to an incident

acoustic vector field is presented. Physics describing specific cases for the motion

of an acoustic vector sensor immersed in an inviscid fluid, and when embedded in

an elastic solid, are detailed. Transfer functions operating between the incident

acoustic vector field, and data representing that field, are derived.

Chapter 4 provides a discussion of the SAX04 experiment. Characteristics

of the test site, experiment plan and environmental factors are discussed. An

important consideration for this research was the test site itself. Location of a

test site with benign environmental characteristics was the principle objective of

the site selection processes. However, six weeks before the experiment began,

9



Hurricane Ivan made landfall about 100 km to the west of the test site. The

approaching storm drove seas with a significant wave height of 12 m and a storm

surge of 3.5 to 4.0 m up onto the shelf resulting in significant redistribution of

sediment at the test site. The end result was a seabed that was different, and less

homogeneous, than when the site was selected for the SAX04 experiment. [14]

Chapter 4 also presents the data collection method and pre-processing for the

SAX04 data set. The data acquisition system is described and an analysis of its

noise characteristics is presented. Methods to reduce the gated continuous wave

signals transmitted into the seabed are discussed. The variance observed in the

data is discussed.

Chapter 5 presents the inversion methods developed for this work. A funda-

mental component of this research was the definition of an appropriate objective

function to support a global, nonlinear search strategy. The objective function de-

rived for this research operated on complex acoustic field data including acoustic

transfer functions and specific acoustic impedance. The function was normalized

by the data and weighted by the inverse of the data variance such that inversion

performance achieved with distinctly different data sets, and derivative acoustic

quantities could be compared on a quantitative and objectively verifiable basis.

This chapter also reviews the evolutionary algorithm used to execute the global

search. The geoacoustic parameterization adopted by the inversion is described.

Chapter 6 presents methods to invert complex acoustic transfer functions for

geoacoustic properties of the seabed. Among the primary objectives of this re-

search was to assess the value that knowledge of the acoustic vector field repre-

sents, relative to knowledge of the acoustic scalar field alone. The sensitivity of the

objective function to variations in the desired geoacoustic parameters is detailed.

The studied cases are applicable to the inversion of complex transfer functions for

10



the acoustic scalar field (e.g., pressure), the acoustic vector field (e.g., particle ve-

locity) and combinations of both. In addition, sensitivity of the objective function

to sensor burial depth uncertainty is discussed. Inversions of a synthetic data set

designed to emulate the reported conditions at the SAX04 experiment site are pre-

sented and compared. Finally, inversion of the complex acoustic transfer functions

measured during the SAX04 experiment are presented. The relative merits of the

various approaches are discussed.

Chapter 7 presents a method to invert the specific acoustic impedance for

geoacoustic properties of the seabed. The sensitivity study and synthetic inver-

sions performed for this case are presented and compared to inversions of acoustic

transfer functions. Results obtained by inversion of the specific acoustic impedance

measured during the SAX04 experiment are presented.

Chapter 8 discusses the results and conclusions of this research. The chal-

lenges, complications and potential pitfalls associated with the use of this emerging

technology are discussed.
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CHAPTER 2

Review of Sound Propagation

2.1 Acoustic Modeling Approaches

Seismo-acoustic environments encountered in the ocean are generally quite

complex. Sound speed in the water column varies with both space and time due to

changes in temperature, salinity and density resulting from the transfer of heat at

the ocean’s surface, tides, currents, eddies and runoff from nearby landmasses. The

depth of the water column can vary significantly, particularly in near shore envi-

ronments. The local geology may be characterized by complex and irregular strat-

ification in which certain physical and geoacoustic properties may be anisotropic.

Since acoustic propagation is highly dependent on these properties, exact models

require exact knowledge of the environmental properties to the smallest detail, an

impossibility for realistic ocean environments.

Acoustic models of the ocean invariably require the judicial use of approxima-

tions to obtain a simplified representation of the environment in which the wave

equation can be solved numerically. Several specific modeling approaches have

been developed, each with its specific assumptions, approximations and limited

domain of application. The finite difference [1] and finite element [2] techniques

require the fewest approximations for the environment, but the extensive com-

putational requirements have hindered their development and wide use in ocean

acoustic applications.

Several efficient techniques have been developed to the general problem, with

each employing specific assumptions concerning the environment and acoustic field.

Ray tracing methods [3] have received wide use in high frequency open ocean

problems where the wavefront is assumed to be locally planar and the wavelength

is small relative to the scale at which the environment varies. The parabolic
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equation approximation [4] effectively treats low frequency propagation in range-

dependent environments, but the results are only accurate for moderate grazing

angles.

One class of solution technique that has received wide attention requires that

the environment be described by a physical model for which the wave equation is

separable. The principle of wave equation separation for horizontally stratified me-

dia was introduced in underwater acoustics by Pekeris [5], who treated the problem

of acoustic propagation in plane layered wave guides using simple two and three

layered environmental models. The general approach is to apply a series of integral

transforms to the Helmholtz wave equation to reduce the original four dimensional

partial differential equation to a series of ordinary differential equations in the

depth coordinate. Solutions in this class included the normal mode techniques [6],

which are limited to propagation at grazing angles less than critical.

Full wave solutions solve the differential equations within each layer in terms

of unknown amplitudes that are determined by matching the boundary conditions

at the interfaces between layers. The displacement and stress quantities are de-

termined by evaluation of the inverse integral transforms. These methods can,

in principle, yield an exact solution to the wave equation in a horizontally strat-

ified environment. In practice, the accuracy of full wave solutions is limited by

the numerical methods used to evaluate the integral transforms. For example,

the Fast Field Program (FFP) [7] is effective except for ranges less than a few

wavelengths and very steep propagation angles [8] due to the use of an asymptotic

approximation for the Hankel transform. The Ocean Acoustics and Seismic Explo-

ration Synthesis (OASES) [9] and its predecessor the Seismo-Acoustic Fast Field

Algorithm for Range Independent Environments (SAFARI) [10] addressed these

limitations with improved numerical methods to evaluate the integral transforms.
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Figure 3. Horizontally stratified environment

2.2 The Seismo-Acoustic Model

Following the development of Schmidt [11], the environment is assumed to be

horizontally stratified, with all interfaces plane and parallel. The layers, including

the upper and lower half spaces, may be fluids, viscoelastic solids or empty space.

The solid layers are required to be isotropic and homogeneous viscoelastic media

with Lamé constants λn and µn, density ρn where the subscript n indicates the

layer number. A cartesian system of coordinates {x, y, z} is adopted with the

z axis perpendicular to the interfaces and positive downwards as illustrated in

Fig. 3. The choice of coordinates reflects the geometry of the SAX04 experiment

by permitting both positive and negative wave numbers as required for accurate

results at normal incidence (e.g., zero range) [9].

The y axis is oriented parallel to a line source, thus rendering the field inde-

pendent of y. The displacement components {ξ, ν, η} in layer n are expressed in

terms of the displacement potentials {Φn,Ψn}, provided as Eqs. 2–4 and where

body forces are assumed to be absent.
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ξ (x, z) |n =
∂Φn

∂x
− ∂Ψn

∂z
(2)

ν (x, z) |n = 0 (3)

η (x, z) |n =
∂Φn

∂z
+

∂Ψn

∂z
(4)

The displacement potentials satisfy the wave equations, Eq. 5 and Eq. 6.

(
∇2 − 1

c2cn

∂

∂t2

)
Φn = 0 (5)

(
∇2 − 1

c2sn

∂

∂t2

)
Ψn = 0 (6)

The phase speeds for compression waves ccn and shear waves csn are provided

as Eq. 7 and Eq. 8. If the medium is a fluid, then µn and Ψn vanish, leaving

only the potential Φn and the problem is reduced to the special case of classical

acoustics.

ccn =

√
λn + 2µn

ρn
(7)

csn =

√
µn

ρn
(8)

Acoustic sources are assumed time harmonic with angular frequency ω. The

time dependence represented as ejωt is suppressed in the discussion that follows.

The wave equations now take the familiar form

(
∇2 + k2

n

)
Φn = 0, (9)

(
∇2 + h2

n

)
Ψn = 0, (10)
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where kn and hn are the complex wave numbers for compression and shear waves,

respectively,

k2
n =

(
ω

ccn

)2

=
ω2ρn

λn + 2µn

, (11)

h2
n =

(
ω

csn

)2

=
ω2ρn
µn

. (12)

Taking the Fourier transform of Eq. 9 and Eq. 10, the integral representations

for the solutions become

Φn (x, z) =

∫ ∞

−∞

(
A−

n (s) e−zkzn(s) + A+
n (s) ezkzn(s)

)
e−jsx ds, (13)

Ψn (x, z) = j

∫ ∞

−∞

(
B−

n (s) e−zhzn(s) +B+
n (s) ezhzn(s)

)
e−jsx ds, (14)

where A−
n , A

+
n , B

−
n and B+

n are arbitrary functions in the horizontal wave number

s, and where

kzn (s) =
√
s2 − k2

n, (15)

hzn (s) =
√
s2 − h2

n. (16)

The integral transforms of Eq. 13 and Eq. 14 effectively decompose the total

fields into up and down going plane waves integrated over all wave numbers.

Substituting the displacement potentials, Eq. 13 and Eq. 14, into the equations

of motion, Eq. 2 and Eq. 4, yields the following integral representations for the

displacements

ξ (x, z) |n = j

∫ ∞

−∞

(
−sA−

n e
−zkzn − sA+

n e
zkzn

+ hznB
−
n e

−zhzn − hznB
+
n e

zhzn

)
e−jsx ds,

(17)

η (x, z) |n =

∫ ∞

−∞

(
−kznA

−
n e

−zkzn + kznA
+
n e

zkzn

+ sB−
n e

−zhzn + snB
+
n e

zhzn

)
e−jsx ds.

(18)

The stresses involved in the boundary conditions conform to Hooke’s law

yielding Eq. 19 and Eq. 20.
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σzz (x, z) |n = (λn + 2µn)
∂η

∂z
+ λn

∂ξ

∂x

= µn

∫ ∞

−∞

((
2s2 − h2

n

) (
A−

n e
−zkzn + A+

n e
zkzn
)

+ 2shzn

(
−B−

n e
−zhzn +B+

n e
zhzn

))
e−jsx ds

(19)

σxz (x, z) |n = µn

(
∂ξ

∂z
+

∂η

∂x

)

= jµn

∫ ∞

−∞

(
2skzn

(
A−

n e
−zkzn −A+

n e
zkzn
)

+
(
2s2 − h2

n

) (
B−

n e
−zhzn +B+

n e
zhzn

))
e−jsx ds.

(20)

In the case of a fluid layer the displacements follow directly from Eq. 17 and

Eq. 18 by setting B+
n and B+

n to zero. The shear stress σxz vanishes, whereas

Eq. 20 is replaced by

σzz (x, z) |n = −λnk
2
n

∫ ∞

−∞

(
A−

n e
−zkzn + A+

n e
zkzn
)
e−jsx ds. (21)

Contribution from sources within layer n must be added to produce expres-

sions for the total field in the layer. Since we have restricted ourselves to com-

pressional line sources at x = 0, the field produced in an infinite medium with the

material properties of layer n, has the integral representation provided as

∗

Φn (x, z) = −
∫ ∞

−∞

e−|z−zs|kzn

kzn
e−jsx ds, (22)

∗

Ψn (x, z) = 0, (23)

where zs is the source depth.

The corresponding displacements involved in the boundary conditions are

again obtained from Eq. 2 and Eq. 4 as

∗

ξ (x, z) |n = j

∫ ∞

−∞

se−|z−zs|kzn
kzn

e−jsx ds, (24)
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∗
η (x, z) |n =

∫ ∞

−∞

sign (z − zs) e
−|z−zx|kzne−jsx ds, (25)

while the stresses are given by Hooke’s law:

∗
σzz|n = −µn

∫ ∞

−∞

(
2s2 − h2

n

) e−|z−zs|kzn

kzn
e−jsx ds, (26)

∗
σxz|n = −jµn

∫ ∞

−∞

2s sign (z − zs) e
−|z−zs|kzne−jsx ds. (27)

In the fluid case Eq. 26 is replaced by

∗
σzz (x, z) |n = λnk

2
n

∫ ∞

−∞

e−|z−zx|kzn

kzn
e−jsx ds. (28)

2.2.1 Boundary Conditions

The boundary conditions that must be satisfied at an interface are determined

by the materials on either side of that interface.

• If the interface separates two fluids, the vertical displacement η and the

normal stress σzz are continuous. If one of the media is a vacuum, then the

normal stress σzz vanishes.

• If one of the layers is solid and the other is a vacuum, both σzz and σxz

vanish. An interface separating a fluid and solid requires that η and σzz are

continuous and that σxz vanish.

• Displacements η, ξ and stresses σzz, σxz must be continuous at a no-slip

interface between two solid media.

Since the boundary conditions are satisfied at all ranges x, they must also be

satisfied by the kernels in the integral representations. The radiation conditions for

z → ±∞ together with the simultaneous satisfaction of the boundary conditions

at all interfaces, lead to a linear system of equations in the unknown functions A−,

A+, B− and B+.
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Exact solutions require that one solve this system for all horizontal wave

numbers, followed by evaluation of the inverse integral transforms. Only for a few

trivial cases are exact solutions known. In general, solution of the linear system of

equations and the evaluation of the inverse transforms must be done numerically.

Thus the horizontal wave number axis over which the integration is performed

must be sampled over a finite interval.

2.2.2 Attenuation

Assume a plane harmonic wave of angular frequency ω propagating in a ho-

mogeneous medium in the positive x direction of a cartesian coordinate system

having the form

F (x, t) = Aej(ωt−kmx), (29)

where km is the medium wave number for either compression or shear waves.

The wave amplitude A is constant for all ranges x in the case of km purely real.

Attenuation in viscous fluids [12] and viscoelastic solids [13] is frequently accounted

for by letting the medium wave number km be complex,

k̃m = km (1− jδ) , δ > 0. (30)

Substitution of the complex wave number into the expression for a plane propa-

gating wave yields

F (x, t) = Ae−δkmxej(ωt−kmx). (31)

The amplitude decays exponentially in range as required for linear viscoelastic

fluid and solid media. Since the full wave field solution is based on decomposition

of the field into plane wave components, viscoelastic attenuation may be taken into

account by letting the medium wave numbers and the Lamé constants be complex

where

λ̃ = λ+ jλ′, (32)
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µ̃ = µ+ jµ′. (33)

It has been experimentally observed [13] that most solid media exhibit an

attenuation that increases linearly with frequency (e.g., δ = constant). For these

solids,

λ′ + 2µ′

λ+ 2µ
=

1

Qc

, (34)

µ′

µ
=

1

Qs

, (35)

where Qc and Qs are constants. By inserting the complex Lamé constants in Eq. 34

and Eq. 35, we get from Eq. 36 and Eq. 37 the following value of δ for compressional

and shear waves respectively, assuming Qc, Qs ≫ 1

δc =
1

2Qc

, (36)

δs =
1

2Qs

. (37)

In underwater acoustics it is more common to express the linear frequency

dependent attenuation in decibels per wave length

α = −20 log10

(
F (x+ Λ, t)

F (x, t)

)

= −20 log10
(
e−δkmΛ

)

= 40πδ log10(e)

≈ 27.29

Q
.

(38)

A physically meaningful solution requires that pure dilation of a solid does not

produce energy. Therefore, the bulk modulus, K = λ + 2
3
µ must have a positive

imaginary part, which yields

αs

αc

=
δx
δc

<
3

4

(
cc
cs

)2

. (39)

The linear elastic fluid media are limiting cases of solids with µ → 0.
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CHAPTER 3

Acoustic Vector Field Measurement

3.1 Acoustic Vector Sensor Description

The acoustic vector sensors used for this study were model TV–001 manu-

factured by Wilcoxon Research [2]. The TV–001 belongs to the inertial class of

acoustic vector sensors in that it responds to the motion of the sensor package.

The basic operational principle is illustrated in Fig. 4 as disclosed in the patent [1]

applicable to the TV-001 sensor. The following parenthetical numbering scheme

refers to elements in the patent drawing of Fig. 4. A piezoelectric material (204),

in this case a shear mode single crystal, is sandwiched between a proof mass (202)

and a foundation (206). The foundation is rigidly fixed to the sensor case. When

subjected to acceleration, the inertia of the proof mass causes a shear strain in

the piezoelectric crystal, resulting in an electric charge that is sensed, conditioned

and output as a voltage at the sensor leads. The arrangement functions as a single

axis accelerometer. The sensor includes three such arrangements that are oriented

to resolve acceleration into three orthogonal components. In addition, the sensor

provides a collocated measurement of the acoustic pressure using a hydrophone.

The design objective for an inertial acoustic vector sensor is to provide an

output signal that is proportional to the local acoustic vector field, in this case the

acoustic particle acceleration. The primary means of realizing this objective is to

design the acoustic vector sensor system such that the motion of the sensor case is

identical to that of the medium in which the sensor is immersed, typically seawater.

However, sensor designers often do not know the details of the applications in

which their sensors will be used. Thus, it is incumbent on the end user to verify

that details of the system design do not adversely affect sensor performance. In

particular, the potential for the sensor motion to be appreciably different from that

23



Figure 4. Inertial acoustic vector sensor. Operational principle for the Wilcoxon
Research TV–001 acoustic vector sensor. [1]

of the acoustic vector field must be understood and properly accounted for when

processing data from the vector channels.

Specifications for the TV–001 acoustic vector sensors are provided as Table 1.

3.2 Acoustic Vector Sensor Suspension Response

Acoustic vector sensors are designed for operation in fluids, typically seawa-

ter. Data provided by an inertial vector sensor reflect the motion of the sensor

package, not necessarily that of the surrounding medium. Thus, requirements for

the successful design and use of acoustic vector sensors are more stringent than

those for hydrophones due to the dynamics of the vector sensing mechanism.

Practical applications using vector sensors invariably involve a mount, or sim-

ilar physical constraint, that is applied to the sensor case. This has the effect of

modifying the response by creating a velocity transfer function between the sensor
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Table 1. Wilcoxon Research TV-001 specifications [2]

Dynamic

Output Sensitivity
Accelerometer 1.0 V/g
Hydrophone -174 dB re 1.0 V/µPa

Full Scale Input Range
Accelerometer 3.0 g peak-to-peak
Hydrophone 200 Pa peak

Resonance Frequency > 10 kHz (design)
Frequency Response 3 Hz to 9 kHz (design)
Transverse Sensitivity < 5%

Electrical

Power
Voltage 6.8 VDC typical
Current < 25 mA

Output Impedance < 100 Ω and 10 nF
Environmental

Temperature Range
Operational −40◦C to 60◦C

Pressure Range
Operational 0 to 10 MPa
Survival 17 MPa

Physical

Mass 54 gram (without cables)
Length 71.3 mm
Diameter 40.7 mm
Case Polyurethane encapsulated
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Figure 5. Acoustic vector sensor dynamic model. Model parameters include the
sensor mass Ms, mass displaced by the sensor Md, added (or inertial) mass due to
sensor motion Mm, sensor velocity Us and incident acoustic particle velocity U◦.

and the medium with which the sensor is in direct contact. Design requirements

for an effective vector sensor mount include a) a natural frequency well outside

the intended range of acoustic sensing; b) fix the average position and orientation

of the sensor body, c) permit movement of the sensor body in response to the

acoustic field, d) isolate the sensor from structure-born noise, and e) not distort

the response of the sensor in either magnitude or phase [3].

Figure 5 illustrates the dynamic model of a rigid sensor case in direct commu-

nication (e.g., immersed or embedded) with a propagating medium. The sensor

velocity Us, medium (e.g. vector field) velocity U◦, sensor mass Ms, added mass

Mm and mass of material displaced by the sensor Md are annotated.

The steady-state equation of motion (Eq. 40), derived for an accelerated frame

of reference in which the medium (e.g., seawater or sediment) is at rest was de-

veloped [4] as an extension of the analysis for the dynamic response of an ocean
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bottom seismometer [5]. In this reference frame, the sensor velocity is (Us − U◦)

and its acceleration is jω (Us − U◦). The forcing function is the oscillatory term

−jωU◦ (Ms −Md) due to the net weight of the sensor in the pseudo-gravitational

field −jωU◦ opposed by the “buoyancy” of the sensor due to the material displaced

by the sensor. A term for the restoring force due to the mechanical impedance Zm

of the interaction between the sensor and the surrounding medium is also required.

The added mass having been accounted for, the term −Z̃m (Us − U◦) accounts only

for the stiffness and resistance that may be present.

jω (Us − U◦) (Ms +Mm) = −jωU◦ (Ms −Md)− Z̃m (Us − U◦) (40)

Rearrangement of Eq. 40 provides the sensor-to-medium velocity ratio for a

rigid sensor body, oscillating with a wavelength that is sufficiently long that the

medium velocity can be approximated as spatially uniform in the vicinity of the

sensor and time harmonic. The mass and stiffness of the sensor leads were assumed

to be negligible. Equation 41 represents the transfer function between the particle

velocity due to wave motion in the propagating medium and the resultant motion

of the acoustic vector sensor

Hs

(
ω,Ms,Mm,Md, Z̃m

)
=

Us

U◦
=

jω (Md +Mm) + Z̃m

jω (Ms +Mm) + Z̃m

. (41)

Oestreicher [6] derived the mechanical impedance for a rigid sphere, oscillating

in a compressible viscoelastic material from first principles for biophysical appli-

cations. The impedance, including terms representing the contribution from the

added mass, was provided as Eq. 42 as a function of the sphere radius a, shear

wave number h, compression wave number k, and medium density ρ◦
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Zm = −jωρ◦
4πa3

3

(
1− j3

ha
− 3

(ha)2

)
− 2

(
j

ha
+

1

(ha)2

)(
3− (ka)2

jka+ 1

)

(
j

ha
+

1

(ha)2

)(
(ka)2

jka + 1

)
+

(
2− (ka)2

jka+ 1

) . (42)

The shear and compression wave numbers are related to their respective ma-

terial properties by Eqs. 43 and 44, where µ1 and µ2 are the coefficients of shear

elasticity and shear viscosity. Likewise, λ1 and λ2 are the coefficients of volume

elasticity and volume viscosity.

h =

(
ρ◦ω

2

µ

) 1

2

µ = µ1 + jωµ2 (43)

k =

(
ρ◦ω

2

2µ+ λ

) 1

2

λ = λ1 + jωλ2 (44)

3.2.1 Acoustic Vector Sensor in an Inviscid Fluid

The special case for the mechanical impedance Z
(f)
m of a small rigid spherical

body oscillating in an inviscid, compressible fluid is given when the shear elasticity,

shear viscosity and volume viscosity vanish (e.g., µ1 = µ2 = λ2 = 0). In this case,

the impedance of Eq. 42 is reduced to

Z(f)
m = −jωρ◦

4πa3

3

(
2 + (ka)2 − j (ka)3

4 + (ka)4

)
(45)

Under these circumstances, the mechanical impedance results from the inertia

of the added mass and a radiation resistance associated with the acoustic field. A

useful form of Eq. 45 is

Z(f)
m = −

(
jωM (f)

m +R(f)
m

)
(46)

where terms for the added mass M
(f)
m and resistance R

(f)
m are given by

M (f)
m = ρ◦

4πa3

3

(
2 + (ka)2

4 + (ka)4

)
, (47)

28



R(f)
m =

1

3
Sρ◦cp

(ka)4

4 + (ka)4
, (48)

and S is the surface area of the sphere. The compression wave speed is cp. Non-

dimensional forms of the added mass and resistance are presented in Fig. 6.

When the body is small relative to a wavelength (e.g., ka ≪ 1), inspection

of Eqs. 47 and 48 shows that the added mass M
(f)
m is half the displaced mass, the

resistance R
(f)
m is proportional to (ka)4 and the impedance is controlled by the

inertia associated with the added mass (e.g., jωM
(f)
m ≫ R

(f)
m ). Under these condi-

tions, it is easily confirmed that the velocity transfer function of Eq. 41 reduces to

the classic case [7] where the sensor-to-fluid velocity ratio Us/U◦ is given by

H(f)
s =

Us

U◦
=

3ρ◦
2ρs + ρ◦

(49)

when ρs and ρ◦ are the densities of the sensor and fluid, respectively. Consistent

with the result of Eq. 41, the sensor velocity Us is equal to the fluid particle velocity

U◦ when the sensor is neutrally buoyant (e.g. ρs = ρ◦).

The velocity of an acoustic vector sensor immersed in an inviscid, compressible

fluid equals that of the incident acoustic vector field only when the sensor is small

relative to a wavelength (e.g., ka ≪ 1) and the sensor displaces its own mass in the

fluid (e.g., neutrally buoyant). Acoustic vector sensors designed for use in seawater,

including those used for this study, usually satisfy both of these conditions. Thus,

the velocity transfer function for the vector sensors suspended above the seafloor

was taken to be unity (e.g. H
(f)
s ≡ 1).

3.2.2 Acoustic Vector Sensor in an Elastic Solid

The mechanical impedance Z
(ε)
m of a small, rigid spherical body embedded in

marine sediment was similarly reduced to simplified form by approximating the

sediment as an incompressible, elastic medium. Setting λ1 = ∞, the impedance of
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Figure 6. Immersed sensor impedance. Added mass and resistance for an acoustic
vector sensor immersed in an inviscid, compressible fluid. Terms are provided in
non-dimensional form as indicated in each panel. Values applicable to the vector
sensors suspended above the seafloor during the SAX04 experiment are indicated
with markers.
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the buried sensor becomes

Z(ε)
m = −jωρ◦

2πa3

3

(
1− j9

ha
− 9

(ha)2

)
. (50)

An alternate form for the mechanical impedance of Eq. 50 separates the indi-

vidual contributions as

Z(ε)
m = −

(
jωM (ε)

m +R(ε)
m +

1

jω
K(ε)

m

)
(51)

where terms for the added mass M
(ε)
m , resistance R

(ε)
m and stiffness K

(ε)
m are given

by

M (ε)
m =

2

3
πρ◦a

3, (52)

R(ε)
m =

3

2
Sρ◦cs, (53)

K(ε)
m = 6πρ◦ac

2
s, (54)

and cs is the shear wave speed in the sediment. As before, the surface area of the

spherical body is S. The added mass M
(ε)
m is equal to half the mass of sediment

displaced by the sensor. In the case where the sediment is further approximated as

lossless (e.g., µ2 = 0), the individual terms are all independent of frequency. When

viscous losses are included, frequency dependent attenuations are represented in

the resistance R
(ε)
m and stiffness K

(ε)
m as a complex shear wave speed

cs =

(
ρ◦

µ1 + jωµ2

) 1

2

. (55)

Figure 7 provides a comparison of the full and simplified expressions for the

impedance of a buried sensor using parameters that are representative of the ex-

perimental conditions. The resistance and reactance (e.g., the real and imaginary

parts of the impedance) are plotted as functions of frequency. Sediment properties

were compiled from test site measurements with density (2.04 g/cm3), compres-

sion wave speed (1680 m/s), compression wave attenuation (1.0 dB/m/kHz), shear
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wave speed (120 m/s) and shear wave attenuation (30 dB/m/kHz) as reported for

the SAX99 [8] and SAX04 [4] experiments. The approximation error for this case is

also illustrated where the specific inversion frequencies are indicated with markers.

As shown in the figure, the difference between the full and simplified impedance

was less than 1% throughout the measurement band, with the error tending to

increase with frequency.

The full and simplified expressions for the impedance were also compared as a

function of sediment shear wave speed as illustrated by Fig. 8. The comparison was

performed at the upper end of the analysis band due to the generally increasing

error at the higher frequencies as the finite volume elasticity of the sediment became

more important. The upper panel of the figure shows good agreement between the

full and simplified impedance for a wide range of sediment shear wave speeds. The

lower panel of the figure provides a more detailed view of the approximation error.

While the error in the resistance increased somewhat for decreasing shear wave

speed, both the resistance and reactance errors were less than 2% for all probable

values of this parameter.

The simplified expression for the impedance of a buried sensor Eq. 51 is in a

convenient form for use in the velocity transfer function of Eq. 41. Substitution of

the terms for the mechanical impedance into the Eq. 41 yields an expression for

the velocity transfer function of an acoustic vector sensor embedded in a seabed

approximated as an elastic solid

H(ε)
s =

jω
(
Md +M

(ε)
m

)
+ Z̃

(ε)
m

jω
(
Ms +M

(ε)
m

)
+ Z̃

(ε)
m

. (56)

Terms for the resistance and stiffness of the mechanical impedance are given as

Z̃(ε)
m = −

(
R(ε)

m +
K

(ε)
m

jω

)
(57)

where M
(ε)
m , R

(ε)
m and K

(ε)
m were provided as Eqs. 52–54.
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As was the case for a vector sensor immersed in an inviscid fluid, inspection

of Eq. 56 shows that the velocity of the sensor equals that of the medium in which

it is embedded when the sensor displaces its own mass of embedding material,

regardless of the resistance and stiffness terms for the impedance.

Analysis of the velocity transfer function Eq. 56 for the buried sensor indicates

the presence of a suspension resonance within the processing band. As illustrated

in Fig. 9, the resonant frequency was sensitive to the shear wave speed where it

increased from 320 Hz to 1910 Hz for shear wave speeds of 25 m/s and 150 m/s,

respectively. Thus, data provided by the vector channels of the buried acoustic

vector sensors were quite likely to have been affected by a frequency dependent

transfer function between the acoustic vector field and the data representing that

field. In principle, data provided by the vector channels of the buried sensors

could be corrected by compensating for the frequency dependent transfer function

associated with the suspension response. However, implementation of the correc-

tion would require a priori information about the sediment shear wave speed and

density; parameters that were to have been estimated by the inversion. As a re-

sult, the inversion method needed to account for unknown sediment parameters

that contributed to a frequency dependent transfer function located between the

acoustic vector field and data representing that field.
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CHAPTER 4

Sediment Acoustics Experiment 2004

4.1 Test Site

The SAX04 experiment was conducted in the Northern Gulf of Mexico during

September–November 2004 as part of an Office of Naval Research (ONR) depart-

ment research initiative on high-frequency sound interaction in ocean sediments.

The objectives of the experiment were far reaching and included 1) measurement

and modeling of sediment hydrodynamic, geological, and biological properties and

processes that pertain to sediment geoacoustics; 2) monostatic and bistatic scat-

tering from the seafloor; 3) scattering from discrete scatterers; 4) acoustic pene-

tration into seafloor sediments, especially at subcritical grazing angles; 5) volume

scattering and its effects on wave propagation in sediments; 6) modeling of wave

propagation in sediments, including the dependence of wave speeds and attenu-

ations on physical properties as well as frequency; and 7) acoustic detection and

classification of buried objects. [1]

The experiment was conducted near the site of a previous high frequency

acoustic experiment conducted in 1999 (SAX99). Among the primary considera-

tions for selection of the test site was the need for the seafloor to have a relatively

high critical angle (e.g., 25◦–30◦) to support the study of acoustic penetration and

scattering both above and below the critical angle. This translated into a sediment-

to-sound speed ratio greater than about 1.1, a condition that was satisfied by the

selection of a sandy bottom. In addition, the experiment plans called for the inser-

tion of hydrophones and acoustic vector sensors into the bottom. A surface sand

layer that was at least one meter thick was required. Initially, a site near Panama

City, Florida was considered, but was ultimately rejected in favor of the site off

Fort Walton Beach due to the high density of mud inclusions near Panama City [2].
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Figure 10. SAX04 experiment location. Coastline data extracted from the Global
Self-consistent, Hierarchical, High-resolution Shoreline Database (GSHHS) [3]
.

The Fort Walton Beach site was selected as best satisfying the requirements of the

planned experiments including sediment type, sediment homogeneity, bathymetry

and shallow water. The experiment was conducted in 16.7 meters of water located

one kilometer offshore of Fort Walton Beach, Florida as illustrated in Fig. 10.

Fort Walton Beach is located along the northwest Florida panhandle. The

adjacent shelf is wide with generally low gradient. Surface sediments in the area are

referred to as the Mississippi–Alabama–Florida (MAFLA) sand sheet lying within

the Eastern Gulf sediment province. The sediments are medium to fine grained

quartz sand with few accessory minerals. Grain size decreases size westward, in the

direction of long-shore sediment transport. The source of sediments in the vicinity

of the SAX04 test site is an eroding headland east of Destin. [4]

Santa Rosa Island is a narrow, low-profile, barrier island located directly north

of the test site. The island is about 500 m wide, with Santa Rosa Sound lying

between the island and the mainland Florida panhandle. Santa Rosa Sound is a
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Figure 11. Storm surge during Hurricane Ivan’s landfall. Photo taken at Fort
Walton Beach, Florida from Wright Parkway, 1.6 km north of the coastline looking
south. Image credit: Chris Duval [8].

narrow lagoon about 400 m wide, with a maximum depth of 7.5 m and is bounded

on the east by Choctawhatchee Bay. Santa Rosa Island and Sound constitute part

of a barrier island complex separating a series of lagoons, bays, and estuaries from

the Gulf of Mexico. The estuaries north of the barrier islands are sinks for fine-

grained sediment. Little sediment is transported to the Gulf except from Mobile

Bay (to the west) or during hurricane events. [5]

On September 16, Hurricane Ivan made landfall 100 km west of the test site as

a category 3 hurricane with sustained winds of 105 kts [6]. Ivan produced significant

wave heights of 12 m at the experiment site resulting in the destruction and loss of

bottom mounted equipment [7]. Photographs during the storm (see Fig. 11) and

aerial reconnaissance immediately afterward indicated that parts of Santa Rosa

Island were completely submerged by the 3.0 to 4.5 m storm surge.

The test site and surrounding waters were surveyed in July–August 2005, nine
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months after the passage of Hurricane Ivan. The survey included side scan sonar,

multibeam backscatter imagery, numerous grab samples and twenty-six cores, fif-

teen from the SAX04 test site. The remaining cores were collected 11 km to the

west of the SAX04 site, including five that were arranged in a line perpendicular

to the shore in water depths ranging from 3.5 to 18 m (see Fig. 10). The cores

were collected by the U.S. Geological Survey (USGS) R/V Gilbert using 7.6 cm

diameter, six meter length aluminum barrels that were driven into the seabed with

a pneumatic vibrator. Survey results were used to characterize the area, and to

develop a general chronology of storm driven erosion, transport and deposition

processes. [5]

Figure 12 summarizes the regional sediment profile as reflected in results of

the shore-perpendicular line (see Fig. 10) of grab samples and cores collected by

R/V Gilbert. The figure illustrates the regions depositional pattern beginning with

Pleistocene deposits laid down during the last global sea-level minimum of the late

Wisconsinan glacial stage. Facies 3 and 4 were deposited during the post-glacial

rise in sea-level. The depositional environment was a partially enclosed estuary

with deposits consisting of an organic-rich, muddy quartz sand with shells, wood

and peat throughout. Continued rise in sea-level transformed the depositional en-

vironment from a partially closed estuary to an open marine environment resulting

in a sand deposit (e.g., Facies 5 and 6) that is a combined 3.0–5.5 m thick. Facies 6

is the barrier island shoreface composed of well sorted quartz sand deposited and

reworked by ongoing processes. [5]

Ongoing erosion, transportation and deposition processes continue to rework

the surficial sediments. While redistribution and sorting of sand is a continual

process, strong storms can submerge barrier island systems redistributing sand

on the shelf and introducing fine grained material as sediment outflow from the
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Figure 12. Mississippi–Alabama–Florida (MAFLA) sand sheet profile. Near shore
sediment profile and core locations for survey line located 11 km west of the SAX04
test site. Image reproduced from [5].
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bays and lagoons. Wind and wave generated currents at the base of the barrier

island shoreface act to erode much of the sand sheet and allow sand and organic

rich, fine grained material to mix together near the seafloor surface above the

older sedimentary deposits. As a result, sediments in the upper half meter of the

seabed contain layers with elevated quantities of silt, clay, wood, peat and other

organic materials. Evidence of shallow mud flasers, or lenses, were found in the

grab samples and cores that were collected. [5]

Four cores (e.g. 4A–4D) were taken in the immediate vicinity of the site where

the acoustic data for this study were collected. Core 4A showed no evidence of

layering, while core 4B contained evidence of a muddy layer at a depth of four

meters. As illustrated in Fig. 13, cores 4C and 4D showed evidence of muddy

layers at depths of 140 and 100 cm, respectively. It is estimated that these two

cores were collected less than 20 m from the acoustic data collection site. [9]

Data collected 11 km to the west of the SAX04 test site also show evidence

of a muddy layer embedded within the surface sediments. Data collected on

core 25 included compression wave speed and density, from which the charac-

teristic impedance was computed. As shown in Fig. 14, both the compression

wave speed and density were significantly lower in this muddy layer than in the

bounding sediments.

The sequence of events by which the SAX04 test site was affected by the

landfall and passage of Hurricane Ivan was reconstructed from basic knowledge

about local sedimentary processes, by observations during and immediately after

the storm, and by analysis of the data collected by R/V Gilbert in July 2005.

Following the passage of Ivan, retreating surge water transported a significant

amount of mud, likely derived from Santa Rosa Sound, onto the shelf. A large,

nearly continuous drape of mud was deposited at the test site and surrounding shelf
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Figure 13. SAX04 core sediment composition

waters. Subsequent wind-wave activity mobilized sediment resulting in suspension

and subsequent resettling of mud onto sand ripples. Lens shaped mud inclusions

(e.g., flasers) within the sand sediment were created when the mud that settled

into the troughs was covered by migrating sand. The result was that some mud

was incorporated into the seafloor sediments. Mud lenses were protected from

further suspension and transport by bottom currents. Subsequent storm events

continued to break up the surface mud layer into smaller deposits, which were

subsequently isolated and buried by migrating sand. Although the experiment site

was selected for its well-sorted quartz sand, the presence of mud layers of limited

horizontal extent created a more heterogeneous sediment than existed before the

storm. [5], [10]
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Figure 14. Multisensor core logger data. Core was taken at a located 11 km west
of the SAX04 test site. A clay rich layer at a depth of 65 cm separates Facies 6
from an organic rich sand layer below. Image reproduced from [5].
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4.2 Test Geometry

The SAX04 experiment was conducted from the R/V Seward Johnson as it

lay in a four point mooring, one kilometer south of Fort Walton Beach, Florida.

The experiment included several distinct components, each with its own equipment

and resources. The experimental component on which this study was based was

led by a team from Defence Research and Development Canada (DRDC) Atlantic.

As shown in Fig. 15, DRDC equipment was located about 70 m directly astern of

the ship.

Figure 16 illustrates the experimental arrangement used to collect the data

on which this work was based. The experiment was conducted in a water depth

of 16.7 m. An acoustic projector was suspended above the seafloor at a height

above bottom of 8.4 m. Directly beneath the projector were located four Wilcoxon

Research TV–001 acoustic vector sensors arranged in a vertical line that spanned

the seafloor. Two sensors (e.g., VS5 and VS6) were suspended above the seafloor

at heights of 10 and 25 cm, respectively. Two sensors were buried in the sediments

(e.g., VS1 and VS2). The intended burial depths were 50 and 100 centimeters,

although there was uncertainty in the actual burial depths as reported in [12]. All

data were collected at normal incidence.

The suspended sensors were fastened by compliant elastic bands to a PVC

cage as illustrated in Fig. 17 as the cage was being prepared for deployment. The

buried sensor were inserted into the seabed using a purpose built burial jig designed

to deposit the sensors at known depths and rotation angles as shown in the lower

panel of Fig. 17. Note that while sensors were buried with non-zero horizontal

displacements relative to the normal incidence arrival line, only data collected

with the sensors placed for normal incidence arrivals were available for this study.
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Figure 15. SAX04 test site arrangement. Image reproduced from [11].
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Figure 16. Acoustic data collection geometry

4.3 Measurement System

Acoustic data were collected using a Nicolet Liberty data acquisition system.

The system acquired 32 simultaneously sampled data channels with 16-bit reso-

lution. The sample rate was 40 kHz. The input range of the data channels was

±5.4613 volts, set to prevent clipping of signals received from the acoustic pro-

jector operated at a nominal source level of 175 dB re 1 µPa at 1 meter. The

source-to-receiver ranges were less than 10 m for all sensors.

The noise characteristics of the data were largely controlled by the limited

resolution of the Nicolet Liberty data acquisition system. Neglecting all noise

sources, the theoretical dynamic range of the acoustic data was 96 dB. However,

analysis of ambient noise records showed that the effective dynamic range of the

system was significantly less.
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Figure 17. Acoustic vector sensor deployment fixtures. Upper panel shows PVC
cage used to support the sensors at 10 and 25 cm above the seafloor. The lower
panel shows the burial jig used to insert the sensors with controlled horizontal and
vertical displacements and angular orientations. Images reproduced from [13].
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Noise spectra for the acoustic channels of a buried vector sensor (e.g. VS1)

are illustrated as Fig. 18 where electronic noise is shown to dominate the noise

spectrum for the pressure channel for frequencies above about 2500 Hz. Electronic

noise dominated throughout the spectrum for the acceleration channels, with the

exception of a small region near 1000 Hz for the y-axis transverse channel where

noise from the anchored research vessel can be seen.

Figure 19 presents the same data where the voltage spectra were converted

to equivalent plane wave pressure for both the hydrophone and the accelerome-

ters. Conversion of the voltage measured on the accelerometer Va to equivalent

plane wave pressure Peq was accomplished by integration and application of the

impedance ρc for a plane propagating wave as

|Peq| =
ρc|Va|
ωMa

(58)

where Ma is the acceleration sensitivity.

Review of the manufacturer’s specifications [14] for the TV-001 vector sensor

confirms that the electronic noise floor illustrated in Fig. 18 and Fig. 19 did not

originate with the sensor. Wilcoxon Research specified the noise levels of the

TV-001 sensor as equivalent plane wave pressure for both the hydrophone and the

accelerometers. The specified noise levels at 1000 Hz were 28 and 45 dB re µPa2/Hz

for the hydrophone and accelerometers, respectively. Thus the specified noise levels

for the sensor were well below that observed by the data acquisition system.

Noise characteristics of the data acquisition system were estimated using noise

data for the vertical acceleration channel during the ambient noise measurement.

The noise-free code resolution and effective resolution of the 16-bit data acqui-

sition system were estimated using methods common to many manufacturers of

electronic components, analog-to-digital converters in particular [15]. Figure 20

illustrates the noise data displayed in the output codes (e.g. bits) of the analog-
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Figure 18. Vector sensor voltage noise spectrum. Data was collected with buried
sensor (e.g. VS1). Electronic noise on the acceleration channels was sufficient to
preclude detection of the ambient noise spectrum.
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sensor (e.g. VS1) and was converted to equivalent plane wave pressure.
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Figure 20. Vector sensor noise histogram. Data was collected with buried sensor
(e.g. VS1). The resolution of the digital data was 0.167 mV/bit. The mean µlsb

and standard deviation σlsb of the output were 2.4 and 3.4 bits respectively.

to-digital converter. The mean µlsb and standard deviation σlsb of the noise data

were 2.4 and 3.4 bits respectively. A chi-squared goodness-of-fit test [16] of the

noise data confirmed that the null hypothesis could be rejected at the 5% signifi-

cance level, confirming that the noise data were Gaussian distributed. Therefore,

the root-mean-squared (rms) noise output of the system was 3.4 bits, equivalent

to a 0.57 mV noise source connected to the input of a noise-free analog-to-digital

converter.

The noise-free code resolution Rnf of an analog-to-digital converter is the

number of bits of resolution beyond which it is impossible to distinctly resolve

individual output codes. This limitation is due to the effective input noise (or

input-referred noise) associated with all analog-to-digital converters. The noise-
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free code resolution provided by a given N -bit analog-to-digital converter is

Rnf = log2

(
2N

6.6 σlsb

)
(59)

which in the case of this data acquisition system equates to 11.5 bits where the

factor of 6.6 was used to convert the root-mean-squared noise input to peak-to-

peak.

The effective resolution Reff is an alternative measure that reports the ratio

of the full-scale range to the rms input noise (rather than peak-to-peak) as

Reff = log2

(
2N

σlsb

)
(60)

which for the present system equates to 14.2 bits of effective resolution. The latter

measure is cited by some manufacturers as an alternative to the noise-free code

resolution. The realized dynamic range of the SAX04 data was estimated to be

69 dB where the noise-free code resolution was used to characterize the system.

4.4 Acoustic Field Data and Reduction

Processing of the SAX04 data began with band pass filtering, application of

the calibration coefficients and extraction of time aligned waveforms for further

processing. Alignment of the individual waveforms onto a common time base

was desired to facilitate the use of complex signal representations in the inversion

process. Had the signals not been aligned to a common time base, then the phase of

the individual waveforms would have varied due to the process used to apply gates

to the data as opposed to being influenced only by the experimental conditions,

including the environment.

Filtered and calibrated time series for a buried vector sensor (e.g., VS1) are

illustrated as Fig. 21. The figure shows the first five waveforms transmitted at a

frequency of 800 Hz. A total of 28 waveforms were transmitted at this frequency.
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Figure 21. Acoustic waveform time series. Data was collected with buried vector
sensor (e.g., VS1). The transmit frequency was 800 Hz. The pulse repetition
frequency was 2.0 Hz. A total of 28 waveforms were transmitted. Data in the
top panel were from the hydrophone. All other panels show data from the vector
channels as acoustic particle acceleration in the vertical ∂w/∂t and horizontal
∂u/∂t and ∂v/∂t directions. Note the different vertical scales for the vertical and
horizontal acoustic particle accelerations.
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The acoustic pressure and all three components of the acoustic particle acceler-

ation are shown. Note that the scale for the ordinate applied to the transverse

acceleration channels, ∂u/∂t and ∂v/∂t, is one tenth that of the vertical channel

∂w/∂t. All data were passed through a third order Butterworth filter with band-

width proportional to the transmit frequency. Specifically, the pass bands for the

filters were one octave with the center frequency equal to the transmit frequency.

Among the questions addressed as part of the inversion process was the un-

certainty in the experiment geometry. In principle, both the displacement and

rotation of the the vector sensors must be defined in six degrees of freedom. In-

spection of Fig. 21 shows that the magnitude of the transverse acceleration mea-

surements were 3% to 4% of those measured in the vertical direction, suggesting

a slight inclination of the vector sensor’s vertical acceleration axis relative to the

local wave number vector. In principle, these angles can be calculated from the

relative magnitudes of the acceleration signals. However, the transverse sensitivi-

ties of the accelerometers were not zero (e.g. sensitivity to acceleration orthogonal

to the accelerometer axis). As listed in Table 1, the transverse sensitivity of the

accelerometers was specified to be less than 5%. Therefore, it was not possible to

differentiate a small sensor rotation from the finite response of the accelerometers

to accelerations that were orthogonal to their respective axes. As a result, the

sensors were treated as having been exactly vertical and collinear along the axis

for normal incidence arrivals.

Individual waveforms were gated and time aligned to facilitate the use of

their complex representations in the inversion process as illustrated in Fig. 22.

The trigger signal that was used to drive the acoustic projector served as the

reference to which data from the other sensors were aligned. Signals from the

individual vector sensors were gated and interpolated using a set of parameters
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Figure 22. Gated and aligned acoustic time series. Data was collected with buried
vector sensor (e.g., VS1). The transmit frequency was 800 Hz. A total of 28
waveforms are represented on a common time base prior to calculation of Fourier
transformed complex signals. Alignment was performed using the trigger as the
time reference. Pressure and acceleration signals show evidence of surface reflection
with little scattering beginning at 80 – 85 milliseconds.
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determined from the trigger. Interpolation was required because there remained

an offset of a fraction of one sample between adjacent waveforms when gated to

the pulse repetition period. As shown in the figure, the individual waveforms are

indistinguishable for the first 15 milliseconds. There is some misalignment evident

for later times once the surface reflection, and its corresponding surface scattering,

arrives at the sensor.

Complex signal representations for these waveforms are presented as Fig. 23

where the acoustic pressure and particle accelerations observed at 800 Hz are dis-

played in the upper row. Inspection of these data shows that despite the apparently

good time alignment that was achieved (see Fig. 22), scatter among the individual

waveforms remained.

The lower row of Fig. 23 illustrates two distinct acoustic quantities. The left

panel illustrates the scalar acoustic transfer function between a hydrophone located

one meter distant from the source and the scalar channels of all four vector sensors

where VS5 and VS6 were suspended above the seafloor, while VS1 and VS2 were

buried within it. The close proximity of the suspended vector sensors is evident in

the close grouping of data representing the individual waveform transfer functions.

Likewise, the approximate quarter wavelength spacing from the suspended sensors

to the shallow buried sensor (e.g., VS1) and half wavelength to the more deeply

buried vector sensor (e.g., VS2) are evident. The right panel illustrates the specific

acoustic impedance measured by each of the vector sensors. Perhaps the most

noteworthy aspect of this representation is the significantly reduced scatter among

the individual observations, suggesting that the computed impedance was less

influenced by acoustic scattering and source variation.
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4.5 A Note About Notation

As this discussion has shown, the present problem was effectively reduced to a

single dimension. Thus far, we have adopted the usual notation for a velocity vector

as {u, v, w} representing the {x, y, z} components of the vector field. However,

since the acoustic vector field, as observed by the sensors of this experiment, was

confined to the vertical dimension z, maintenance of all three components was

unnecessary.

From this point forward, the acoustic particle velocity shall be denoted as u

in keeping with conventional acoustic notation, with the understanding that the

vector u is aligned with the vertical.
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CHAPTER 5

Inversion Method

5.1 Inverse Problem Definition

Inversion of acoustic field data is widely employed to estimate geoacoustic

parameters of the ocean bottom. Specifically, geoacoustic inverse problems are

designed to estimate a set of environmental parameters m using acoustic field

data d and a physically realistic model f relating the parameters to the data.

The fundamental relationship employed by the inverse problem is summarized by

Eq. (61)–(63), where T signifies the transpose operator. [1]

d = [d1, d2, d3, · · · , dN ]T (61)

m = [m1, m2, m3, · · · , mM ]T (62)

d = f (m) (63)

The problem of parameter estimation, then becomes one of inverting Eq. (63)

to provide an estimate of the geoacoustic parameters using the acoustic field data

as input.

m = f−1 (d) (64)

Various methods exist to compute the inverse Eq. (64). In the simplest case,

the data are linearly related to the parameters and the problem can be cast as a lin-

ear system of equations solved by matrix inversion. However, for most geoacoustic

problems of practical interest, the data are non-linearly related to the parameters.

Therefore, the geoacoustic inverse problem is typically posed as a non-linear op-

timization problem that includes a global search strategy to minimize the error

between the acoustic field data and fields that are computed for specific instances

of the parameter set as indicated by Eq. (65).
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e (m) = d− f (m) (65)

The inverse problem then becomes a search for the set of parameters that min-

imizes the error between the data and the model output. The parameter set m◦

that successfully minimizes this error is taken as the best estimate of the geoacous-

tic parameters of interest. In short, the objective is to “estimate environmental

characteristics from measured acoustic field values, with the aid of a physically

realistic computational model” [2] and an efficient global search strategy.

5.2 Objective Function

An objective function φ was derived to facilitate both the global search

strategy and to estimate the associated uncertainties in the parameter estimates.

Among the attributes of the desired objective function were that it was 1) based

on a known functional form with a history of good performance in similar inversion

approaches; 2) normalized in a way that simplified interpretation of results; and

3) weighted individual measurements by the inverse of their respective variances.

Careful selection of the objective function has a considerable influence over the

performance of any inversion approach. Objective functions based on the Euclidean

norm have been shown to provide good performance for complex error vectors [3].

Thus, derivation of the objective function began by taking the Euclidean norm of

the error vector, Eq. (65), to yield

‖e (m) ‖ =

√
(d− f (m))H (d− f (m)) (66)

where both the data d and forward model predictions f were assumed complex,

with H the Hermitian transpose. A more compact expression for Eq. 66, adopted

for this study, is provided as Eq. 67 where the dependence of the error on the

model has been suppressed.
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‖e‖ =
√
eHe (67)

Equation 67 was normalized by the Euclidean norm of the data vector to

define an objective function that simplified interpretation of the inversion results.

φ (m)unweighted =

(
eHe

dHd

) 1

2

(68)

Finally, Eq. 68 was modified to provide data exhibiting lower variance with

proportionally greater influence. The errors were weighted by taking the inner

product of the error vector e and weight vector w to yield Eq. 69, a normalized

and weighted objective function based on the Euclidean norm of the error vector.

φ (m)weighted =

(
(w · e)H (w · e)

dHd

) 1

2

(69)

The weights w, provided as Eq. 70, were conservative in the sense that they

summed to the number of observations. Thus, they provided greater weight to

measurements with lower variance, without compromising the normalization of

the objective function introduced in Eq. 68

w =
Nobs

Nobs∑

n=1

|dn|
σn

[ |d1|
σ1

,
|d2|
σ2

,
|d3|
σ3

, · · · , |dN |
σN

]T
, (70)

and σn is the standard deviation of the nth observation.

5.3 Uncertainty Estimates

A complete solution to an inverse problem includes not only the parameter

estimates, but some measure of the uncertainties in those estimates. Thus, as-

sessment of the value represented by the information in the acoustic vector field

considered both the parameter estimates and their associated uncertainties. This

was accomplished through implementation of an empirical method to characterize
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the uncertainties in the geoacoustic parameter estimates for different approaches

to the inversion of acoustic scalar and vector field data.

Parameter uncertainty in non-linear inverse problems is typically expressed as

the a posteriori probability distribution [4]. This study adopted a maximum likeli-

hood approach [5] where the a priori P and a posteriori G probability distributions

are related through a likelihood function L as indicated by Eq. 71.

G (m) = L (m)P (m) (71)

The one-dimensional marginal a posteriori probability density function for

the ith parameter Gi(mi) is provided by integrating the M dimensional probability

density with respect to all parameters mj for j = 1, 2, · · · ,M and i 6= j to yield

Gi (mi) =

∫
· · ·
∫

G (m) dm1 · · · dmi−1 dmi+1 · · · dmM . (72)

Evaluation of Eq. 72 may be accomplished by several means including grid

search, Monte Carlo and importance sampling. Grid search is a computation-

ally impractical approach when the number of parameters in the model vector is

larger than about four. Monte Carlo methods sample the distributions randomly

as a means to reduce the computational work to estimate the integrals, but may

spend a significant fraction of the computational effort in regions that contribute

little to the value of the integral. Importance sampling attempts to exploit some

knowledge about the integrands to develop non-uniform sampling distributions

that concentrate in areas that contribute most to the integral. Nonlinear opti-

mization approaches such as genetic algorithms and simulated annealing employ

such importance sampling. These approaches use a generating distribution for se-

lecting the next model vector. However, this distribution is unknown and evolves

over the course of the optimization.

When performing a non-linear inversion, one generates a large number of

observations of candidate solutions Nobs from the total model parameter space M.
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The objective function values associated with these model runs can be used to

approximate the above integrals. The a posteriori probability distribution for the

kth model vector using the Nobs observations is provided as

Ĝ (mk) =
L (mk)P (mk)

Nobs∑

j=1

L (mj)P (mj)

. (73)

For the ith parameter mi in the model vector, the marginal probability distri-

bution for obtaining the particular value K can be estimated using Eq. 74

Ĝi (K) =

Nobs∑

k=1

Ĝ (mk) δ (mk,i −K) . (74)

Since, the likelihood function is usually related to the objective function φ(m)

through an exponential, an estimate of the empirical likelihood function is

Lemp (m) = exp

(− (φ (m)− φ (m◦))

T

)
(75)

where m◦ is the estimated parameter vector for the optimum value of the objective

function and T is a constant that is particular to each optimization. A common

value for T is the average of the 50 best objective functions obtained during the

optimization minus the best value of the objective function

T =
1

50

50∑

n=1

φ (mn)− φ (m◦) . (76)

5.4 Geoacoustic Model

A geoacoustic model was implemented that would 1) permit the comparison

of inversion performance with and without use of the vector field data; and 2)

address the physical complexity reported for the experiment site. The acoustic

field variable upon which a given inversion scheme operates has often been derived

from the acoustic transfer function between two or more spatial coordinates and
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frequently contains less information than the transfer function itself. As two exam-

ples consider inversion schemes based on measured transmission loss of a narrow

band signal and mode dispersion for a broadband signal. In the case of the for-

mer, the transmission loss curve is simply the magnitude of the complex, range

dependent transfer function between a set of source–receiver coordinate pairs with

increasing separation. Similarly, the set of mode dispersion curves between two

spatial coordinates is related to the phase of the complex, frequency dependent

transfer function between these coordinates. Therefore, an inversion method that

operates directly on complex acoustic transfer functions may have an informa-

tional advantage relative to one that operates on an incomplete representation of

the transfer function.

In addition to the potential informational advantage gained by inverting the

complex acoustic transfer function, the method lends itself to performance compar-

isons among competing approaches involving the acoustic scalar and vector fields.

For example, comparing the performance of inversion schemes operating on the in-

stantaneous intensity or specific acoustic impedance with approaches based solely

on the scalar acoustic field would be complicated by the lack of an obvious scalar

analogue to the vector field quantities. On the contrary, comparison of inversions

performed using the scalar and vector transfer functions is straight forward.

5.4.1 Geoacoustic Parameterization

The parameter set comprising the physical geoacoustic model was developed

to reflect the reported complexity of the experiment site. Acoustic data collected at

the site was consistent with the presence of a low impedance reflector located within

the top meter of sediment [6]. Evidence for a second reflector at a depth of 3.43 m

was also reported [7]. A geoacoustic model with horizontal stratification sufficient

for the reported environment is illustrated in Fig. 24. The model included the water

66



Figure 24. Model of experiment for inversions

column, three sediment layers and a sediment half-space. It was described by a

total of 17 geoacoustic parameters including layer thicknesses ∆zn, densities ρn,

compression wave speeds ccn and shear wave speeds csn. Geoacoustic parameters

were bounded to preclude the expenditure of computational effort on non-physical

or unrealistic values as shown in Table 2.

Due to the experimental arrangement, few acoustic propagation codes were

available to support the inversion process. An acoustic model was needed that 1)

provided both the acoustic scalar and vector fields; 2) included both compression

and shear waves; 3) provided accurate results in the acoustic near field, the acoustic

far field and the transition between them. As a result OASES [8], a seismo-acoustic

code based on wavenumber integration, was selected as the best option to satisfy

these requirements.
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Table 2. Geoacoustic model parameterization

Symbol Parameter Layer Bounds Units

Lower Upper
∆z0 Depth Water Column 16.0 17.5 m
cc0 Sound Speed Water Column 1500 1550 m/s
∆z1 Thickness Sediment Layer 1 0 2 m
ρ1 Density Sediment Layer 1 1.0 2.5 g/cm3

cc1 Sound Speed Sediment Layer 1 1400 2800 m/s
cs1 Shear Speed Sediment Layer 1 0 200 m/s
∆z2 Thickness Sediment Layer 2 0 2 m
ρ2 Density Sediment Layer 2 1.0 2.5 g/cm3

cc2 Sound Speed Sediment Layer 2 1400 2800 m/s
cs2 Shear Speed Sediment Layer 2 0 200 m/s
∆z3 Thickness Sediment Layer 3 0 2 m
ρ3 Density Sediment Layer 3 1.0 2.5 g/cm3

cc3 Sound Speed Sediment Layer 3 1400 2800 m/s
cs3 Shear Speed Sediment Layer 3 0 200 m/s
ρ4 Density Sediment Half Space 1.0 2.5 g/cm3

cc4 Sound Speed Sediment Half Space 1400 2800 m/s
cs4 Shear Speed Sediment Half Space 0 200 m/s
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5.4.2 Acoustic Field Computations

Taking a linear systems approach to the problem, the scalar acoustic field at

any position ~rn is computed as the convolution of a source pressure p (t, ~r1) located

at position ~r1 with the impulse response function h
(p)
a (t, ~r1, ~rn) for the acoustic

channel between the source ~r1 and receiver ~rn positions. Equation 77 illustrates

the relation, in addition to the frequency domain representation provided by the

Fourier transform of the convolution integral. An equivalent expression yielding

the acoustic vector field u◦ (t, ~rn) at position ~rn based on the scalar field p (t, ~r1)

at position ~r1 is provided as Eq. 78. All of the acoustic computations performed

for this study were based on these fundamental relationships.

p (t, ~rn) = h(p)
a (t, ~r1, ~rn) ∗ p (t, ~r1) ⇔ P (ω,~rn) = H(p)

a (ω,~r1, ~rn)P (ω,~r1) (77)

u◦ (t, ~rn) = h(u)
a (t, ~r1, ~rn) ∗ p (t, ~r1) ⇔ U◦ (ω,~rn) = H(u)

a (ω,~r1, ~rn)P (ω,~r1) (78)

The OASES-OASP code for wide band transfer functions was used for all

acoustic field calculations. The code calculates the depth-dependent Green’s func-

tion for a selected number of frequencies and determines the transfer function

between the source and a receiver at any position by evaluating the wavenum-

ber integral. In this way both the scalar H
(p)
a (ω,~r1, ~rn) and vector H

(u)
a (ω,~r1, ~rn)

acoustic transfer functions between the source and receivers were readily computed.

5.4.3 Buried Sensor Suspension Response

As will be detailed in Chapters 6 and 7, distinct inversion approaches were

implemented. Particular acoustic quantities that were inverted were acoustic trans-

fer functions between pairs of sensors and specific acoustic impedance measured

at each sensor position. As a result, the forward model used to support the in-

versions needed to account for the velocity transfer function H
(ε)
s for the buried

sensor suspension response.
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The scalar and vector acoustic transfer functions between the source and a

receiver were provided by Eq. 77 and Eq. 78, abbreviated here as

P (ω,~rn) = H(p)
a (ω,~r1, ~rn)P (ω,~r1) , (79)

U◦ (ω,~rn) = H(u)
a (ω,~r1, ~rn)P (ω,~r1) , (80)

where U◦ is the acoustic particle velocity in the sediment, not necessarily that of

the sensor case. Thus, the scalar and vector acoustic transfer functions between

the locations occupied by sensor m and sensor n are given by Eq. 81 and Eq. 82

where the respective positions of the sensors are ~rm and ~rn

H(p)
a (ω,~rm, ~rn) =

P (ω,~rn)

P (ω,~rm)
=

H
(p)
a (ω,~r1, ~rn)

H
(p)
a (ω,~r1, ~rm)

, (81)

H(u)
a (ω,~rm, ~rn) =

U◦ (ω,~rn)

U◦ (ω,~rm)
=

H
(u)
a (ω,~r1, ~rn)

H
(u)
a (ω,~r1, ~rm)

. (82)

The forward model used to support the inversion was required to predict not

only the acoustic field variables, but also to consider any distortion to measure-

ments of the acoustic particle velocity that resulted from the suspension response.

This required replacement of the acoustic particle velocity U◦ with the velocity

of the sensor case Us in the forward model. Thus, between any two sensors, the

observed vector acoustic transfer function Ĥ
(u)
a becomes

Ĥ(u)
a (ω,~rm, ~rn) =

Us (ω,~rn, ρn, csn)

Us (ω,~rm, ρm, csm)
=

H
(u)
a (ω,~r1, ~rn)H

(ε)
s (ω, ρn, csn)

H
(u)
a (ω,~r1, ~rm)H

(ε)
s (ω, ρm, csm)

(83)

where H
(ε)
s is the velocity transfer function for the suspension response, and ρn,

csn are the density and shear wave speed at the location of the nth sensor. Recall

that the velocity transfer function for sensors suspended above the seafloor was

taken to be unity H
(f)
s ≡ 1.

The specific acoustic impedance observed by the nth sensor was computed

similarly, where the impedance observed by a suspended sensor is

Z(f)
a (ω,~rn) =

P (ω,~rn)

U◦ (ω,~rn)
=

H
(p)
a (ω,~r1, ~rn)

H
(u)
a (ω,~r1, ~rn)

, (84)
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and the impedance observed by a buried sensor is

Ẑ(ε)
a (ω,~rn) =

P (ω,~rn)

Us (ω,~rn, ρn, csn)
=

H
(p)
a (ω,~r1, ~rn)

H
(u)
a (ω,~r1, ~rn)H

(ε)
s (ω, ρn, csn)

. (85)

5.5 Differential Evolution

Evolutionary algorithms have been widely used to solve optimization prob-

lems, including various geophysical inverse problems [4], [9], [10], [11]. Differential

evolution is a particular evolutionary algorithm [12] proposed to solve optimization

problems in continuous search spaces. It is a population based stochastic heuristic

characterized by simplicity, effectiveness and robustness.

Differential evolution shares some similarities with more traditional evolution-

ary algorithms. However, in contrast to the more common genetic algorithms, it

does not use binary encoding nor does it use a probability density function to

self-adapt its parameters as an evolution strategy. Instead, differential evolution

performs mutation based on the distribution of the solutions in the current popula-

tion. In this way, search directions and possible step sizes depend on the locations

of the individuals selected to calculate the mutation vectors.

Differential evolution uses only three parameters to control its operation; the

population size Npop, a scale factor F , and a crossover rate CR governing the

process of recombination. The population size Npop is the number of individuals

evaluated with each generation, typically ten times the dimensionality of the prob-

lem. The scale factor F controls the step size used in the calculation of mutation

values with higher values associated with more vigorous exploration of the search

space. The crossover rate CR controls the influence of mutations in the generation

of offspring, with higher values tending to emphasize mutant traits at the expense

of those belonging to the parent.
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5.5.1 Differential Evolution Variants

A system of nomenclature to identify the variants of the differential evolu-

tion algorithm has been widely adopted. The most popular algorithm variant is

identified as DE/rand/1/bin where “DE” refers to differential evolution, “rand”

indicates that individuals are selected at random to compute the mutation values,

“1” is the number of member pairs used to compute a difference vector and “bin”

specifies that binomial recombination is used.

Algorithm variants differ in their mutation and recombination operators. The

mutation operators vary in the number of member pairs used to develop muta-

tions, and in the relative influence given the best member of the population in the

formation of the trial vectors. The variants also differ in the way traits are selected

for incorporation into the trial vectors to define distinctly different recombination

processes.

Mutation

Mutation in differential evolution has the role of constructing mutant vec-

tors by perturbing elements of the current population. The unique feature of the

mutation operator is that the perturbation term is related to the difference be-

tween randomly selected members of the population. The operator functions as a

self-referential mutation that results in gradual exploration of the search space.

The general form of the mutation operator is

xn = λmbest + (1− λ)mn1
+

L∑

l=1

Fl ·
(
mnl,2

−mnl,3

)
(86)

where mbest is the best member of the current population, λ ∈ [0, 1) is a coefficient

which controls the influence of the best member, L is the number of differences,

Fl > 0 is for each l ∈ {1, . . . , L} a scale factor. The indices n1, nl,2 and nl,3 are

distinct random values uniformly selected from {1, . . . , N}. The most frequently
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used cases are when L = 1 and λ ∈ {0, 1}. Thus for λ = 1 one obtains the

DE/best/1/* variant

xn = mbest + F · (mn2
−mn3

) (87)

and for λ = 0 one obtains the DE/rand/1/* variant

xn = mn1
+ F · (mn2

−mn3
) . (88)

Recombination

In evolutionary algorithms the recombination operator usually combines fea-

tures from different parents. In the case of differential evolution, the mutation

operator is already based on a recombination of individuals. Recombination in

differential evolution functions somewhat differently by combining a member of

the current population (e.g., target vector) with a vector generated by mutation

(e.g., mutant vector) to form a candidate for propagation into the next generation

(e.g., trial vector). This can be implemented by mixing the components (as in

exponential and binomial recombination) or by an arithmetical recombination be-

tween the target and the mutant vectors (as in the DE/current-to-rand variants).

In exponential recombination the trial vector is constructed by taking consec-

utive components from the mutant vector

yn,d =

{
xn,d for d ∈ {dr, dr+1, dr+2, . . . , dK}
mn4,d otherwise

(89)

where dr is a randomly selected index. Subsequent indices dr+1, . . . , dK are those for

which randUniform[0, 1) < CR. The first index for which randUniform[0, 1) ≥

CR is dK+1. The probability that the number of parameters s copied from the

mutant vector xn to the trial vector yn is not greater than q is given by

P (s ≤ q) = 1− CRq. (90)

In the case of binomial recombination individual components of the trial vector

73



yn are obtained as

yn,d =

{
xn,d if randUniform [0, 1) < CR or d = dr
mn4,d otherwise

(91)

where dr is a randomly selected value from {1, . . . , D} to ensure that the trial

vector yn is not identical to its corresponding target vector mn4
. The crossover

rate CR ∈ [0, 1) controls the number of components taken from the mutant vector,

xn. The number of components taken from the mutant vector follows the bino-

mial distribution Pb = CR (1− 1/D) + 1/D where D is the dimensionality of the

problem. The value Pb provides the probability that any given component will be

copied from the mutant vector xn into the trial vector yn.

Classic Differential Evolution

The most popular algorithm variant performs mutation using members se-

lected from the population at random, with only one pair used to form the differ-

ential mutation. In addition, classic differential evolution implements a binomial

process of recombination. Pseudo-code outlining the procedure for the classic dif-

ferential evolution algorithm DE/rand/1/bin is presented as Algorithm 1. [13]

5.5.2 Performance Comparisons

Several studies have been completed in order to characterize the performance

of the differential evolution variants with respect to a broad range of problems.

One study considered 14 different variants of the differential evolution algorithm

[14] toward the solution of 14 high dimensional (D = 30) benchmark problems

categorized by their modality and separability. The unimodal class of problems

is characterized by a single minimum, whereas the multimodal problems include

multiple, relative minima in addition to a single global minimum. The separability

of a problem relates to the degree of coupling among the model parameters with

separable problems having uncoupled parameters and non-separable problems hav-
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Algorithm 1 Classic Differential Evolution – DE/rand/1/bin

begin

g = 0
Create a random initial population mg,n∀, n = 1, . . . , Npop Initialization
Evaluate φ (mg,n)∀, n = 1, . . . , Npop Objective
for g = 1 to G do

for n = 1 to Npop do

Select four members such that n1 6= n2 6= n3 6= n4

n1,2,3,4 = randInteger (1, Npop)
xn = mg,n1

+ F · (mg,n2
−mg,n3

) Mutation
Select one trait to be copied from mutant vector
dr = randInteger (1, D)
for d = 1 to D do

if randUniform [0, 1) < CR or d = dr Cross-over
then yn,d = xn,d

else yn,d = mg,n4,d

fi;
od;
if φ (yn) ≤ φ (mg,n) Objective
then mg+1,n = yn Selection
else mg+1,n = mg,n

fi;
od;
g = g + 1

od;
end

ing various degrees of coupling among the model parameters comprising the search

space. Each variant was assessed according to both its probability of convergence

and convergence rate. It was found that the DE/rand/1/bin was among the most

competitive for the broadest selection of test cases.

A similar study, composed of 8 differential evolution variants and 13 bench-

mark problems [15], concluded that the DE/best/1/bin was the most competitive

option, but required careful selection of the cross-over rate CR for different prob-

lem classes. In addition, use of the “best” selection option brings with it the risk

of premature convergence, particularly for multimodal problems.
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In a more focused study, limited to comparison of the “rand” and “best”

crossover strategies [16], it was found that while either method could produce

good results, use of the “best” option benefited from careful selection, or tuning,

of the crossover rate CR and scale factor F . Low performing selections for these

parameters were prone to premature convergence due to less vigorous exploration

of the search space.

More recent work has explored the potential for self-adaptive algorithms to

improve the probability and rate of convergence with mixed results [17], [18], [19].

While certain of these approaches have demonstrated improved performance in

selected benchmark cases, none have yet demonstrated the kind of robust, reliable

performance on the wide variety of problems as has been demonstrated by the

classic DE/rand/1/bin algorithm.
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CHAPTER 6

Inversion of Complex Acoustic Transfer Functions

6.1 Inversion Data

Acoustic transfer functions were a natural choice to support the inversion

process since they carry information about the physical properties of the paths

over which the wave has traversed, and they are readily computed. A set of

overlapping paths that spanned the space sampled by the acoustic vector sensors

was chosen as the basis for the inversion process. Figure 25 illustrates the acoustic

paths for which transfer functions were computed. The location of each vector

sensor is indicated, as is the path over which each transfer function was computed.

Transfer function subscripts identify the end points of each acoustic path.

Figure 25. Acoustic transfer function paths. Relative locations for acoustic vector
sensors VS5, VS6, VS1, VS2 are annotated. The end points for each acoustic path
is indicated by a curved line. For example, H52 is the acoustic path extending from
VS5 to VS2.
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Recall that the complex acoustic transfer functions used to support the inver-

sions were provided as Eq. 81 and Eq. 83, and restated below as

H(p)
a (ω,~rm, ~rn) =

P (ω,~rn)

P (ω,~rm)
=

H
(p)
a (ω,~r1, ~rn)

H
(p)
a (ω,~r1, ~rm)

, (92)

Ĥ(u)
a (ω,~rm, ~rn) =

Us (ω,~rn, ρn, csn)

Us (ω,~rm, ρm, csm)
=

H
(u)
a (ω,~r1, ~rn)Hs (ω, n)

H
(u)
a (ω,~r1, ~rm)Hs (ω,m)

, (93)

where Hs (ω, n) = H
(ε)
s (ω, ρn, csn) when sensor n was beneath the seafloor and

Hs (ω, n) = H
(f)
s ≡ 1 when sensor n was suspended above the seafloor.

Figure 26 illustrates the scalar and vector field transfer functions measured

for the six receiver pair paths. The annotations indicate both the acoustic path

and the type of transfer function that is depicted. For example, H
(p)
52 depicts

the transfer function for acoustic pressure between vector sensors 5 and 2, while

H
(u)
52 depicts the transfer function for the acoustic particle velocity over the same

path. Inspection of the transfer function data shows that the scatter among the

individual paths was greatest for the pressure transfer functions that crossed the

seafloor interface (e.g. H
(p)
51 , H

(p)
52 , H

(p)
61 and H

(p)
62 ). Scatter among the pressure

transfer function observations was notably less for acoustic paths that did not

traverse this interface (e.g. H
(p)
56 and H

(p)
12 ). Also evident in the figure is that the

scatter among the velocity transfer functions was low for all acoustic paths.

The acoustic transfer functions among six overlapping paths were computed

for all transmit frequencies. In addition, the standard deviations were computed for

use in the weight vector Eq. 70 included as part of the objective function Eq. 69.

These data were used as the basis of the inversion process. Transfer functions

among the six acoustic paths illustrated in Fig. 25 are provided as Fig. 27–29.

In the simplest case of a plane propagating wave, the transfer functions for

the scalar and vector acoustic fields are identical, where the acoustic pressure and

particle velocity are everywhere related by the characteristic impedance ρ◦c of the
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Figure 26. Complex acoustic transfer functions. The transmit frequency was 800
Hz. The annotations indicate both the acoustic path and the type of transfer
function that is depicted. For example, H

(p)
52 depicts the transfer function for

acoustic pressure between VS5 and VS2, while H
(u)
52 depicts the transfer function

for the acoustic particle velocity over the same path.
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medium. While the circumstances for a spherically divergent wave are slightly

more complicated, they are important only for source-to-receiver ranges on the

order of a wavelength or less. Thus, for the purposes of this discussion, we consider

the incident wave field to be approximately planar. Features of the environment,

reflecting boundaries in particular, change the nature of the field from a purely

propagating wave, to one with standing wave characteristics. Thus information

about the nature of reflecting surfaces becomes embedded in the acoustic transfer

functions with the result that the scalar and vector acoustic transfer functions are

no longer identical.

Consider also the effect of sediment shear elasticity in the case of a buried

vector sensor where motion of the sensor case may not equal that of the surrounding

sediment. In this case, a frequency dependent suspension response that is sensitive

to both the sediment shear wave speed and the density contrast between the sensor

and sediment was shown to exist. The effect of this response will also be reflected

in the vector acoustic transfer function such that information about the sediment

can be exploited by an inversion process.
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Table 3. Environmental parameterization for synthetic data. The environment
was parameterized as reported for the test site [1] and was used in the sensitivity
analysis and inversion study. The reported thin, muddy layer (e.g., sediment layer
two) was placed such that it contained the lower of the two buried vector sensors
(e.g., VS2). The shear speed for this layer was not reported for the site, but was
selected to test resolution of the inversion for this parameter.

Layer Parameter Value

Water Column Depth 16.7 m
Sound Speed 1531 m/s

Sediment Layer One Thickness 90 cm
Sediment Density 2.04 g/cm3

Compression Wave Speed 1680 m/s
Shear Wave Speed 120 m/s

Sediment Layer Two Thickness 20 cm
Sediment Density 1.68 g/cm3

Compression Wave Speed 1583 m/s
Shear Wave Speed 100 m/s

Sediment Half Space Sediment Density 2.04 g/cm3

Compression Wave Speed 1680 m/s
Shear Wave Speed 120 m/s

6.2 Objective Function Sensitivity Analysis

The sensitivity of the objective function Eq. 69 to the estimated geoacous-

tic parameters was evaluated using a set of synthetic observations computed for

parameter values reported for the SAX04 experiment site [1]. The marginal sensi-

tivity of each parameter was then assessed by calculating the value of the objective

function across the allowed range for each parameter while holding all other pa-

rameters constant at their reported value. The bottom parameterization included

the reported low impedance reflector as summarized in Table 3. The reflector was

reported to have been a thin muddy layer 5 to 20 cm thick and located within the

top meter of sediment. The reported density and compression wave speed were

1.68 g/cm3 and 1583 m/s, respectively. No estimate of the shear wave speed in

this layer was reported. For the purposes of the sensitivity study, this layer was
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modeled as extending from 90 to 110 cm beneath the seafloor and with the re-

ported density and compression wave speeds. A shear wave speed of 100 m/s was

assumed, a value that was 20 m/s less than that in the bounding sediment layers.

Given these modeling parameters, the deeper of the buried vector sensors would

have been within this thin, muddy layer.

The analysis was performed for five distinct cases. In the first, it was assumed

that only the scalar field was measured using typical hydrophones. In the second

case, it was assumed that only the vector field was measured by an ideal (e.g., dis-

tortion free) sensor. The third case included both scalar and vector field data,

again assuming noise and distortion free measurements. In the fourth case, it was

assumed that only the vector field was measured, and that the measurements were

distorted by the suspension response of a sensor with the same mass properties as

the TV-001 acoustic vector sensor (e.g., neutrally buoyant in seawater). The fifth

case included both the scalar and vector fields as observed by a sensor with the

mass properties of the TV-001 acoustic vector sensor.

One of the goals during development of the inversion method was to minimize

the influence of the water column properties on the objective function. It was this

goal that influenced the decision to use a set of transfer functions that were local

to the seabed and confined to the space sampled by the acoustic vector sensors.

Figure 30 illustrates the sensitivity of the objective function to the water depth and

sound speed in the water column. As shown in the figure, the objective function

had modest sensitivity to both of these parameters. The analysis also predicted

that the objective function was more sensitive to the scalar field than it was to the

acoustic vector field, and that the mass properties of the buried vector sensors had

negligible effect on the objective function. Finally, the multi-modal nature of the

problem is illustrated by several relative minima for both the water depth and the
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sound speed.

Figure 31 illustrates the behavior of the objective function for variations in

the estimated parameters of the first layer, beginning at the seafloor. As shown in

the top panel, sensitivity of the objective function to variations in the thickness of

this layer was of the same order as for the other geoacoustic parameters. As was

the case for the estimation of water depth, the marginal sensitivity for thickness

of the first sediment layer includes a number of relative minima that would likely

prove problematic for gradient descent approaches to estimation of this parameter.

Figure 32 illustrates the sensitivity of the objective function to geoacoustic

parameters of a thin, muddy layer at a nominal depth of one meter. Sensitivity

of the objective function to the thickness of this layer was similar to that for the

first layer, but with less pronounced relative minima. Sensitivity of the objective

function to the other geoacoustic parameters was generally consistent with the

first layer, but without the pronounced relative maxima for the compressional

wave speed at about 2200 m/s shown in Fig. 31.

Figure 33 illustrates the sensitivity of the objective function to the geoacous-

tic properties of a hypothetical layer that was physically remote relative to the

positions of the buried sensors. The hypothetical layer was inserted at a depth

of 2.1 meters. The sensitivity of the objective function to variations in density

was virtually independent of the acoustic field data used to calculate the objective

function. Sensitivity to variation in compression wave speed in this remote layer

is provided in the center panel where it is shown that scalar field data provides

slightly greater sensitivity than was predicted for the vector field data. Finally,

the objective function responded to the shear wave speed in this layer, however the

variation of about 0.008 across all plausible values was too little to be of practical

value. Thus, the objective function did not resolve shear wave speed in this layer.
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Figure 30. Objective function sensitivity φH : water column. Figure depicts the
sensitivity of the objective function based on complex acoustic transfer functions
to variations in properties of the water column.
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Figure 31. Objective function sensitivity φH : layer one. Figure depicts the sen-
sitivity of the objective function based on complex acoustic transfer functions to
variations in properties of the first layer.
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Figure 32. Objective function sensitivity φH : layer two. Figure depicts the sen-
sitivity of the objective function based on complex acoustic transfer functions to
variations in properties of the second, thin elastic layer.
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Figure 33. Objective function sensitivity φH : half space. Figure depicts the sen-
sitivity of the objective function based on complex acoustic transfer functions to
variations in properties of the half space lying beneath a thin, low impedance
reflector.
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A two dimensional sensitivity analysis was performed to test the objective

function for correlation between certain geoacoustic parameters. For example, the

sensitivity of the objective function to both the compression wave speed and density

was performed to test for correlation between these two parameters. This pairing

was selected to determine if these two parameters could be resolved independently,

or if only their product could be resolved as would be the case if the objective

function was sensitive to only the characteristic impedance of the medium.

Figure 34 illustrates the behavior of the objective function when operating on

scalar field data alone. The values assumed for the compression wave speed and

density in the first sediment layer are indicated by the square marker. The range of

values for which their product, or characteristic impedance, was held constant are

indicated by the solid red line, with ±10% indicated by dashed red lines. The result

indicates that inversion of scalar field data alone should be able to independently

resolve these two parameters. Figure 35 illustrates a similar result when analyzing

the sensitivity of the objective function to changes in these parameters at a depth

of 2.1 m. In this case, the objective function was much less sensitive and was least

sensitive in the direction of constant characteristic impedance for this remote layer.

Since this layer would only influence the objective function through reflection, it

was not unexpected that the sensitivity varied most strongly with the characteristic

impedance mismatch at this interface.

Figure 36 provides equivalent results for estimation of geoacoustic properties

of the first sediment layer when only the vector field data was included in the

objective function. While the sensitivity of the objective function to properties

in this layer was reduced relative to that for the scalar objective function, the

compression wave speed and density were independently resolved. On the contrary,

at depth of 2.1 m the objective function provided good sensitivity to changes in the
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characteristic impedance only. As illustrated in Fig. 37, the contours of constant

objective function value were nearly parallel to the line of constant characteristic

impedance when only the vector field data was used. Figures 38 and 39 illustrate

the objective function sensitivity when both the scalar and vector field data were

included in the objective function. In this case, the behavior of the objective

function was largely controlled by the scalar field data.

6.2.1 Uncertainty in Buried Sensor Depths

Additional analysis was performed to explore the impact of uncertainty in

the depths of the buried sensors. Figure 40 shows the result of a two dimensional

sensitivity study performed over a range of sensor depth errors spanning 20 cm.

The objective function was computed using both the scalar and vector field transfer

functions. Sensor burial depths used in the generation of the synthetic data were

61 and 98 cm. Objective function values were computed where the sensor positions

were incorrectly estimated over the ranges illustrated in the figure. The analysis

showed that sensitivity of the objective function to sensor location errors on the

order of 5 cm could increase the value of the objective function to approximately 0.2

(with all other parameters held constant at their true values). Objective function

values of this magnitude are of the same order as computed for plausible variations

in the geoacoustic parameters of interest. Thus, the performance of inversions

based on complex acoustic transfer functions could be significantly degraded by

uncertainties in the sensor burial depths on the order of 5 cm.
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6.3 Inversion of Synthetic Data

Behavior of the inversion method was validated by inverting the same syn-

thetic data set as was used for the sensitivity study. The primary objective for

inversion of a synthetic data set was to verify the performance of the differential

evolution algorithm when operating on acoustic data for which the associated geoa-

coustic parameters were exactly known. Since it was known that a solution existed

for which the objective function was exactly zero, failure to converge under these

conditions would indicate that the proposed inverse methods were fundamentally

flawed. A second objective for the synthetic inversion was to assess the variances

of the parameter estimates under ideal conditions. Thus, the synthetic inversions

provided insight into the performance of the inversion method when operating

under the best case scenario.

A total of six inversions were performed using synthetic acoustic transfer func-

tions. Scalar acoustic, vector acoustic and combined scalar-vector acoustic transfer

functions were inverted. In addition, inversions with and without buried sensor

depth errors were performed. In all cases, synthetic data were generated using

buried sensor depths of 61 and 98 cm. Cases annotated as Inversion 1 were per-

formed using the correct buried sensor depths in the forward model during the

inversion. Cases annotated as Inversion 2 were performed using the planned sen-

sor depths of 50 and 100 cm in the forward model during the inversion. Thus,

Inversion 2 simulated the case where significant sensor burial depth errors existed.

Figure 41 illustrates the convergence performance for all of the synthetic data

inversions. The left panels depict the evolution of the best model realization over

the course of the inversions. The right panels show the objective function values

for the best 150 model realizations at the conclusion of the inversion. In all cases,

a generation was composed of 170 model realizations that were evaluated by the
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objective function. Note that the convergence rates for all cases were similar, with

no obviously significant performance differences.

Inspection of the final distribution of objective function values illustrated in

the right panels of Fig. 41 suggests that the best performance was achieved by the

inversion of vector acoustic transfer functions, particularly for the case where the

buried sensor depths were exactly known. The greatest objective function values

were achieved when scalar acoustic transfer functions were inverted.

Note that the simulation of sensor burial depth errors did not result in in-

creased objective function values when inverting combined scalar-vector transfer

functions as suggested by the marginal sensitivity analysis. Recall that the anal-

ysis of sensitivity to sensor depth errors was performed while holding all other

geoacoustic parameters constant at their correct values, a circumstance that was

most improbable in the context of the inversion process. Instead, the presence of

sensor burial depth errors resulted in convergence on a set of geoacoustic param-

eters that differed significantly from those used to generate the synthetic data set

(see Fig. 44). Therefore, assessment of inversion performance was not as simple as

evaluating the distributions of objective function values at the conclusion of the

inversion.
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Figure 41. Convergence for inversion of synthetic acoustic transfer functions. The
left panels depict the evolution of the best model realization over the course of
the inversions. The right panels show values for the best 150 model realizations at
the conclusion of each inversion. The simulated environment was parameterized
as shown in Table 10. Each generation was populated by 170 models that were
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Results for inversion of scalar acoustic transfer functions are summarized as

Fig. 42 and Table 4. Inversion 1 estimates (e.g., no sensor burial depth errors) for

the sediment density and compression wave speed in the first layer were both within

2% of their true values. Estimates in the thin, elastic layer were considerably less

accurate with errors exceeding 20%. Estimation of the characteristic impedance in

this layer was improved where the error was 8%, thus confirming the tendency for

improved estimates of the characteristic impedance relative to individual estimates

of the density and compression wave speed that was suggested by the sensitivity

analysis. Estimates of the thickness of the first and second layers were within

7% and 40% of their true values, respectively. The characteristic impedance in

the sediment half space was estimated within 3% of the true value. Independent

estimates of density and compression wave speed were not accurate. In no layer

did the inversion converge on a value for the shear wave speed.

Inversion 2 estimates (e.g. sensor burial depth errors) were poor. Density and

compression wave speed estimates drifted to the limits of the parameter bounds

(e.g. 1.0 to 2.5 gm/cm3 and 1400 to 2800 m/s). While the characteristic impedance

estimated for the first layer appears to be quite good, it was the result of the param-

eter bounds and not due to good inversion performance. Thus, it was important

to verify that the density and compression wave speed estimates had not drifted

to the parameter bounds when interpreting the characteristic impedance. Sensor

burial depth errors also degraded the ability to resolve the second layer and to

estimate the characteristic impedance in the half space. In short, the synthetic in-

version performed with sensor burial depth errors failed to converge on any of the

geoacoustic parameters, thus confirming the expected sensitivity of the acoustic

transfer functions to path length errors, and the deleterious effect on the inversion.
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Figure 42. Inversion of synthetic scalar acoustic transfer functions. Parameters of
the simulated environment are indicated by the blue dot-dash line. A thin, low
impedance elastic layer was located at a nominal depth of one meter.
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Table 4. Inversion of synthetic scalar acoustic transfer functions. The synthetic data set was generated using buried sensor
depths of 61 and 98 cm for VS1 and VS2, respectively. Inversion 1 addresses the case where the sensor depths were exactly
known. Inversion 2 treats the case where the sensor depths were not exactly known. Inversion 2 was run using buried sensor
depths of 50 and 100 cm in the forward model.

Layer Parameter Units Value Inversion 1 Inversion 2

µ σ µ σ
Water Column Depth m 16.7 16.1 0.2 17.5 0.0

Sound Speed m/s 1531 1543 4 1550 0
Sediment Layer One Layer Thickness cm 90 96 3 68 1

Sediment Density g/cm3 2.04 2.00 0.08 2.50 0.03
Compression Wave Speed m/s 1680 1677 10 1401 3
Shear Wave Speed m/s 120 98 79 147 68
Characteristic Impedance MPa·s/m 3.43 3.35 0.14 3.44 0.05

Sediment Layer Two Layer Thickness cm 20 12 5 62 3
Sediment Density g/cm3 1.68 1.27 0.26 1.15 0.04
Compression Wave Speed m/s 1583 1932 346 2794 12
Shear Wave Speed m/s 100 104 67 125 63
Characteristic Impedance MPa·s/m 2.66 2.44 0.22 3.22 0.12

Sediment Half Space Sediment Density g/cm3 2.04 2.39 0.11 2.30 0.23
Compression Wave Speed m/s 1680 1485 70 1756 240
Shear Wave Speed m/s 120 102 76 118 72
Characteristic Impedance MPa·s/m 3.43 3.54 0.21 4.01 0.23
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Results for inversion of vector acoustic transfer functions are summarized as

Fig. 43 and Table 5. Parameter estimates were improved relative to the scalar

inversion case. Estimates for density and compression wave speed in the first layer

were within 0.5% of their true values. In the second layer, they were within 10% of

their true values. Estimates of the characteristic impedance were within 1% and 4%

in the first and second layers, respectively. Layer thickness estimates were within

2% and 20%. Shear wave speed estimates were within 20% of the true values in the

first two layers. Parameter estimates in the half space were similarly improved with

density, compression wave speed and characteristic impedance estimates within

11%, 8% and 1% of their true values, respectively. Shear wave speed was not

resolved in the half space.

As before, injection of sensor burial depth errors resulted in significant degra-

dation in the parameter estimates. While the density and compression wave speed

estimates drifted off their true values, the estimates were not entirely controlled

by the parameter bounds allowed by the inversion. Therefore, estimates of the

characteristic impedance were controlled by the inversion process as opposed to

the parameter bounds. The characteristic impedance estimated for the first and

second layers were both within 5% of the true value for the first layer, suggest-

ing that the ability to resolve the second layer was lost. Inversion results also

suggested that the sensor burial depth errors had less of an impact on estimates

in the half space where the characteristic impedance was estimated within 2% of

the true value. Thus, sensor burial depth errors appear to have eliminated the

ability to resolve density and compression wave speed independently. The ability

to resolve the thin, low impedance layer was also lost. However, the inversion did

provide good estimates for the average characteristic impedance in the sediments.
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Figure 43. Inversion of synthetic vector acoustic transfer functions. Parameters
of the simulated environment are indicated by the blue dot-dash line. A thin, low
impedance elastic layer was located at a nominal depth of one meter.
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Table 5. Inversion of synthetic vector acoustic transfer functions. The synthetic data set was generated using buried sensor
depths of 61 and 98 cm for VS1 and VS2, respectively. Inversion 1 addresses the case where the sensor depths were exactly
known. Inversion 2 treats the case where the sensor depths were not exactly known. Inversion 2 was run using buried sensor
depths of 50 and 100 cm in the forward model.

Layer Parameter Units Value Inversion 1 Inversion 2

µ σ µ σ
Water Column Depth m 16.7 16.9 0.6 17.1 0.5

Sound Speed m/s 1531 1536 19 1511 15
Sediment Layer One Layer Thickness cm 90 92 2 60 3

Sediment Density g/cm3 2.04 2.03 0.07 2.36 0.06
Compression Wave Speed m/s 1680 1676 12 1412 12
Shear Wave Speed m/s 120 143 19 191 12
Characteristic Impedance MPa·s/m 3.43 3.40 0.11 3.33 0.09

Sediment Layer Two Layer Thickness cm 20 16 5 44 3
Sediment Density g/cm3 1.68 1.51 0.25 1.26 0.07
Compression Wave Speed m/s 1583 1739 287 2603 139
Shear Wave Speed m/s 100 117 33 106 27
Characteristic Impedance MPa·s/m 2.66 2.56 0.18 3.26 0.09

Sediment Half Space Sediment Density g/cm3 2.04 2.26 0.19 2.25 0.25
Compression Wave Speed m/s 1680 1544 129 1578 209
Shear Wave Speed m/s 120 106 72 100 72
Characteristic Impedance MPa·s/m 3.43 3.46 0.21 3.49 0.14
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Results for inversion of combined scalar-vector acoustic transfer functions are

summarized as Fig. 44 and Table 6. Performance of the inversion was broadly

characterized as intermediate between that for the previous two cases (e.g., scalar

transfer functions and vector transfer functions). In the absence of sensor burial

depth errors, the inversion successfully resolved the density and compression wave

speed independently. The thin, low impedance layer was also resolved. Inversion

performance in the half space was more consistent with inversion of scalar transfer

functions where only the characteristic impedance was resolved. Shear wave speed

estimates were degraded relative to those attained with vector transfer functions.

In the presence of sensor burial depth errors, the characteristic impedance was

estimated within 5% of the true value for the first layer and half space, the ability

to resolve the thin, low impedance layer having been lost.

Results for the inversion of synthetic data indicate that the best and worst

performance were obtained by inversion of vector transfer functions and scalar

transfer functions respectively. While the differences were not overwhelming, in-

version of vector acoustic transfer functions provided improved resolution of the

density and compression wave speed in the first two layers. While the ability to

resolve the thin, low impedance layer was lost by all inversions performed with

sensor burial depth errors, inversion of vector acoustic transfer functions provided

the best estimates of the characteristic impedance in an average sense.
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Figure 44. Inversion of synthetic scalar–vector acoustic transfer functions. Param-
eters of the simulated environment are indicated by the blue dot-dash line. A thin,
low impedance elastic layer was located at a nominal depth of one meter.
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Table 6. Inversion of synthetic scalar–vector acoustic transfer functions. The synthetic data set was generated using buried
sensor depths of 61 and 98 cm for VS1 and VS2, respectively. Inversion 1 addresses the case where the sensor depths were
exactly known. Inversion 2 treats the case where the sensor depths were not exactly known. Inversion 2 was run using buried
sensor depths of 50 and 100 cm in the forward model.

Layer Parameter Units Value Inversion 1 Inversion 2

µ σ µ σ
Water Column Depth m 16.7 16.7 0.3 16.0 0.0

Sound Speed m/s 1531 1549 3 1549 0
Sediment Layer One Layer Thickness cm 90 96 3 56 1

Sediment Density g/cm3 2.04 1.94 0.05 2.34 6–
Compression Wave Speed m/s 1680 1676 11 1400 1
Shear Wave Speed m/s 120 178 23 189 13
Characteristic Impedance MPa·s/m 3.43 3.25 0.09 3.28 0.07

Sediment Layer Two Layer Thickness cm 20 11 4 46 2
Sediment Density g/cm3 1.68 1.47 0.28 1.35 0.04
Compression Wave Speed m/s 1583 1593 220 2450 37
Shear Wave Speed m/s 100 132 51 140 28
Characteristic Impedance MPa·s/m 2.66 2.32 0.26 3.30 0.09

Sediment Half Space Sediment Density g/cm3 2.04 2.30 0.14 2.46 0.05
Compression Wave Speed m/s 1680 1468 61 1451 49
Shear Wave Speed m/s 120 107 74 129 67
Characteristic Impedance MPa·s/m 3.43 3.36 0.14 3.60 0.10
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6.4 Inversion of SAX04 Field Data

Acoustic field data from the SAX04 experiment were inverted for the geoacous-

tic properties of the bottom. Inversions were performed using scalar field transfer

functions, vector field transfer functions and both. Two different experiment con-

figurations were assumed. In the first (e.g., Inversion A), the buried sensor depths

were taken to be 61 and 98 cm as was estimated by a regularized inversion of

acoustic field data [1]. A second inversion (e.g., Inversion B) was performed for

which the buried sensors were assumed to have been at the intended burial depths

of 50 and 100 cm.

Among the original goals of this study was an assessment of the value that

knowledge of the vector field represented for the quality of the inversion result.

However, that question must now be refined in light of results from the sensitivity

study and synthetic data inversions. These analyses showed that information about

sediment shear wave speed was carried by the suspension response of the buried

vector sensor. Thus, it is not sufficient to discuss the value of the acoustic vector

field because the information appears to have been associated with the sensor’s

response to the field, not the field itself. In a perfect world, with undistorted

acoustic vector field measurements, sensitivity of the inversion to shear wave speed

would have been lost. The case for the other geoacoustic parameters was not so

clear.

As illustrated in Fig. 45, Inversion B converged on a solution with lower objec-

tive function value relative to Inversion A, where the assumed depths were based

on the regularized inversion estimates [1]. Thus, the data would appear to be more

consistent with sensor burial depths as originally planned. However, inversions of

synthetic data showed that the quality of two inversions performed with distinct

data sets (e.g., scalar and/or vector) could not be assessed based solely on the
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objective function distribution at the conclusion of the inversion.

Figure 45 also shows that the best objective function values achieved when

inverting the acoustic field data were considerably greater than those achieved

by the inversion of synthetic data. This was not unexpected because the syn-

thetic inversions were performed using a noise free data set and a perfect forward

model (e.g., the same code generated the synthetic data set). The addition of

experimental noise and the impact of approximations implemented in the forward

model functioned to limit the minimum objective function value attainable when

inverting real data. Results of the marginal sensitivity analysis suggests that the

ability of the inversion to resolve many of the geoacoustic parameters would have

been compromised by objective function values on the order of 0.2 as illustrated

in Fig. 45. Figures 31 through 40 suggest that objective function values on the

order of 0.2 could result in a significant loss of resolution. For example, Fig. 31

shows that sediment density values within ±20% of the true value returned objec-

tive function values less than 0.2 (with all other parameters held at their correct

values). However, this example is in some sense contrived because the probability

of the inversion converging on the correct value for all model parameters except

one is highly improbable (unless the objective function was insensitive that one pa-

rameter). The extent to which the point of convergence within the m-dimensional

parameter space may have been relocated due to noise and modeling approxima-

tions is not well understood at present. Therefore, the remaining available option

was to compare the inversion estimates to published results for the test site.
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Figure 45. Convergence for inversion of SAX04 acoustic transfer functions. The
left panels depict the evolution of the best model realization over the course of
the inversions. The right panels show values for the best 150 model realizations at
the conclusion of each inversion. Inversion A assumed buried sensor depths of 61
and 98 cm. Inversion B assumed sensors were buried at intended depths of 50 and
100 cm.
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The result for inversion of scalar field transfer functions are summarized in

Fig. 46 and Table 7. As shown in the figure, Inversion A returned a highly variable

and improbable set of parameter estimates. For example, this inversion returned

compression wave speed estimates ranging from 1595 to 2669 m/s within the top

23 cm of sediment. Inversion B returned a more simple parameterization, hav-

ing reduced the environment to a 50 cm layer overlying a sediment half space.

However, the density estimate in this first layer drifted to the parameter bound of

2.5 gm/cm3. The compression wave speed estimate of 1610 m/s in the first layer

was within 4% of the reported value. The density (1.99 gm/cm3) and compression

wave speed (1742 m/s) estimates in the half space were both within 4% of nominal

values reported for the test site. The inversion did not converge on values for shear

wave speed.
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Figure 46. Inversion of SAX04 scalar acoustic transfer functions. Inversion A
assumed buried sensor depths of 61 and 98 cm below the seafloor as reported [1].
Inversion B assumed sensors were buried at intended depths of 50 and 100 cm below
the seafloor. The blue dot-dash boxes accompanying the density, compression wave
speed and characteristic impedance bound the reported values in the top meter of
sediment.
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Table 7. Inversion of SAX04 scalar acoustic transfer functions. Estimate A assumed buried sensor depths of 61 and 98 cm
below the seafloor as reported [1]. Estimate B assumed sensors were buried at intended depths of 50 and 100 cm below the
seafloor.

Layer Parameter Units Estimate A Estimate B

µ σ µ σ
Water Column Depth m 16.7 0.02 16.9 0.0

Sound Speed m/s 1541 1 1546 1
Sediment Layer One Layer Thickness cm 11 2 50 2

Sediment Density g/cm3 2.43 0.09 2.49 0.01
Compression Wave Speed m/s 2669 145 1610 32
Shear Wave Speed m/s 99 73 197 15
Characteristic Impedance MPa·s/m 6.26 0.35 4.02 0.08

Sediment Layer Two Layer Thickness cm 12 4 – –
Sediment Density g/cm3 1.97 0.46 – –
Compression Wave Speed m/s 1595 238 – –
Shear Wave Speed m/s 115 74 – –
Characteristic Impedance MPa·s/m 3.07 0.41 – –

Sediment Layer Three Layer Thickness cm 26 4 – –
Sediment Density g/cm3 2.05 0.21 – –
Compression Wave Speed m/s 2461 253 – –
Shear Wave Speed m/s 67 76 – –
Characteristic Impedance MPa·s/m 4.99 0.34 – –

Sediment Half Space Sediment Density g/cm3 2.50 0.01 1.99 0.06
Compression Wave Speed m/s 1401 3 1742 43
Shear Wave Speed m/s 86 76 73 85
Characteristic Impedance MPa·s/m 3.49 0.01 3.47 0.12
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Results for inversion of vector field transfer functions are summarized in Fig. 47

and Table 8. Once again, Inversion A returned highly variable and improbable

estimates for the density and compression wave speed in the sediment. While the

shear wave speed converged on a value of 21 m/s in the half space, the estimate

was assessed as unreliable. Recall that the shear wave speed was used to compute

velocity transfer functions that applied only at the depth of each buried vector

sensor. The velocity transfer functions computed from the shear wave speeds were

used to compensate for corruption of vector field data provided by the buried vector

sensors. Since the sediment half space to which this shear wave speed estimate was

applied contained both buried vector sensors, it would only be reliable in the case

where the shear wave speed was the same at both buried sensor depths.

Inversion B returned an unusual result in that the environmental parameter-

ization was not simplified. Instead, the third layer and half space boundary were

located at a depth of more than 2.5 m, thus diminishing their influence over the

objective function and inversion outcome. This was the only occasion that the

inversion process adopted this method of effectively simplifying the environmental

parameterization, as opposed to reducing layer depths to values approaching zero

as was intended during development of the software. The parameter estimates

returned by this inversion were generally improbable, with the possible exception

of the compression wave speed in the top 76 cm of sediment where the estimate of

1583 m/s was within 6% of the nominal value reported for this site (e.g. 1680 m/s).
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Figure 47. Inversion of SAX04 vector acoustic transfer functions. Inversion A
assumed buried sensor depths of 61 and 0.98 cm below the seafloor as reported
[1]. Inversion B assumed sensors were buried at intended depths of 50 and 100 cm
below the seafloor.
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Table 8. Inversion of SAX04 vector acoustic transfer functions. Estimate A assumed buried sensor depths of 61 and 98 cm
below the seafloor as reported [1]. Estimate B assumed sensors were buried at intended depths of 50 and 100 cm below the
seafloor.

Layer Parameter Units Estimate A Estimate B

µ σ µ σ
Water Column Depth m 17.3 0.1 16.0 0.0

Sound Speed m/s 1547 1 1546 2
Sediment Layer One Layer Thickness cm 15 3 76 3

Sediment Density g/cm3 1.45 0.16 1.40 0.06
Compression Wave Speed m/s 2611 189 1568 33
Shear Wave Speed m/s 114 74 3 4
Characteristic Impedance MPa·s/m 3.72 0.39 2.19 0.09

Sediment Layer Two Layer Thickness cm 20 4 188 5
Sediment Density g/cm3 1.08 0.07 1.03 0.04
Compression Wave Speed m/s 2168 129 2349 70
Shear Wave Speed m/s 109 76 103 74
Characteristic Impedance MPa·s/m 2.36 0.12 3.17 0.02

Sediment Layer Three Layer Thickness cm – – 178 14
Sediment Density g/cm3 – – 1.98 0.21
Compression Wave Speed m/s – – 1614 134
Shear Wave Speed m/s – – 99 80
Characteristic Impedance MPa·s/m – – 3.17 0.02

Sediment Half Space Sediment Density g/cm3 2.44 0.08 1.15 0.13
Compression Wave Speed m/s 1402 5 1481 107
Shear Wave Speed m/s 21 4 133 63
Characteristic Impedance MPa·s/m 3.37 0.11 1.73 0.13
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The result for inversion of combined scalar-vector field transfer functions are

summarized in Fig. 48 and Table 9. Inversion A returned highly variable and

improbable estimates for the density and compression wave speed in the sediments.

Estimates for Inversion B were more consistent with expectations, particularly in

the half space. The lower panels of Fig. 48 illustrate the most promising results

for the inversion of acoustic transfer functions. Both Inversion A and B returned

estimates for the characteristic impedance that were consistent with each other

and also with expectations for the test site. Perhaps most noteworthy was that

both inversion results included a low impedance boundary located at a depth of

approximately 60 cm. This is consistent with the hypothesis of a low impedance

layer located at a depth of less than one meter that was offered to explain features

in the SAX04 data set that were inconsistent with a sandy sediment half space [1].

A noteworthy feature of these inversions was the shear wave speed estimates.

Two distinct and consistent sets of estimates were provided, one at each sensor

depth. The shear wave speed at the depth of the shallow sensor (e.g., VS1) was

estimated by Inversions A and B as 34 and 35 m/s, respectively. Estimates at the

deeper sensor (e.g., VS2) were 74 and 69 m/s. The estimated values are generally

consistent with regressions reported by Hamilton [2] for compression wave and

shear wave speed in sandy sediments. The shear wave speed returned by Hamilton’s

regression was 52 m/s. These estimates were not however consistent with values

based on SAX99 measurements [3], where the shear wave speed was reported as

120 m/s. At least two factors may account for the difference. First, disturbance

of the seabed by the passage of Hurricane Ivan shortly before the experiment

may have disrupted the bottom such that shear speeds were reduced. Also, the

possibility that the act of sensor burial may have influenced the environment local

to the sensors cannot be ruled out.
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Figure 48. Inversion of SAX04 scalar–vector acoustic transfer functions. Inversion
A assumed buried sensor depths of 61 and 98 cm below the seafloor as reported
[1]. Inversion B assumed sensors were buried at intended depths of 50 and 100 cm
below the seafloor.
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Table 9. Inversion of SAX04 scalar–vector acoustic transfer functions. Estimate A assumed buried sensor depths of 61 and
98 cm below the seafloor as reported [1]. Estimate B assumed sensors were buried at intended depths of 50 and 100 cm below
the seafloor. Note that summary results for the characteristic impedance of sediments were added for comparison.

Layer Parameter Units Estimate A Estimate B

µ σ µ σ
Water Column Depth m 16.5 0.3 16.2 0.0

Sound Speed m/s 1550 2 1544 1
Sediment Layer One Layer Thickness cm 26 7 63 6

Sediment Density g/cm3 1.25 0.20 2.22 0.05
Compression Wave Speed m/s 2471 267 1517 19
Shear Wave Speed m/s 93 73 35 3
Characteristic Impedance MPa·s/m 3.07 0.21 3.37 0.09

Sediment Layer Two Layer Thickness cm 37 5 – –
Sediment Density g/cm3 2.49 0.02 – –
Compression Wave Speed m/s 1433 41 – –
Shear Wave Speed m/s 34 3 – –
Characteristic Impedance MPa·s/m 3.60 0.13 – –

Sediment Half Space Sediment Density g/cm3 2.14 0.11 1.88 0.12
Compression Wave Speed m/s 1415 4 1680 108
Shear Wave Speed m/s 74 11 69 7
Characteristic Impedance MPa·s/m 3.01 0.15 3.15 0.16
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6.5 Discussion and Summary

Analysis results for inversion of complex acoustic transfer functions were pre-

sented. The analysis included a study of the objective function sensitivity to the

geoacoustic parameters, inversions of a synthetic data set designed to emulate the

geoacoustic parameterization reported for the test site, and inversions of acoustic

field data collected during the SAX04 experiment.

The purpose of the sensitivity analysis was to numerically verify that the

objective function Eq. 69 was responsive to variations in the geoacoustic param-

eters of interest such that a directed search algorithm could successfully exploit

the behavior of the objective function to infer information about the geoacoustic

environment. The study also assessed the relative value of information carried

by the acoustic scalar and vector fields, to include the suspension response of the

buried acoustic vector sensors. The study showed that the objective function was

reasonably well balanced in the estimated parameters. The marginal sensitivity of

the objective function was of the same order with respect to all of the geoacoustic

parameters with one exception. It was shown that the objective function was not

sensitive to the shear wave speed unless one of the buried vector sensors was in

direct communication with the sediment in question and that a density contrast

existed between the sensor and the sediment. The latter requirement was certain

to be satisfied for realistic sediments as the TV–001 vector sensors were specifically

designed to displace their own mass in seawater.

Inversions of a synthetic data set were performed to verify that the process

returned valid parameter estimates when operating under ideal conditions. It was

found that all three inversion methods (e.g. scalar, vector and scalar-vector) con-

verged on the correct solution. Inversions that included vector field data performed

somewhat better than inversion of scalar field data alone. With the exception of
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shear wave speed, it was not clear that the improvement was the result of a quali-

tative difference in information provided by the vector field measurements. When

sensor burial depth errors were injected into the inversion, the ability to indepen-

dently estimate the density and compression wave speed was degraded. However,

estimates of the characteristic impedance remained reasonably accurate when the

data set included measurements of the vector acoustic field.

Finally, inversions of field data collected during the SAX04 experiment were

presented. While estimates of particular parameters were suggestive of the ex-

pected results, only the inversion of combined scalar-vector transfer functions

returned a coherent and consistent depiction of the depth dependent sediment

properties. However, even in this case, independent estimates of the density and

compression wave speed were not attainable. Instead, the characteristic impedance

of the sediments appear to have been estimated reasonably well. The shear wave

speed at the depths of the two buried vector sensors were also estimated.
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CHAPTER 7

Inversion of Specific Acoustic Impedance

7.1 Inversion Data

The specific acoustic impedance provided an alternative approach to inversion

of scalar and vector field data. Where use of acoustic transfer functions relied on

the ratio of like acoustic quantities measured at two different locations, the inver-

sion of impedance used the ratio of dissimilar quantities measured at a collocated

point. Since complex acoustic transfer functions vary strongly with distance, errors

in the sensor locations defining the end points for the acoustic path had a delete-

rious effect on inversion performance. The specific acoustic impedance, computed

as the ratio of the acoustic pressure to particle velocity at a point, may reduce

the adverse impact of sensor location uncertainties by eliminating errors in the

measurement of sensor-to-sensor separations. Despite this relative improvement,

sensor position errors may still degrade the performance of impedance based in-

versions, particularly where reflected acoustic energy is a significant component of

the total signal.

Recall that the complex specific acoustic impedance used to support the in-

versions was provided for the buried sensors as Eq. 85 and restated below as

Ẑ(ε)
a (ω,~rn) =

P (ω,~rn)

Us (ω,~rn, ρn, csn)
=

H
(p)
a (ω,~r1, ~rn)

H
(u)
a (ω,~r1, ~rn)Hs (ω, n)

, (94)

where Hs (ω, n) = H
(ε)
s (ω, ρn, csn) when sensor n was beneath the seafloor and

Hs (ω, n) = H
(f)
s ≡ 1 when sensor n was suspended above the seafloor.

Figure 49 illustrates the specific acoustic impedance calculated at each of

four acoustic vector sensors. Data used to compute the impedance were identical

to that used for transfer function calculations. The real and imaginary parts of

the impedance are provided in the upper and lower panels, respectively. Vector
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sensors 5 and 6 were suspended above the seafloor at 10 and 25 cm, respectively.

Vector sensors 1 and 2 were buried beneath the seafloor at nominal depths of

50 and 100 cm, respectively. The sensor that provided data for each impedance

measurement is indicated by the legend subscripts.

In considering the information that may be carried by the impedance, it is

instructive to recall the trivial case of a plane wave propagating in free space as

was discussed in section 1.2 (see page 4). In the case of a plane propagating wave,

the specific acoustic impedance observed by an acoustic vector sensor would be

equal to the characteristic impedance of the medium. Approximate values for the

characteristic impedance of the seawater and sandy sediments during SAX04 were

1.6x106 and 3.4x106 Pa·s/m, respectively.

Information about the local environment was reflected as differences between

the specific acoustic impedance and the characteristic impedance, including vari-

ations with frequency as illustrated in Fig. 49. In particular, any variation of

the measured specific acoustic impedance from a constant, purely real quantity

(e.g. characteristic impedance) represents either a feature of the environment that

has influenced the wave field, or some distortion of the measurement as might

occur in the case of a frequency dependent suspension response.

7.2 Objective Function Sensitivity Analysis

Sensitivity of the objective function to the geoacoustic parameters of interest

was repeated to permit comparison of inversions based on impedance with those

based on acoustic transfer functions. The analysis was based on the same syn-

thetic data sets for both cases, having adopted the geoacoustic parameterization

reported for the SAX04 experiment site [1]. The analysis was performed to deter-

mine if an objective function based on impedance would be less sensitive to sensor

position errors than objective functions based on acoustic transfer functions as
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Figure 49. Specific acoustic impedance Za. Data measured with acoustic vector
sensors VS1, VS2, VS5 and VS6. Error bars indicate one standard deviation.

127



was postulated. In addition, the analysis enabled a comparison of the sensitivity

of these two objective function types to the geoacoustic parameters of interest. In

the discussion that follows, sensitivity of the impedance based objective function

is compared to sensitivity of the combined scalar-vector acoustic transfer function.

Objective functions based on the acoustic transfer functions included both scalar

and vector field data. Particulars of the geoacoustic parameterization adopted for

this sensitivity study were as reported for the test site and were provided as Table 3

(see page 86).

Figure 50 illustrates the sensitivity of both the impedance and transfer func-

tion based objective functions to the depth and sound speed in the water column.

Recall that estimation of the water column properties was not among the parame-

ters of interest. Thus, objective functions were sought to minimize the influence of

the water column properties. As shown in the figure, sensitivity of the impedance

based objective function to the water column properties was reduced relative to

that based on acoustic transfer functions. In addition, objective function values

were virtually unchanged whether the acoustic vector field measurements in the

sediment were modeled as having been exact or distorted by a frequency dependent

suspension response of the buried sensors.

Figure 51 illustrates sensitivity of the objective function to the geoacoustic

parameters of the first sandy layer. As shown in the figure, sensitivity of the

objective function to the thickness of the layer and to the sediment density were

increased relative to that realized with acoustic transfer functions. On the contrary,

the sensitivity of the impedance based objective function to the compression wave

speed was decreased relative to the transfer function based objective function.

Finally, sensitivity of the objective function to estimation errors in the sediment

shear wave speed was slightly increased. Only in the case of sediment shear wave
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speed did the suspension response of the positively buoyant vector sensor result

in a significant change in sensitivity relative to the undistorted measurement of a

neutrally buoyant sensor.

Figure 52 illustrates behavior of the impedance based objective function for

variations in the geoacoustic properties of a thin muddy layer located at a nominal

depth of one meter. As shown in the figure, the sensitivity of the objective function

was generally increased, with the exception of the shear wave speed where the

sensitivity was essentially unchanged.

Behavior of the objective function for variations in the geoacoustic properties

of the sediment at a depth of 2.1 m is illustrated as Fig. 53. As was the case for

the thin muddy layer, the sensitivity of the impedance based objective function to

the sediment properties was generally increased relative to those based on acoustic

transfer functions. However, the small increase in the shear wave speed sensitivity

was inconsequential as has been shown for all cases in which the sensor is not

embedded in the material in question.

A two dimensional sensitivity analysis was repeated to test the impedance

based objective function for correlation between the sediment density and com-

pression wave speed. Figure 54 illustrates the sensitivity of the objective function

to variations in the geoacoustic properties of the first sandy layer. Values assumed

for the compression wave speed and density are indicated by the square marker,

with the solid red line representing the constant characteristic impedance. The

red dashed lines indicate ±10% variation in the characteristic impedance of the

medium. As shown in the figure, the correlation between these two parameters

was modest as evidenced by elongation of the contours in the direction of constant

characteristic impedance. However, there remained a single minimum within the

inversion bounds that should facilitate the resolution of these two parameters.
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Figure 55 illustrates a similar result when analyzing the sensitivity of the

objective function to changes in these parameters at a depth of 2.1 m. In this

case, the objective function was much less sensitive and was least sensitive in

the direction of constant characteristic impedance for this remote layer. Since

this layer would only influence the objective function through reflection, it was

not unexpected that the sensitivity varied most strongly with the characteristic

impedance mismatch at this interface.

7.2.1 Sensor Location Errors

Figure 56 illustrates the sensitivity of the impedance based objective function

to errors in the sensor positions. As shown in the figure, the impedance based

objective function was less sensitive to errors in the sensor locations than objective

functions based on the complex acoustic transfer functions (see Fig. 40).

The general reduction in sensitivity to uncertainty in the sensor positions

resulted from the difference in the acoustic quantity used. Since the acoustic

transfer functions vary strongly with distance, errors in the sensor locations equate

to uncertainty in the path length over which the transfer function was computed.

While less important for the magnitude of the transfer function, the phase error

can be significant, particularly at higher frequencies. Since the specific acoustic

impedance was computed at a point (as opposed to across a finite distance), it

tended to be less affected by sensor location errors. Also note that Fig. 56 shows

that the objective function was more sensitive to depth estimation errors for VS1

than to the deeper of the two buried sensors, VS2. Recall that the environmental

parameterization for the synthetic data set included a low impedance reflector with

a mid-plane depth of one meter. Thus, the greater sensitivity shown by the shallow

sensor was due to changes in the specific acoustic impedance as the distance from

this reflector was varied.
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7.3 Inversion of Synthetic Data

Inversion of a synthetic data set was conducted to verify performance of the

method under ideal conditions. The environment used to generate the synthetic

data set was characterized by a thin elastic layer as was used for the sensitivity

study. Inversions with and without buried sensor depth errors were performed. In

both cases, synthetic data were generated using buried sensor depths of 61 and

98 cm. Inversion 1 was performed using the correct buried sensor depths in the

forward model during the inversion. Inversion 2 was performed using the planned

sensor depths of 50 and 100 cm in the forward model during the inversion. Thus,

Inversion 2 simulated the case where significant sensor burial depth errors existed.

Figure 57 illustrates the convergence behavior for inversion of the synthetic

data set. The right panel shows the objective function values for the best 150

realizations tested by the inversion. It was this subset of the population that was

used to estimate the probability distributions for the parameter estimates. The left

panel provides the evolution of the best objective function value over the course

of the inversion. As shown in the figure, the value of the best objective function

decreased most quickly in the first 150 generations, after which convergence pro-

ceeded more slowly. Results for the inversion of synthetic acoustic impedance are

summarized as Fig. 58 and Table 10.

Recall that the parameterization of the environment embedded in the inver-

sion included a maximum of three finite sediment layers overlying a sediment half

space. The method was designed to permit the elimination of unnecessary layers

by omitting them from the forward model at run time. Inversion of synthetic data

confirmed that the method reduced the complexity of the environmental param-

eterization to the minimum required by converging on a solution with only two

finite sediment layers overlying a sediment half space as illustrated in Fig. 58.
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Figure 57. Convergence for inversion of synthetic acoustic impedance. The left
panel depicts the evolution of the best model realization over the course of the
inversions. The right panel shows values for the best 150 model realizations at the
conclusion of each inversion. Each generation was populated by 170 models that
were evaluated by the objective function.

In the absence of sensor burial depth errors, estimates of density and compres-

sion wave speed in the first layer were within 1% of the true values. The estimated

thickness of the layer was within 3% and the shear wave speed was within 16%.

Estimation errors in the thin, second layer ranged from less than 1% for the com-

pression wave speed to 20% for the layer thickness. As was the case for inversion

of acoustic transfer functions, only the characteristic impedance was resolved in

the half space where the estimation error was 1%.

When sensor burial depth errors were injected into the analysis, the inversion

did not independently resolve density and compression wave speed. However, not

only was the characteristic impedance resolved with good precision, but the thin

elastic layer was detected and resolved where the error in the estimated thickness

was 1%. This was the only case in which the ability to resolve the thin elastic layer

was not lost with the injection of sensor burial depth errors.
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Figure 58. Inversion of synthetic specific acoustic impedance. Parameters of the
simulated environment are indicated by the magenta dot-dash line. A thin, low
impedance elastic layer was located at a nominal depth of one meter.
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Table 10. Inversion of synthetic specific acoustic impedance. The synthetic data set was generated using buried sensor depths
of 61 and 98 cm for VS1 and VS2, respectively. Estimate 1 addresses the case where the sensor depths were exactly known.
Estimate 2 treats the case where the sensor depths were not exactly known. This inversion was run using buried sensor
depths of 50 and 100 cm in the forward model.

Layer Parameter Units Value Estimate 1 Estimate 2

µ σ µ σ
Water Column Depth m 16.7 16.6 0.5 16.6 0.2

Sound Speed m/s 1531 1531 19 1547 8
Sediment Layer One Layer Thickness cm 90 87 6 76 1

Sediment Density g/cm3 2.04 2.04 0.08 2.39 0.02
Compression Wave Speed m/s 1680 1663 59 1401 3
Shear Wave Speed m/s 120 139 26 159 11
Characteristic Impedance MPa·s/m 3.43 3.39 0.06 3.34 0.03

Sediment Layer Two Layer Thickness cm 20 16 4 17 3
Sediment Density g/cm3 1.68 1.63 0.16 1.69 0.14
Compression Wave Speed m/s 1583 1592 137 1570 119
Shear Wave Speed m/s 100 93 26 98 17
Characteristic Impedance MPa·s/m 2.66 2.58 0.13 2.63 0.06

Sediment Half Space Sediment Density g/cm3 2.04 2.41 0.10 2.41 0.03
Compression Wave Speed m/s 1680 1445 54 1401 5
Shear Wave Speed m/s 120 89 67 64 2
Characteristic Impedance MPa·s/m 3.43 3.47 0.09 3.38 0.04
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7.4 Inversion of SAX04 Field Data

Acoustic field data from the SAX04 experiment were inverted for the geoa-

coustic properties of the bottom. Two different experiment configurations were

assumed. In the first (e.g., Inversion A), the buried sensor depths were taken to

be 61 and 98 cm. A second inversion (e.g., Inversion B) was performed for which

the buried sensors were assumed to have been at the intended depths of 50 and

100 cm.

Convergence behavior and objective function values for the inversions are pro-

vided as Fig. 59. Both inversions (e.g., A and B) produced similar convergence

behavior, although inversion B ultimately converged on a solution set with slightly

lower objective function values. Comparison of the objective function values ob-

tained using real and synthetic (see Fig. 57) data reveals that the real data inversion

did not achieve as low an objective function value as the synthetic case. As was

discussed for the inversion of acoustic transfer functions, it was not unexpected

that inversion of synthetic data would yield a better result as measured by the ob-

jective function values. Synthetic data inversions benefited from what in effect was

perfect physics, an idealized environment and noise free data. It was unavoidable

that results for inversion of real data would be impacted by the assumptions and

approximations of the models used and the presence of noise in the data set.

Inversion results are summarized in Fig. 60 and Table 11. In both cases the

environmental parameterization was simplified to a single layer approximately two

meters thick overlying a sediment half space. Both inversions returned parameter

estimates that were consistent with one another, despite the different sensor posi-

tions that were assumed by each. This tends to confirm results of the sensitivity

study and synthetic data inversions where it was concluded that inversion of the

specific acoustic impedance should be less affected by uncertainty in the buried
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Figure 59. Convergence for inversion of SAX04 acoustic impedance. The left
panel depicts the evolution of the best model realization over the course of the
inversion. The right panel shows the objective function values for the best 150
model realizations. Inversion A assumed buried sensor depths of 61 and 98 cm
below the seafloor. Inversion B assumed sensors were buried at intended depths of
50 and 100 cm below the seafloor.

sensor depths. In neither case were the estimates for density and compression

wave speed reliable, as was also the case when inverting acoustic transfer func-

tions. However, estimates of the characteristic impedance were consistent with

expectations for this test site.

The shear wave speed estimate may not have been reliable because the layer

to which this parameter was assigned contained both buried vector sensors. As

discussed previously, the shear wave speed estimates were integrated into calcula-

tions of the velocity transfer functions for each of the buried vector sensors. The

velocity transfer functions compensated for corruption in the vector field data that

resulted from the frequency dependent sensor suspension response for the buried

sensors. Therefore, unless the shear wave speed at both sensor depths were the

same, the estimate is not necessarily valid physically.
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Figure 60. Inversion of SAX04 specific acoustic impedance. Inversion A assumed
buried sensor depths of 61 and 98 cm. Inversion B assumed sensors were buried at
the intended depths of 50 and 100 cm. Parameter bounds for density, compression
wave speed and characteristic impedance shown as the blue dash-dot line were
based on reports from the test site [1].
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Table 11. Inversion of SAX04 specific acoustic impedance. Inversion A assumed buried sensor depths of 61 and 98 cm.
Inversion B assumed sensors were buried at intended depths of 50 and 100 cm as intended.

Layer Parameter Units Inversion A Inversion B

µ σ µ σ
Water Column Depth m 16.3 0.1 16.2 0.2

Sound Speed m/s 1530 21 1501 6
Sediment Layer One Layer Thickness cm 199 1 199 1

Sediment Density g/cm3 2.20 0.07 2.30 0.04
Compression Wave Speed m/s 1455 44 1409 15
Shear Wave Speed m/s 59 6 59 3
Characteristic Impedance MPa·s/m 3.20 0.07 3.23 0.05

Sediment Half Space Sediment Density g/cm3 2.41 0.10 2.29 0.09
Compression Wave Speed m/s 1681 54 1684 44
Shear Wave Speed m/s 89 67 106 81
Characteristic Impedance MPa·s/m 3.96 0.13 3.84 0.09
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7.5 Discussion and Summary

A method for the inversion of acoustic scalar and vector field data was in-

troduced in which the inversion operated on the derivative acoustic quantity of

specific acoustic impedance. It was shown that the sensitivity of this method to

uncertainties in the depths of the buried sensors was relatively less than that pre-

dicted for inversion of complex acoustic transfer functions discussed in the previous

chapter.

A synthetic data set was generated to support both the sensitivity study and

synthetic data inversions. The environmental parameterization used to generate

the synthetic data was designed to emulate the conditions reported for this test

site, including the thin elastic layer located at a nominal depth of one meter. Both

the sensitivity study and inversion of the synthetic data suggested that the method

would provide good performance, including greater tolerance of sensor burial depth

errors relative to inversion of acoustic transfer functions.

Data collected during the SAX04 experiment was inverted for the depth de-

pendent properties of the seafloor at the test site. The inversion was performed

with two distinct parameterizations for the buried sensor depths. In the first in-

version, the sensor depths were taken to be as estimated by a regularized inversion

of acoustic data (e.g., 61 and 98 cm). In the second inversion, the sensor depths

were taken to be as specified by the experiment plan (e.g. 50 and 100 cm). Results

returned by both inversions were consistent in that each converged on a simplified

environment characterized by a single sediment layer overlying a sediment half

space. While neither inversion converged on plausible values for the density and

compression wave speed for the surficial sediments, both converged on consistent,

plausible values for the characteristic impedance of the sediment.
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CHAPTER 8

Summary and Conclusions

8.1 Summary

The primary objective of this work was to test the postulate that the acoustic

vector field contains information that could be used to improve estimates of the

geoacoustic properties of the sea floor. This question was not addressed in the con-

text of a traditional geoacoustic inverse problem where acoustic data are typically

collected over paths lengths on the order of kilometers. Instead, data collected for

this experiment sampled less than one wavelength of the seismo-acoustic field using

sensors deployed in close proximity to the seafloor, on both sides of the interface.

Thus, new inverse problem approaches were required to test the postulate that in-

formation in the acoustic vector field could measurably improve a given parameter

estimate.

Inverse methods developed for this work operated on complex representations

of the acoustic field. In the first instance, complex acoustic transfer functions be-

tween various pairs of acoustic vector sensors were inverted for the local geoacoustic

properties. Inversion of acoustic transfer functions was selected to facilitate com-

parison of inversion results using only scalar field data, only vector field data and

when both were included. An objective function was derived to guide a directed

search for the set of parameter estimates that resulted in the lowest mismatch

between the observed data and the prediction of a forward model, in this case a

seismo-acoustic code based on wavenumber integration. An evolutionary algorithm

was used to perform the directed search.

In the second instance, the complex specific acoustic impedance was inverted.

Where the transfer functions were based on the ratio of like acoustic quantities ob-

served at distinct locations, the specific acoustic impedance was based on the ratio
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of distinct quantities computed at a point. The performance of the impedance

based inversions were compared to the inversion of combined scalar and vector

transfer functions, there being no good analogue to impedance that does not in-

clude the vector field. Among the more favorable characteristics of the impedance

based inversion was greater tolerance for uncertainties in the depths of the buried

sensors, relative to inversion of acoustic transfer functions.

The central question addressed by this research was answered in the affirma-

tive, albeit with a significant qualification. Data collected with the vector channels

of a small number of acoustic vector sensors were used to improve estimates of the

geoacoustic properties of the seafloor, most significantly the shear wave speed.

However, information about the shear wave speed was shown to reside in the

frequency dependent suspension responses of the buried sensors, not within the

vector field itself. As shown by the sensitivity study, estimates of shear wave speed

would not have been successful were the vector channel data not corrupted by the

suspension response.

8.2 Conclusions

Particular questions posed at the beginning of this research sought to examine

the utility of acoustic vector sensors for use in geoacoustic inversion experiments.

In addition to addressing the central question of utility, these questions also sought

to identify the limitations applicable to vector field inversion.

Did the vector acoustic field carry exploitable information about the
environment that was not available in the scalar field?

In the context of the SAX04 experiment, clear evidence for the presence of

uniquely exploitable vector field information was not compelling. While there were

certain improvements observed when vector field data was added to the inversion,

it cannot be stated with great confidence that the improvements were due to
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the unique attributes of information carried by the vector field as opposed to

improvement due simply to the availability of more information in a general sense.

Specifically, it is not known whether equivalent performance gains could have been

realized through the use of additional scalar field data, or if the gains were exclusive

to information carried by the vector acoustic field. As a special case, scalar field

sampling could be designed to yield estimates of the scalar field gradient, thus

providing information equivalent to that provided by an inertial vector sensor

through momentum considerations alone (Eq. 1). Given that the scalar and vector

fields are coupled, questions of the relative merit of information provided by each

are incomplete when separated from the context of the experiment.

Was information carried by the vector acoustic field useful only at the
point of measurement, or was it also used to formulate parameter esti-
mates at locations removed from the point of measurement?

This research did not produce evidence that information carried by the vector

field was qualitatively different from that in the scalar field. As a result, we

might expect the estimates resulting from use of vector field data to have similar

attributes to those gained with scalar field data. Taking the inversion of acoustic

transfer functions as an example, parameters estimated based on observations at

two distinct points represent the average properties over the path between those

points. Among the parameters estimated by these inversion approaches was the

layer thickness. The geophysical properties associated with each layer represent

averages within the layer. This applies to estimates deriving their information

from the acoustic vector field itself, exclusive of any information that may have

been added by the suspension response of the buried sensors.

Interpretation of shear wave speed estimates demanded more care. In the in-

versions performed for this study, the shear wave speeds were point estimates local

to each buried vector sensor. The best shear wave estimates resulting from this
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study were 35 m/s (σ = 3) and 69 m/s (σ = 7) at 50 cm and 100 cm depth, respec-

tively. However, the shear wave speed estimate returned by the impedance based

inversion was 59 m/s (σ = 3) for a layer that contained both of the buried vector

sensors. This result does not necessarily represent the average shear wave speed for

sediments located between the buried vector sensors in a physical sense. Instead,

it represents the shear wave speed that best accounted for the data corruption due

to the suspension responses of both sensors in a least squares sense.

Was the suspension response of an acoustic vector sensor used to im-
prove geoacoustic parameter estimates? Did the improvement apply to
only certain parameters and not others?

Estimates for all geoacoustic parameters were improved by knowledge of the

suspension response. In the case of shear wave speed estimates, it was the frequency

dependent suspension response directly, that carried the relevant information. Es-

timation of all other parameters benefited by accounting for the transfer function

between the acoustic vector field and vector data provided by the buried sensors.

Systematic errors in the vector channel data were reduced by incorporation of the

suspension dynamics in the inverse method.

Figure 61 presents an estimate for geoacoustic properties of the SAX04 test

site that includes contributions from the inversion of both acoustic transfer func-

tions and specific acoustic impedance. Only the characteristic impedance of the

sediments is shown, neither inverse method having successfully resolved the density

and compression wave speed independently. Also shown is the shear wave speed

estimated at the depth of each buried sensor, and the objective function values

for the best model realizations. Note that the depth dependent estimate for the

characteristic impedance is consistent with the nominal value of 3.43x106 Pa·s/m

and in the depth of the low impedance interface (< 1 m) reported by Osler [1].
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8.3 A Final Thought

Acoustic vector sensors have significant potential to advance the art of geoa-

coustic inversion. However, the complications introduced by the difficulty of mak-

ing an accurate measurement of the seismo-acoustic vector field cannot be over-

stated. The tacit assumption often made by those newly acquainted with acoustic

vector sensors is that data provided by the vector channels represent the vector

field with adequate fidelity. The fact that real vector sensors invariably involve a

mount, or other constraint on the motion of the sensor case, may be under ap-

preciated. In the case of the inertial class of vector sensors used for this study,

the result was the placement of a frequency dependent transfer function between

the acoustic field variable and data representing that field variable. Analysis of

the transfer function for probable values of sediment density and shear wave speed

indicated the presence of a sensor suspension resonance within the analysis band.

This frequency response function undoubtedly corrupted the vector channel data.

However, the nature of that data corruption carried useful information about the

environment in which the sensors were embedded, a truly fortuitous outcome.
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Gerstoft, P. and Mecklenbräuker, C. F., “Ocean acoustic inversion with estimation
of a posteriori probability distributions,” Journal of the Acoustical Society of
America, vol. 104, no. 2, pp. 808–819, Aug. 1998.

Guza, R. T. and O’Reilly, W., “Attenuation of ocean waves by ripples on the
seafloor,” Scripps Institution of Oceanography, La Jolla, CA, Tech. Rep., Mar.
2007.

Hamilton, E. L., “Vp / Vs and Poisson’s ratios in marine sediments,” Journal of
the Acoustical Society of America, vol. 66, no. 4, pp. 1093–1101, Oct. 1979.

Han-Shu, P. and Feng-Hua, L., “Geoacoustic inversion based on a vector hy-
drophone array,” Chinese Physics Letters, vol. 24, no. 7, pp. 1977–1980, July
2007.

Heard, G. J., Hannay, D., and Carr, S., “Genetic algorithm inversion of the 1997
geoacoustic inversion workshop test case data,” Journal of Computational
Acoustics, vol. 6, no. 1, pp. 61–71, Mar. 1998.

Hines, P. C., Osler, J. C., Scrutton, J. G. E., Chapman, D. M. F., and Lyons, A.,
“Using buried vector sensors to examine seabed layering in sandy sediment,”
Journal of the Acoustical Society of America, vol. 120, no. 5, p. 3181, Nov.
2006.

Hines, P. C., Osler, J. C., Scrutton, J. G. E., and Halloran, L. J. S., “Time-of-flight
measurements of acoustic wave speed in sandy sediment at 0.6–20 kHz,” IEEE
Journal of Oceanic Engineering, vol. 35, no. 3, pp. 502–515, July 2010.

Jensen, F. B., Kuperman, W. A., Porter, M. B., and Schmidt, H., Computational
Ocean Acoustics, ser. Modern Acoustics and Signal Processing. New York:
Springer-Verlag, 1993.

Jeyakumar, G. and Velayuthan, C. S., “A comparative performance analysis of
differential evolution and dynamic differential evolution variants,” in World
Congress on Nature and Biologically Inspired Computing, 2008, pp. 463–468.

Jeyakumar, G. and Velayuthan, C. S., “An empirical comparison of differential
evolution variants on different classes of unconstrainted global optimization
problems,” inWorld Congress on Nature and Biologically Inspired Computing,
2009, pp. 866–871.

Kester, W., ADC Input Noise: The Good, The Bad, and The Ugly. Is No Noise
Good Noise?, Analog Devices, Norwood, MA, 2006.

154



Koch, R. A., “Proof of principle for inversion of vector sensor array data,” Journal
of the Acoustical Society of America, vol. 128, no. 2, pp. 590–599, Aug. 2010.

Kolsky, H., Stress Waves in Solids. New York: Dover Publications, 1963.

McConnell, J. A., “Analysis of a compliantly suspended acoustic velocity sensor,”
Journal of the Acoustical Society of America, vol. 113, no. 3, pp. 1395–1405,
Mar. 2003.
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