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ABSTRACT 

Biofouling, the accumulation and proliferation of microorganisms, plants, and 

fouling animals on surfaces in an aqueous environment, poses a significant challenge. 

For example, the effects of fouling of ship hauls include hydrodynamic drag, increase 

in fuel consumption by ships whose hulls have been fouled, and increase in frequency 

of dry-dock cleaning. 

In the history of marine navigation, varieties of anti-biofouling control 

measures have been suggested but tributyltin self-polishing copolymer (TBT-SPC) 

paints have been the most effective and commercially viable option in curbing 

biofouling. However, leaching of tri-organotin biocides from TBT-SPC paints 

through self-polishing activity constitute pollution which led to the ban of biocide-

base paints. We explored bio-inspired nature of lubricin and fabricated 

polyelectrolyte polymer brushes from commercially available polymer materials by 

Langmuir-Blodgett deposition technique (LB fabrication) in order to control grafting 

density and by ATRP.  

Interfacial tension results indicate that PS60-b-PAA29, based on steric and 

electrostatic interaction within the block copolymer, is very stable over ranges of 

pHand temperatures similar to that of the marine ecosystem. Fluorescence 

microscope and atomic force microscope imaging, as well as, advancing contact 

angle measurements on the physically fabricated samples shows that there was 

successful fabrication of PS60-b-PAA29brushes on glass surfacevia Langmuir-

Blodgett deposition. 



 

 

While biofouling test is underway on the brushes fabricated by LB deposition 

technique, preliminary biofouling testing by M. Callow‘s laboratory at the University 

of Birmingham on ATRP samples indicates that grafting duration (hence, thickness) 

of polyelectrolyte polymer brush has a direct impact on the film efficiency against 

biofouling.  
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CHAPTER 1 

 

INTRODUCTION 

 

The deleterious environmental and economical effects of bio-fouling in water 

treatment plants, heat-transfer systems, and marine environments present significant 

challenges. Biofouling describes the deposition and proliferation of undesired 

microorganisms on surfaces that are in constant contact with water. Biofouling occurs 

when bacteria, algae, barnacles, fungi, and other fouling organisms adhere to a 

surface in an aqueous environment (Anderson
 

et al, 2003). A main result of 

biofouling is hydrodynamic drag due to increase in surface roughness of ship hull 

which causes increase in fuel consumption. Table 1.1 shows the foul rating system 

used by the US Navy to classify degree of fouling. 

 

Table 1.1: Foul rating (FR) index used by the US Navy (Schultz et al, 2010) 

Description of condition NSTM (Foul Rating (FR)) 

Hydraulically smooth surface 0 

Typical as applied AF coating 0 

Deteriorated coating or light slime       10-20 

Heavy slime 30 

Algae, weed and juvenile tube worm 

(soft) and/or infant calcareous growth 

40-60 

Calcareous fouling juvenile to medium 70-80 

Heavy calcareous fouling - shell   90-100 
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Table 1.2: Fouling on Arleigh Burke-class destroyer (DDG-51) class hulls 

investigated by means of 320 individual inspections reports from January 1, 2004 to 

December 31, 2006. 

 

 Class (US )  Comment 

The cost of 

propulsive fuel 

DDG-51 class 

hull 

0 $11.1M  The baseline, hydraulically-

smooth 

Increasing 

fouling  

 

FR -20-30 $330,000 -

$440,000 

per ship per 

year 

Fuel consumption 

Increasing 

fouling  

FR-30 $1.15M  per 

ship per 

year 

Fuel consumption increase by 

10.3% 

Cost associated 

with hull fouling 

for the for the 

entire US Navy‘s 

DDG-51 

Possibly             

30 < FR < 60 

$56M per 

year 

Class with change in expenses 

due to paint, hull cleaning, or 

other management practices 

Increasing 

fouling 

FR-60 $119M  

Cost associated 

with hull fouling 

for the for the 

entire US Navy‘s 

ships 

FR-60 $400M-

$540M 

Fleet wide annual cost due to 

fouling 

 

 

In Table 1.2, different levels of fouling based on foul release classification 

with associated cost are presented. It costs the US Navy (US) $11.1 million to move 

Arleigh Burke-class destroyer (DDG-51) class of ships whose hulls are hydraulically 

smooth and free from fouling. If the hulls were fouled at FR-20-30 level, the fuel cost 

increases by (US) $330,000 -$440,000 per ship per year. If the fuel consumption 

increases by 10.3% and with the level of hull fouling at FR-30, the cost of fuel 

consumption increases to (US) $1.15 million per ship per year. With increase in 

fouling to FR-60, the cost of fuel usage and expenses due to hull cleaning, hull paint, 
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and other maintenances of the ship could be as much as (US) $56 million per year or 

up to (US) $119 million. Finally, the fleet wide annual cost due to fouling at FR-60 

was estimated to be (US) $400 million -$540 million (Schultz et al, 2010).  

In order to combat bio-fouling, biocides are used in surface coatings. 

However, biocides themselves are toxic and constitute pollution when leached from 

the surface. Hence, there is a need to develop non-toxic antifouling surfaces that are 

economical and scalable. Nanostructured polymer brush coatings may provide such a 

surface by engaging steric and electrostatic repulsive forces in order to prevent 

biofouling.  

 

Research objectives 

This work is driven by the hypothesis that polyelectrolyte brushes can be 

fabricated from inexpensive commodity polymers and exhibit antifouling properties 

through engineered steric and electrostatic interactions combined with nanoscale 

topography.  It has been derived from ongoing collaboration and support through the 

Naval Undersea Warfare Center (NUWC). To test this hypothesis, we have examined 

the fabrication of self-assembled amphiphilic block co-polymer brushes composed of 

poly(styrene)-block-poly(acrylic acid) (PS-b-PAA).  The brushes were formed via 

physical Langmuir-Blodgett deposition on prepared glass slides as model surfaces. 

This method (among others such as thermal evaporation, electrodeposition, and 

sputtering) was chosen because it enables us to control the monolayer thickness, as 

well as, surface coverage. 
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The main objectives of this M.S. project are stated below: 

1. Examine the surface activity of PS-b-PAA at air/water interfaces under relevant 

system conditions. The premise behind this objective was to examine a priori the 

surface pressure of the brushes before depositing them on the substrates. Previous 

work has shown that film structure at an air/water interface can be transferred 

onto solid substrates (Currie et al, 2000). 

2. Examine the effect of substrate treatment and preparation on PS-b-PAA film 

deposition. The premise behind this objective was to identify the best surface 

treatment and preparation method to achieve physisorption of PS-b-PAA film 

onto the substrate. 

3. Fabricate and characterize physically-deposited PS-b-PAA brush coatings on 

prepared substrates as a function of surface pressure, which sets film morphology. 

Characterization was conducted using atomic force microscopy AFM), surface 

pressure-area isotherm studies, and Uv-vis fluorescence spectroscopy. 

4. Fabricate covalently grafted PAA and PS-b-PAA by atom transfer radical 

polymerization (ATRP), consistent with previous work by Qian Ni, and test the 

bio-fouling properties of these coatings in Professor Callow‘s laboratory at The 

University of Birmingham, UK. This work was intended to 1) test the 

performance of previously developed coatings and 2) provide a comparison 

between covalently and physically deposited brushes. 

Chapter 2 presents the background of this project. It highlights the evolution of 

antifouling paints and focuses on the classifications of antifouling coatings such as 

non-biocide based, biocide-based, and non-toxic technologies.  
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Chapter 3 itemizes the materials used in this research and explains the methods 

used. It highlights the surface pre-treatment steps, hydroxylation, application of 

primer to the surface of the substrate, preparation of the copolymer solution, and 

explains how to physically deposit PS-b-PAA. 

In Chapter 4, results and discussion are presented in detail. This includes an 

interpretation of the results from surface pressure-area isotherms, contact angle 

measurements, UV-vis measurements, and fluorescence microscope images. 

Conclusions drawn will be presented in chapter 5. 

Finally, historical development in monolayer science, information about 

monolayer characterization, calculation of the volume of the block copolymer 

required, and detailed description of instrumentations are provided as Appendices.  
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CHAPTER 2 

 

REVIEW OF LITERATURE 

 

Targeted biofouling organisms 

 

 

Marine or freshwater structures such as oilrig platform supports, ship hulls, 

cooling systems for power plants, culture rafts, and ocean thermal energy conversion 

systems are usually protected against fouling by coatings with compounds that deter 

settlement of fouling species (Stupak et all, 2003).  

 

Table 2.1: Survey and characteristics of major biofouling organism species from 

plants to invertebrate animals (Almeida et al, 2007).  
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The microorganisms that cause fouling are small in size when viewed 

individually, frail in nature, and well adapted to aqueous environments. However, the 

effects of their activities are very profound economically and environmentally. 

Examples of fouling organisms are presented in Table 2.1. The scale of sizes of 

fouling organisms has been developed by (Magin et al, 2010) as shown below. 

 

 
 

 

Figure 2.1: Hierarchy of fouling organisms in marine and biomedical environment 

 

 

 

It has been estimated that the weight of fouling organisms could be about 150 

kg/m
2
 when they completely cover a surface. This is equivalent to approximately 

6000 tons of fouling materials. Typically, for large commercial vessels, the hull has 

an approximate surface area of about 40,000 m
2 

(Howell et al, 2009). Consequently, 

the effective weight of the ship will be increased causing hull roughness, loss of 

velocity, reductions in fuel efficiency, and pollution due to greenhouse gas emission. 
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Antifouling coatings classifications 

Classification of antifouling mitigation coatings 

In order to control fouling, various methods have been used over the past 

centuries. Antifouling coatings can be classified into three major categories: biocide-

based antifouling coating, biocide-free antifouling coating, and non-toxic technology. 

The most successful method is the incorporation of additives with biocidal effects 

into antifouling paints. 

 

 
 

Figure 2.2: Classification of antifouling mitigation coatings. 

 

Non-biocide/tributyltin-free antifouling systems 

 

Due to marine pollution caused by leaching of organotin (in the form of 

tributyltin) compounds, copper, zinc, lead, nickel, arsenic, alloys of antimony, and 

galvanized iron found in biocide-based antifouling paints, attempts have been made to 

develop tributyltin-free antifouling coatings.  Examples of tributyltin-free antifouling 
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systems are electrical current antifouling system, electrochemical reaction antifouling 

system, and radioactive antifouling system. 

Electrical current antifouling system (ECAS) 

Electrical antifouling alternative involves the use of electricity to produce 

toxic chemicals such as chlorine on ship hulls (Iselin, 1952; Swain, 1998; Huang, 

1999). This results in large voltage drop and corrosion of the surface of the ship hull. 

In addition, this method causes release of chlorine and organic chlorine derivatives 

into the ocean leading to localized pollution. Another disadvantage of this method is 

that uniform dispersion is not feasible leading to inefficient antifouling control 

(Bertram, 2000). 

 

Electrochemical reaction antifouling system (ECRAS) 

ECAS is environmentally unsafe and inefficient. This was one of the main 

reasons for exploring alternative means of controlling biofouling using the principle 

of electrochemical reaction to attack fouling organisms.  This system uses electron 

transfer between an electrode and microbial cells resulting in electrochemical 

oxidation of the intracellular substances (Yebra et al, 2004). Other electrochemical 

systems used involve the development of conductive paint electrodes that were used 

to create an electrical potential (Okochi et al, 1995). The effect of the electrical 

potential is that it killed bacteria and fluctuation of the electrical potential to negative 

value causes the bacteria to be removed from the electrodes because most bacterial 

are negatively charged.  ECRAS has some limitations. For instance, it is restricted to 
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small scale applications such as control of bacteria fouling (among all fouling 

organisms) in pipes. 

 

Radiation-based antifouling system (RBAS) 

Due to the limitation of ECRAS mentioned above, investigators experimented 

with radiation-based antifouling system. An example of RBAS includes acoustic 

radiation (applied by vibration of piezoelectric coatings).  Ultra-violet radiation has 

also been used for sea water sterilization (Swain, 1998). However, the power 

requirement of this technology is enormous (Swain, 1998); therefore it is not 

commercially feasible for large scale application. 

 

Biocide based antifouling systems  

 

Early biocide-based antifouling paints contain biocides such as copper, arsenic 

or mercury oxide. For example, copper is commonly used in antifouling paints as a 

metal, oxides, sulfides, and thiocyanates (Ranke et al, 1999). Another component of 

antifouling paint is zinc pyrithione. It is used as the active ingredient in anti-dandruff 

shampoo and certain antifouling pigments (Ranke et al, 1999). Other biocide-based 

antifouling paints contain naphtha or benzene (Iselin, 1952). In 1958, it was 

discovered that tributyltin acrylate ester can be used as an antifouling coating (Gitlitz 

et all, 1981). For instance, tributyltin acrylate and tributyltin methacrylate were 

known to be very potent against marine biofouling (Yebra et al, 2004). However, 

control of marine fouling through antifouling paint application was revolutionized by 

discovery of tributyltin-self polishing copolymer (TBT-SPC). TBT-SPC antifouling 
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paints contain polymer backbones linked to tributyltin by an ester linkage (Figure 2.3) 

(Anderson, 1995). The hydrophobic nature of tributyltin prevents water from 

penetrating through the coating. 

In sum, all biocide-based antifouling paints contain at least one or more of the 

following active ingredients: zinc pyrithione, naphtha, benzene, tributyltin acrylate 

ester, tributyltin acrylate, tributyltin methacrylate, tributyltin self-polishing 

copolymers, and combination of copper with metals, oxides, sulfides, and 

thiocyanates. These ingredients confer toxicity on the antifouling paints that contain 

them. Therefore, due to the leaching of these toxic ingredients into the marine 

environment, regulations were enacted to ban their use. The ban has motivated 

researchers to look for environmentally benign alternatives to biocide-based 

antifouling coatings. 

 

 

 

Figure 2.3: Structure of tributyltin copolymer used as self-polishing copolymer in 

biocide-based antifouling paints. 
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Non-toxic technology antifouling system 

The antifouling alternatives described thus far either have environmentally 

negative impacts or economic limitations that cause regulators or the ship industry to 

restrict their use. A good antifouling alternative must not be toxic, should not be 

expensive, should not be chemically unstable, and finally, it must be able to prevent 

fouling from any organism regardless of the species (Chambers et al, 2006). 

Some non-biocidal alternatives meet the requirement stated above. Non-toxic 

coatings can be divided into three broad categories, namely (a) foul release coatings, 

(b) smart coatings, and (c) hard marine coatings (Howell et al, 2009).  

 

Foul-release coatings 

Foul-release coatings are coatings that render a surface non-stick and 

extremely smooth; they confer low friction and low-surface energy characteristics on 

a surface, thus arresting the formation of biofilm on surface structures that are in 

contact with water by marine fouling species (CEPE Antifouling Working Group, 

1999; Chapman, 2003; Howell et al, 2009).  

 

Smart coatings 

Smart coatings are materials that provide specific response to certain external 

stimuli. In other words, smart coatings can sense their environment and respond 

appropriately to the stimulus (Baghdachi, 2009). Such stimuli or environmental 

conditions could be temperature, stress/strain, pH, and ionic strength. Examples of 

smart coatings are antifouling applications, antimicrobial (in the medical field), 
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stimuli response coatings, self-healing surfaces, self-cleaning, and super 

hydrophobic/hydrophilic switching coatings (Baghdachi, 2009; Yebra et al, 2004).  

A much broader categorization of smart coatings are bioactive coatings 

(antimicrobial polymers, antifouling coatings, and photocatalytic coatings), 

nanotechnology-based coatings (self-assembling polymers and coatings, photonics, 

and molecular electronics), stimulus and response coatings (coatings functioning as 

sensors, color shifting coatings, and light sensing coatings) and self-assembled 

intelligent layers (self-repair and healing coatings, super hydrophobic coatings, and 

molecular brushes) (Tanner, 2005). 

 

Polymer Brushes 

Polymer brush describes an arrangement of bulky, polymer macromolecules 

(consisting of repeated units) that are physically or chemically anchored to a surface 

on one end. Not all polymer chains immobilized to a surface are polymer brushes. In 

a polymer brush arrangement, the grafting density is high enough such that the 

polymer chains are forced to stretch (Zhao et al, 2000).  

Polymer brush arrangement confers special characteristics that can be 

explored in a number of applications such as adhesive materials (De Gennes et al, 

1992; De Gennes et al, 1993), surface coatings that controls depositions of biocolloids 

like protein adhesion to a surface (Amiji et al, 1993; Currie et al, 2002), and as 

lubricants (Joanny, 1992). They can also be used as chemical gatekeepers and 

nanomaterial triggers that initiate drug delivery under certain conditions.  

 



 

14 

 

 

Figure 2.4: Polymer brush classification based on their compositions (Zhao et al, 

2000). 

 

 Figure 2.4 presents the classification of polymer brushes based on their 

compositions (Zhao et al, 2000); homopolymer, mixed homopolymer, random 

copolymer, and block copolymer brushes. Homopolymer brushes are immobilized 

polymer chains that consist of one type of repeating monomers, mixed homopolymers 

brushes, on the other hand, are made up of two or more homopolymer types. In 

random copolymer brushes, the chains have two different repeating units that are 

haphazardly distributed on the substrate‘s surface. Finally, block copolymer consist of 

two or more homopolymers that are covalently bonded to each other on one end while 

the other end is tethered to the supporting surface. Examples of surfaces that have 
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been modified with polymer brushes include gold, silver, glass/silicon wafers, and 

titanium (Raynor et al, 2009).  

Polymer brush can also be categorized into different classes based on the type 

of interaction between the brush and its environment as shown in Figure 2.5 (Toomey 

et al, 2008). The category would be classical if the interaction of the brush with the 

environment can based on van der Waals interaction or a system dependent criterion. 

On the other hand, we have a non-classical system if we cannot describe the 

interaction of the brush with its environment with a generalized model (Toomey et al, 

2008).  

 

 

Figure 2.5: Alternative polymer brush classification based on the type of interaction 

between the brush and its environment. 
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Polymer brushes can either be prepared by physisorption or by chemical 

grafting. There are two types of chemical grafting methods, namely, ―grafting to‖ and 

―grafting from‖. In the chemical grafting method, the polymers are attached to the 

surface and to each other via covalent bonding. 

The ―grafting to‖ approach of brush synthesis can be referred to as the top-

down method in which the polymerization is performed first to form the polymer 

chains and then attached to the surface afterwards as shown in Figure 2.6. 

Specifically, monomers with reactive terminals are used in making the polymer 

chains. In order for the reaction to be successful, the surface on which the brush is to 

be grafted must be ―activated‖ in order to accept the incoming polymer chains. One 

difficulty that is associated with this method of polymer brush fabrication is that after 

addition of few polymer chains, steric interaction may hinder available sites on the 

substrate surface from accepting other incoming chains. 

 

Figure 2.6: Schematic of the ―grafting to‖ method of fabricating polymer brush. After 

addition of few polymer chains, steric interaction may hinder other incoming chains 

from being anchored to the surface. 
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The ―grafting from‖ approach involves covalently binding monomers to the 

substrate surface and growing polymer chains from the anchored monomers through 

polymerization. It is possible to obtain high degree of polymerization and grafting 

density (Vos et al, 2009). The main challenge of both grafting methods is controlling 

the grafting density. Figure 2.7 shows the schematic of the ―grafting from‖ method of 

fabricating polymer brush. 

 

 

Figure 2.7: Schematic of the ―grafting from‖ method of fabricating polymer brush. 

 

Advantages and disadvantages associated with different methods of polymer 

brush fabrications have been summarized and they are presented in Table 2.2. 
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Table 2.2: Comparison of the advantages and disadvantages of using physical and 

chemical deposition techniques to prepare polymer brushes (Raynor et al, 2009). 

 

 Physisorption Chemisorption 

Advantages Simple formation 

especially alkanethiols on 

gold and chlorosilanes on 

oxides  

 

Molecularly well-defined 

layers  

 

End groups used to tailor 

surface properties, subject 

to modification with 

biological ligands 

 

Long-term stability Options 

for preparation: 

 grafting from 

 grafting to 

 

Tunability through choice 

of monomer e.g., acrylates 

and styrenes 

 

Variety of polymerization 

methods SI-ATRP, ROP, 

NMP, cationic, and anionic 

 

Greater film thickness; 

control over brush length 

 

Thick film might provide 

self-healing of defects 

 

Disadvantages It is difficult to form bond 

between the polymer and 

the substrate 

 

Presence of pinholes and 

defects 

More complex preparation 

  

More complex structure 

 

 

Physisorption enables one to control the grafting density and surface 

coverage. In order to make the monolayer, a Langmuir-Blodgett trough (shown in 

Figure 2.8) can be used. First, a monolayer is prepared by spreading the surfactant, 

from which the polymer brush is to be made, on the surface of the subphase in the 

Langmuir-Blodgett trough. The spreading solvent is then allowed to evaporate from 

the subphase surface.  
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Figure 2.8: Schematic illustration of Langmuir-Blodgett deposition technique (Currie 

et al, 2002). 

 

 

Figure 2.9: Diagrammatic illustration of polymer brush prepared by Langmuir-

Blodgett deposition technique. 

 

 

A substrate that has been pre-treated is then dipped vertically (Langmuir-

Blodgett technique) or horizontally (Langmuir-Schaeffer technique) into the 

monolayer. Upon withdrawing the substrate, polymer brush at the air/water interface 

is deposited on the surface of the substrate (Figure 2.9). 

The block copolymer used in this research is a polyelectrolyte polymer brush 

(poly(styrene)60-block-poly(acrylic acid)29 (PS60-b-PAA29)). The major forces acting 
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within the chosen polyelectrolyte brush are long-ranged electrostatic interactions and 

short-ranged steric repulsion. When PS60-b-PAA29 brush is immersed in water, the 

PAA chains become negatively charged. These charges are surrounded by cations and 

the spatial organizations of the charges introduce the Debye screening length (1/k). 

The Debye screening length determines the excluded volume between the polymer 

chains and the conformational behavior of the chain.  

PS60-b-PAA29 is a good candidate for non-toxic coating because of several 

qualities that it possesses: it has been shown to be an affective bioactive implant 

specifically for use in the oral cavity (Jones et al, 2008).  It is non-toxic in nature, its 

tunable charge density stemming from PAA being a weak polyelectrolyte, and it is 

inexpensive. The polystyrene block in PS-b-PAA is hydrophobic and it provides 

mechanical support when the block copolymer is attached to substrate‘s surface. 
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CHAPTER 3 

 

METHODOLOGY 

 

Deposition of the PS60-b-PAA29 was accomplished by physical deposition 

using the Langmuir-Blodgett (LB) technique. Chemical deposition using atomic 

transfer rapid polymerization (ATRP) ―grafting from‖ approach was also used to 

deposit PS-b-PAA. First, I will itemize the materials used followed by methodologies 

for the physical deposition and chemical deposition respectively. 

 

Materials  

Microscope glass slides (Fisherfinest premium microscope slides, plain. 3‖x1‖ 

x 1mm) were purchased from Fisher Scientific. The glass slides were cut into small 

pieces of approximately 20 mm by 20 mm. Concentrated sulfuric acid (Lot # 

064765), chloroform (Lot# 084860)), 1,4-dioxane (Lot# 070803, MW 88.11g/mol,), 

acetone(lot#097173), tetrahydrofuran (THF) (lot#107075), and toluene (Lot# 065981, 

MW92.14g/mol) were also purchased from Fisher Scientific, Fair Lawn, NJ, USA. 

Hydrogen peroxide (35% wt, code 202460010), the free initiator, ethyl 2-

bromoisobuthylrate (Br-iB) (lot#A016613101), and tert-butyl acrylate (tert-butyl) 

(Lot# A0287584) were purchased from Acros Organics, NJ, USA. 

 Ammonium hydroxide (Batch #185955 H, MW 35.05g/mol,), poly(acrylic 

acid) (PAA) (Lot# 10496MJ), poly(styrene)-block-poly(acrylic acid)  (PS60-b-PAA29) 

(Product # 686794, Lot # MKBC0590, MW 8319g/mol,), N, N, N‘, N‘‘, N‘‘‘-
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pentamethyldiethylenetriamine (PMDETA) (Lot# S62866-419), and styrene 

(batch#MKBC0118) were purchased from Sigma-Aldrich, St. Louis, MO, USA. 

Polystyrene (Lot# 0001449235) was purchased from Fluka.  

3-(Trimethoxysilylpropyl)-2-bromo-2-methylpropionate (TMSPBMB) (lot# 

SIT8397.0-5GM) was purchased from Gelest Inc, Morrisville, PA, USA, and Copper 

(I) bromide (Cu(I)Br) (lot# B01W008) was purchased from Alfa Aesar, Ward Hill, 

MA, USA. 

Acridine orange (lot#766728) was purchased from Invitrogen molecular 

probes, Eugene, OR, USA. Deionized water (25
o
C, resistance of 18.2 MΩcm

-1
), used 

as subphase, was obtained from Direct-Q UV 3 Millipore water purification system 

(Millipore, Eschborn, Germany). Surface pressure-area isotherms were obtained with 

Nima 312D mini trough (Nima Technology, UK, 7cm x 15cm). The trough was 

equipped with a 50 mm stroke dipper. Contact angle measurement was conducted 

with the ramé-hart model 500 advanced goniometer/tensiometer with DROPimage 

advanced software (rame-hart instrument co, Netcong, NJ, USA) 

  

Physical deposition methodology 

Poly (styrene)-block-poly(acrylic acid) (PS60-b-PAA29) was deposited using 

Langmuir-Blodgett deposition technique.  

 

Surface pre-treatment 

The preparation of modified glass slide is accomplished by first cleaning the 

microscope slide (substrate) in piranha solution (30:70 mixture of hydrogen 
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peroxide/concentrated sulfuric acid (30% H2O2)) (Rowe-Konopacki et al, 2007) 

resulting in the following reaction:  

𝐻2𝑆𝑂4 + 2𝐻2𝑂2 → 2𝐻2𝑂 + 𝑂2 + 2𝐻+ + 𝑆𝑂4
2−

𝑆𝑖𝑂2
    𝑆𝑖(𝑂𝐻)4.  

The solution was heated at 100
o
C for 2 hours and then rinsed with deionized water, 

followed by methanol.  

 

Hydroxylation 

In order to maximize the surface of the glass slide, the concentration of 

hydroxide ion on the surface was increased by soaking the cleaned glass slides in 

30:70 mixture of hydrogen peroxide/deionized water (30% H2O2) (Jones et al, 2008) 

for 45 min at 70
o
C. After 45 min, 5mL of ammonium hydroxide was added.  

2𝐻2𝑂2 + 𝑁𝐻4𝑂𝐻 + 𝑆𝑖𝑂2 → 𝐻2𝑂 + 𝑂2 + 𝑁𝐻3 + 𝑆𝑖(𝑂𝐻)4 

Once cooled, the substrates were rinsed with deionized water and then dried in 

methanol.  

 

Application of ―primer‖ to the surface of glass slides 

Since we are interested in physically depositing the block copolymer on the 

surface of the glass slide, the LB film has to stick as soon as it touches the surface of 

the pre-treated glass slide. In order to promote ―stickiness‖, polystyrene was 

deposited on the surface of the glass slide as follows: 11g/L of polystyrene was 

prepared by dissolving 275 mg of polystyrene in 25mL of chloroform. The solution 

was poured on the surface of glass slides in a beaker. The beaker was placed under 

the hood for 3 hours to 12 hours in order to allow complete evaporation of the 



 

24 

 

chloroform. The polystyrene coated glass produced is then placed in a vacuum oven 

(using pressure ≥ 25mmHg) and heated at 150
o
C for 3 days. This process will anneal 

polystyrene to the glass slides.  

Once the annealing step was completed, the slides were washed with 

chloroform to remove excess polystyrene. The slides were allowed to sit under the 

hood for as long as necessary so the chloroform could evaporate. 

 

Preparation of PS60-b-PAA29 

The block copolymer was prepared by dissolving 25 mg of PS60-b-PAA29 in 

15mL of 1,4-dioxane. The solution was heated at 60
o
C for 2 days. Heating the 

solution allows all the PS60-b-PAA29 powders to dissolve. 10 mL of toluene was 

added. The resulting solution was shaken to facilitate proper mixing.  

 

Physical deposition of PS60-b-PAA29  

Prior to the deposition of PS29-b-PAA60, the self-assembly monolayer (SAM) 

of PS60-b-PAA29 was prepared by spreading 90µL of PS60-b-PAA29 at the air/water 

(A/W) interface. The monolayer was allowed to settle for 15-30 min before 

transferring the block copolymer to the surface of the polystyrene-modified glass. 
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Figure 3.2: The Baier curve showing the degree of biofouling at specific surface 

pressures (Magin et al, 2010). 

 

 

The deposition pressure was determined by looking at the Baier curve (Figure 

3.2); a SAM deposited at a surface tension of 22-24mN/m will give a brush-modified 

surface with the lowest fouling (Magin, 2010).  

 

Chemical deposition methodology 

Surface pre-treatment 

The preparation of modified glass slide was accomplished by first cleaning the 

microscope slide (substrate) in piranha solution (30:70 mixture of hydrogen 

peroxide/concentrated sulfuric acid (30% H2O2)) (Rowe-Konopacki et al, 2007) 

resulting in the following reaction:  

𝐻2𝑆𝑂4 + 2𝐻2𝑂2 → 2𝐻2𝑂 + 𝑂2 + 2𝐻+ + 𝑆𝑂4
2−

𝑆𝑖𝑂2
    𝑆𝑖(𝑂𝐻)4 
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The solution was subjected to heat at 100
o
C for 2 hours and then rinsed with 

deionized water followed by methanol.  

 

Hydroxylation 

In order to maximize the surface of the glass slide, the concentration of 

hydroxide ion on the surface was increased by soaking the cleaned glass slides in 

30:70 mixture of hydrogen peroxide/deionized water (30% H2O2) (Jones et al, 2008) 

for 45 minutes at 70
o
C. After 45min, 5mL of Ammonium Hydroxide was added.  

2𝐻2𝑂2 + 𝑁𝐻4𝑂𝐻 + 𝑆𝑖𝑂2 → 𝐻2𝑂 + 𝑂2 + 𝑁𝐻3 + 𝑆𝑖(𝑂𝐻)4 

Once cooled, the substrates were rinsed with deionized water and then dried in 

methanol.  

 

Silane modification 

  Place the freshly cleaned and hydroxylated glass slides into a 3-neck round 

bottom flask, add 270 mL of anhydrous toluene and install the reflux condenser.  

Close the openings with rubber septa. Flush with nitrogen for 30 minutes. Add 2.7 

mL of 3-(Trimethoxysilylpropyl)-2-bromo-2-methylpropionate (TMSPBMB) and 

heat under reflux at 60
o
C for 4 hours. After 4 hours, stop the reaction and remove the 

silane modified glass slides. Wash with toluene, ethanol, and dry in a stream of 

nitrogen. 
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PAA modification of glass (Two 3-neck flasks were used for this reaction)  

 

Flask 1: Silane modified glass slides were placed in the 3-neck flask and 

sealed with airtight rubber septa on the outer openings while the middle opening is 

fitted with a condenser that connects to a running tap water and the sink for discharge.  

Flask 2: Acetone, Cu(I)Br, tert-butyl acrylate, and stir bar in the amount 

specified in Table 3.2 was added to the 3-neck flask and sealed with rubber septa. 

Place the flasks on two separate hot plates. Connect the flasks with cannula and insert 

needles into each flask to allow the escape of gas.  

 

 

Figure 3.3: Experimental setup of the PS, PAA, and PS-b-PAA modification of glass 

substrate via ATRP. 

 

Purge the assembly for 30 minutes with Nitrogen. Add PMDETA to flask 2 

via a syringe and turn flask 2‘s hot plate to 90
o
C and stir for 10 minute. Turn off the 

gas and remove the pressure relief syringes.  
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Table 3.1: Reagents used in the ATRP grafting of poly(acrylic acid) brush.  

 

250 mL total volume 

Number Material Concentration (mM) Volume/Mass 

1 Acetone - 81.56mL 

2 Cu(I)Br 15 537.9mg 

3 Tert-Butyl 4.6 166.93mL 

4 PMDETA 15 783.00µL 

5 Br-iB 20 733.86 µL 

 

 

Transfer the solution in flask 2 to flask 1 via the cannula (this may take 30 to 

45 minutes). Once the transfer is complete, add the amount of free initiator (Br-iB) 

specified in Table 3.1 and remove the cannula. Turn hot plate 1 to 90
o
C and stir for 

the number of hours required for brush thickness. 

Remove the slides and wash with THF. Place the slides in a bottle with screw 

cap, wrap parafilm around the cap and shake at moderate speed for 24 hours to 

remove unbounded tert-butyl acrylate. Sonicate for 30 minute and clean.  

 

Hydrolysis of poly(tert-butyl acrylate) to poly(acrylic acid) 

Poly(tert-butyl acrylate) modified glass slides were placed in a round bottom 

flask, 20 mL of dioxane and 3 mL of concentrated hydrochloric acid were added to 

the flask. The mixture was then heated under reflux at 100
o
C for 4 hours. Upon 

completion, the solution was allowed to cool, the glass slides were removed and 

cleaned with deionized water followed by methanol and dried in a stream of nitrogen. 
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PS ATRP modification of glass (Two 3-neck flasks were used for this reaction) 

 

Surface pre-treatment and silane modification steps are the same as in the 

production of poly(acrylic acid) brushes.  

 

Table 3.2: Reagents used in the ATRP reaction of poly(styrene) brush.                             

 

280 mL total volume 

Number Material Concentration (mM) Volume/Mass 

1 Anisole - 153.08 mL 

2 Cu(I)Br 12 481.6 mg 

3 Styrene 4.6 125.12 mL 

4 PMDETA 25 1.4616 mL 

5 Br-iB 10 346.08 µL 

 

 

There is no hydrolysis step for the fabrication of polystyrene brushes.    

Simply replace the reagents in Table 3.1 with the reagents in Table 3.2 for the PS 

ATRP modification of glass slides and follow the same steps under PAA ATRP 

modification of glass. 

 

PS-b-PAA ATRP modification of glass 

Follow the steps for the each block as outlined above. 
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CHAPTER 4 

 

RESULTS AND DISCUSSIONS 

 

Physical deposition of PS60-b-PAA29 Langmuir-Blodgett film 

 

 

Surface treatment  

In order to successfully transfer PS-b-PAA block copolymer to the surface of 

glass, pre-treatment of the glass substrate or any chosen surface is very critical and a 

determinant of the success of the polymer brush fabrication. 

Currie et al, 2000 and many other research groups have spin-coated 

polystyrene on surfaces before physically adsorbing polymer films onto the substrate. 

When spin coating was tried in this project, the polystyrene delaminated from the 

substrate surface after being heated on a hot plate for about 10 minutes.  

The method of Vos et al, 2008 proved better for making polystyrene surface 

for physisorption of PS60-b-PAA29 polymer brush. It involves pouring 11mg/mL of 

polystyrene solution prepared in chloroform onto the surface of cleaned glass slides 

and allowing the chloroform to evaporate under fume hood for about 12 hours to 24 

hours. Polystyrene film formed on the surface of the glass but it was weakly bounded. 

In order for the polystyrene film to bind tightly, it was heated in vacuum oven for 72 

hours at about 25 mmHg. Excess polystyrene was then washed off with chloroform. 

This caused thin film coating of polystyrene to be thermally bounded to the glass 

surface.   
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Upon deposition of PS60-b-PAA29 on top of this modified glass at a preset 

surface pressure, the polystyrene block of the PS60-b-PAA29 formed bond with 

polystyrene on the glass substrate; hence, polymer brush was formed. 

 

Surface Activity of PS60-b-PAA29 at air/water interface  

Detail discussions of the theory of monolayer characterization using surface 

pressure-area isotherm and historic developments in monolayer science have been 

presented in Appendix B. The pKa of PAA is 4.5 (Gebhardt et al, 1983). The PS 

block of the PS60-b-PAA29 block copolymer does not participate in the surface 

pressure as evidenced by a consistent increase in surface pressure in Figures 4.1 – 4.4 

(Currie et al, 2000; Muller et al, 2008). The calculation of the volume required to 

form a PS60-b-PAA29 monolayer and the area/molecule calculation of PS60-b-PAA29 

monolayer at fully opened and fully closed barrier positions can be found in 

Appendix C. 

Before discussing the results, the specifics of the physical depositions of PS60-

b-PAA29 film are as follows: First, the solution of the polymer material is prepared as 

described under preparation of PS60-b-PAA29 methodology, and then a monolayer is 

prepared by spreading the surfactant, from which the polymer brush is to be made, on 

the surface of the subphase in the Langmuir-Blodgett (LB) trough. The spreading 

solvent is then allowed to evaporate from the subphase surface. Next, the deposition 

surface pressure is then specified in the NIMA 7.8 software. Once the deposition 

surface pressure has been specified, the barriers of the LB trough (Figure 4.0) adjust 

themselves to maintain the pressure. 
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Figure 4.0: Langmuir-Blodgett trough equipped with two barriers and temperature 

control. 

 

In salt-free deionized water, the hydrophilic block of the copolymer, PAA, 

became solvated and the protons in water complement the anions present on the PAA 

chains as much as possible. In essence, the chains of PAA ‗diffuse‘ into water due to 

solvation.  

In Figure 4.1, at 0
o
C and 15

o
C (deionized water), it was possible to pack the 

molecules very close to one another (as indicated by negligible pressure increase) as 

the barriers of the LB trough are closed. This is because the thermal (kinetic) energies 

of the molecules within the self-assembly monolayer (SAM) are low.  
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Figure 4.1: Surface pressure-area isotherm of the physical deposition of PS60-b-

PAA29 Langmuir-Blodgett film at 0
o
C, 15

o
C, 20

o
C, and 25

o
C subphase temperatures 

prior to physisorption onto polystyrene modified glass surface. The subphase used 

was deionized water. 

 

However, as an area/molecule of 42A
2
-40A

2 
was

 
reached, a ―phase change‖ 

(change from high state of disorderliness of polymer molecules (chains) to a more 

ordered state, that is, from ‗gaseous state‘ to expanded monolayer phase) was 

observed indicating that the short-ranged steric force, long-ranged electrostatic 

repulsive force, and hydrophobic interactions among the polymer chains acted in 

concert as the molecules resisted packing too close to each other. So the pressure 

began to increase until the maximum pressure was observed. 

The short-ranged steric repulsion can be expressed mathematically as follows 

(Evans et al, 1999): 

F

A
=  co𝑛stant  KT

S 3    
2L
h
 

9
4− h

2L 

3
4    h<2L     ----------------------- (1) 
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where F is force, A represents the area, KT represents the thermal energy (1.38 x 10
-

23
J/K * temperature), L represents polymer brush thickness, and h is the distance of 

separation. While the long-ranged electrostatic force can be expressed according to 

the following mathematical representation (Evans et al, 1999): 

F

A
= 32(KT)2 εr ε0

z2e2k2Γo
2exp(−𝒌h)            ----------------------- (2) 

where F is force, A represents the area, KT represents the thermal energy (1.38 x 10
-

23
J/K * temperature), εr is a constant equal to 78.5, εo is the permittivity of empty 

space (8.85 x 10-12 C/Vm), e is the elementary charge, z represents ionic charge, Γo 

is the potential at a charged surface, 1/k is the Debye screening length, and h is 

distance of separation. 

As temperature of the deionized water (subphase) increased to 20
o
C and 25

o
C 

respectively, the thermal energies of the surfactant molecules increased while the 

hydrophilic portion of the block copolymer remain ionized. Consequently, the degree 

of steric, electrostatic, and hydrophobic forces experienced by the molecules of the 

SAM were stronger and close packing of the molecules of the SAM could not be 

accomplished to the same degree experienced under 0
o
C and 15

o
C of deionized water. 

This phenomenon explains why the surface pressure started to rise at 60A
2
 when the 

temperature of the deionized water subphase was increased to 20
o
C and 25

o
C. 

Equations (1) and (2) predict that surface pressure is directly proportional to 

temperature (thermal energy); however, in Figure 4.1, the surface pressure-area 

isotherm indicates that the thermal energy at 15
o
C is lower than the thermal energy at 

0
o
C leading to higher packing density at 15

o
C contrary to expectation. This unusual 

behavior presents a phenomenon that needs to be investigated further in order explain 
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what is happening within the surfactant molecules at air/water interface at 15
o
C. 

In Figure 4.2, simulated sea water was used as the subphase while temperature 

and surface pressure were maintained at 20
o
C and 40mN/m respectively. The pH of 

the sea water was varied: 4.01 (acidic pH), 7.06 (neutral pH), and 9.96 (basic pH). 

The compositions of sea water are NaCl
 
(58%), MgCl2.6H2O (26%), Na2SO4 (9.75%), 

CaCl2 (2.765%), KCl (1.645%), NaHCO3 (0.477%), KBr (0.238%), H3BO3 (0.071%), 

SrCl2.6H2O (0.095%), and NaF (0.007%). Sea water concentrations x ≤ 80mM, 

80mM < x < 300mM, and x ≥ 300mM can be regarded as low, medium, and high 

concentrations respectively.  

 

 
 

Figure 4.2: Surface pressure-area isotherm of the physical deposition of PS60-b-

PAA29 film at 20
o
C subphase temperatures prior to physisorption onto PS modified 

glass surface. The subphase used was 300 mM sea water with pH adjusted to 4.01, 

7.06, and 9.96 respectively. 
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Theoretical behavior models commonly used to describe polyelectrolyte 

brushes immersed in salt solutions are osmotic brush, salted brush, and neutral brush 

models. 

 Osmotic brush (OB) regime occurs when polyelectrolyte polymer brush 

immersed in water or salt solution swell due to the large osmotic pressure of the 

confined counterions (Lu et al, 2009). On the other hand, we have salted brush (SB) 

regime when the hydrogen ion (H
+
) concentration in the polymer brush chains is 

approximately equal to that in the bulk solution due to dissociated protons in the 

brush undergoing constant exchange with salt ions from the bulk solution while 

maintaining electrical neutrality in the brush (Currie et al, 2000). Finally, neutral 

brush (NB) regime exists when the hydrogen ion (H
+
) concentration inside and 

outside of the polymer brush is about the same and the electrostatic interactions are 

largely screened (Wu et al, 2007). 

When sea water with concentration of 300 mM (high concentration) was used 

as the subphase, the cations in the sea water such as Na
+
, Mg

2+
, Ca

2+
, K

+
, and Sr

2+ 

gathered around the negatively charged PAA chain in the salt solution and bind to 

those negative charges present on the surface of the chain. This phenomenon is called 

salt screening.  

In a 300 mM - 500 mM sea water, the entire surface of a polymer brush 

becomes homogeneous (Witte et al, 2010). When the pH of the 300 mM sea water 

was maintained at 4.01, the PAA block of PS60-b-PAA29 became neutral because the 

pH is less than the pKa of PAA (4.5), this means that in acidic pH up to 4.5, the           

-COOH groups of the PAA macromolecule exist in non-dissociated form (Chibowski 
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et al, 2006). Consequently, at pH below the pKa of PAA, we have NB regime. Also, 

there were minimal long-ranged electrostatic repulsive forces present within the 

molecules of the PAA group at pH 4.01 in the sea water; only the steric repulsive and 

hydrophobic forces were at play.  

At pH 7.06 and pH 9.96 (values above the pKa of PAA), the –COOH group of 

the PAA chains of the block copolymer became dissociated, leading to equal H
+
 

concentration inside and outside the brush. This is because the degree of dissociation 

of the –COOH groups within the brush is also the same as that in the bulk solution. 

This results in SB regime. According to Currie et al, 2000, a mean-field model 

predicts the relationship for brush height and surface pressure using the following 

relationship: 𝐻 = 𝑁𝜍1 3  
𝛼𝑏

2

𝜌𝑠
 

1 3 

       and     𝜋 = 𝑁𝜍5 3  
𝛼𝑏

2

𝜌𝑠
 

2 3 

----------------------- (3) 

where H represents brush height, ρs is the salt concentration, αb degree of proton 

dissociation in the bulk solution, and σ is the molecule (chain) per area. 

According to equation 3, the increase in pH of the subphase should 

theoretically lead to increase in brush height and surface pressure once PS60-b-PAA29. 

Surface pressure-Area isotherm shown in Figures 4.1 and 4.2 shows the 

maximum attainable surface pressure (MASP) upon the compression of the barriers 

of the LB trough. After physical deposition of the PS60-b-PAA29, the MASP in 

Figures 4.3 and 4.4 have reduced compared to the MASP in Figures 4.1 and 4.2. 

Hence, there was mass transfer (deposition) from the air/water interface to the 

polystyrene modified glass slides. 
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Figure 4.3: Surface pressure-area isotherm of the physical deposition of PS60-b-

PAA29 Langmuir-Blodgett film at 0
o
C, 15

o
C, and 25

o
C subphase temperatures after 

physisorption onto polystyrene modified glass surface. The subphase used was 

deionized water. 

 

 

 
 

 

Figure 4.4: Surface pressure-area isotherm of the physical deposition of PS60-b-

PAA29 Langmuir-Blodgett film at 20
o
C subphase temperatures after physisorption 

onto polystyrene modified glass surface. The subphase used was 300 mM sea water 

with pH adjusted to 4.01, 7.06, and 9.96 respectively. 
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Table 4.1: Transfer ratio of PS60-b-PAA29 from air/water and air/sea water interface. 

π is the surface pressure. 

 

 Temp (oC) pH Area/Molecule (A2) π (mN/m) Transfer rate (%) 

Before 15oC - 27.76 39.49 91.52 

After 27.73 3.35 

 

Before 25oC - 27.76 47.38 79.34 

After 27.75 9.79 

 

Before 20oC 
 

4.01 
 

27.77 44.08 58.42 

After 27.78 18.33 

 

Before 20oC 7.06 27.78 53.67 42.02 

After 27.78 31.12 

 

Before 20oC 9.96 27.77 57.00 29.5 

After 27.75 40.14 

 

 

Table 4.1 presents the transfer ratio of PS60-b-PAA29 from air/water and 

air/sea water interface. The transfer ratio was calculated as follows: 

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑟𝑎𝑡𝑖𝑜 =  
𝜋 𝑏𝑒𝑓𝑜𝑟𝑒 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝜋 𝑎𝑓𝑡𝑒𝑟 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝜋 𝑏𝑒𝑓𝑜𝑟𝑒 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
∗ 100% 

It can be seen that as temperature increased from 15
o
C to 25

o
C, the transfer 

ratio decreased. The same trend was observed when the pH was increased from 4.01 

through 9.96 while holding the temperature and pressure constant at 20
o
C and 

44mN/m respectively.  

Confirmation of mass transfer in Figures 4.1- 4.4 and most importantly, the 

understanding that grafting density can be controlled by adjusting the pH of the 

subphase before deposition of any hydrophobic-block-hydrophilic block copolymer 

on to a hydrophobic surface, is the main advantage that physical deposition technique 

has over chemical deposition technique. 



 

40 

 

 

Contact angle measurements 

Contact angle results from surface free energy between liquid and solid 

surfaces when surrounded by air or gases in general. Contact angle measurement can 

help one to understand wettability, affinity, adhesiveness, and repelling tendency of a 

surface. The mathematical expression for calculating contact angle is known as 

Young‘s Equation (Figure 4.5): 

 𝛾𝑆𝑉 = 𝛾𝑆𝐿 + 𝛾𝐿𝑉𝐶𝑜𝑠𝜃,  

 𝜃 = 𝐶𝑜𝑠−1  𝛾𝑆𝑉 −𝛾𝑆𝐿
𝛾𝑆𝐿

  

where γSV  represents the solid-vapor surface tension, γSL is the solid-liquid surface 

tension, and γLV  is the liquid-vapor surface tension. Young‘s equation applies to 

homogenous and smooth surfaces. 

 

 

Figure 4.5: Contact angle schematic of water on a solid surface. 

 

In order to estimate the contact angle on rough and heterogeneous surfaces, 

Wenzel and Cassie-Baxter relationships are commonly used (Figure 4.6). Wenzel 

regime occurs when the test liquid (deionized water) wets a surface such that there is 

a difference between the measured contact angle and the true contact angle; the 



 

41 

 

mathematical relationship that describes Wenzel regime is shown below (Genzer et 

al, 2006):  

𝐶𝑜𝑠  𝜃𝑚  = 𝑅 𝐶𝑜𝑠 (𝜃𝑌) = 𝑅  𝛾𝑆𝑉 −𝛾𝑆𝐿
𝛾𝑆𝐿

    

where R is known as the roughness factor (ratio of true surface area and the projected 

surface area), 𝜃𝑚   is the Wenzel (apparent) contact angle on a rough surface and 𝜃𝑌  is 

the Young‘s contact angle of the rough surface. 

On the other hand, Cassie-Baxter wettability regime occurs when a surface 

that is made of small protrusions which cannot be filled by the deionized water 

(contact angle test liquid) are filled with air; the equation developed by Cassie and 

Baxter to model the contact angle on such rough surfaces is 

 𝐶𝑜𝑠  𝜃𝐶 =   𝑓𝑖 cos(𝜃𝑌𝑖) (Konduru, 2010).  

where 𝑓𝑖  is the fraction of each surface under liquid while 𝜃𝑌𝑖  is the contact angle for 

the same surface. 

 

 

Figure 4.6: Liquid droplets spreading on a flat surface (a) and rough surfaces (b) and 

(c). The droplet is either in Wenzel regime (a) or the Cassie-Baxter regime (c) 

(Genzer et al, 2006). 

 

 

In order to verify surface modification and understand the wetting behavior of 

the PS60-b-PAA29 modified glass substrate, advancing contact angle measurement of 

the modified glass substrates were measured before and after physical deposition of 
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the LB film.  

Advancing contact angle values were obtained with the ramé-hart model 500 

advanced goniometer/tensiometer with DROPimage advanced software. Deionized 

water obtained from Direct-Q UV 3 Millipore water purification system was dropped 

on dry polymer brush modified glass slide. The water was allowed to spread for 

duration of 5 minutes or less. Averages of three readings were taken across different 

parts of the surface of each slide. 

The advancing contact angle value of 48
o
 for PAA and 97

o
 for PS have been 

reported in the literatures (Boyes et al, 2004; Treat et al, 2006). In Figure 4.7, a clean 

and unmodified glass slide shows a contact angle of 51.2
o
. Once pre-treated with 

polystyrene, the contact angle of the glass slides rose to values between 72.7
o
 and 

91.4
o
; this shows that the glass slide has been rendered hydrophobic.  

 

 

Figure 4.7: Advancing contact angle measurements of clean, unmodified microscope 

glass slide, microscope glass slides modified with polystyrene before and after 

deposition with PS60-b-PAA29 respectively with changing temperature from 15
o
C to 

25
o
C. 
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For temperatures between 0
o
C and 25

o
C, when deionized water was used as 

the subphase, there was increase in contact angle after the physical deposition of the 

LB film. The meaning of this increase in contact angle is that the surface is more 

hydrophobic, probably due to one or more of the following reasons:  

1. More polystyrene is present on the surface of the glass due to deposition of PS60-b-

PAA29 film. In other words, the non-wetting characteristic of the PS pre-treated 

glass substrate was enhanced after the deposition of PS60-b-PAA29. 

2. Surface roughness of the substrate surface has increased because of the presence of 

nano-sized protrusions and nanoscale ―hairy-looking‖ structures. Increase in 

contact angle may also be attributed to surface roughness after physical deposition 

of PS60-b-PAA29 because when in-plane spaces are present on a polymer brush 

modified surface, upon dropping water droplet on such a surface, air pocket may 

be trapped in the spaces because of the unevenness of the surface, leading to the 

increase in contact angle. This wettability behavior may be modeled with Cassie-

Baxter model (Figure 4.6c). 

Figure 4.8 presents the advancing contact angle measurements of clean, 

unmodified microscope glass slide, microscope glass slides modified with 

polystyrene, and PS60-b-PAA29 modified polystyrene pre-treated glass slides. In 

Figure 4.8, in addition to pH variation from 4.01 to 9.96, the subphase was changed 

from deionized water to 300 mM sea water (high concentration) while keeping the 

temperature and surface pressure constant at 20
o
C and 40mN/m respectively. It can 

be noted that advancing contact angles have decreased after the physical deposition of 

the PS60-b-PAA29.  
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Figure 4.8: Advancing contact angle measurements of clean, unmodified microscope 

glass slide, microscope glass slides modified with polystyrene before and after 

deposition with PS60-b-PAA29 respectively with pH variation from 4.1 to 9.96. 

 

 

The decrease in contact angle could be attributed to: 

1. Increase in grafting density of PS60-b-PAA29 brush on the substrate surface – more 

PAA chain per area would cause decrease in contact angle because PAA is 

hydrophobic, thus giving contact angle values that are close to the literature value 

of PAA (48
o
). Visual inspection of the brush made at 40 mN/m surface pressure 

indeed indicated a higher mass transfer of PS60-b-PAA29 and greater grafting 

density when compared to the brush made at 22 mN/m surface pressure; the 

brushes at pH 4 has lower grafting density and exercise slightly lower wettability 

than the brushes at pH 7 and 10. 

2. A very homogeneous surface with little or no in-plane space. It is possible to 

describe the brush made at pH 7 and 10 (using 300 mM sea water, 40 mN/m 

surface pressure) with Wenzel model as shown in Figure 4.6b. 
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Although, it has been indicated on the Baier curve that foul-release coating 

can be achieved when a surface has a surface energy of 22 mN/m-24 mN/m, 

additional factors such as nanoscale or microscale roughness can affect fouling 

(Carman et al, 2006).  

In this nanoscale fabrication work, we suspect that contact angle variations 

can be attributed to nanoscale roughness of the polymer brush modified surface. 

Although at this moment, we cannot directly determine how nanoscale roughness 

affected the contact angles but it is safe to assume that the contact angle measurement 

did not only relate to the degree of wettability of the surfaces but it also revealed the 

presence of nanoscale roughness via grafting density variation that is absent from 

ATRP deposition technique. 

 

UV-vis transmittance 

UV-vis spectroscopy is a technique in which the ability of electron to be 

excited and move between energy levels is utilized. These energy levels have direct 

correlation to the molecular orbital of the systems. Specifically, UV-vis spectroscopy 

takes advantage of electronic transitions involving π orbitals and lone pair electrons to 

identify conjugated systems which have stronger absorptions. The wavelength of 

ultraviolet light is 200 nm - 400 nm while that of visible light is 400 nm - 800 nm. 

Detail discussion of this technique has been carried out in Appendix B. 

It can be seen in Figure 4.9 that there are three regions of transmittance: 

Region 1 comprises of clean glass slide and the polymer brushes prepared at 20
o
C 

and 25
o
C using deionized water as the subphase. 100% of the UV-vis light was 
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transmitted in this region between wavelengths of 350 nm to 800 nm.  

In region 2, the brushes at 0
o
C and 15

o
C (both with deionized water subphase) 

and the polymer brush at pH 9.96 (20
o
C, 300mM sea water subphase) all have 

transmittances of between 74 % - 98 % over a wavelength range of 350 nm to 800 

nm. Finally, region 3 comprises of polymer brushes fabricated at 15
o
C (deionized 

water subphase), brushes made at pH 4.01 (20
o
C, 300 mM sea water subphase), and 

the brushes prepared at pH 7.06 (20
o
C, 300 mM sea water subphase) over a 

wavelength range of 350 nm to 800 nm.   

In sum, the UV-vis transmittance measurements suggest that the PS60-b-

PAA29 polymer brush modified surfaces are semi-transparent, which is important for 

applications in lenses or windows.  

 

 

 

Figure 4.9: Transmittance of UV-vis light through PS60-b-PAA29 modified glass 

slides. Subphase temperature and pH, as well as, deposition pressure were varied to 

understand the effect those changes on the brush-modified surface. 
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Fluorescence imaging studies 

 

Fluorescence occurs when a material emits light within nanoseconds or 

femtoseconds upon absorption of light with short wavelength (Lichtman et al, 2005). 

Not all the absorbed lights are emitted but the emitted light (known as fluorescence) 

by the material has longer wavelength than the incident light. Emitted fluorescence is 

then collected by the objective of the microscope and sent to the detector. In order to 

observe fluorescence, fluorophore is needed to ―label‖ the sample molecules. 

Fluorophores are molecules or compounds that possess fluorescence properties. 

Details of the operation and principles of fluorescence microscopy have been 

discussed by Muller, 2006 and Lichtman et al, 2005. 

The fluorophore used in this work is acridine orange. It binds to the carboxyl 

group of the PAA in PS-b-PAA. The fluorophore solution was prepared by dissolving 

acridine orange in deionized water to make 1 mg/mL solution (probably too 

concentrated as shown by the fluorescence images below). The solution was poured 

on the polymer brush and allowed to stain the sample for approximately 30 minutes. 

The samples were washed with deionized water after staining. Upon the completion 

of fluorophore rinsing, the samples were placed on the fluorescence microscope and 

images were obtained using confocal microscope at magnification of 200X – 400X. 

Figures 4.10 - 4.13 shown below presents the surveys of the surfaces of glass slides as 

observed under fluorescence microscope. Figure 4.10A shows the surface of clean 

glass slide that was not modified while Figure 4.10B is the fluorescence micrograph 

of polystyrene modified glass slide; patterns could be seen across the surface the glass 

slide. It should be noted that polystyrene does not fluoresce with acridine orange 
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because it does not have any molecular group that binds to acridine orange; however, 

the patterns that are seen most likely came from the polystyrene that were deposited 

on the glass slides because there are no stripes present on the clean glass slide‘ 

fluorescence image. 

 

 

Figure 4.10: Fluorescence micrograph of (A) clean glass slides (control) and 

(B) polystyrene modified glass slides prepared by pouring PS solution on glass and 

annealing at 150
o
C for 3 days. 
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Figure 4.11: Fluorescence micrograph of (A) dry PS60-b-PAA29 brush prepared at      

π = 22 mN/m using deionized water as subphase (T = 20
o
C) and (B) dry PS29-b-

PAA60 brush prepared at π = 40 mN/m using 300 mM sea water as subphase (T = 

20
o
C, pH = 9.96). 

 

 

The fluorescence micrographs presented in Figure 4.11 are (A) dry PS60-b-

PAA29 brush prepared at π = 22 mN/m using deionized water as subphase (T = 20
o
C) 

and (B) dry PS29-b-PAA60 brush prepared at π = 40 mN/m using 300 mM sea water 

as subphase (T = 20
o
C, pH = 9.96). The non-hydrated brushes prepared at 0

o
C, 15

o
C,  
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and 25
o
C are not shown. In addition, images are not shown for non-hydrated brush 

prepared at π = 40 mN/m using 300 mM sea water as subphase (T = 20
o
C, pH = 4.01 

and pH 7.06). So, in Figure 4.11, the non-hydrated brushes organized into long strips 

or coils of polymer mosaic probably due to collapse of the PAA chains.   

 

Figure 4.12: Fluorescence micrograph of (A) hydrated PS60-b-PAA29 brush prepared 

at π = 22 mN/m using deionized water as subphase (T = 20
o
C) and (B) hydrated PS29-

b-PAA60 brush prepared at π = 22 mN/m using deionized water as subphase (T = 

25
o
C). 
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However, when the brushes were hydrated as shown in Figure 4.12, it reveals 

that the PAA blocks of the copolymer became extended and swollen. It can be seen 

that the density of the brushes increased due to wetting (evidence of hydrophilic 

nature of PAA).  

In Figure 4.13, the surface pressure, subphase, and pH were changed in order 

to study the behaviors of the polymer brush. It can be seen that as the deposition 

pressure was changed from 22 mN/m, the surface energy of the resulting brush and 

surface morphology of the brush produced also changed. 

 
 

Figure 4.13: Fluorescence micrograph of (A) hydrated PS60-b-PAA29 brush prepared 

at π = 40 mN/m using 300 mM sea water as subphase (T = 20
o
C, pH = 4.01) and   

(B) hydrated PS29-b-PAA60 brush prepared at π = 40 mN/m using 300 mM sea water 

as subphase (T = 20
o
C, pH = 9.96). 
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At acidic pH (4.01), the PAA blocks of the PS60-b-PAA29 are neutral because 

pH 4.01 is below the pKa value of PAA. We can see horizontally positioned, 

elongated, and leaf-like appearance of PS60-b-PAA29 brush on the glass surface at pH 

4.01. At basic pH (9.97), the PAA blocks of the PS60-b-PAA29 become ionized (the 

carboxylic groups of the PAA chain ionizes) and acquire negative charges, the 

acquisition of charges results in steric and electrostatic repulsions. It can also be seen 

that the brush look like dots instead of strand-like appearance that was observed when 

the film was dry. 

This dot-like appearance proved that the PAA blocks have stretched. This may 

have resulted in increase brush thickness. Also, Xu et al, 2006 provided evidence that 

at pH above the pKa of PAA (4.5), the PAA chains stretch as the pH increases. So, 

when the pH was raised to values above the pKa, brush density thickness increased.  

 

Atomic force microscopic (AFM) analysis 

 AFM is a good analytical tool for characterization of polymer brush surfaces. 

It can be used to study surface morphological and topographical features, measure 

thickness, and investigate mechanical properties of polymer brush modified surfaces.  

AFM takes surface measurement by scanning the tip of the cantilever on a 

surface resulting in an attractive or a repulsive interplay with the surface. As a result 

of these interactions, the tip attached to a cantilever experiences a force that causes 

the cantilever to bend. A laser beam off the cantilever detects the deflection of the 

cantilever causing the degree of the laser beam to be translated to image in terms of 

height or topography (Kolasinski, 2008). More details on AFM can be found in 
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Appendix B. 

The AFM images presented in presented in Figures 4.14 and 4.15 were 

acquired by our collaborator, Dr. John Torres, at the Naval Undersea Warfare Center 

(NUWC). These images are preliminary in nature and are only meant to give a 

qualitative idea of the surface morphological features of the physically deposited 

PS60-b-PAA29 brushes. Therefore we cannot deduce quantitative information such as 

brush thickness and root-mean-square roughness from these images because the scale 

bars are missing. The samples were hydrate before AFM images were acquired. 

Evidence of surface pre-treatment could be seen on the polystyrene modified 

glass slides in Figures 4.14A and 4.15A. The presence of protrusions, stripes, and 

bumps is consistent with the features seen in Figure 4.10B (fluorescence image) and it 

clearly shows that polystyrene was successfully deposited on the surface of glass 

slides. The AFM image of clean glass slide is not shown but it was flat with the 

absence of all the features seen on Figure 4.14A.  

In Figure 14B - D, PS60-b-PAA29 film was transferred from air/water interface 

at π=22mN/m (subphase T=0
o
C, Figure 4.14B) π=22mN/m (subphase T=20

o
C, 

Figure C), and π=22mN/m, (subphase T=25
o
C, Figure D). They all show unique 

surface morphologies. In addition, phase separations (characterized by dot-like 

appearances of PAA protrusions on top of polystyrene background or surface 

micelles) could be seen in all the AFM images. 
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Figure 4.14: Atomic force microscope images of (A) polystyrene modified glass 

slides prepared by pouring PS solution on glass and annealing at 150
o
C for 3 days, 

PS60-b-PAA29 transferred from air/water interface at (B)  π=22mN/m, T=0
o
C,         

(C) π=22mN/m T=20
o
C, and (D) π=22mN/m, T=25

o
C. Each column from left to right 

is 5 µm x 5 µm, 10 µm x 10 µm, and 30 µm x 30 µm in size. 

 

 

 

In Figure 4.15B – D the temperature was kept constant at 20
o
C, deposition 

surface pressure was change to 40 mN/m, subphase was changed from deionized 

water to sea water, and the pHs were varied; pH 4.01, pH 7.06, and pH 9.96. The 

effects of the changes are:  
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Figure 4.15: Atomic force microscope images of (A) polystyrene modified glass 

slides prepared by pouring PS solution on glass and annealing at 150
o
C for 3 days,  

PS60-b-PAA29 transferred from air/sea water interface at (B) π=40mN/m (T=20
o
C, 

pH4.01), (C) π=40mN/m (T=20
o
C, pH7.06), and (D) π=40mN/m (T=20

o
C, pH9.96). 

Each column from left to right is 5 µm x 5 µm, 10 µm x 10 µm, and 30 µm x 30 µm 

in size. 

 

 

 

1. Figure 4.15B - change in grafting density, reduction of surface roughness, and 

characteristic surface micelle formation. This is consistent with fluorescence 

image in Figure 4.13A. 

2. Figure 4.15C - in addition to charge screening and change in surface density, 

there are aggressive topographic formations of PS60-b-PAA29 brush on the glass 
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surfaces caused by bridging of the surface micelles in some cases and micelle 

island in other cases. Fluorescence imaging of the pH 7.06 is not shown. 

3. Figure 4.15D – the dot-like formation in Figure 4.13B (fluorescence image) are 

seen here as ‗hills and valleys‘ of surface micelles which indicate the effect of 

charge screening.  

It is not clear at this moment whether the topographic formations and surface 

micelles seen in all the cases of pH changes in Figure 4.14 and Figure 4.15 will 

enhance or worsen the anti-biofouling properties of the modified surface. The effect 

of the topographic formations and surface micelles will be observed once the 

antifouling studies are conducted. 

Although, quantitative AFM work was not done to determine the thickness of 

the transferred monolayer; however, the length of the PS and PAA monomers have 

been estimated below: 

Length of polystyrene monomers 

  𝑀𝑛 = 6213, #𝑜𝑓 𝑚𝑜𝑛𝑜𝑚𝑒𝑟 = 60, 𝑐𝑐𝑐 𝑏𝑜𝑛𝑑 =  0.253 

Persistent length = 0.253(60)
1

2 = 1.96 𝑛𝑚 

𝑓𝑢𝑙𝑙𝑦 𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑 𝑙𝑒𝑛𝑔𝑡ℎ = 0.253 ∗ 60 = 15.18 𝑛𝑚 

Length of poly(acrylic acid) monomers 

  𝑀𝑛 = 2106, #𝑜𝑓 𝑚𝑜𝑛𝑜𝑚𝑒𝑟 = 29, 𝑐𝑐𝑐 𝑏𝑜𝑛𝑑 =  0.3 

Persistent length = 0.3(29)
1

2 = 1.62 𝑛𝑚 

𝑓𝑢𝑙𝑙𝑦 𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑 𝑙𝑒𝑛𝑔𝑡ℎ = 0.3 ∗ 29 = 8.7 𝑛𝑚 

𝑇𝑜𝑡𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ = 𝑓𝑢𝑙𝑙𝑦 𝑒𝑥𝑡 𝑙𝑒𝑛𝑔𝑡 𝑜𝑓 𝑃𝑆 + 𝑓𝑢𝑙𝑙𝑦 𝑒𝑥𝑡 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑃𝐴𝐴 = 23.88 𝑛𝑚 

Therefore, the estimated thickness of the PS60-b-PAA29 brush is 23.88 nm. 
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Chemical Deposition of PS60-b-PAA29 Langmuir-Blodgett film 

 

 

In an effort to compare the anti-biofouling efficiency of chemically and 

physically deposited PS-b-PAA films, ATRP reaction was conducted. Surface 

characterizations are hereby discussed first. 

 

Contact angle measurements 

Figure 4.16 shown below is the advancing contact angle measurements of the 

chemically deposited polymers. The contact angle values obtained for unmodified 

glass slide is valid because glass should be hydrophilic. Glass treated with ammonium 

hydroxide, in order to maximize the surface area of the glass that is available for 

reaction, is more hydrophilic than non-hydroxylated glass as expected. 

 

 

 

Figure 4.16: Advancing contact angle measurements of clean and unmodified glass 

slide, hydroxylated glass slides, silane modified glass slides, polystyrene modified 

glass slides (6 hrs ATRP), and poly(acrylic acid) glass slides (6 hrs and 12 hrs 

ATRP). 
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However, after silane modification, the glass slides became hydrophobic. This 

is by design because we intended to tether the hydrophobic end of the antifouling 

polymer on to the glass substrate. 

For polystyrene, after 6 hours of ATRP reaction, advancing contact angle 

measurements in Figures 4.16 and 4.17 shows that there deposition of the polymer 

onto the surface of silane treated glass. The contact angle shows an indication of 

hydrophobicity. The literature values of advancing contact angle for polystyrene 

varies; Drechsler et al, 2005 and Sohn et al, 2011 reported the advancing contact 

angle of spin coated polystyrene of 91.7
o
 and 97.2

o
 respectively.  

 

 

 

Figure 4.17: Average Advancing contact angle measurements of clean and 

unmodified glass slide, hydroxylated glass slides, silane modified glass slides, 

polystyrene modified glass slides (6 hrs ATRP), and poly(acrylic acid) glass slides (6 

hrs and 12 hrs ATRP). 
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Most importantly, the grafting from ATRP reaction yielded a polystyrene modified 

hydrophobic surface. 

PAA was grafted from the surface for 6 hours and 12 hours by ATRP. The 

advancing contact angle measurements are 56.5
o
 for the 6 hours brush and 72.1

o
 for 

the 12 hours brush (Figures 4.15 and 4.16).  This was expected because the chain 

length and grafting density of the 12 hours PAA brush is supposed to be higher than 

that of 6 hours PAA brush because with time, the chain length of the brush should 

increase. This is an indication that the surface was modified. Treat et al, 2006, 

reported an advancing contact angle of 34.0
o
 for PAA but Ni, 2010 (MS Thesis) 

reported a higher contact angle of 67.8
o
 after 24 hours of grafting. Overall, the PAA 

contact angle values are high compared to the value obtained by (Treat et al, 2006), 

this could be due to incomplete hydrolysis of the poly(tert-butyl acrylate) to 

poly(acrylic acid). It has been shown by Ni, 2010 (MS Thesis) that poly(tert-butyl 

acrylate) does not completely hydrolyze in 4 hours; 8 hours was better. 

The last set of brushes that were grown with ATRP was PS-b-PAA brushes. 

Advancing contact angle measured was 69.7
o
. PS-b-PAA advancing contact angle 

measured by Wang et al, 2006 (24 hours) and Ni, 2010 (MS Thesis) (12 hours and 24 

hours) were 59.8
o
, 62.0

o
, and 72

o
 respectively. Although the values of contact angles 

obtained at 12 hours and 24 hours are close but disparities still exist in these contact 

angle values. 
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Uv-vis transmittance 

Brushes fabricated by ATRP were tested for transparency by UV-vis spectroscopy 

and Figure 4.18 shows that chemically modified surface by ATRP also transmitted all 

the lights that passed through them as was the case with physical deposition surfaces 

in Figure 4.9.  

 

`  

Figure 4.18: Transmittance of ultraviolet-visible light clean glass slide, hydroxylated 

glass slide, chemically modified glass slides of TMSPBMB ((3-(TSMP)-2-MP) 4 hrs 

reaction time), PS (6 hours), PAA (6 hours), PAA (12 hours), and PS-b-PAA (6 

hours). 

 

 

Although the regional grouping observed in Figure 4.9 was not observed in 

Figure 4.18, the UV-vis transmittance measurements of PS60-b-PAA29  brush surfaces 

fabricated via ATRP also suggest that the surfaces are semi-transparent, which is 

important for applications in lenses or windows. This observation could mean that 

grafting density variations were not achieved with ATRP as was the case with LB 

physical deposition. To confirm this suspicion, fluorescence microscopy imaging was 
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taken and discussed below. 

 

Fluorescence imaging studies 

 

Samples listed in Table 4.2 were deposited on hydroxylated, pre-treated glass 

slides by ATRP in order to study and compare the surface morphology of both 

covalently linked brushes and physisorbed brushes.  

 

Table 4.2: Samples prepared by chemical deposition of anti-biofouling polymers 

using ATRP (―grafting from approach‖)  

 

Sample # Description 

1 Glass - untreated  

2 Glass - hydroxylated 

3 3-(Trimethoxysilylpropyl)-2-methylproprionate (TMSPBMB) 

4 Poly(acrylic acid) brush (6hrs) (PAA) 

5 Poly(acrylic acid) brush (12hrs) 

6 Polystyrene brush (6hrs) 

7 Polystyrene-block-poly(acrylic acid) (PS-b-PAA) 

 

 

Only PS-b-PAA fluorescence micrograph is presented here because all the samples 

essentially look similar to PS-b-PAA micrograph under the fluorescence microscope. 

Therefore, it is difficult to observe any pattern formation or deduce any 

grafting density variation information from the fluorescence micrographs of the 

chemically deposited brush shown Figure 4.19. Inability to visibly see what is going 

on the chemically deposited brushes could also be due to high brush thickness, thus 

forming an opaque carpet. In order to study the morphology, we need a more 

powerful tool such as atomic force microscope imaging.  
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Figure 4.19: Fluorescence micrograph survey of the chemical deposition PS-b-PAA - 

each block was grafted for 6 hours. 

 

 

 

Atomic force microscopic (AFM) analysis 

Figures 4.20 and 4.21 show the PS-b-PAA prepared by Ni, 2010 (MS Thesis)  

through ATRP (using the same procedure used in this project to prepare the 

chemically deposited brushes). It is evident that there is no grafting density variation 

in the film prepared by ATRP. However, we can see nanoscale topography, 

roughness, and surface micelle formations.  

 

 

Figure 4.20: AFM Topographic view of PS-b-PAA prepared by ATRP using AFM 

SI3N4 tip (Ni, 2010 (MS Thesis); Jahn Torres, NUWC). 
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Figure 4.21: AFM Topographic image of PS-b-PAA prepared by ATRP using AFM 

SI3N4 tip (Qian Thesis, 2010; Jahn Torres, NUWC). 

 

Biofouling studies of covalently linked polymer brushes (ATRP) 

Bio-adhesion studies were conducted by the Callow laboratory at the 

University of Birmingham, UK. The results are hereby presented below.  

 The bar labeled ‗Glass‘ in Figure 4.22 represents the control in the biofouling 

studies. The densities of attached spores varied with chemical composition of the 

modified surface and grafting duration. The lower the spore density of a modified 

surface compare to the glass spore density, the more effective the biofouling coating 

on that particular modified surface. 

Hydroxylated and silane modified glass slides show lower spore settlement 

density. In the case of the poly(acrylic acid) modified surface, grafting duration of the 

brush has a direct impact on the film efficiency, that is, the PAA brush grafted for 6 

hours shows higher settlement density than the unmodified glass slide while the 12 

hours modified glass show almost half the settlement density of the unmodified glass 

slide.  
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Figure 4.22: The grafting density of attached Ulva spores on polymer brush samples 

after 45 minutes of settlement. Each point represents the mean from 120 counts on 4 

replicate glass slides. Bars show 95% confident limits (Finlay et al, 2011). 

 

 

Polystyrene surface, a hydrophobic surface, is notorious for allowing 

settlement of spores (Finlay et al, 2011; Newey et al, 2007; Young et al, 1984). So, 

the 6 hour PS  and 6h-6h of PS-b-PAA grafts in Figure 4.22 experienced 83% and 

99% spore attachment respectively. This characteristic is supported by the average 

advancing contact angle measurements in Figure 4.17 where PS has a contact angle of 

69.6
o
 and PS-b-PAA has a contact angle of 69.7

o
. The attachment of the spores to the 

PS and PS-b-PAA modified surfaces confirmed that poly(tert-butyl acrylate) was not 

completely hydrolyzed to PAA. It also suggests that the thickness of the brushes 

needs to be increased by increasing the grafting time. Therefore, an anti-biofouling 

effective brush may need to be grafted for at least 24 hours. 

As at the time of the preparation of this thesis, anti-biofouling studies on the 

polymer brushes made from physical deposition is underway; hence, the comparison 
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of the efficiency of the brushes fabricated through ATRP and LB will have to happen 

at a future date because not biofouling data is available for the LB fabricated brushes 

at this moment. 
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CHAPTER 5 

 

CONCLUSIONS 

 

Biofouling adversely affects the environment and has enormous economical 

impacts. Biocide based antifouling paints were effective in combating fouling but 

leaching of toxins from the biofouling paints rendered biocide antifouling paints 

unsuitable. Nanotechnology offers the promise of alternative antifouling coatings that 

are environmentally benign and efficient against fouling. By engineering surfaces 

with commercially available polyelectrolyte coatings (PS-b-PAA), we were able to 

fabricate surface that may have anti-biofouling properties through electrostatic and 

steric repulsive forces.  

Furthermore, surface treatment prior to the physical deposition of the 

polyelectrolyte brush is a critical step that determines the success or failure of anti-

biofouling surface fabrication. When polystyrene was allowed to settle as a film on 

the surface of glass and heated in the vacuum over for 72 hours, then cleaned with 

chloroform to remove unbounded polystyrene, physically deposition PS60-b-PAA29 on 

the surface of glass was successful. 

Surface pressure-area isotherm of PS60-b-PAA29 film revealed that if 

temperature of the deionized subphase is raised above 20
o
C in the absence of pH 

adjustment, electrostatic and repulsive force prevent close packing of the 

polyelectrolyte brushes due to increase in thermal energy. This phenomenon helped 

us to understand the surface activity of PS60-b-PAA29 in aqueous environment. In the 
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presence of salt, charge screening occurred leading to grafting density variation. 

Increasing the pH of the subphase to a value above the pKa value of PAA should lead 

to higher grafting density; however, increasing the pH to 7 or 10 with a deposition 

pressure of 40mN/m instead of 22mN/m suppressed the effect of pH with respect to 

controlling grafting density.  So, at deposition pressure of 40mN/m, the brush at pH 4 

should have lower grafting density and indeed exercised slightly lower wettability 

than the brush at pH 7 and 10. 

In order to understand the surface morphology of the polymer brushes, the 

brushes were viewed under fluorescence microscope: non-hydrate PS60-b-PAA29 

brush deposited at 22mN/m surface pressure and subphase temperature of up to 25
o
C 

(deionized water subphase) organized themselves into long strips or coils of polymer 

mosaic probably due to collapse of the PAA chains.   

However, when the modified slides were hydrated as shown in Figure 4.9, 

stretching of the PAA block of the copolymer was observed. It can be seen that the 

thickness of the brush increase due to wetting (evidence of hydrophilic nature of 

PAA).  

The pressure, subphase, and pH were changed in order to study the behaviors 

of the polymer brush. At basic pH (pH 9.97), the PAA block of the PS60-b-PAA29 

become ionized (the carboxylic groups of the PAA chain ionized) and acquire 

negative charges, these result in steric and electrostatic repulsions, as well as, charge 

screening. It can also be seen in Figure 4.13 that the brush look like dots instead of 

strand-like appearance that was observed when the film was dry. This dot-like 
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appearance proved that the PAA blocks have stretched and they are standing upright. 

Hence, brush density has decreased.  

It is impossible to observe any pattern formation or deduce any grafting 

density variation information from the fluorescence micrographs of the chemically 

deposited brush shown Figure 4.19. Inability to visibly see what is going on the 

chemically deposited brushes could also be due to high brush thickness, thus forming 

an opaque carpet. In order to study the morphology, we need a more powerful tool 

such as atomic force microscope imaging. 

The existence of these three different regions on the UV-vis of the physically 

deposited brushes, which was not observed in Figure 4.18, the UV-vis transmittance 

measurements of PS60-b-PAA29  brush surfaces fabricated via LB and ATRP method  

suggest that the surfaces are semi-transparent, which is important for applications in 

lenses or windows. 

 Preliminary biofouling studies of surface modified with ATRP deposition 

shows that grafting duration (hence, thickness) of polyelectrolyte brush has a direct 

impact on the film efficiency against biofouling, that is, the PAA brush grafted for 6 

hours shows higher settlement density than the unmodified glass slide while the 12 

hours modified glass show almost half the settlement density of the unmodified glass 

slide. The attachment of the spores to the PS brushes shows that PS surfaces are not 

effective anti-biofouling brushes but adhesion of the spores to the PS-b-PAA 

modified surfaces suggests that the thickness of the brushes needs to be increased by 

increasing the grafting time. It will also be necessary to increase the hydrolysis time 

of poly(tert-butyl acrylate) to 8 hours or more. Therefore, for PS-b-PAA brush 
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surface to be effective against biofouling, it may need to be grafted for at least for 24 

hours if ATRP is to be used. 

 

FUTURE WORKS 

 

Physical Deposition: Biofouling studies on physically fabricated 

polyelectrolyte brushes are underway at URI aquarium where the samples are 

immersed in sea water pumped directly from the ocean. Future samples will be 

deposited on full size microscope slides via Langmuir-Schaeffer technique. 

Quantitative AFM work will also be done to determine brush thickness, grafting 

density, and adhesive strength of the polymer brush transferred to the substrate‘s 

surface. 

Chemical Deposition: Sample will be prepared on full size microscope slides 

with at least 8 hours of hydrolysis of poly(tert-butyl acrylate) to PAA and at least 24 

hours of grafting time in order to increase the thickness of the brush to a level 

sufficient enough to prevent or drastically reduce biofouling and test of such samples 

will be conducted in Dr. Callow‘s lab at the University of Birmingham, United 

Kingdom. 
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APPENDIX A 

 

HISTORICAL DEVELOPMENTS IN MONOLAYER SCIENCE 

(Roberts, Ed., 1990) 

 

 

Benjamin Franklin (1706-1790) 

Benjamin Franklin, an American elder statesman, applied the principles of 

observation, investigation, and hypothetical deduction and ushered in the field of 

monolayer science. His brilliant approach stimulated interest in scientific 

communities around the world.  

While traveling to Europe by sea, Benjamin Franklin observed that oil on 

water had a peculiar behavior. He used a large pond as his experimental laboratory 

and spread a teaspoonful of oil (dropwise) on the surface of the water in a pond on a 

windy day and he observed the formation of a perfect smooth layer of oil on the 

surface of the water termed monolayer in modern science. Benjamin also realized that 

some forces of attraction/ repulsion were at play. Finally, he studied the effects of 

vibration at the oil/water interface. 

 

John Shields (1822-1890) 

John Shields was a proprietor of a linen mill in Scotland who performed large 

scale experiments in Peterhead and Aberdeen Arbors to investigate the wave damping 

effect of oil on the surface of water. He pumped oil in small quantities to water 

surface and discovered that the surface of the water was calm despite winds. The 

effect only lasted for about an hour. 
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John Aitken (1839-1919) 

John Aitken investigated the notorious theory of wave-dampening by oil. In 

the wake of the massive oil spills such as Exxon Valdez of 1989 and the BP‘s Deep 

Water Horizon of 2010 oil spills, it sounds counterintuitive in contemporary time that 

one should spread oil on the surface of water at sea every time ships travel on the 

ocean but in the periods between seventeenth and eighteenth century, the commonly 

held believe was that oil on the surface of the water causes the sea to be calm.  

John Aitken devised an instrument that was capable of detecting movement in 

water that has been subjected to air current after oil has been spread on the surface of 

such water and found out that oil did not calm water. 

 

Lord Rayleigh (1842-1919) 

Lord Rayleigh departed from traditional way of monolayer study that was 

prevalent at his time by studying the effect of light on monolayer of fatty acid. He 

shed light on the effect of surfactant or ―contaminant‖ on the surface tension of water 

as well as the effect of changing area on surface pressure. Furthermore, he had insight 

that the monolayer formed on water surface had distinct size. He had the idea that it 

should be possible to measure the thickness of olive oil that he had spread on the 

surface of water. 

 

Agnes Pockels (1862-1935) 

Agnes Pockels was a non-professional science enthusiast who used tin cans in 

her kitchen to develop the famous Langmuir film balance model. Her trough was 
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about 70cm x 5cm x 2cm. She made barriers with tin strips. She used the barriers to 

change the area of the trough by moving the tin strips on the surface of water in her 

trough. This design also enabled her to clean the trough whenever she needed to do 

so. Moreover, she could not publish her work because she had no official scientific 

training. As a result, she wrote letters to Lord Rayleigh describing her methodology 

which is regarded as central component of monolayer research today. 

Furthermore, Lord Rayleigh had to recommend Agnes‘ work to the British 

scientific journal, Nature, for publication because of her lack of professional training 

in the field of science. His letter of recommendation was published with Agnes‘ 

publication.  

Most importantly, Agnes published the first surface pressure-area isotherms 

and her work paved way for the quantitative work that we do in monolayer science in 

contemporary times. Her work also helped Lord Rayleigh to appreciate the 

application of surface tension in monolayer research. Finally, as a result of Agnes‘ 

work, Lord was able to calculate the thickness of olive oil monolayer on the water 

surface and arrived at the same solution with Benjamin Franklin, 1 nm! 

 

Irving Langmuir (1881-1957) 

Irvin Langmuir was a Metallurgical Engineer by training whose works led to 

gas-filled lamps (gas-filled lamps are known for their higher efficiencies and 

durabilities).  He also worked extensively in the area of surface chemistry for which 

he won the Nobel Prize in Chemistry. Most importantly, Langmuir unified already 

known but scattered and neglected scientific theories such as the surface nature of 
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adsorption, the kinetic theory of gases, and the range of intermolecular attractive 

forces by showing their relative relationships.  

Langmuir measured the spreading pressures of thin films, developed the 

surface film balance, shed light on the molecular orientation at the surface of water on 

which a monolayer of organic substance has been spread, confirmed the existence of 

short-range forces, and finally, he explained why some molecules did not form 

monolayer films. 

 

Katharine Blodgett (1898-1979) 

Katharine Blodgett was first in many things such as first woman to work on 

the research staff at General Electric, the first person to obtain a doctorate degree 

from the Cavendish Laboratory in Cambridge, England in UK. She was also the first 

person to transfer fatty acid monolayer film on to a solid substrate such as glass 

slides. In her honor, any monolayer(s) transferred to solid substrate is/are known as 

Langmuir-Blodgett film(s). Finally, Katharine‘s attention was later directed to 

studying the optical properties of multilayer films.  

 

 

 

 

 

 

 



 

74 

 

APPENDIX B 

 

MONOLAYER CHARACTERIZATION 

 

Surface Pressure-Area Isotherm (Roberts, 1990; Petty, 1996) 

Molecules within a liquid have certain extent of attractions for each other. 

This extent of attraction is referred to as cohesion. By comparison, molecules within a 

liquid have equal attraction from all directions compared to molecules at the surface 

of the liquid, which experience disproportionate attractions because of interaction 

with air on one side and interaction with molecules within the liquid on the other side.  

Essentially, the molecules at the surface of a liquid experience much greater 

attractive forces towards the liquid than toward the air molecule. As a result, there is 

effective, prevailing attraction towards the liquid aggregate such that the air-water 

boundary automatically lowers its area and shrinks as a result. 

The activities, as well as, the forces that are in play on the surface of the liquid 

and within the bulk of the liquid lead to a situation where the liquid often has excess 

free energy. The excess free energy is called surface tension which can be expressed 

thermodynamically according to the following mathematical expression: 

𝛾 =  
𝛥𝐺

𝛥𝑆
 
𝑇,𝑃,𝑛𝑖

 

 Where G represents the free energy, S is the surface area. The temperature, pressure, 

and composition (ni) are held constant. 

Furthermore, hydrogen bonding – notorious for its strength - forms loose 

networks especially in aqueous environment. The networks formed often undergo 
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manipulation on the surface of the liquid bulk by actions such as compression of 

barriers of the Langmuir-Blodgett trough to reduce area and addition of surfactant to 

the surface of the subphase. Other intermolecular forces also exit in the aqueous 

subphase because of the polar nature of water. The overall effect of these 

intermolecular interactions is high surface tension.  

The strength of the surface tension is reduced when temperature is increased 

and surfactants or contaminants are spread on the surface of the subphase. Hence 

surface pressure is observed because of the difference in environment between the 

molecules on the surface and those within the bulk of the subphase. It is therefore 

possible to quantify the surface pressure according to the following mathematical 

expression: 

𝜋 = 𝛾𝑜 − 𝛾 

where 𝜋 is the surface pressure, o is the surface tension of pure deionized water, and 

 is the surface tension of water after the spreading of the surfactant. It should be 

noted that the maximum obtainable surface pressure on water surface is 73mN/m at 

20
o
C, however, it is could be lower in practice. 

In monolayer science, surface pressure-area isotherm was the fundamental 

tool used in understanding the surface activities of surfactants at air/water interface. 

Agnes Pockels was the first person to use π-area isotherm in 1893 in analyzing oil on 

water surface (Roberts, 1990).  

Surface pressure-area isotherm is a 2-dimentional graph (Figure B1) that 

shows the relationship between surface pressure on the vertical axis and the 
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area/molecule (A
2
) on the horizontal axis. It can be divided into the sections called 

‗phases‘ named synonymously according to the three phases of matter‘s existence.  

 

 
 

 

Figure B1: Typical surface pressure-area isotherm of Langmuir Monolayer. 

 

In the gas phase, the molecules of the surfactant have enough space between 

them such that intermolecular interactions takes place without one molecule 

interfering with the other, thus they exert very small or negligible force on one 

another. In addition, the molecules align themselves in a random manner on the 

surface of the subphase. However, as the area occupied by the monolayer is reduced 

(barrier compression), the hydrophobic tails start to interact with each other. As the 

hydrophobic tails are brought even closer, then the interaction will become significant 

resulting in rise in surface pressure until a constant pressure is observed. This 

constant pressure ushers in the extended phase and it signifies co-existence of two 

phases, that is, gas phase and expanded phase. This is a first order thermodynamic 

transition. 
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In reality, not all surfactants have all the three phases. Figure B2 is the 

pressure-area isotherm of PS60-b-PAA29 in which the three phases are not observed 

whereas Figure B3 shows the surface-pressure area isotherm of DPPC with all the 

three phase.   

 

 
 

 

Figure B2: Surface pressure-area Isotherm of PS60-b-PAA29 at 20
o
C after 1 hr of 

spreading on the surface of the monolayer. 

 

 

 

The next phase observed is the expanded phase. This phase corresponds to the 

liquid phase. In order to explain the expanded phase, it will be necessary to refer to 

the surface pressure-area isotherm of specific surfactants such as PS60-b-PAA29 and 

Dipalmitoylphosphatidylcholine. 

In Figure B2, the plateau occurs at about 1mN/m afterwards, the expanded 

phase appears. The case is the same in Figure B3; the constant pressure region 
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Figure B3: Surface pressure-area isotherm of dipalmitoylphosphatidylcholine (DPPC) 

at room temperature. 

 

 

(steadily increasing), then the plateau and finally the expanded phase. These slight 

differences between the ideal surface pressure-area isotherm and the isotherms for 

actual surface active agent, as well as, the differences between the isotherms among 

various surfactants may be due to difference in the length of chain composition of the 

hydrophobic tails, higher order thermodynamic transition, and effect of residual 

solvent molecules at the interface of the subphase. 

After the expanded phase, another first or higher order thermodynamic 

transition signified by a constant pressure region or lack thereof ushers in the 

condensed phase. However, as with the gas and expanded phases, the condensed 

phase is not always observed in all the monolayer materials.  

The factors that contribute to the variations in the expanded to condensed 

phase transition include the length of the hydrocarbon chain in the hydrophobic tail 
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and temperature. Generally speaking, decreasing the chain length of hydrocarbon tail 

leads to an increase in the surface pressure of the phase transition. Also increase in 

temperature has the same effect (Petty, 1996).
 
At the molecular level, a decrease in 

chain length leads to diminished intermolecular Van der Waals‘ forces. Moreover, if 

the temperature is reduced, the result is a decrease in thermal motion of the molecules 

within the film. The combined effect of the changes mentioned above result in the 

formation of the condensed phase. 

Sometimes, there may be direct transition between the gas phase and the 

condensed phase because of extremely long hydrocarbon tail length. 

 

Atomic force microscopy 

Atomic force microscopy was developed in 1986 by Binnig, Quate, and 

Gerber. It is a microscopic method that allows researchers to see and quantify surface 

structures with extraordinary resolution and accuracy. Surfaces whose structures can 

be investigated by AFM range from solid materials to microorganisms to 

macromolecules. One great advantage of using AFM for surface characterization is 

that it is non-destructive and that is why it is suitable in measuring soft surfaces and 

biological molecules. It can measure samples between 5 nm to 250 µm (or more) in 

size. The figure below shows the linear scale of different microscopes used in 

material science. 
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Figure B4: Scale of measure of various microscopes in material science (Eaton et al, 

2010) 

 

 

 

 

 
 

 

Figure B5: Atomic force microscope. 

 

 

AFM takes surface measurement by scanning the tip of the cantilever on a 

surface resulting in an attractive or a repulsive interplay with the surface. As a result 

of these interactions, the tip attached to a cantilever experiences a force which causes 

the cantilever to bend. A laser beam off the cantilever detects the deflection of the 
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cantilever causing the degree of the laser beam to be translated to image in terms of 

height or topography (Kolasinski, 2008). 

 

Ultraviolet-Visible Spectroscopy 

This is a technique in which the ability of electron to be excited and move 

between energy levels is utilized. These energy levels have direct correlation to the 

molecular orbital of the systems. Specifically, UV-vis spectroscopy takes advantage 

of electronic transitions involving π orbitals and lone pair electrons to identify 

conjugated systems which have stronger absorptions. The wavelength of ultraviolet 

light is 200-400nm while that of visible light is 400-800nm.  

 

 
 

 

Figure B6: The electromagnetic spectrum adapted from 

http://sciencejunkies.com/page/3/. Ultraviolet-Visible Spectroscopy operates within 

the ultraviolet-visible light region of the electromagnetic spectrum. 
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Thus for a substance to be qualified for testing using UV-vis technique, it 

must have uninterrupted conjugated double, triple or a mixture of both bonds along a 

stretch of the molecule. Therefore, the smallest number of molecule of a material that 

can absorb electromagnetic radiation is called the chromophore.  

In principle, the lowest transition of energy occurs between highest occupied 

molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) in 

the ground state. For electrons to move from HOMO to LUMO, electromagnetic 

radiation must be absorbed, this event causes electrons to be excited to the LUMO. It 

should be noted that the more unsaturated the substance under test is the smaller the 

HOMO-LUMO spacing and the change in energy required and consequently, the 

lower the frequency which means the longer the wavelength.  

 

 

Figure B7: The molecular orbital energy representation of ground state and excited 

state of two electrons in a molecule. 

 

 

 

The general outline of a UV-visible spectrometer can be seen below. An 

attempt is hereby made to briefly describe the optical principle of UV-vis 

spectrophotometer. Light from sources are filtered are they enter the monochromator. 
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Hence, as the light exits the monochromator, it becomes monochromatic light. The 

monochromatic light then illuminates the sample. A detector then measures the 

amount of light that passes through the sample. 

 

 

Figure B8: The general outline of UV-visible light spectrometer adapted from 

http://www.chemguide.co.uk/analysis/uvvisible/spectrometer.html#top. 
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APPENDIX C 

 

VOLUME CALCULATION FOR PS60-b-PAA29 MONOLAYER 

 

Part 1 

𝑇𝑜𝑡𝑎𝑙 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑝𝑜𝑙𝑦𝑚𝑒𝑟 𝑛𝑒𝑒𝑑𝑒𝑑 = # 𝑜𝑓 𝑚𝑜𝑛𝑜𝑚𝑒𝑟 ∗ 𝑉𝑝𝑜𝑙𝑦𝑚𝑒𝑟  

𝑃𝐴𝐴 𝑉𝑑𝑊 𝑉𝑜𝑙𝑢𝑚𝑒 = 9.81 ∗ 10−23 𝑐𝑚3 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒  

𝑉 = 4 3 𝜋𝑅3 

𝑅 =   3 ∗ 29 ∗ 9.8 ∗ 10−23 4𝜋  1 3  

    = 8.79 ∗ 10−8𝑐𝑚 ∗ 107 𝑛𝑚 𝑐𝑚 ∗ 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒  

    = 0.879𝑛𝑚 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒  

𝐴𝑟𝑒𝑎 = 𝜋𝑅2 = 𝜋 ∗ 0.8792 = 2.43𝑛𝑚2 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒  

𝐴𝑠𝑠𝑢𝑚𝑒 𝑇𝑟𝑜𝑢𝑔ℎ 𝐴𝑟𝑒𝑎 = 100𝑐𝑚2 

#𝑜𝑓 𝑃𝐴𝐴 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 𝑡𝑜 𝑐𝑜𝑎𝑡 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 =  
100 𝑐𝑚2

 2.43𝑛𝑚2 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒   1 ∗ 10−7𝑐𝑚 𝑛𝑚  2
 

                                                                         = 4.12 ∗ 1015𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠(𝑛𝑒𝑒𝑑𝑒𝑑) 

𝑆𝑡𝑜𝑐𝑘 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = 1𝑚𝑔 𝑚𝐿   

𝑚𝑚𝑜𝑙𝑒 𝑜𝑓 𝑃𝐴𝐴 𝑖𝑛 𝑠𝑡𝑜𝑐𝑘 𝑠𝑜𝑙𝑛 =  1𝑚𝑔/𝑚𝐿  𝑚𝑚𝑜𝑙𝑒/2106𝑚𝑔 = 0.47𝑚𝑚𝑜𝑙 𝐿  

=  4.7 ∗ 10−4𝑚𝑚𝑜𝑙𝑒/𝑚𝐿  6.022 ∗ 1023𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠/𝑚𝑜𝑙𝑒  𝑚𝑜𝑙𝑒/1000𝑚𝑚𝑜𝑙𝑒  

= 2.86 ∗ 1017 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 𝑚𝐿  

𝑉𝑜𝑙 𝑜𝑓 𝑃𝐴𝐴 𝑛𝑒𝑒𝑑𝑒𝑑 = 4.12 ∗ 1015𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 2.86 ∗ 1017 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 𝑚𝐿  

                                                 = 0.014𝑚𝐿 𝑜𝑟 14𝜇𝐿 
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Part 2 

𝑆𝑡𝑦𝑟𝑒𝑛𝑒 𝑉𝑑𝑊 𝑉𝑜𝑙𝑢𝑚𝑒 =  6.6250 ∗ 10−2 𝑚3 𝑘𝑚𝑜𝑙𝑒   𝑘𝑚𝑜𝑙𝑒 1000𝑚𝑜𝑙𝑒   

=  60 ∗ 6.6250 ∗ 10−5 𝑚3 𝑚𝑜𝑙𝑒   106 𝑐𝑚3 𝑚3   𝑚𝑜𝑙𝑒/6.022 ∗ 1023𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠  

𝑆𝑡𝑦𝑟𝑒𝑛𝑒 𝑉𝑑𝑊 𝑉𝑜𝑙𝑢𝑚𝑒 = 6.600797 ∗ 10−21 𝑐𝑚3 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒  

𝑉 = 4 3 𝜋𝑅3 

𝑅 =   3 ∗ 6.600797 ∗ 10−21 4𝜋  1 3  

    = 1.164 ∗ 10−7𝑐𝑚 ∗ 107 𝑛𝑚 𝑐𝑚 ∗ 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒  

    = 1.164𝑛𝑚 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒  

𝐴𝑠𝑠𝑢𝑚𝑒 𝑇𝑟𝑜𝑢𝑔ℎ 𝐴𝑟𝑒𝑎 = 100𝑐𝑚2 

#𝑜𝑓 𝑃𝑆 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 𝑡𝑜 𝑐𝑜𝑎𝑡 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 =  
100 𝑐𝑚2

 1.164𝑛𝑚2 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒   1 ∗ 10−7𝑐𝑚 𝑛𝑚  2
 

                                                                         = 8.59 ∗ 1015𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠(𝑛𝑒𝑒𝑑𝑒𝑑) 

𝑆𝑡𝑜𝑐𝑘 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = 1𝑚𝑔 𝑚𝐿   

𝑚𝑚𝑜𝑙𝑒 𝑜𝑓 𝑃𝐴𝐴 𝑖𝑛 𝑠𝑡𝑜𝑐𝑘 𝑠𝑜𝑙𝑛 =  1𝑚𝑔/𝑚𝐿  𝑚𝑚𝑜𝑙𝑒/6213𝑚𝑔     

= 1.6095 ∗ 10−4𝑚𝑚𝑜𝑙 𝐿  

=  1.6095 ∗ 10−4𝑚𝑚𝑜𝑙𝑒/𝑚𝐿  6.022

∗ 1023𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠/𝑚𝑜𝑙𝑒  𝑚𝑜𝑙𝑒/1000𝑚𝑚𝑜𝑙𝑒  

= 9.693 ∗ 1016 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 𝑚𝐿  

𝑉𝑜𝑙 𝑜𝑓 𝑃𝑆 𝑛𝑒𝑒𝑑𝑒𝑑 = 8.591 ∗ 1015𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 9.693 ∗ 1016 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 𝑚𝐿  

                                                 = 0.08864𝑚𝐿 𝑜𝑟 88.64𝜇𝐿 
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Area/molecule calculation of PS60-b-PAA29 monolayer at fully opened and fully 

closed barrier positions 

 

Table C1: Area/molecule calculation of PS60-b-PAA29 at air/water and air/sea water 

interface. 

 

Temp 
(oC) 

Area @full 
open 1/ao  @full open 1/ao  @full open a0

  a0
  

  cm2    molec/A2  molec/A2  (A2/molec)  (nm2/molec) 

0 72.10 9.04E+13 9.04E-03 110.66827 1.10668 

15 72.09 9.04E+13 9.04E-03 110.65292 1.10653 

20 72.17 9.03E+13 9.03E-03 110.77572 1.10776 

25 72.11 9.03E+13 9.03E-03 110.68362 1.10684 

            
Temp 
(oC) 

Area @ 
collapse 1/ao  @ collapse 1/ao  @ collapse a0

  a0
  

  cm2    molec/A2  molec/A2  (A2/molec)  (nm2/molec) 

0 18.12 3.60E+14 3.60E-02 27.81289 0.27813 

15 18.13 3.59E+14 3.59E-02 27.82824 0.27828 

20 18.11 3.60E+14 3.60E-02 27.79754 0.27798 

25 18.12 3.60E+14 3.60E-02 27.81289 0.27813 

            

            

pH 
Area @full 

open 1/ao  @full open 1/ao  @full open a0
  a0

  

  cm2    molec/A2  molec/A2  (A2/molec)  (nm2/molec) 

4.01 72.20 9.0235E+13 9.02E-03 110.82176 1.10822 

7.06 72.11 9.03476E+13 9.03E-03 110.68362 1.10684 

9.96 71.96 9.05359E+13 9.05E-03 110.45338 1.10453 

        

pH 
Area @ 
collapse 1/ao  @ collapse 1/ao  @ collapse a0

  a0
  

  cm2    molec/A2  molec/A2  (A2/molec)  (nm2/molec) 

4.01 18.16 3.58754E+14 3.59E-02 27.87 0.27874 

7.06 18.13 3.59347E+14 3.59E-02 27.83 0.27828 

9.96 18.11 3.59744E+14 3.60E-02 27.80 0.27798 
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