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Spin diffusion in classical Heisenberg magnets with uniform, alternating, 
and random exchange 

Niraj Srivastava,a! Jian-Min Liu, V. S. Viswanath, and Gerhard Miiller 
Dqmttnmt of Physics, The Uniwrsit), of Rhode Island, Kingston, Rhode island 02881-0817 

We have carried out an extensive simulation study for the spin autocorrelation function at T= xn of 
the one-dimensional classical Heisenberg model with four different types of isotropic bilinear 
nearest-neighbor coupling: uniform exchange, alternating exchange, and two kinds of random 
exchange. For the long-time tails of all but one case, the simulation data seem incompatible with the 
c&ple _ t ~ 1/Z leading term predicted by spin diffusion phenomenology. 

The anomalous character of spin diffusion in the one- 
dimensional (1 D) classical Heisenberg model, 

Hz-C mIi,i.+1Si*Si.j.I, (1) 
i 

with uniform exchange, .ii,i+ r = J, was first proposed in 1958 
on the basis of a simulation study.r The proposition was that 
the spin autocorrelation function at T=m exhibits a distinc- 
tive power-law long-time tail, 

C.‘,(tiE(SI(f).Si)--t. *, (2j 

with a characteristic exponent (Y that exceeds the value 
cu,,- 1D predicted by spin diffusion phenomenology consid- 
erably. 

Since neither of the two conclusions was primarily based 
on the analysis of spin autocorrelation functions, we wish to 
use our own new simulation data for C,(t) as a discriminant 
between expressions (4) with cr=0.472 and ~~-0.5, respec- 
tively. We have carried out the simulation for a system of 
1024 spins with periodic boundary conditions. We have em- 
ployed CM-5 machines with various numbers of processors 
programmed in Connection Machine FORTRAN for up to 
4096 parallel time integrations. For the integration over the 
time interval 0 SJS 102.2, we have used a fourth-order 
Rung+Kutta method with fixed time step Jdt=i~.OO5. In 
this massively data-parallel programming mode we can reach 
previously unattained statistics with no undue effort. 

That conclusion was challenged by Gcrling and Landau’ 
soon after it had appeared in print. However, the consensus 
emerged that the slope c?! inferred from the simulation data 
tin a log-log representation) has a value &=(I.60 at Jt-25 
and a decreasing trend for longer Jt, and tlrat the true asymp- 
totic behavior remained out of the reach of simulation data 
available at the time.“‘” 

It was nevertheless another simulation study that yielded 
new insights into the anomalous transport mechanism of spin 
fluctuations in the classical Heisenberg chain. Having been 
alerted by the puzzling results for the spin autocorrelation 
function, Bonfim and Keiter’ focused their own investigation 
on the q-dependent spin correlation functions and the asso- 
ciated current correlation function. One of their conclusions 
was that the asymptotic behavior of the spin autocorrelation 
function is of the form 

For the intended analysis, we have determined the aver- 
age slope 2.r of the simulation data in a log-log representa- 
tion over a time interval of length Jt, as follows: each data 
point of G(t) is calculated by linear regression from N;,, 
consecutive data points [lnlt,ln C,,(t)] spaced at JAt-0.2 
and assigned the Jr value at the midpoint of the interval of 
length .It,,=N&At. Figure 1 shows the slope function ii 
plotted versus l/.Tr for three different sizes of .It,.h This 
representation enhances the visibility of the subtle features in 
the long-time tail, but it also magnifies the statistical lluctua- 
tions. The latter are kept under control by adjusting .Tt,, .’ 

Co!t)-[Jt ln(l2t)]-” (3) 

with a=11.472. The implication is that the slope of C,(r) in a 
log-log plot can be described by an effective exponent, 

;G=a[l+- l/ln!a2t)]. (4) 

B&m, Cierling, and Leschke’ were quick to point out 
that the asymptotic form of the y-dependent correlation func- 
tion used in Ref. 4 is in contradiction to the non-negativity of 
<S,(t) .S, + ,,>, for which strong numerical evidence exists. 
Theyproposed an alternative asymptotic expression, which 
also implies an effective exponent (4), but with asymptotic 
value ru=0.5. 

In order to facilitate a direct comparison of our simula- 
tion results with the proposed functional form (4) for the 
effective exponent ii(t), we have subjected the asymptotic 
expression -[Jr In(%)]-” to the same exponent analysis 
as the data. The resulting slope function &(u(t) still depends on 
the parameters & and f2. There is no compelling reason for 
setting $2 equal to J in the logarithmic correction as was done 
in Kefs. 4 and 5. Minimizing the relative rms deviation be- 
tween the two slope functions &(u(t), namely the one repre- 
senting the simulation data and the one representing the av- 
eraged exponent &( tj over the interval 5 +Jt,/26Jt 
< 102,2-Jt,/2, yields parameter values in the range 
cu=0.478t0.001, Cl/J=2.30~0.02 for the three values of 
averaging intervals .Jt,, used. The solid lines represent ii vs 
IIJt for the optimal parameter values. The agreement with 
the simulation data is quite satisfactory. If we perform the fit 
for fixed n=11.5, we obtain the optimal value Q/.1=9.7(1 
+0.05 for the other parameter, and the result, represented 
by the dashed lines, is in clear disagreement with the simu- 
lation data. 

“)Present aJdrc-ss: ‘IXaking Machines Corporation, Crimbridge, MA 02142- We have repeated the analysis with more of the (evi- 
12’(,4. dently nonasymptotic.l data at small times omitted (up to 
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FIG. 1. Slope function c;(t) for the 1D classical Beisenbcrg model t 1) with 
uniform exchange, J,,,, r =J as determined from the slope of C,,(t) in a 
log-log plot. The data for C,,(t) represent an average over 404484 ran- 
domly chosen initial conditions and over the 1024 sites of the lattice. Each 
data point & is determined by linear regression from N, consecutive data 
points [lnJr,ln Co(t)] spaced at JAt=O.2 and plotted vs i/Jr at the mid- 
point of the interval of length Jt,,=NJht. The simulation data are repre- 
sented by the circles. The asymptotic form (3) subjected to the same proce- 
dure yields the dashed lines for cr=Il.S and the solid lines for cu=O.478. The 
three plots correspond to different sizes of averaging time interval: (a) 
Jt,=30, (b) Jtas=20, tc) .It,,=lCI. 

15 +Jt,) and found a decreasing trend of the optimal expo- 
nent value (now in the range a=O.472+0.002, in even better 
agreement with the value proposed in Ref. 4). Nevertheless, 
the problems attached to this scenario, as pointed out in Ref. 
5, cannot be dismissed and suggest that the true asymptotic 
behavior is even more subtle. 

How typical is the occurrence of anomalous long-time 
tails in 1D classical spin systems with isotropic exchange? It 
had already been noted’ that the anomaly disappears in the 
presence of uniaxial anisotropy. The question is what hap- 
pens if we modify the spin coupling without altering the 
rotational symmetry in spin space, for example, by reducing 
or removing the translational symmetry along the chain. 

In order to investigate that question, we have carried out 
simulations of comparable extent on three further variants of 
the classical Heisenberg model (1). In addition to model (ij 
with uniform exchange, Ji,i+ r = J, discussed previously, we 
consider the model (iij with alternating exchange, 
Ji,i+l = (- l)‘J, and two models with rundont exchange: 
model (iiij has Ji,i+l = -CJ with equal probabi1itie.s and 
model (iv) has IJr,i+ r 1 s~J with a rectangular probability 
distribution.” The results of this investigation are displayed 
in Figs. 2-4 for models (ii)- in exactly the same repre- 
sentation as those of model (ij exhibited in Fig. 1. The out- 
come is a bit surprising. It see.ms that long-time tails display 
no less individuality than, say, pony tails.’ 

Among the four models considered here, the one with 
alternating exchange alone appears to exhibit completely 
normal spin diffusive behavior. Tts slope function & dis- 
played in Fig. 2, tends to extrapolate on a fairly direct path 
toward czsu =OS. The data invite no suspicion of any 
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FIG. 2. Slope function &(f) for the 1D classical Heisenberg model t. L) with 
alternating exchange, Ji,i + r = ( - l)‘J, produced by the same method as that 
of Fig. 1. The number of integrations with randomly chosen initial condi- 
tions was 479 232 for this case. 

anomaly. The strong wiggles at small t are not statistical 
fluctuations but originate from oscillations in C,(r), which 
persist to longer times in this model than in any of the other 
three. 

The slope function & of the random-exchange model (iii) 
is shown in Fig. 3. Unlike in the previous two cases, it has an 
increasing trend for increasing t up to &=0.X3 at the tail e.nd 
of the data, where it seems to level off. While a limiting 
value of cu,,- -0.5 cannot be ruled out, the data do not show 
any tendency to extrapolate to that value. 

Changing the distribution of random exchange constants 
from (iiij to (iv) produces a quite different slope function as 
can be observed in Fig. 4. It starts out at a much smaller 

1G 
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FIG. 3. Slope function k(t) for the 1D classical Heisenberg model (1.) with 
random exchange. .T, + 1 = CJ, produced by the same method as that of Fig. 
1. The number of integrations with randomly chosen initial conditions was 
409 600 for this case. For each initial contiguration, the exchange constants 
were randomly chosen as well. 
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FE. 3. Slope function $t) for the I JI classical Heiscnberg model i, 1 j with 
random exchange, IJi ,cll~+3J, produced by the Sdrne method as that of 
Fig* 1. The number o> integrations with randomly chosen initial condition 
was $24 ‘160 in this -se. For each initial configuration, the exchange con- 
stants were randomly chosen as well. 

value for short t and reaches ii-O.4 at the tail end of the 
data (Jt- 102.2). In some way this slope function looks like 
the mirror image of that for model (‘i). It may very well 
extrapolate to asI)= 0.5 or there abouts by some logarithmic 
law-a modification of Eq. (4). But any such law would 
have to be motivated by an investigation of q-dependent cor- 

relation functions as was done by Bonfim and K&W4 for 
model ii). For the random-exchange model (iii), the anomaly, 
if it indeed exists, is much weaker than in models (i) and (iv) 
and will therefare be much harder to identify and analyze in 
q-dependent correlation functions. The.se are future projects. 

This work was supported by the U.S. National Science 
Foundation, Grant No. DMR-93-12252. The simulations 
were run on CM-S machines at the National Center for Su- 
percomputing Applications, University of Illinois at Urbana- 
Champaign and at Thinking Machines Corporation. 
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interpretations of slope functions based on different simulation data. 
‘The price to be paid in exchange of a smooth slope function is a system- 

atic deviation from the true slope at a given value of Jr for all functions 
except pure power laws. For a given Set of SimUkitiOn data, if one in- 
creases Jt,, one gains smoothness and along with it the ability to ex- 
trapolate. Conversely, if one decreases Jt,, , the systematic deviations go 
down, but the statistical fluctuations grow more intense. The three plots in 
each figure are intended to illustrate that the systematic deviations are 
negligible except (in some cases) for short times. 

‘The width Zv”;J of the J;,i+ 1 distribution has been chosen to mdtch the 
initial curvature of C,,(t) with those of the other three models. 

“In Ref. 1 (second paper) we have already compared three of the four 
long-time tails directly and found (ii) and (iii) similar but distinct from (i). 
The superior statistics of our new data reveals subtle but significant dif- 
ferences between (ii) and (iii) as well. 
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