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Dynamical properties of quantum spin systems in magnetically ordered 
product ground states 

V. S. Viswanath, Joachim Stolze,a) and Gerhard Miiller 
Depurtment of Plzy.&*s, The Uniwrsity of Rhode klmui~ Kingston, Rhode Islanci 02881-0817 

The one-dimensional spin-s XYZ model in a magnetic field of particular strength has a ferro- or 
antiferromagnetically ordered product ground state. The recursion method is employed to determine 
T-O dynamic structure factors for systems with s =& I,.$. The line shapes and peak positions differ 
significantly from the corresponding spin-wave results, but their development for increasing values 
of s suggests a smooth extrapolation to the spin-wave picture. 

‘” 

It is not necessarily the presence of strong quantum fluc- 
tuations in the ground state that is primarily responsible for 
turning the T= 0 dynamics of a quantum many-body system 
into a chaknging topic of condensed-mat& theory. Even for 
systems with no correlated quantum fluctuations in their 
ground state, the dynamical& relevant excitation spectrum 
may bc exceedingly complex, and the spectral weight in dy- 
namical quantities may be distributed over frequency bands 
of infinite width. This will be demonstrated for a system of 
localized spins with an exact ferro- or antiferromagnetic 
product ground state. The shortcomings of the karnmnic 
alias &eirr sphwwe alias si&e-mode approximation are 
found to he considerable. 

We consider the spin-s XYZ ferromagnet in a magnetic 
field, 

N 
H = - c {:Jss.p;+ 1 =t J,&sI’., * -U.&q, t + k Sf}, (1) 

‘El 

for J,>J,>J,Xl, even N, and periodic boundary condi- 
tions. If the magnetic field has a particular strength, 
~z=t~,=2sl(.r~-J,)(J,-J~>]*!“, that system is known to 
have a product ground state wave function, 

where the unitary transformation represented by U,(6) de- 
scribes a rotation of the spin di.rection at site 1 by an angle 
+arccos (J,,--.JJ/(J,-J2) away from the z axis into the 
xz plane.’ IC) is a state of maximum ferromagnetic order, 
(RI)-(G~SI~G)=(s sin 8, 0, ,I’ cos I?). The ground state en- 
ergy is E,;= -Ns”(J,+J,--J,). 

Previous studies of this system, motivated by the search 
for new rigorous results in quantum many-body dynamics, 
led to two general conclusions:‘-” (i) The conditions under 
which ferromagnetic spin waves are exact eigenstates of H 
are much more restrictive than those for the existence of the 
product ground state, namely Js-JB or q= rr or ~+a, in 
addition to h = h,. (ii) The realization of the product ground 
state IG) implies the following rigorous relations between 
the T= 0 dynamic structure factors S,,(q, w): 

S,,(q,~j=S~y~q,w)cos’ 6+4ds” sin’ 66(.w)6(q), 
__~- - __--__ 
‘bn leave from Inbtitut fiir Phpik, Cinivrrsitk Dortmund, 44221 Dortmund, 

Gemlan y. 

SZZ(q,O)=Syy(q,O)sina 6+4n-‘? cos’i)6(w)S(q). 
(3) 

The only known rigorous and explicit results pertain to 
the s= 1 XY model (JX= I+ y, J,= I- y, J,=O), and can 
be evaluated in the form of a two-particIe Green’s function 
for free lattice fermions, 5 in combination with relations 
(3)?” 

Y J4(1- r”)cosQ/2)--(o-2)’ 
s~~(q’o)‘2( I- y) [o-2 sinz(q/2)]‘+ y’ sin’ q 

XO[4(1- y”)coS”(q/2)-io-2j~]. (4) 

Whereas spin-wave theory predicts a single spectral line in 
S,,(q,o) at the frequency osw=2s(J,-J1, cos q), expres- 
sion (4) is represented by a spectral-weight distribution that 
consists of a peak shifted relative to osw and with nonzero 
intrinsic width.’ However, the result (4) does not yet fully 
reflect the generic structure of S,,(q,w) for this situation. 

Our analysis of generic cases (s>$ XY or XYZ 
with arbitrary s) employs the recursion method. For this ap- 
plication, it is based on an orthogonal expansion of 
the wave function 
=N-1~Z~,ei41Sf. 

IT~(t))=S$ -t)lG), where St 
‘-a The recursion algorithm produces iaf- 

ter some intermediate steps) a sequence of continued-fraction 
coefficients ArP”(qjl ArP(q),..., for the relaxation function, 

I 
r:$“(q,rj = 

zs 
A$+“(q, 

Z+ 
By(q) ’ 
z-k--* 

which is the Laplace transform of the symmetrized correla- 
tion function %(,S~(t)sl*,)/(s~S !!J. The dynamic struc- 
ture factor S,,(q,w), which is the Fourier transform of 
(sF(t)P,), can be obtained directly from (5j as follows (for 
T= 0): 

The simple dependence of the product wave function IC) on 
the size of the system offers the advantage that we can com- 
pute a significant number of size-independent coefficients 
AX”(q).” In Fig. 1 we have plotted the sequences 
Af’(q =O> for four different applications of the recursion 
method. Each one of the four qualitatively different patterns 
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FIG. 1. Continued-fraction coeftlcients Q’(O) and (rescaledj Am’, as 
obtained from the recursion method for the determination of the 7’=0 dy- 
namic structure factors S,,(q=O,o),p=y,z, of;he iD spin-s XY model 
(J,-lf y. Jr=1 -y, .J,=O, h=hN) with y=z, and the spin quantum 
number s, as specified in each of the four panels. 

displayed by these sequences bears the signature of a char- 
acteristic property of the associated S,,(q = 0, w). 

In panels (a) and (b), the Aak.-r and the AaLk tend to 
converge to different (finitej values A$” and Ag”, respec- 
tively. If Ag)>Ag) as in (a), the implication for the dynamic 
structure factor is that all its spectral weight is confined to 
the interval ~indwG~m~, with ~~,,=/m-- ml, 
o,,= \@-I- \,m. If Az)<Ae) as indicated in (bj for 
k>5, the dynamic structure factor has a Wo) contribution, in 
addition to the continuous part.s These are precisely the 
properties of the known functions Spy(O,w) and S,(O,w) for 
the s=$ XY model, as inferred from (4j and (3j. 

In panels (c) and (dj, the two subsequences Azk and 
A,,-, grow roughly linearly with k to infinity, but with dif- 
ferent average slopes. The linear average growth of a AIi 
sequence implies that the associated dynamic structure factor 
has unb0unde.d support and that the spectral weight tapers off 
by a Gaussian decay lakv, - em @‘, at high frequencies. If the 
Ask-r grow more steeply than the Azk as in (c), it can be 
concluded that the dynamic structure factor has a gap at 
O<o<R. If that pattern is reversed asymptotically, as in (d) 
for k > 5, it signals the presence of an additional 6(w) con- 
tribution in the dynamic structure factor. Our observations 
indicate that patterns (c) and (d) are generic for S,,,(O,cr?) and 
S,(O, o), S,(O, w), respectively, of the spin-s XYZ model. 
The exception is the s = 3 XP case, where patterns (a) and (b) 
obtain. 

For fixed q#O, the Ak sequences of all three functions 
S,,(q,o),p=x,y,z are the same in consequence of (3). For 
q=,O, by contrast, the additional S(W) contributions in 
S,,(O,o) and S,,(O,ti) lead to a pattern reversal from (a) to 
(b) or from Cc) to (d), with two characteristic properties: (i) it 
leaves the sum of successive. pairs of coefficients, 
A&fCl_l(0)+Agr(O)l invariant; (ii) the factor by which the 
first coe.fficient changes determines the weight of the 
s(4 contribution: AT(O)/AyY(O) = co? 8, A;‘(O)/ 
Ap(O) = sin’ 6. 
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FIG. 2. Normalized dynamic structure factor ~,y”S,(q,w)/(S~S~.,) (for 
y=Ojaf T=Oofthe1DX~‘model~,=1+y.J,=1-y.J~=0,h=h~)with 
y=$‘The three curves in the main plot represent the results for s = $,l, $, as 
obtained from the recursion method combined with the continued-fraction 
analysis outlined in the text. For better visibilit Y we have expanded the 
vertica1 scale by a factor of 10 for the spin-3 curve. The number of 
continued-fraction coefficients used is K= 16. The vertical dashed line rep- 
resents the classical spin-wave result for the same function. ‘The inset shows 
again the spin-i resuIt (solid line) on different scales, now in comparison 
with the exact expression (4) (dashed line). 

For the reconstruction of the dynamic structure factor 
S,v(O,~) from the known coefficients A{‘;“(O), . . .,Ag(O), 
such as is shown for two distinct cases in panels (aj and (c) 
of Fig. 1, we proceed according to the well-tested method 
outlined previously.7s*L” At first, we select a model spectral 
density &r,(o), which is compatible with the general struc- 
ture of S,,IO,wj identified above. For case (a) we choose the 
function 

&)i wj = %- --. _ O(IWI-Wminj~j)(W,,,-lIWI), (7) 
4na.x mm 

which has bounded support and a gap, and for the case (c) 
the function 

2t,l;; 
&)(0j=- wo 

Oilw(-n)e-(lw/-“,?/~5, (8) 

which has unbounded support and a gap. Each function has 
two parameters, whose values are determined by matching 
the coefficients Ap(O) of panels (a) and (cj with the 
continued-fraction coefficients of the corresponding model 
relaxation function, 

1 
&dz! == I 

--&&(bJ) 
--iL w-i2 . 

Next, we expand the model relaxation function into a 
continued fraction down to level K and replace its continued- 
fraction coefficients by those from panels id) and (c) for the 
two situations, respectively. That yields an approximation of 
(S), which is of high precision, as we shall see. The dynamic 
structure factor SJO,w) is then obtained via (6). The prac- 
tical aspects of this procedure have been described in previ- 
ous applications to different physical situations.7’1” 
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In order to demonstrate the degree of accuracy of our 
method, we first reconstruct the function SYY(O,w) for the s 
=$ XY model with y=$, from the @y(O) of panel (a) and 
compare it with the exact expression (4). The two results are 
plotted in the inset to Fig. 2. The coefficients Af”[Oj of panel 
i.c”) pertain to spin quantum number s = 1. The reconstructed 
dyrmmic structure factor S,,(O,@) is shown in the main plot 
of l?icr n. 2. Note the different vertical and horizontal scales. 
Also shown are the results for s =$ (the same as in the inset) 
and for s = $ The latter has been reconstructed from 16 co- 
efficients Aiy(O>, which also exhibit pattern (c). The spectral 
line shown dashed represents the spin-wave result 
S,,(0,w)=2rr~io-4~Syj, which is exact in the classical limit 
s = m. We conclude that quantum effects are very significant. 
They produce nontrivial line shapes and move the peak po- 
sitions by as much as a factor of 2.1 relative to the spin-wave 
prediction. Neverth&ss, convergence of the quantum results 
for increasing s toward the classical result is indicated. 

Our results thus expose the limitations of spin-wave 
theory in quantum spin dynamics very clearly. No matter 
how favorable the circumstances for the application of a har- 
monic analysis or single-mode approximation are, the ge- 
neric structure of the functions S,,(y,ti) for quantum spin 
systems at T=O deviates considerably from the results pro- 
duced on that basis, e.specially for small spin quantum num- 
bers: The spectral weight is distributed over bands of infinite 
width (unbounded sunnort).‘” and is dominated bv lines with 
non.& intrinsic widih at frequencies that differ significantly 
from the spin-wave dispersion. Since these quantum effects 
cannot be attributed to the strongly fluctuating nature of typi- 
cal J.D phenomena, there is no reason to assume that they are 
less pronounced in 2D and 3’D magnetic systems. 

Ail the conclusions reached in this study for the spin-s 
XYZ ferromagnet IJ,> I) j can be translated into similar con- 

elusions for the same model with antiferromagnetic couphng 
(J,<(I). That model has a spin-flop ground state at a par- 
ticular strength of the magnetic field. Therefore, the order 
parameter causes a pattern reversal at q= r in SXx((l,w) and 
at q=O in Szz(q,o). 
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