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ABSTRACT 

Implementation trials often involve clustering via risk networks, where only some 

participants directly received the intervention. The individual effect is that among 

directly treated persons beyond being in an intervention network; the disseminated 

effect is that among persons engaged with those directly treated. We employ a 

causal inference framework and discuss assumptions and estimators for individual 

and disseminated effects and apply them to HIV Prevention Trials Network 037. HIV 

Prevention Trials Network 037 was a Phase III, network-level, randomized 

controlled HIV prevention trial conducted in the US and Thailand from 2002 to 2006 

that recruited persons who injected drugs, who received either intervention or 

control, and their risk network members, who received no direct intervention. 

Combining individual and disseminated, a 35% composite rate reduction was 

observed in the adjusted model (95% confidence interval = 0.47, 0.90). Methodology 

is now available to estimate the full set of these effects enhancing knowledge gained 

from network-randomized trials. Although the overall effect gains validity from 

network randomization, we show that it will, in general, be less than the composite 

effect. Additionally, if only index participants benefit from the intervention, as the 

network size increases, the overall effect tends to the null, an unfortunate and 

misleading conclusion.  

Keywords: Causal inference; Cluster-randomized trials; Disseminated/Indirect 

effects; Drug use/abuse; HIV/AIDS; Implementation Science; Individual/Direct 

effects; Interference  
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Implementation science studies how best to translate and scale-up research 

evidence into practice. These studies often involve a natural clustering by social 

network, facility or community. In such network-randomized trials, only some 

members of networks randomized to the intervention directly receive the 

intervention. Individual and disseminated effects can be targets of inference. The 

disseminated or indirect effect is the impact of the intervention on the network 

members who were not directly exposed in the intervention networks. The 

individual or direct effect is the impact of the intervention on those who directly 

received the intervention, the index participants in intervention networks, beyond 

being an intervention network member. The composite effect is the effect of the 

intervention on index participants compared to network control members; that is, 

the maximal attainable benefit of the intervention. For example, a health care 

professional may educate an index participant, also known as the ego, who then in 

turn may educate or otherwise influence members of his or her risk network, also 

known as the alter-egos, to modify their risky practices. In this setting, there is 

interest in the intervention effect on those who were directly educated as well as 

those sharing risk networks with the index.  

The terms individual and disseminated are used in this paper to avoid 

confusion with these terms used in the mediation literature, where the direct and 

indirect effects are terms used to describe parameters addressing different scientific 

questions (1). We present a summary of the vernacular from relevant literature on 

the present topic and provide our recommended terms in Table 1. Compared to 
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previous terminology, our terms are more agnostic to the relative magnitudes and 

desirability of dissemination.  

 In causal inference methodology, a fundamental assumption of much work is 

the stable unit treatment value assumption, that is, SUTVA (2), which includes an 

assumption of no dissemination, or interference, between individuals. No 

dissemination requires that the potential outcomes of one individual are unaffected 

by the intervention assignment of other individuals. In this paper, the primary 

research interest is precisely in relaxing the no dissemination assumption of the 

stable unit treatment value assumption and quantifying disseminated effects.  

 Earlier work on methods for assessing dissemination assumed two-stage 

randomization, where networks were first randomized to an intervention allocation 

strategy and, then, within a network, individuals were randomized according to 

their network’s allocation strategy (3, 4). Estimators of individual and disseminated 

effects were motivated by vaccine studies, where herd immunity is a good example 

of a disseminated effect (5, 6). Permutation-based variance estimators were 

developed for these doubly-randomized designs (4).  When a study is not doubly 

randomized, these estimators of individual and disseminated effects are no longer 

valid because of the potential for bias due to confounding at either the network-, 

individual- level or both. Tchetgen Tchetgen and VanderWeele (7) proposed inverse 

probability weighted estimators of individual and disseminated effects for studies 

where randomization is not required at the individual or group level. This approach 

was applied to an individually-randomized study of cholera vaccine, where 

individuals were clustered by groups of households. (8). This approach was then 
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applied to a study design with more than one index member and unequal treatment 

probabilities in the second stage (9).  

Using multivariable outcome models rather than inverse probability 

weighted models, we develop alternative estimators of individual, disseminated and 

composite causal effects for a setting with randomization only at the network level 

and one index per network, a study design frequently utilized in drug abuse and 

addiction research (10-12), and provide methods for asymptotic inference. We 

discuss the causal inference framework and assumptions for this setting. We prove 

some general results of interest in this setting that demonstrate the utility of the 

methods proposed. We apply these methods to a network-randomized trial in the 

HIV Prevention Trials Network (HPTN)(13-15) to obtain estimates of the individual, 

disseminated, composite, and overall intervention effects. Lastly, we discuss some 

limitations of this approach and identify future methodological directions for causal 

inference in network-randomized studies. 

METHODS 

Assumptions and Notation 

The sufficient conditions for valid estimation of causal effects have been 

previously described (16) . We assume no dissemination between networks. 

Because the networks are randomized to the intervention, on average, 

exchangeability at the network level holds. Networks randomized to the 

intervention will be, on average, comparable to networks randomized to the control. 

There is an additional exchangeability assumption that allows for valid estimation of 

all the parameters of interest in this setting. Within each network, conditional on a 
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set of measured covariates, the potential outcomes of the voluntary index 

participants and non-index network members are the same as, on average, that 

would be expected if any other network member volunteered to be the index, 

whether the network was randomized to the intervention or not.  We call this 

“conditional index exchangeability”.  

Let 𝐾 be the total number of networks, 𝑘 = 1, … , 𝐾, with 𝑖 = 1, … , 𝑛𝑘 

participants in network 𝑘, where each participant 𝑖 has 𝑗 = 1, … , 𝑚𝑘𝑖 visits and 

∑ 𝑛𝑘 = 𝑁𝐾
𝑘=1  is the total sample size of the study. Let 𝒁𝑘𝑖 be a vector of measured 

baseline covariates for participant 𝑖 in network 𝑘. Define 𝑌𝑘𝑖𝑗 as the outcome for the 

𝑖th participant in the 𝑘th network at the 𝑗th visit. Let 𝑋𝑘 be the network-level 

intervention in network 𝑘 assigned at the start of the trial and define an indicator 

𝑅𝑘𝑖 for the individual-level index status, where 𝑅𝑘𝑖 = 1 if participant 𝑖 in network 𝑘 

is an index and 𝑅𝑘𝑖 = 0 otherwise. For example, investigators assign HIV risk 

networks either to train their index member to be peer educator or standard of care 

with HIV counseling and testing. In network 𝑘, we have an 𝑛𝑘-vector of observed 

index status indicators 𝑹𝑘 = (𝑅𝑘1, 𝑅𝑘2, … , 𝑅𝑘𝑛𝑘
), constrained in this paper 

to ∑ 𝑅𝑘𝑖
𝑛𝑘
𝑖=1 = 1 and 𝑛𝑘-vectors of baseline covariates 𝒁𝑘 = (𝑍𝑘1, 𝑍𝑘2, … , 𝑍𝑘𝑛𝑘

). Each 

participant has potential outcomes 𝒀𝑘𝑖𝑗(𝒓, 𝑥), which correspond to the 2 × 𝑛𝑘 vector 

of potential outcomes for individual 𝑖 in network 𝑘 at time 𝑗 under the index status 

indicator vector 𝑹𝑘 = 𝒓 and intervention assignment 𝑋𝑘 = 𝑥. Because an 

individual’s potential outcomes depend on the network-level intervention, 

dissemination is possible in this setting. A contrast between any two of these 

potential outcomes is a measure of a causal effect. For example, a representation of 
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the individual causal effect in an intervention network where the second participant 

was the index compared to when the last participant was the index is 

𝐸{𝒀𝑘𝑖𝑗[(0,1, … 0), 1]} − 𝐸{𝒀𝑘𝑖𝑗[(0,1, … 1), 1]}. 

Because the number of index members in network 𝑘 is fixed to 1 by design, 

there are 𝐽𝑘 = (
𝑛𝑘

1
) = 𝑛𝑘 possible configurations of index participants in each 

network 𝑘. In general, each network member has 2 × 𝑛𝑘 potential outcomes with 𝑛𝑘 

corresponding to intervention and 𝑛𝑘 corresponding to control. With these many 

potential outcomes within networks, it is difficult to choose the causal effects of 

interest. Conditional on baseline covariates, we assume that there is exchangeability 

between the 2 × 𝑛𝑘 possible configurations when there is one index participant in 

network 𝑘; that is, 𝑌𝑘𝑖𝑗(𝒓, 𝑥) ⊥ 𝑹𝑘| 𝒁𝑘. Baseline covariates are sufficient to control 

for confounding of the effect of self-selected index status on the outcome. Because 

there is only one index per network, we can validly denote the potential outcomes 

by 𝑅𝑘𝑖 = 𝑟 and 𝑋𝑘 = 𝑥. Under these circumstances, the number of potential 

outcomes for each participant, 𝑌𝑘𝑖𝑗(𝑟, 𝑥), is reduced to four; that is, two for each of 

the two possible network-level intervention assignments, 𝑌𝑘𝑖𝑗(1,1), 

𝑌𝑘𝑖𝑗(1,0), 𝑌𝑘𝑖𝑗(0,1), and 𝑌𝑘𝑖𝑗(0,0).  For example, let 𝑌𝑘𝑖𝑗(1,1) be the potential outcome 

of participant 𝑖 at visit 𝑗 in network 𝑘, if, possibly contrary to fact, this participant 

was an index member in a network randomized to the intervention.  

Causal Framework and Estimands 

The individual effect is defined as the effect of the intervention among index 

members in intervention networks beyond being in an intervention network (Figure 
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1), that is, Risk/Rate DifferenceI (𝑅𝐷𝐼) = 𝐸[𝑌𝑘𝑖𝑗(1,1)] − 𝐸[𝑌𝑘𝑖𝑗(0,1)]. The 

disseminated effect is defined as the intervention effect among the non-index 

network members, that is, 𝑅𝐷𝐷 = 𝐸[𝑌𝑘𝑖𝑗(0,1)] −  𝐸[𝑌𝑘𝑖𝑗(0,0)].  Composite and 

overall effects combine the individual and disseminated effects in two different 

ways. The composite effect is the sum of the disseminated and individual effects, 

that is 𝑅𝐷𝐶𝑜𝑚𝑝 = 𝐸[𝑌𝑘𝑖𝑗(1,1)] − 𝐸[𝑌𝑘𝑖𝑗(0,1)] + {𝐸[𝑌𝑘𝑖𝑗(0,1)] −  𝐸[𝑌𝑘𝑖𝑗(0,0)]} =

𝐸[𝑌𝑘𝑖𝑗(1,1)] − 𝐸[𝑌𝑘𝑖𝑗(0,0)]. The composite effect is the maximum possible effect of 

the intervention; that is, the effect of being an index member in an intervention 

network compared to a network member in a control network.  

The overall effect is the average effect among all intervention network 

members compared to all control network members. In Web Appendix 1, we derive 

the parametric relationship between the individual and disseminated effects and the 

overall effect, and show that when network sizes vary, 𝑅𝐷𝑂𝑣𝑒𝑟𝑎𝑙𝑙 = 𝐸[𝑌𝑘𝑖𝑗(∙, 1)] −

𝐸[𝑌𝑘𝑖𝑗(∙, 0)] = 𝑅𝐷𝐷 + 𝑅𝐷𝐼  ×  𝐸𝑅[𝑅𝑘𝑖] = 𝑅𝐷𝐷 + 𝑅𝐷𝐼 ×
𝐾

𝑁
 , which will always be 

smaller than 𝑅𝐷𝐶𝑜𝑚𝑝 = 𝑅𝐷𝐷 + 𝑅𝐷𝐼 as long as 𝑅𝐷𝐼  and 𝑅𝐷𝐷  have the same sign, as 

would typically be the case. When network sizes are constant with 𝑛𝑘 = 𝑛 for all 𝑘, 

𝑅𝐷𝑂𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑅𝐷𝐷 + 𝑅𝐷𝐼 ×
1

𝑛
. When the sign differs, the overall effect will be smaller 

than the composite only in certain cases. For example, if the average network size is 

3, 𝑅𝐷𝐼 = 1, and 𝑅𝐷𝐷 = −3, then 𝑅𝐷𝐶𝑜𝑚𝑝 = −2, which is smaller than 𝑅𝐷𝑂𝑣𝑒𝑟𝑎𝑙𝑙 =

−2.67. It is typically not expected for individual and disseminated effects to be in 

opposite directions, but it is technically possible. Because the overall effect depends 

on spurious features of the study design, including the size of the networks and the 
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number of index members, it will not be generalizable from one study to the next or 

to any scaled-up population, unless these features remain constant.   

When there is no disseminated effect, the overall will always be less than or 

equal to the composite. We also show that the overall effect will equal the composite 

only when the individual effect is null, a rather unlikely occurrence in our 

motivational setting. In Web Appendix 1, we also show properties for the 

relationship between the overall and composite risk ratio. 

Web Appendix 2 illustrates these relationships through some numerical 

studies motivated by HPTN 037.  If the individual and disseminated effects are in the 

same direction, the magnitude of the overall effect decreases as the network size 

increases. In the extreme, when there is no disseminated effect, the overall effect 

will approach the null as the network size increases, while the composite effect 

remains constant. 

Estimation and Inference for Individual and Disseminated Effects 

In network-randomized trials, the overall effect estimate has an immediate 

causal interpretation. In contrast, index status is not randomized. The indexes are 

recruited and then the remaining network members are recruited by the index. 

Hence, the individual, disseminated, and composite effects only have a causal 

interpretation when the estimator is fully adjusted for confounding.  

Generalized estimating equations (GEEs) (17) with a log link and working 

binomial variance can be used to estimate relative risks or rates, and an identity link 

and working binomial variance can be used to estimate risk or rate differences, and 

their confidence intervals adjusted for confounding (18, 19). These models also 
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adjust the estimated parameter variances for correlation within networks and, if the 

data are longitudinal, across visits within a participant. For log and identity links as 

employed in this paper, the conditional and marginal model parameters of interest 

are equivalent because the conditional mean is additive for the fixed and random 

effects; thus, the estimated effects can be interpreted as either participant-level 

and/or population-level estimates (20). 

One way to estimate these parameters is using an aggregate model. 

Assuming that the effects of the covariates 𝒁𝑘𝑖 are not modified by index status 𝑅𝑘𝑖 

and the linear model with the identity link fits the data, let 

 𝐸[𝑌𝑘𝑖𝑗|𝑅𝑘𝑖 , 𝑋𝑘 , 𝒁𝑘𝑖] =  𝛾0 + 𝛾1𝑅𝑘𝑖 + 𝛾2𝑋𝑘 + 𝛾3𝑋𝑘  𝑅𝑘𝑖 + 𝛾4𝒁𝑘𝑖 .  

It follows that the effect of being an index member in a control network is 

𝐸[𝑌𝑘𝑖𝑗|𝑅𝑘𝑖 = 1, 𝑋𝑘 = 0, 𝒁𝑘𝑖] − 𝐸[𝑌𝑘𝑖𝑗|𝑅𝑘𝑖 = 0, 𝑋𝑘 = 0, 𝒁𝑘𝑖] = 𝛾1. In a network 

randomized trial, there could be residual confounding even after adjusting for 

covariates 𝒁𝑘𝑖 , so subtracting off these terms accounts for possible unmeasured 

confounding due to self-selection of index status when estimating individual and 

composite effects (21, 22). Thus, the individual rate difference (RD) can be 

estimated by  

𝑅�̂�𝑎
𝐼 = �̂�[𝑌𝑘𝑖𝑗|𝑅𝑘𝑖 = 1, 𝑋𝑘 = 1, 𝒁𝑘𝑖] − �̂�[𝑌𝑘𝑖𝑗|𝑅𝑘𝑖 = 0, 𝑋𝑘 = 1, 𝒁𝑘𝑖] 

         −{�̂�[𝑌𝑘𝑖𝑗|𝑅𝑘𝑖 = 1, 𝑋𝑘 = 0, 𝒁𝑘𝑖] − �̂�[𝑌𝑘𝑖𝑗|𝑅𝑘𝑖 = 0, 𝑋𝑘 = 0, 𝒁𝑘𝑖]} 

                            = 𝛾0 + 𝛾1 + 𝛾2 + 𝛾3 + 𝛾4𝒁𝑘𝑖 − (𝛾0 + 𝛾2 + 𝛾4𝒁𝑘𝑖) − 𝛾1 = 𝛾3. 

When estimating the disseminated effect, only information from non-index network 

members is included, therefore residual confounding of 𝑅𝑘𝑖 is not a concern. 

Adjustment for observed baseline covariates 𝒁𝑘𝑖 is needed because randomization 
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in the full study sample does not necessarily guarantee exchangeability of 𝑋𝑘 within 

subgroups of participants. The disseminated RD can be estimated by  

𝑅�̂�𝑎
𝐷 = �̂�[𝑌𝑘𝑖𝑗|𝑅𝑘𝑖 = 0, 𝑋𝑘 = 1, 𝒁𝑘𝑖] − �̂�[𝑌𝑘𝑖𝑗|𝑅𝑘𝑖 = 0, 𝑋𝑘 = 0, 𝒁𝑘𝑖] 

                            = 𝛾0 + 𝛾2 + 𝛾4𝒁𝑘𝑖 − (𝛾0 + 𝛾4𝒁𝑘𝑖) = 𝛾2. 

Similarly, the composite RD can be estimated by  

        𝑅�̂�𝑎
𝐶𝑜𝑚𝑝 = �̂�[𝑌𝑘𝑖𝑗|𝑅𝑘𝑖 = 1, 𝑋𝑘 = 1, 𝒁𝑘𝑖] − �̂�[𝑌𝑘𝑖𝑗|𝑅𝑘𝑖 = 0, 𝑋𝑘 = 0, 𝒁𝑘𝑖] 

    −{�̂�[𝑌𝑘𝑖𝑗|𝑅𝑘𝑖 = 1, 𝑋𝑘 = 0, 𝒁𝑘𝑖] − �̂�[𝑌𝑘𝑖𝑗|𝑅𝑘𝑖 = 0, 𝑋𝑘 = 0, 𝒁𝑘𝑖]} 

                        =  𝛾0 + 𝛾1 + 𝛾2 + 𝛾3 + 𝛾4𝒁𝑘𝑖 − (𝛾0 + 𝛾4𝒁𝑘𝑖) − 𝛾1 = 𝛾2 + 𝛾3. 

Alternatively, if the effects of covariates 𝒁𝑘𝑖 differ by index status 𝑅𝑘𝑖, a stratified 

model could be used (Web Appendix 3). The estimators of the risk or rate ratio of 

the three effects of interest are defined analogously and can be estimated using a 

GEE with a log link and a working binomial variance.  SAS code provided in Web 

Appendix 4 demonstrates how to obtain these estimates and their corresponding 

variances. Analyses were performed using SAS Version 9.4 (Cary, NC). 

Illustrative Example 

The HPTN 037 study (23) was a Phase III randomized controlled HIV preventive 

intervention trial among people who inject drugs in the United States and Thailand 

(13). Following a network-randomized design, the index participants were eligible if 

they reported injecting drugs at least 12 times in the last three months, while the 

network members had to have injected drugs or had sex with the index member 

within the last three months. This study assessed the efficacy of a network-oriented 

peer education intervention to promote HIV risk reduction behaviors among people 

who inject drugs. Participants were followed for up to 30 months with visits 
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biannually with a median follow-up time of 18 months (Quartile 1 = 6, Quartile 3 = 

24) to obtain information on HIV incidence and risk behaviors. The study was 

underpowered for the primary outcome HIV incidence, so this analysis focused on 

the occurrence of reported HIV risk behaviors. Two sites participated, Chiang Mai, 

Thailand and Philadelphia, Pennsylvania, USA. At the time of this study, there was a 

“war on drugs” in Thailand, which may have reduced trust among people who inject 

drugs, possibly making the intervention less effective. Therefore, following the 

recommendation of the study investigators (Carl Latkin, Johns Hopkins Bloomberg 

School of Public Health, personal communication, 2016), this analysis only included 

participants at the Philadelphia site. Index participants whose network was 

randomized to the intervention arm received an educational intervention at 

baseline and education boosters at six and 12 months. Participants in both the 

intervention and control arms received HIV counseling and testing at each study 

visit. The primary analysis for this trial reported the overall effect estimated by a 

two-level GEE that accounted for correlations between participants within a 

network and between visits within participants (13). 

Shared cotton, an indicator for sharing needle/syringe “works”, was selected 

as an outcome because it nicely exemplified our methods. A more comprehensive 

clinical outcome, any injection-related risk behavior, included the following: sharing 

injection equipment (needles, cookers, cotton, and rinse water), front and back 

loading (i.e., injecting drugs from one syringe to another), injected with people not 

well known or in shooting gallery, and not properly disinfecting injection 

equipment. Following the original analysis of this study, these outcomes were 
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assessed among participants who reported injection drug use in the last six months 

at baseline. Statistical tests comparing prevalence of risk behaviors at baseline 

between network and index members were performed using a GEE model that 

accounted for within-network correlation.  

First, the cumulative incidence of ever reporting the outcome by 30 months 

of follow-up was analyzed using GEEs to account for correlations within networks, 

using the robust sandwich estimator with a working exchangeable correlation 

matrix (24, 25). Next, the longitudinal data were used to assess the effects of the 

intervention on the inter-visit incidence rates of sharing “works” and of any 

injection-related risk behavior using a multilevel GEE model. For estimation of the 

individual and disseminated effects, these models were adjusted for baseline 

covariates that were known or suspected risk factors for the outcome.  For a few 

outcomes, the models did not converge and log-Poisson models, which provide 

consistent but not fully efficient estimates of the relative risk, were used (26, 27). All 

statistical tests performed were two sided. 

RESULTS 

At the Philadelphia site of the HPTN 037 trial, there were 696 participants 

and 560 participants had at least one follow-up visit with a total of 1,598 person 

visits. At this site, 336 (48%) participants were in intervention networks (Table 2). 

At baseline, participants in intervention networks had a comparable prevalence of 

reported injection drug risk behavior (84%) compared to those in control networks 

(86%); however, index participants reported more risk behaviors at baseline (89%) 

as compared to network members (84%, P = 0.07). 
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Table 3 presents the cumulative incidence of the risk behavior sharing 

“works” and any report of injection-related risk behavior. Table 4 presents the 

results for the effects of the intervention on each outcome. For both outcomes, there 

was no evidence that the stratified model fit better than the aggregate model on 

either scale based on an informal comparison of the log likelihoods. Tables 5 and 6 

display the results of six-month inter-visit incidence rate differences and ratios for 

sharing “works” and any report of injection-related risk behavior from the 

longitudinal data. Based on an informal comparison of the log likelihoods, the 

stratified model was a better fit than the aggregate model on the ratio scale for both 

outcomes and on the difference scale for the any report outcome only.   

There was a significant 40% overall reduction on the ratio scale (95% 

confidence interval (CI): 8%, 61%) for the risk of ever sharing “works” by 30 months 

(Table 4). In contrast, there was a substantially larger, significant 61% reduction on 

the ratio scale in the adjusted composite risk of ever sharing “works” due to the 

intervention (95% CI: 22%, 80%). The individual effect was nearly twice as large as 

the disseminated effect, Risk Ratio (RR) = 0.52 vs. RR = 0.76, respectively.  

In the longitudinal data, the overall intervention effect was significantly 

protective with a 44% rate reduction on the ratio scale (95% CI: 11%, 65%) for 

sharing “works” (Table 5). Based upon the adjusted stratified models, there was a 

significant protective effect observed among network members with a 41% rate 

reduction on the ratio scale (95% CI = 3%, 64%), and a somewhat greater 59% 

individual rate reduction (95% CI = -6%, 84%).  A significant 76% composite 

adjusted rate reduction on the ratio scale was observed (95% CI = 45%, 89%).  
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For the risk of ever any report of risk behavior by 30 months, there was a 

near null individual effect, while the disseminated effect showed some suggestion of 

protection (Table 4). In the adjusted aggregate models, there was a non-statistically 

significant 17% reduction on the ratio scale in the composite risk of any report due 

to the intervention (95% CI = -10%, 38%) and a comparable overall risk reduction. 

The longitudinal analysis of the any injection-related risk behavior outcome 

demonstrated a statistically significant protective overall effect with a 28% rate 

reduction on the ratio scale (95% CI: 10%, 43%) (Table 6). Based on the adjusted 

stratified models, the intervention provided a 29% rate reduction on the ratio scale 

among network members (95% CI = 7%, 46%), but the individual effect did not 

achieve statistical significance (RR = 0.92, 95% CI = 0.60, 1.40). A significant 35% 

adjusted composite rate reduction on the ratio scale for any behavior was observed 

(95% CI = 10%, 53%). As a sensitivity analysis, we used a compound symmetric 

correlation matrix within a network between subjects and a first order 

autoregressive correlation matrix within subject over time and the results were 

comparable to those reported in Tables 5 and 6. 

DISCUSSION 

We developed estimators for individual and disseminated effects in network-

randomized trials. Because networks were randomized to the intervention, the 

overall effect estimate has a causal interpretation. However, the overall effect is 

influenced by ancillary factors, such as the size of the networks, and will typically 

underestimate the composite effect (See Web Appendices 1 and 2). When there is no 

unmeasured confounding and the model is correctly specified, individual and 
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disseminated effect estimates also have causal interpretations and provide a more 

in-depth understanding of the intervention’s impact.   

 In the HPTN trial, the overall effect of the intervention was statistically 

significant with an estimated 28% risk reduction of any injection-related risk 

behavior; however, although there was evidence for a significant 29% disseminated 

risk reduction, the individual effect did not achieve statistical significance for that 

same outcome. The original investigators reported only the overall effects (13), 

which we found were slightly to moderately attenuated compared to the composite 

effects that reveal the full power of the intervention.  Somewhat surprisingly, the 

disseminated effect was stronger than the individual effect for the report of any 

injection-related risk behavior, suggesting that this intervention has substantial 

resonance within the network beyond the effect of directly receiving the 

intervention. Without consideration of dissemination, efforts to understand the full 

array of mechanisms by which the intervention achieved its goal would be likely 

overlooked.  

The assumption of no unmeasured covariates associated with the treatment 

and outcome (or with the index status and outcome) cannot be empirically verified. 

For example, in HPTN 037, an individual’s unmeasured communication skills may 

affect whether or not they come forward to be an index and this may lead to 

unmeasured differences between index and non-index members. Future work could 

involve extensions to address unmeasured confounding when evaluating 

disseminated effects. In addition, the methods for incidence rate measures assume 

that there is no bias due to dependent loss-to-follow-up, and in the longitudinal 
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analysis, the missing visit process is ignorable (i.e., missing a visit is independent of 

the outcome conditional on intervention status and observed baseline covariates). If 

this assumption is questionable, censoring weights could be employed in the 

analysis (28, 29). These methods assume no dissemination between networks, 

although, it is possible in some settings that some network members will be in the 

risk networks of more than one index member. In HPTN 037, indexes may interact 

with participants outside their observed risk network because they may frequent 

the same neighborhoods and venues. These methods could thus be extended to 

accommodate dissemination between as well as within networks. In the HPTN trial, 

effect modification was observed for sex and participation in a drug treatment 

program. Future work could entail estimation of these within-strata effects and an 

application of such methods as g-estimation to ascertain population-level effects 

(30).  

These methods could also be extended to correct for bias due to 

misclassification or measurement error in the self-reported outcome or covariates 

(31). We assume that the reported effect estimates are not subject to social 

desirability effects, which could vary by intervention arm over time and 

dissemination may reinforce this.  Furthermore, the indexes may have 

underreported risk connections or study investigators may have missed some 

networks entirely. More accurate ways to elicit and recruit network member 

nominations and contact information could be developed and methods to infer 

unobserved or misclassified risk and social connections could be improved.  
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A network-based program implementation can be offered at a reduced cost, 

because only a subset of participants needs to receive the intervention. The example 

highlights the need for methods to adequately power trials to assess individual and 

disseminated effects. Future work could include evaluating the disseminated effects 

of treatment as prevention and similar interventions in HIV trials, including 

extensions for networks with more than one index participant (32-36). Extension of 

these methods to estimate both individual and disseminated effects of the 

components of multifaceted interventions is needed for future complex HIV/AIDS 

implementation science research, particularly that engaging drug-using or sexual 

risk networks. 
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Figure 1. Schematic diagram of the subsets of data used for each estimator 
(individual, disseminated, composite and overall) based on a format provided in (5) 
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Table 1. Related Terminology for Estimation of Individual and Disseminated Effects 
 

Recommended 

Term 

Alternative Terms Definition Parameter of Interest Network-Randomized  

Design Estimators 

Individual Direct Effect on those directly receiving 

intervention beyond being in an 

intervention network 

 

𝐸[𝑌𝑘𝑖𝑗(1,1)]
𝑐

− 𝐸[𝑌𝑘𝑖𝑗(0,1)]
𝑑

  

Aggregatea Stratifiedb 

 

𝛾3 
 

 

�̂�1 − �̂�1 

Disseminated Indirect, Social Diffusion, 

Diffusion of Innovation, 

Contamination, Spillover 

Effect on those who received 

intervention indirectly through the 

index participant 

 

𝐸[𝑌𝑘𝑖𝑗(0,1)] − 𝐸[𝑌𝑘𝑖𝑗(0,0)]𝑒 

 

𝛾2 
 

�̂�1 

Composite Total Combined individual and 

disseminated effects; Effect among 

indexes in intervention networks 

contrasted with effect among 

network members in control 

networks 

 

𝐸[𝑌𝑘𝑖𝑗(1,1)] − 𝐸[𝑌𝑘𝑖𝑗(0,0)]  

𝛾2 + 𝛾3 
 
 

�̂�1 

Overallf Crude Effect among members of 

intervention networks contrasted 

with effect among members of 

control networks 

 

𝐸[𝑌𝑘𝑖𝑗(∙, 1)]
𝑔

− 𝐸[𝑌𝑘𝑖𝑗(∙, 0)]
ℎ

 

 

�̂�1
∗ 

 
 
a For a network-randomized design, rate difference parameters of the individual, disseminated, and composite effects, respectively, are estimated 

from an aggregate GEE model with an identity link and binomial variance: 

𝐸[𝑌𝑘𝑖𝑗|𝑅𝑘𝑖 , 𝑋𝑘 , 𝒁𝑘𝑖] =  𝛾0 + 𝛾1𝑅𝑘𝑖 + 𝛾2𝑋𝑘 + 𝛾3𝑋𝑘 𝑅𝑘𝑖 + 𝛾4𝒁𝑘𝑖 
b For a network-randomized design, rate difference parameters of the individual, disseminated, and composite effects, respectively, are estimated 

from a stratified GEE model with an identity link and binomial variance: 

𝐸[𝑌𝑘𝑖𝑗|𝑅𝑘𝑖 , 𝑋𝑘 , 𝒁𝑘𝑖] = 𝐼(𝑅𝑘𝑖 = 0) × (𝛽0 + 𝛽1𝑋𝑘 + 𝛽2𝒁𝑘𝑖)  + 𝐼(𝑅𝑘𝑖 = 1) × (𝛼0 + 𝛼1𝑋𝑘 + 𝛼2𝒁𝑘𝑖) 
c 𝑌𝑘𝑖𝑗(1,1) is the potential outcome of participant 𝑖 at visit 𝑗 in network 𝑘, if possibly contrary to fact, this participant was an index member in a 

network randomized to the intervention. 𝐸[𝑋] is the expectation of the random variable 𝑋.   
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d 𝑌𝑘𝑖𝑗(0,1) is the potential outcome of participant 𝑖 at visit 𝑗 in network 𝑘, if possibly contrary to fact, this participant was a network member in a 

network randomized to the intervention. 
e  𝑌𝑘𝑖𝑗(0,0) is the potential outcome of participant 𝑖 at visit 𝑗 in network 𝑘, if possibly contrary to fact, this participant was a network member in a 

network randomized to the control. 
f For network-randomized design, parameter of the overall effect is estimated from a GEE model with an identity link and binomial variance:  

𝐸[𝑌𝑘𝑖𝑗|𝑋𝑘] = 𝛽0
∗ + 𝛽1

∗𝑋𝑘  
g 𝑌𝑘𝑖𝑗(⋅ ,1) is the potential outcome of participant 𝑖 at visit 𝑗 in network 𝑘, if possibly contrary to fact, this participant was in a network randomized 

to the intervention. 
h 𝑌𝑘𝑖𝑗(⋅ ,0) is the potential outcome of participant 𝑖 at visit 𝑗 in network 𝑘, if possibly contrary to fact, this participant was in a network randomized 

to the control.   
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Table 2 Baseline characteristics of the HPTN 037 study population, Philadelphia 
site, 2002-2006, by treatment group (n = 696) 
 

 Network Randomizationa 

Characteristics  
Intervention  
% of (n = 336) 

Control 
% of (n = 360) 

Network Member Role   
       Index 33 33 
       Network member 67 67 
Network sizeb 3 (1.27) 3 (1.04) 
Male 68 69 
Age (years)b 41 (10) 40 (10) 
Drug treatment programb 22 32 
Housingc   
     Spent night on street, car, park or abandoned  
     building 

25 24 

     Spent time in jail 19 15 
Sexual riskd   
     More than one sex partner 42 40 
     Unprotected sex in the last week 50 50 

     Unprotected sex with non-primary  

      Partner 

16 19 

Injection drug behaviorse   
      Injection drug use in the last 6 month 93 94 
      Injection drug use in the last month 99 97 
           Heroin 94 96 

           Heroin w/ Cocaine 42 35 
           Heroin w/ Amphetamine 1 1 
           Cocaine 37 37 

           Amphetamine 2 2 
Number of days injected in the last month   
      0-5 9 9 
      6-14 8 9 
      15-29 24 16 
      Everyday 59 65 
Injection risk behaviors in the last monthf   
      Shared rinse water 44 51 
      Shared cooker 57 62 
      Shared cotton 41 46 
      Used front or back loaded syringe 21 23 
      Injected with an unclean syringe 13 15 
      Passed a syringe to someone else 48 53 
      Used a syringe after someone else 37 39 

      Injected with someone you don’t know  19 22 
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       well 
      Injected in a shooting gallery 61 56 
Did not clean syringe after use 14 13 
 
a There were 112 intervention networks and 120 control networks. Values of polytomous 
variables may not sum to 100% due to rounding.  
b Values are expressed as mean (standard deviation). 
c In past 6 months. 
d In last month. 
e Injection drug behaviors reported only for participants reporting injection drug use in the 
past 6 months. 
f Injection risk behaviors reported only for participants reporting injection drug use in the 
last month. 
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Table 3. Risk of ever reporting injection-related risk behavior by 30 months after baseline with 
95% confidence intervals (CI) at the HPTN 037 Philadelphia site, 2002-2006 (n = 651) 

 
 
 
 
 
 
 
 
 
 
 

 Index Participants Network Participants 

Network 
Randomization Total  

Person 

Shared 
“Works” 
Reported 

30-month 
Cumulative 
Incidence, 

 % 

Total 
Person 

Shared 
“Works” 
Reported 

30-month 
Cumulative 
Incidence, 

% 

Any shared works       

Treatment 112 10 9 202 28 14 

Control 120 24 20 217 42 19 

Combined Control  337 66 20    

Any risk behavior       

Treatment 112 48 43 202 75 37 

Control 120 58 48 217 97 45 

Combined Control  337 155 46    
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Table 4. Effects of the intervention on the risk of ever reporting injection-related risk behavior by 30 months after baseline with 95% 
confidence intervals (CI) at the HPTN 037 Philadelphia site, 2002-2006 (n = 651) 
 

 Stratified Models Aggregate Models 

 Unadjusted Adjusteda Unadjusted Adjusteda Unadjusted Adjusteda Unadjusted Adjusteda 

Effect RD 95% CI RD 95% CI RR 95% CI RR 95% CI RD 95% CI RD 95% CI RR 95% CI RR 95% CI 

Any shared works         

Individual −5 −16, 7 −7  −20, 5  0.65 0.28, 1.51 0.47 0.18, 1.21 −5 −16, 6 −8  −19, 3 0.65 0.28, 1.47 0.52 0.23, 1.15 

Disseminated −6  −14, 1 −5 −13, 2 0.69 0.42, 1.13 0.75 0.45, 1.25 −6 −14, 1 −5  −13, 3 0.69 0.42, 1.14 0.76 0.46, 1.25 

Composite −11  −20, −2 −13 −22, −3 0.45 0.22, 0.89 0.35 0.16, 0.78 −11 −20, −2 −13  −22, −4 0.45 0.22, 0.89 0.39 0.20, 0.78 

Overall −8  −14, −2 −8 −14, −2 0.60 0.39, 0.92 0.61 0.39, 0.94 −8 −14, −2 −8  −14, −2 0.60 0.39, 0.92 0.61 0.39, 0.94 

Any risk behaviorb               

Individual 2  −14, 18 0 −18, 17 1.07 0.73, 1.56 0.99 0.68, 1.45 2 −13, 18 0  −16, 15 1.07 0.76, 1.53 0.97 0.68, 1.39 

Disseminated −8  −18, 2 −5 −16, 5 0.83 0.64, 1.07 0.88 0.69, 1.13 −8 −18, 2 −7  −17, 4 0.83 0.64, 1.06 0.85 0.66, 1.10 

Composite −5  −18, 7 −6 −20, 8 0.89 0.67, 1.18 0.88 0.66, 1.16 −5 −18, 7 −7  −20, 6 0.89 0.67, 1.18 0.83 0.62, 1.10 

Overall −7  −15, 1 −7 −16, 2 0.85 0.69, 1.04 0.85 0.69, 1.04 −7 −15, 1 −7  −16, 2 0.85 0.69, 1.04 0.85 0.69, 1.04 

 CI = Confidence Interval; RD = Risk Difference per 100 persons; RR = Risk Ratio. 
a Adjusted for sex (male vs. female), age (years), marital status (single vs. not single), education (at least high school vs. not), and employment (unemployed vs. 

employed), and time-varying covariates set to their baseline value: crack use (yes vs. no), cocaine use (yes vs. no), benzodiazepines (yes vs. no), heroin (yes vs. 

no), drug treatment program (yes vs. no), spent the night on the street (yes vs. no), spent time in jail (yes vs. no), alcohol use (got drunk vs. not), injected heroin 

(yes vs. no), heroin and cocaine (yes vs. no), injected cocaine (yes vs. no), and number of days injected in the last month (0-5 days, 6-14 days, 15-29 days vs. 

everyday).  
b On the ratio scale, the model excluded number of days injected variable because of model convergence issues. Models for the overall effect also excluded 

injected cocaine.  Stratified model for individual, disseminated, and composite effects also excluded spent time in jail, heroin use, and injected cocaine. 
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Table 5. Six-month inter-visit incidence rate ratios and rate differences for the effect of the HPTN 037 randomized intervention on the rate of sharing 
“works” risk behavior during follow-up with 95% confidence intervals (CI) among participants with at least one follow-up visit at the Philadelphia site, 
2002-2006  
 

 Unadjusted Baseline Adjusteda,b 

RR  95% CI RD 95% CI RR 95% CI RD 95% CI 

Stratified Models 

Overallc 0.56 0.35, 0.89 -0.05 -0.10, -0.01 0.52 0.32, 0.83 -0.06 -0.11, -0.01 

Individuald 0.58 0.23, 1.48 -0.05 -0.14, 0.04 0.41 0.16, 1.06 -0.08 -0.18, 0.01 

Disseminatede 0.66 0.38, 1.12 -0.04 -0.09, 0.02 0.59 0.36, 0.97 -0.04 -0.09, 0.02 

Compositef 0.38 0.18, 0.81 -0.09 -0.16, -0.02 0.24 0.11, 0.55 -0.12 -0.19, -0.05 

Aggregate Models 

Overall 0.56 0.35, 0.89 -0.05 -0.10, -0.01 0.52 0.32, 0.83 -0.06 -0.11, -0.01 

Individual 0.56 0.25, 1.26 -0.06 -0.13, 0.02 0.55 0.25, 1.19 -0.08 -0.15, 0.00 

Disseminated 0.69 0.04, 1.17 -0.03 -0.09, 0.02 0.64 0.38, 1.08 -0.03 -0.09, 0.02 

Composite 0.39 0.18, 0.81 -0.09 -0.16, -0.02 0.35 0.17, 0.73 -0.11 -0.18, -0.04 

CI = Confidence Interval; RD = Risk Difference per 100 person-visits; RR = Risk Ratio. 
a Adjusted for sex (male vs. female), age (years), marital status (single vs. not single), education (at least high school vs. not), and 
employment (unemployed vs. employed), and time-varying covariates set to their baseline value: crack use (yes vs. no), cocaine use (yes 
vs. no), benzodiazepines (yes vs. no), smoked heroin (yes vs. no), drug treatment program (yes vs. no), spent the night on the street (yes 
vs. no), spent time in jail (yes vs. no), alcohol use (got drunk vs. not), injected heroin (yes vs. no), heroin and cocaine (yes vs. no), injected 
cocaine (yes vs. no), and number of days injected in the last month (0-5 days, 6-14 days, 15-29 days vs. everyday).  
b One participant missing information on spent the night on the street and spent time in jail at baseline.  
c There were 174 events, 1,598 person-visits and 560 people included. 
d There were 58 events, 782 person-visits and 270 people included. 
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e There were 158 events, 1,319 person-visits and 463 people included. 
f   There were 132 events, 1,095 person-visits and 387 people included. 
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Table 6.  Six-month inter-visit incidence rate ratios and rate differences for the effect of the HPTN 037 randomized intervention on the rate of any 
injection-related risk behavior during follow-up with 95% confidence intervals (CI) among participants with at least one follow-up visit at the 
Philadelphia site, 2002-2006 
 

 Unadjusted Baseline Adjusteda,b 

RR  95% CI RD 95% CI RR 95% CI RD 95% CI 

Stratified Models 

Overallc 0.72 0.57, 0.90 -0.09 -0.16, -0.02 0.69 0.56, 0.86 -0.09 -0.16, -0.03 

Individuald 0.97 0.64, 1.48 -0.02 -0.15, 0.12 0.92 0.60, 1.40 -0.06 -0.19, 0.07 

Disseminatede 0.73 0.55, 0.97 -0.09 -0.17, 0.00 0.71 0.54, 0.93 -0.08 -0.16, -0.01 

Compositef 0.71 0.52, 0.97 -0.10 -0.21, 0.00 0.65 0.47, 0.90 -0.14 -0.24, -0.03 

Aggregate Models 

Overall 0.72 0.57, 0.90 -0.09 -0.16, -0.02 0.69 0.56, 0.86 -0.09 -0.16, -0.03 

Individual 0.96 0.67, 1.39 -0.02 -0.14, 0.10 0.91 0.62, 1.33 -0.05 -0.17, 0.07 

Disseminated 0.75 0.57, 0.98 -0.08 -0.16, 0.00 0.72 0.55, 0.94 -0.08 -0.16, 0.01 

Composite 0.72 0.53, 0.98 -0.10 -0.21, 0.01 0.65 0.47, 0.90 -0.13 -0.23, -0.02 

CI = Confidence Interval; RD = Risk Difference per 100 person-visits; RR = Risk Ratio. 
a Adjusted for sex (male vs. female), age (years), marital status (single vs. not single), education (at least high school vs. not), and employment 
(unemployed vs. employed), and time-varying covariates set to their baseline value: crack use (yes vs. no), cocaine use (yes vs. no), benzodiazepines 
(yes vs. no), smoked heroin (yes vs. no), drug treatment program (yes vs. no), spent the night on the street (yes vs. no), spent time in jail (yes vs. no), 
alcohol use (got drunk vs. not), injected heroin (yes vs. no), heroin and cocaine (yes vs. no), injected cocaine (yes vs. no), and number of days injected in 
the last month (0-5 days, 6-14 days, 15-29 days vs. everyday).  
b One participant missing information on spent the night on the street and spent time in jail at baseline.   
c There were 509 events, 1,598 person-visits and 560 people included. 
d There were 204 events, 782 person-visits and 270 people included. 
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e There were 433 events, 1,319 person-visits and 463 people included. 
f There were 381 events, 1,095 person-visits and 387 people included.  
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