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ABSTRACT

I considered two types of interference problems in restricted systems: the

interference between bulk and boundary scattering in metal films and the effect

of interference between particle repulsion and the constraining potential in Bose-

Einstein Condensation (BEC) in inhomogeneous traps. The quantum mechanical

and quasiclassical interference between bulk and boundary scattering in thin metal

films with rough surface was first investigated by calculating the effective transport

time beyond the Mathiessen’s approximation, which was shown to exhibit a non-

analytical dependence on the bulk relaxation time. The interference between the

bulk and boundary scattering channels strongly affects the effective transport time

and conductivity and is dependent on the temperature and the concentration of the

impurities. Simple analytical expressions for the results for large bulk free paths

Lb and large correlation radii (lateral sizes) R of surface inhomogeneities were

found. At R2 ∼ aLb a crossover was predicted between two asymptotic regimes for

interference contributions characterized by a different dependence to temperature

and concentration. I also studied the condensation process in a strongly interacting

trapped BEC in an optical lattice. The interaction between particles in a BEC

within a trap pushes the normal particles to a spherical shell in the periphery

reducing the condensation problem to a quasi-two dimensional one. By conducting

a study of these two types of interference problems in different restricted systems,

I was able to better understand the underlying physics of competing phenomena

in these systems.
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CHAPTER 1

Interference In Restricted Systems

1.1 Introduction

In the quantum world of tiny length scales or µK temperatures where the

quantum description is the only true description of systems, there are often different

phenomena which compete with each other in trying to determine the equilibrium

or non-equilibrium states of a system. The competition between rival mechanisms

makes the system more interesting to study from a physicist’s point of view. Often

such systems are found to be in distinct regimes, which are regions in phase space

where one mechanism predominantly decides the state and behavior of the system

or where both mechanisms play an equal role.

For my thesis, I have considered two systems that are restricted in size: a thin

metal film where the electron conductivity is influenced by both bulk impurities

and surface roughness scattering; and a trapped atomic Bose-Einstein Condensate

(BEC) with strong particle interactions. The fact that both systems are restricted

to a small size, in atleast one of the spatial dimensions if not all three is important

for different reasons in the two systems.

For a thin metal film, the thinness of the film quantizes one of the electronic

state variables, the electron’s momentum perpendicular to the film’s plane, and

increases the energy gaps of the bands and makes the system more quantum in

nature. This has an important effect on the nature of the dependence of the

conductivity on the electron scattering mechanisms in the film. I will show in this

thesis how the quantum nature of the thin film causes an interference between

bulk and the surface scattering channels because of which we cannot do what the

Matthiessen’s rule prescribes: regard the two scattering channels as independent

mechanisms. I will also show how the system can exist in different regimes as far
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as the nature of their conductivity is concerned depending on the mean free path

and the correlation radius of the surface roughness.

In the other restricted system I have studied, i.e. a trapped atomic BEC with

strong particle interactions, the nature of the condensation is strongly influenced

by a competition between the trap that tries to confine the BEC and the par-

ticle interactions, which try to widen the condensate droplet. I have taken into

account the shape of the wall in determining the particle wave functions after the

droplet has already assumed a certain size. I achieved a self-consistent description

of the system that takes into account all the competing mechanisms. I showed

that because of self-consistency, the different mechanisms could not be treated in-

dependently and that the mechanisms had an interfering nature. This is in the

very nature of a self-consistent description. Taking into consideration all the three

mentioned mechanisms, the confining trap, the particle interactions and the na-

ture of the particle wavefunctions up the wall of the trap, I found that after a

condensate droplet of an initial size has already grown, the rest of the conden-

sation happens in a manner that had not been previously described or explained

as intuitively. The results obtained for the condensation behavior of such atomic

BECs can be easily verified by experiments.

In the sections that follow, I analyze the interference in bulk and boundary

scattering in thin metal films, after which I provide an analytcal description of the

interference between competing mechanisms in a trapped and strongly interacting

BEC. I then summarize my results.

1.2 Bulk and boundary scattering interference in thin metal films

With rapid advances in vacuum and low temperature technologies and in the

field of material science, there have been many attempts at system miniaturiza-

tion. Circuits and the metallic interconnects inside them have been made smaller
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and researchers are making thinner and purer metal films to conduct electricity.

When the thickness of these metal films becomes so small that it is comparable to

the mean free path of the electrons in the metal, the boundary scattering becomes

more important than the bulk scattering. In some experiments , surface roughness

accounts for almost half of the overall resistivity of nanosystems [1]. The wall scat-

tering involves an entangled combination of processes of different physical nature

such as changes in energy spectra near the walls, stick-slip motion and partial ac-

commodation, scattering by surface roughness and impurities, surface states, etc.

Furthermore, the boundary and bulk scattering processes are no longer necessarily

independent of each other but can interfere. Therefore, they cannot be treated

independently and their effects on resistivity do not add up in a simple way. For

example, when scattering is weak, as it is often the case for electron-phonon scat-

tering or scattering by slight surface roughness, the establishing of mean free path

requires several scattering events. These scattering events include the scattering

off the rough walls. As a consequence, the transport properties become sensitive

to the order of scattering events involving various channels. In clean metal films at

not very low temperatures the main bulk channels are the electron-phonon scat-

tering, scattering by grain boundaries and by residual impurities. I assumed that

the films are pure and that the density of grain boundaries is relatively small and

concentrate either on electron-phonon processes or on scattering by impurities. For

surface scattering, I assumed that the main scattering effects result from scattering

by surface roughness. One important goal was to see if the interference leads to

an unusual dependence of the conductivity on the temperature or the impurity

concentration which could be a signature of such interference. In addition, it was

important to find a way of extracting parameters of surface roughness from the

experimental data on conductivity.
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The usual approach to transport in films is to use a collision operator in a

transport equation to account for bulk scattering processes and to relegate all

boundary scattering to a phenomenological boundary condition (one of the best-

known examples of earlier work in this direction can be found in Refs. [2–5]).

One then expresses the phenomenological parameters in this boundary condition

(such as, for example, the specularity coefficient p or the Namba [6] ratio of the

amplitude of roughness and the mean free path, ℓ/Lb) via physical characteristics

of surface. This approach has two issues associated with it. First, the choice of the

form of the boundary condition by itself imposes limitations, which are not always

clear on what kind of surface physics can or cannot be properly incorporated by

this condition. Secondly, the bulk and surface scattering processes are accounted

for within different mathematical frameworks - the former by the bulk collision

operator and the latter as the boundary condition. Consequently, one should

always expect certain entanglement between surface and bulk scattering in the

transport results obtained this way and therefore, it is not always clear to what

extent the emergence of non-Mathiessen’s terms reflects real physical interference

between different scattering processes and is not a mathematical artifact.

Recently, there appeared an alternative approach to boundary scattering

which in clean systems can be dominated by the scattering by boundary roughness.

This approach to roughness-driven transport is based on a mapping transformation

technique, which in application to transport in ultrathin systems was developed in

Refs. [7–9]. The approach involves mapping of a system with random rough bound-

aries onto an equivalent physical system with ideal boundaries but distorted bulk

Hamiltonian. This allows one to incorporate the scattering by surface roughness

inside the same collision operator as the bulk scattering processes. Though this is

not the only approach to scattering by surface roughness (see a short review in the
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second Ref. [10]), the mapping transformation is convenient for the simultaneous

description of bulk and surface scattering by providing the uniform description of

all scattering channels within the single mathematical formalism. As a result, this

approach naturally covers the interference non-Mathiessen’s terms (see the second

Ref. [5, 7]). The mapping transformation approach allows one not only to develop

a mathematically rigorous derivation for the bulk quantum transport equation and

the collision operator, which reflects the boundary roughness in the initial problem,

but also to understand the limitations and accuracy of alternative approaches to

the problem [10, 11]. A somewhat similar, though technically different quantum

approach based on the surface scattering model of Ref. [12] has been outlined in

Refs. [13, 14] in the white noise approximation for a rough surface (see also the

extension of this approach beyond the white noise in Ref. [15]). This approach

corresponds to adding the surface scattering as a perturbation of the type [12]

to the single-particle Green’s function which already includes the bulk scattering.

In diagrammatic language, this corresponds to adding a surface interaction line

on top of the propagator averaged over the bulk interaction (bold line). Such an

approach excludes from the outset all the diagrams with the intersecting bulk and

surface interaction lines, which were included in Ref. [16], and, therefore misses

some of the interference terms. Besides, the perturbative approach of Ref. [12],

being, probably, the best and the simplest as long as it is justified, has a nar-

rower application domain than the properly applied mapping transformation (see

Ref. [10, 11]).

The mapping transformation provides a theoretical framework for transport

formalism for systems with scattering channels of different nature. Since now bulk

and surface scattering channels are treated in the same way, the results should re-

veal the full physical interference between bulk and surface scattering in transport.
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Based on this approach, a rigorous diagrammatic derivation of the quantum trans-

port equation for particles in quantized films with bulk and boundary scattering

was developed in Ref. [16] . Though this approach is indeed rigorous and has a

well-defined accuracy, the resulting equations are too complicated and difficult to

use because of the interplay between numerous physical parameters and sources of

interference.

In the following chapter, I show the results of the application of the quan-

tum transport approach [16] to the non-Mathiessen’s terms that arise from the

quasiclassical interference between bulk and surface scattering by my collaborator

and myself. For the quasiclassical case, the thickness of the film is large enough

that the energy states of the electrons lie in bands. I also decribe how our results

compared with the (scarce) experimental data on non-Mathiessen’s contributions.

I also compare our results with the Fuchs-Sondheimer equations [2, 4] and get

the expression for the specularity coefficient via the roughness profile. In chap-

ter 3, I describe the results obtained for a purely quantum calculation using the

quantum transport equation to show the effects of surface-bulk interference on the

resistivity. In chapter 4, I describe my study of the interference between particle

interaction and the trap potential for a BEC, motivated by recent experiments on

BEC in traps with or without optical lattice inside, in which the particles cannot

be regarded as non-interacting. To underline the importance of the problem, it is

worth mentioning that there have been three Nobel Prizes dedicated to the study of

BEC. Our investigations provided an intuitive treatment of the problem of particle

interaction in a BEC and its effects on the condensation process inside an opti-

cal trap. In chapter 5, I summarize our results on the nature of the surface-bulk

interference in the resistivity for both the quantum and the quasiclassical cases

and I compare it with the interference between particle interaction and trapping
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potential in BECs trapped in an optical lattice.

1.2.1 The quasiclassical interference in a thin film

In ultrathin films, the motion across the film is quantized, pzj = πjh̄/L, where

L is the thickness of the film. This quantization, which is responsible for quantum

size effect (QSE) in transport, leads to a splitting of the 3D spectrum ǫ (p) =

p2/2m into a set of 2D minibands ǫj (q) where q is the component of momentum

along the film [in the simplest case of parabolic spectrum with effective mass m,

ǫ (p) = p2/2m, the minibands are also parabolic, ǫj (q) = (1/2m)
[
(πjh̄/L)2 + q2

]
].

Under certain realistic conditions, which have been analyzed in Ref. [16] in detail,

the diagrammatic equations for the full single-particle Green’s functions, which

include both bulk and surface scattering, contains the following imaginary part in

the energy denominator which we call the effective relaxation time τ
(eff)
j (q) for

particles from each miniband ǫj (q) (cf. Ref. [13]):

1

τ
(eff)
j (q)

=
1

τ
(b)
j (q)

+
S∑

j′=1

∫ Wjj′ (q,q
′) /τ

(b)
j′ (q

′)

(ǫj′ (q′)− TF )
2 /h̄2 +

(
1/2τ

(b)
j′ (q

′)
)2

dq′

(2πh̄)2
. (1)

Here S is the total number of occupied or energetically accessible minibands ǫj (q),

and τ
(b)
j (q) is the bulk relaxation time in each miniband ǫj, which should be treated

not as phenomenological parameter, but as an unambiguously defined imaginary

part in the denominator of the single-particle Green’s function for the unrestricted

bulk. In our context, the bulk parameters τ
(b)
j (q) are determined by electron-

phonon or impurity scattering in the bulk and are considered known. The wall-

induced transition probabilities Wjj′ (q,q
′) between the states ǫj (q) and ǫj′ (q

′)

are determined by the correlation functions of surface inhomogeneities on both

walls, ζ11 and ζ22, and by the interwall correlation of surface inhomogeneities ζ12,

Ref. [11]. When the metal film can be treated as a 2D square well, the equations
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for these transition probabilities are quite simple:

Wjj′ (q,q
′) =

π4h̄2

m2L6

(
ζ11 (q− q′) + ζ22 (q− q′) + 2 (−1)j+j′ ζ12 (q− q′)

)
j2j′2.

(2)

Though most of the calculations can be performed for any type of surface corre-

lator, here we assume that the correlations of inhomogeneities on both walls are

identical ζ11 = ζ22 and Gaussian,

ζ (s) = ℓ2 exp
(
−s2/2R2

)
, ζ (q) = 2πℓ2R2 exp

(
−q2R2/2h̄2

)
(3)

where ℓ and R play the role of the amplitude (height) and correlation radius (lat-

eral size) of surface inhomogeneities and that there are no interwall correlations,

ζ12 = 0. [The Gaussian peak in the δ-function limit R → 0 corresponds to the

white-noise correlations of Refs. [5, 7, 13]]. In practice, the correlation function of

surface inhomogeneities is not always Gaussian (see Refs. [15, 17–19] and references

within). However, there are reasons to believe that the exact profile of the cor-

relation function becomes important qualitatively only for large-scale roughness,

R≫ L [20, 21].

The competing roles played by the bulk and surface scattering can be described

by two dimensionless parameters, t and u, the first of which characterizes the bulk

scattering and the second - the correlation of surface roughness:

t = τb p
2
F/m h̄, u = p2FR

2/h̄2 ∼ R2/a2 ≥ 1, (4)

where pF ∼ h̄/a is the Fermi momentum, a is the atomic size.

For phonon scattering, all temperature dependence of the surface-bulk in-

terference contributions to conductivity enter solely via parameter t. At high

temperatures T ≫ ΘD the value of this parameter has the order of magnitude

of [22, 23]

t ∼ τbTF

h̄
∼ TF

T
≫ 1,

t√
u
=

τb pF
m R

∼ a

R

TF

T
, (5)
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while at low temperatures T ≪ ΘD

t ∼ τbTF

h̄
∼ TF

ΘD

(
ΘD

T

)3

≫ 1,
t√
u
=

τb pF
m R

∼ a

R

TF

ΘD

(
ΘD

T

)3

, (6)

where ΘD is the Debye temperature. [There are experimental indications that ΘD

in ultrathin films depends on film thickness [24]]. At high temperatures, the ratio

t/
√
u is large or small depending on whether the lateral size of surface inhomo-

geneities is smaller or larger than approximately 10a. At low temperatures this

ratio is always large with the exception of surfaces with extremely long-range inho-

mogeneities such as in bent or non-uniformly stretched films with smooth surfaces.

The transition between high- and low-temperature cases can be described by the

usual extrapolation equations none of which is very reliable.

When impurity scattering is the main scattering mechanism in the bulk, pa-

rameter t is temperature independent,

t ∼ τbTF

h̄
∼ a2

cσ
, (7)

where c is the concentration of impurities and σ is the scattering cross-section.

In general, the non-Mathiessen’s contribution to the collision time 1/τ
(int)
j ,

which describes the interference between the bulk and surface scattering channels,

can be defined as

1

τ
(int)
j (q)

=
1

τ
(eff)
j (q)

− 1

τ
(b)
j (q)

− lim
t→∞

S∑

j′=1

∫ Wjj′ (q,q
′) /τ

(b)
j′ (q

′)

(ǫj′ (q′)− TF )
2 /h̄2 +

(
1/2τ

(b)
j′ (q

′)
)2

dq′

(2πh̄)2

(8)

We cannot always use Eq. (1) directly for calculation of conductivity in ul-

trathin metal films due to two reasons. First, the observation of the full QSE

effect in conductivity of metals is very difficult if not outright impossible. QSE in

transport is associated with a saw-tooth dependence of the transport coefficients
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on the film thickness, Refs. [8, 25]. In metals, the scale of these saw teeth is atomic

and, to the best of our knowledge, there are very few observations of signs of such

a saw-tooth dependence of the metal conductivity on L [26, 27]. The reason is

that the Fermi momentum in metals pF is of the order of pF ∼ h̄/a where a is

the atomic size. Then the parameter pFL/h̄ ∼ L/a is usually large, the transport

is quasiclassical, and the saw teeth too close to each other to be resolved. On

top of that, the phonon collisions at not very low temperatures are rather robust,

τb∆ǫj/h̄ ∼ (a2/L2) (TF/ΘD), and can lead to a smearing of QSE. This all means

that Eq. (1) in metals should be replaced by a similar quasiclassical equation. This

transition from quantum to quasiclassical transport is fairly straightforward and

requires replacement of summation over the miniband index j by the integration

over the continuous variable px, πjh̄/L→ px. Such a transition in the framework

of helium Fermi liquids has already been suggested in Refs. [28, 29]; for further

applications see also Ref. [30]. As an additional benefit, the transition to the qua-

siclassical equations allows one to avoid dealing with atomistic peculiarities of the

surface structure which lead to a reconstruction or even destruction of the Fermi

surface near the surface in the ultra-quantum regime [31, 32].

The second reason for modification of Eq. (1) is the fact that this equation

describes the two-channel collision time τ (eff) (i.e., the pole in the single-particle

Green’s function averaged over bulk and surface collisions) while the conductiv-

ity contains the effective transport time τ
(eff)
tr which is defined via the diffusion

pole in the proper response function and, in our case, describes the single-particle

diffusion/mobility or electric conductivity σ,

σ =
e2τ

(eff)
tr

m2

∫ S∑

j′=1

δ (ǫj − ǫF ) q2j
qdq

4πh̄2 , q2j = p2F − π2h̄2/L2. (9)

Our effective transport time τ
(eff)
tr is not some phenomenological parameter

but is an unambiguously defined quantity which describes the combined transport
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effects of the two-channel scattering. To get the transport time τ
(eff)
tr and, there-

fore, the conductivity (9), one should solve the quantum transport equation with

τ
(eff)
j (q), Eq. (1) , in the kernel of collision operator. [For exact quantum defini-

tion of the transport time τ
(eff)
tr via the irreducible bulk scattering vertex and the

surface scattering probabilities Wjj′ (q,q
′) see Ref. [16]]. This is a straightforward

numerical task [16] only in the ultra-quantum case which involves a relatively small

number of minibands S; in the quasiclassical limit with large S the corresponding

transport equation involves an extremely large number of minibands and requires

inversion of huge matrices. Even for small S, one needs detailed information on

bulk collision times τ
(b)
j (q) for each miniband. Since we do not have such informa-

tion about bulk collisions, we are forced to simplify the equations and work with

constant τ
(b)
j .

An analysis similar to Ref. [28] indicates that a reasonable quasiclassical ap-

proximation for the transport time τ
(eff)
tr of Ref. [16] may be given by the quasi-

classical equation

1

τ
(eff)
tr (p)

=
1

τ btr
+

1

τb

∫ W (p,p′) (1− cos γ)

(ǫ (p′)− µ)2 /h̄2 + 1/4τ 2b

dp′

(2πh̄)3
, (10)

where γ is the angle between the vectors q and q′, the wall scattering rate is

W (p,p′) =
4π

L

(
ℓR

h̄m

)2

p2xp
′2
x exp

(
− (q− q′)

2
R2/2h̄2

)
, (11)

and τ btr and τb are the bulk transport and collision times. Simultaneously, the

quantum equation (9) acquires the simple Drude-like form

σ =
e2nτ

(eff)
tr

m
. (12)

Eq.(10) becomes exact when the main contribution to lateral transport comes from

the gliding electrons - electrons from the miniband with the smallest px when the

bulk collision time should be treated as τ b1 . In the limiting case of extremely large
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bulk collision times, i.e., at very low temperatures, the convergence of the integral

(10) is ensured by the quantum cut-of px = πh̄/L rather than 1/τb in denominator.

What we lose in such a transition from summation to integration is the quan-

tum cut-off in transport that is responsible for capping the diverging contribution

from gliding electrons to transport in high-quality low-temperature films. In sum

(1) the minimal component of momentum perpendicular to the film is πh̄/L and

the sum is always finite. The quasiclassical integral (10) , on the other hand, al-

lows electrons to have zero normal component of momentum, i.e., allows existence

of perfectly gliding electrons that do not collide with the surface and, therefore,

contribute disproportionately to transport. Another result of the lack of quantum

cut-off is that the dependence of the surface contribution to effective transport time

on the film thickness becomes trivial. More complex dependencies of the transport

coefficients on L in ultrathin high-quality films are almost invariably signs of the

quantum cut-off and QSE.

At high temperatures T ≫ ΘD the electron-phonon transport and collision

times, τ btr and τb, are roughly the same and differ from each other by an insignificant

constant. A good estimate for τ btr and τb can be obtained from the experimental

data on bulk resistivity ρ [23], 1/τ btr = n e2ρ/m. Using the data for Cu, ρ (θD) =

4.88 × 10−8 Ωm, n = 8.47 × 1028 m−3, and ǫF = 7 eV and assuming that τ btr

and τb are the same, one gets t ≃ 173 (ΘD/T ). Similar estimate for Ag, n =

5.86 × 1028m−3, ρ (θD) = 3.5 × 10−8Ωm, ǫF = 5.49 eV yields t ≃ 273 (ΘD/T )

meaning that cases t is relatively large for both metals. At low temperatures

T ≪ ΘD the bulk transport and collision times are markedly different, τ btr ∼

(ΘD/T )
2 τb ≫ τb. In the case of impurity scattering the difference between τ btr and

τb is less pronounced.
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1.2.2 The quasiclassical effective transport time

We now give simple estimates for the effective transport time (10) . Introducing

new variables as

px = pF cos θ, q = pF sin θ, p′x = xpF cosφ, (13)

q′ = xpF sinφ, n = p3F/3π
2h̄3

one can reduce the effective transport time (10) to a dimensionless integral

1

τ efftr

=
1

τ btr
+

12TF

πh̄

ℓ2R2n

L

1

t

∫ π

0
dθ cos2 θ

∫ ∞

0
x4dx

∫ π

0
dφ
∫ 2π

0
dγ (14)

×cos2 φ sinφe−
u
2 (sin

2 θ+x2 sin2 φ−2x sin θ sinφ cos γ) [1− cos γ][
(x2 − 1)2 + 1

t2

] .

After integration over dγ, the transport time reduces to

1

τ efftr

=
1

τ btr
+

TF

h̄

ℓ2

LλF

U (u, t) , (15)

U (u, t) =
16u

π

∫ π

0
dθ cos2 θe−

u
2 (sin

2 θ+1)
∫ ∞

0
dyy4e−

u
2 (y2−1)

× [I0 (uy sin θ)− I1 (uy sin θ)]F1 (y, t) , (16)

F (y, t) =
1

t

∫ π

0
dφ

cos2 φ[(
y2 − sin2 φ

)2
+ sin4 φ/t2

] , .

where we replaced x by y = x sinφ.

We note here that all the information about quasiclassical interference between

surface and bulk scattering is contained in the function U (u, t) − U0 (u) where

U0 (u) = U (u, t→∞). This function is plotted in Figure 1 as a function of t for

three different values of u, u = 1; 10; 10, while the function U0 (u) is plotted in

Figure 2. It is clear from the plot that the interference contribution decreases with

increasing t and with increasing correlation radius of surface roughness R (with

increasing u). For high quality films with large bulk mean free paths for which t is

large, t≫ 1, it is possible to obtain a relatively simple semi-analytical description
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of U (u, t) as an expansion in 1/t. Note that U (u, t) is not a regular function of

1/t and the expansion is, strictly speaking, in the powers of 1/
√
t.

Figure 1. The interference contribution with varying u

As one can see, the integrals (14) , (15) are rather cumbersome. To better

understand the results below one should keep in mind that at large t and u the

integrand in is a product of two peaks one of which is a function of t and the other

- a function of u.

We note that the first peak is explained by a relatively large value of the

electron-phonon collision time τb in clean metals at not very high temperatures

and, therefore, by the large value of the dimensionless parameter t≫ 1. Function

F (y, t→∞) has singularities at y → 0 and y → 1. The former singularity is not

dangerous because of the factor y4 in the integrand. The latter one is eliminated

by the factor 1/t in front of the integral. The peak in y4F (0 < y < 1, t→∞) is

asymmetric and is rather broad. From the physics standpoint, this asymmetry

reflects the higher contribution to lateral transport from the gliding electrons with

momenta almost parallel to the film surface. Function y4F (0 < y < 1, t→∞)
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gradually increases when y increases from 0 to 1 and rapidly drops almost to zero

again when y start approaching 1. At large t the shape and parameters of this

peak practically do not depend on t except for a very narrow region near 1 in which

1− y2 ∼ 1/t. At y > 1, function F (y, t→∞) remains small.

On the other hand, the peak of the integrand as a function of y at u ≫ 1

(or, more precisely, at
√
u ≫ 1) represents a narrow peak of the width 1/

√
u. At

√
u ≫ 1 the the integrand in Eqs. (15) can be simplified using the asymptotic

expressions for the Bessel functions,

I0,1 (z ≫ 1) ∼ ez/
√
2πz, (17)

which makes the integrand look like a Gaussian function,

e−
u
2
(y−sin θ)2 , (18)

and in the limit u→∞ - almost like a δ-function,

y4e−
u
2 (y2−1) [I0 (uy sin θ)− I1 (uy sin θ)]→

1

u
y3eu(sin

2 θ+1)/2δ (y − sin θ) . (19)

This peak in the integrand at
√
u ∼ R/a≫ 1 is explained by a small momentum

transfer δq ∼ h̄/R in scattering by smooth inhomogeneities with large lateral size

R.

Integration over dφ in Eq. (15) yields the following expression for F (y, t):

F (y, t) =
π√
2y3

1/t
[√

(y2 − 1)2 + 1
t2
+ (y2 − 1)

]1/2 . (20)

The singularity at y = 0 is eliminated by the extra factor y4 (or, rather, y7/2

because of the Bessel functions (17)) in the integrand in Eq. (15). Everywhere

between 0 < y < 1, except for points very close to y = 1,

F (0 < y < 1, t→∞) ≃ F0 (y) =
π

2y3

√
1− y2. (21)
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Corrections to this equation are of the order of 1/t2,

π

8t2y3
1

(1− y2)3/2
, (22)

except for a very narrow region y → 1.

At y > 1, but again not very close to y = 1, the main term in the function

F (y, t≫ 1) is of the order of 1/t and is, therefore much smaller than (21):

F1 (y > 1, t≫ 1) ≃ F1 (y) =
1

t

π

2y3
1√

y2 − 1
. (23)

The contribution from this region to the integral over dy is usually small, especially

at u≫ 1 since the corresponding integral is also exponentially small in u.

Function U (u, t≫ 1) is not an analytical function of 1/t. Close to the point

y = 1, i.e., when 1/t ≫ |1− y2|, function F1 (y → 1, t≫ 1) behaves as 1/
√
t on

both sides of y = 1,

F (y → 1, t≫ 1)→ π√
2t
. (24)

Since the width of this region is approximately 1/t, its contribution to the integral

is of the order 1/t3/2. To find this non-analytical contribution one can keep only

the main term in (y − 1) in F (y, t),

F̃ (y < 1, t) =
π√
2

1/t
[√

4 (y − 1)2 + 1
t2
+ 2 (y − 1)

]1/2 , (25)

and put y = 1 into all coefficients in front of F. The remaining integral,

∫ 1

0
F̃ dy,

can be evaluated exactly. The main non-analytical contribution from this term is

1/
(
3
√
2t3/2

)
. To get the non-analytical contribution from the region y > 1, one

should cut-off the corresponding integral at some large value A. The exact value

of the cut-off A is, of course, irrelevant for the non-analytical contribution from
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the area close to y = 1 which turns out to be −1/
(
3
√
2t3/2

)
. Therefore, the term

1/t3/2 disappears from the function U (u, t≫ 1) and the first non-regular term in

the expansion of the function F in 1/t has the order 1/t5/2. The latter term is not

important in our context.

Summarizing, at t ≫ 1 the leading terms in the expansion of U (u, t≫ 1) in

1/t are

U (t≫ 1, u) ≃ U0 (u) +
1

t
U1 (u) +

1

t2
U2 (u) (26)

with U0 (u) coming from Eq. (21), U1 (u) coming from Eq. (23), and U2 (u) - from

Eq. (22) . Functions U0 (u) , U1 (u) , U2 (u) are plotted in Figure 2.

The analytical expression for U0 (u) is

U (u, t→∞) ≡ U0 (u) (27)

where,

U (u, t→∞) = 16u
∫ π

0
dθ cos2 θe−

u
2 (sin

2 θ+1)
∫ 1

0

√
1− y2ydy e−

u
2 (y2−1)

× [ I0 (uy sin θ)− I1 (uy sin θ)] . (28)

This function can be simplified at u≫ 1 using Eq. (19):

U0 (u≫ 1) ≃ 16
√
2πu

∫ π

0
dθ sin θ| cos3 θ|

[
I0
(
u sin2 θ

)
− I1

(
u sin2 θ

)]
/eu sin2 θ

= 16

√
2π

u
. (29)

The result indicates that when the lateral size of surface inhomogeneities R be-

comes bigger and the walls smoother, the wall-driven transport time increases

proportionally to 1/R. This term gives the pure surface contribution to transport.

The next terms in the expansion in 1/t are responsible for the surface-bulk

interference in transport beyond the Mathiessen’s rule. The first such term is

U1 (u) = 8u
∫ π

0
dθ cos2 θe−

u
2 (sin

2 θ+1)
∫ ∞

1
dy

y√
y2 − 1

e−
u
2 (y2−1) (30)

× [I0 (uy sin θ)− I1 (uy sin θ)] . (31)
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At large u this function behaves as 1/u3/2. More accurately,

U1 (u≫ 1) ≃ 8 u

2
√
2π

∫ π

0
dθ cos2 θe−u sin2 θ/2

∫ ∞

1
dy

y√
y2 − 1

e−u y2/2eyu sin θ

(yu sin θ)3/2

≃ 10

u3/2

√
2

π
(32)

(the last equation is a result of a numerical evaluation rather than of the exact

analytical calculation of the integral). This also means that at u≫ 1

U1/U0 → 5/ (8 π u) (33)

and the contribution from 1/t becomes less and less significant with increasing

lateral size of surface inhomogeneities R.

The computation of U2 (u) is more cumbersome. This function comes from the

integration over dy from 0 to 1. To get this function, one should subsectiontract

from the correspondent integral not only the zeroth-order term F0, but also the

terms that yield the 1/t3/2contribution:

U2 = 16u lim
t→∞

t2
∫ π

0
dθ cos2 θe−

u
2 (sin

2 θ+1)
∫ 1

0
dy (34)

×

 f (y)

(
F − F0 − F̃ + F̃0

)
+ (f (y)− f (1))

(
F̃ − F̃0

)

+f (1)
(
F̃ − F̃0 − 1

3
√
2t3/2

)

 ,

f (y) = y4e−
u
2
y2 [ I0 (u y sin θ)− I1 (u y sin θ)] ,

F̃0 =

√
2π

y3

√
1− y.

It is clear from Figure 2 that U2 (u) ≫ U1 (u) at u ≫ 1. The reason is quite

simple. At large values of u the coefficients in front of F in the integral over dy

form an almost Gaussian peak around some value of y < 1. Therefore, U2 (u),

which originates from the integral over dy from 0 to 1, always dominates at u≫ 1

over U1 (u), which originates from the integral from 1 to ∞. As a result, the

term U2 (u) /t
2 in the expansion (26) of U (u, t≫ 1) over 1/t can remain much
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Figure 2. The functions U0,1,2 (u).

larger than U1 (u) /t even at large values of t. The crossover from U2 (u) /t
2 to the

asymptotic behavior U1 (u) /t occurs only when t exceeds some critical value tcr,

tcr (u) = U2 (u) /U1 (u) . (35)

Function tc (u) is plotted in Figure 3. At relatively small values of u (for practical

purposes, at u ≤ 10), tc is quadratic in u, tcr ≈ 0.1u2. At larger values of u

(numerically, at u ≥ 15), tc is linear in u, tc ≈ u. We can prove from analyzing

the asymptotic behavior of U2 (u) and U1 (u) at u ≫ 1 that U2 (u) ∝ 1/u1/2 and

U1 (u) ∝ 1/u3/2 and, therefore, tc is indeed linear in u. However, we cannot prove

that the proportionality coefficient is exactly 1. Numerically, this coefficient is

approximately 0.99 though the accuracy of computation for Eq. (34) is limited by

the presence of non-analytical term 1/t5/2. In the end, the assumption tc (u≫ 1) =

u is sufficiently good for any potential comparison with experiment.

Summarizing, in high quality films with t, u≫ 1

U (t≫ 1, u≫ 1) ≃ 10

π

√
2π

u

(
8π

5
+

1

tu
+

1

t2

)
(36)
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Figure 3. The function tcr (u).

or in normal variables

1

τ efftr

≃ 1

τ btr
+

10
√
2√

π

TF

pFλF

ℓ2

RL

(
8π

5
+

h̄

2τb TF

λ2
F

R2
+

λ2
Fm

2τ 2b TF

)
. (37)

This simple equation describes the asymptotic behavior of the wall contribution to

conductivity of films (15) in the classical approximation. The crossover from 1/τb

to 1/τ 2b behavior of the interference term occurs at R2 ∼ aLb.

It could be instructive to compare the pure wall term in Eq. (37) with the

Fuchs-Sondheimer result for the resistivity ρ,

ρ = ρb

(
1 +

3Lb

8L
(1− p)

)
. (38)

The comparison yields the following expression for the specularity coefficient 0 ≤

p ≤ 1,

p = 1− 64

3

√
2π

ℓ2

λFR
(39)

meaning that the Fuchs boundary condition can emulate scattering by rough sur-

faces only for a very small amplitude of roughness, ℓ2 ≪ λFR. This this restriction

is noticeably stronger than restriction on our approach [11] ℓ ≪ R,L. Of course,
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the Fuchs-Sondheimer Eq. (38) does not contain the interference terms which rep-

resent the main thrust of this paper. Note that, in principle, the Fuchs boundary

condition, which assumes partial accommodation by the perfect flat walls, does not

have to emulate the results of locally specular scattering by rough walls for which

the mean free path is established by the randomization of lateral momentum due

to a series of reflections from randomly directed walls.

1.2.3 Accuracy of the results

I would like to now comment on the accuracy of our predictions and on ways

for improvements. Though some of these potential improvements could seem rather

straightforward, the others might require us to introduce new parameters, which,

in turn, could make the results useless for any meaningful comparison with exper-

iment. Below I will list some of the restrictions on the accuracy of our results and

describe the ways of lifting these restrictions.

1.2.4 Accuracy of the main quasiclassical equations

Our results are based on a thorough diagrammatic derivation of the transport

equation in films with bulk and roughness scattering channels in Ref. [16]. As

it is shown in Ref. [16], the effective relaxation time 1/τ
(eff)
j (q) reduces after

averaging over surface roughness and bulk scattering to two diagrams for the self-

energy function. The first one leads directly to Eq. (1) while the second one is

disregarded following Ref. [16]. This is a common approximation used, in different

forms, in most of the Green’s function based transport derivations (see, e.g., Refs.

[13, 33] and references therein). This approximation is well justified when the bulk

interaction has a short range which is usually the case for impurity scattering. For

phonon scattering it might not work as well at very low temperatures.

In principle, we can add this disregarded second diagram to the equation for
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the pole of the single-particle Green’s function (1). However this would lead to

a loss of transparency of the results and make any meaningful comparison with

experiment virtually impossible: this diagram contains integrals with the full irre-

ducible bulk vertex function, which is unknown and does not reduce to observables.

More worrisome is the heuristic transition from the quantum Eq. (1) for

the relaxation time to the quasiclassical Eq. (10) for the transport time. This

transition allowed us avoid inverting huge matrices stemming from the transport

equation and get the quasiclassical results in a very compact analytical form. This

is justified when the dominant contribution to transport comes from gliding elec-

trons which are contained in the lowest quantum miniband and when the pure wall

scattering dominates over the interference terms. We plan to revisit this issue in

more detail later on.

1.2.5 Non-Gaussian correlations

In order to obtain the above results, we have assumed that the correlation

function of surface roughness has a Gaussian form, Eqs. (1) − (3). Though the

Gaussian correlations are practically universally used for theoretical description

of rough surfaces, there is experimental evidence the correlations are sometimes

non-Gaussian (see ,e.g., Refs. [17–19]). The difference between transport prop-

erties of quantized films with various types of surface correlations could be quite

noticeable, especially for relatively smooth surfaces with R ≫ a which can ex-

hibit, depending on the type of the correlation function, a new type of quantum

size effect, Refs. [20, 21]. In the case of quasiclassical transport the difference is

less striking and is easy to analyze. For example, the change in the correlation

function lead to a replacement of the Gaussian factor in the integrand W , Eq.

(11), by some other exponential or power-law function, which properly reflects the

correlations, and results in a different power in the dependence U (u). Numerically
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this is a straightforward matter. The semi-analytical comparison between different

roughness profiles will be done in a separate paper.

1.2.6 Surface-driven deformations

In our description of transport we assumed that the main transport effect

of surface roughness is the scattering by surface inhomogeneities that reflect ran-

domness in the position and direction of the surface. As a result, the transport

parameters depend solely on the geometry of the surface, i.e., the correlation func-

tion of surface roughness, and do not take into account the change in electron or

phonon properties near the surface. Of course, the proximity to the surface leads to

deformations inside the film, which affect the electron properties via the deforma-

tion potential. The deformation potential near surface inhomogeneities, especially

near the ones with large curvature, changes the scattering parameters and makes

the effective averaged cross-section different from the purely geometry-driven one.

We discussed the ways to incorporate this effect into our formalism in Refs. [11].

Essentially, this is equivalent to the replacement of the scattering probability (11)

by an effective function with similar symmetry. This resembles the description

of transport in systems with bulk impurities in which the impurity scattering po-

tential U (r) is replaced by the effective T -matrix T (p,p′). Though this is the

right way of dealing with the complications stemming from the surface-driven de-

formations, the experimental implications are not very appealing. The correlation

function of surface roughness ζ (q) can be measured directly by scattering exper-

iments, scanning surface microscopy, etc. This information is sufficient for direct

application of our results without any unknown fitting parameters. If, on the other

hand, the deformation potential near the surface is strong, one is forced to treat

W (p,p′) as an effective average scattering cross-section. This inevitably leads to

an appearance of fitting parameters and makes the results more ambiguous.
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Another issue is the softening of phonon spectrum and, therefore, lowering

of the Debye temperature near the surface [24]. When this effect is strong, the

”bulk” scattering parameters that enter our non-Mathiessen’s terms may differ

considerably from their true bulk values.

1.2.7 Quantum size effect (QSE)

One of the main features of our results is the 1/L dependence of the wall

contribution to the effective transport time 1/τ
(eff)
tr on the film thickness which is

consistent with the quasiclassical Fuchs-Sondheimer theory. In ultraclean films at

very low temperatures, i.e., at t→∞, the contribution from the gliding electrons

should be cut-off not by i/t in the pole of the integrand, but by the quantum

cut-off, px, p
′
x > πh̄/L.,

1/τb

(ǫ (p′)− µ)2 /h̄2 + 1/4τ 2b
→ 2πδ (ǫ (p)− µ) , (40)

1

τ
(eff)
tr

=
1

τ btr
+ 2π

∫

p′x>πh̄/L
W (pF ,p

′) δ (ǫ (p)− ǫF )
(1− cos γ) dp′

(2πh̄)3
. (41)

Apart from ensuring the low-temperature cutoff, Eq. (41) also makes the

dependence of the lateral conductivity σ on the film thickness L much more com-

plicated than in Section 3 leading, for example, to 1/L2 [10, 11, 20, 21, 30] or

1/L3 dependence [10–12]. This more complicated wall contribution to the effective

transport time 1/τ
(eff)
tr than 1/L in experiment might be a direct sign of quantum

size effects in transport. An even more accurate account of the quantum size effect

would require us to return to summation, Eq. (1), instead of integration and to a

saw tooth dependence of the conductivity on the film thickness L which is similar

to the one of Ref. [16] and is a common feature of QSE in films irrespective of the

scattering channel [8, 10, 11, 25]. However, in metals the width of these saw teeth
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is about atomic size a and the observation of this type of dependence σ (L) highly

unlikely. We plan to study the effect of the quantum cut-off on the quasiclassical

effective transport time separately.

1.2.8 The momentum dependence of the bulk relaxation time

The discussion above ignores the quantization of phonons in ultrathin films

and, even more importantly, the momentum dependence of the bulk relaxation

time τb (px,q) in Eq. (1). Not much is known about this function that can be

useful in our context. Though one can easily write the formal expressions for

τb (p) (see, for example, Refs. [22, 23] and numerous other publications), these

expressions do not reduce to a set of observables which are independently known

from experiment. In the end, any attempt to make our results more accurate by

introducing the dependence τb (p) into the calculations would leave us with a large

additional set of fitting parameters that would only obscure our understanding of

surface contribution to transport in films.

The only real improvement could be achieved for ultrathin films at very low

temperatures for which we should replace the averaged bulk experimental value τb

used above by the corresponding constant for the gliding electrons τb (πh̄/L,qF ) -

when this constant is known experimentally. The next step in the same directions

could be the use of quantized - ultimately, two-dimensional - phonons. This will

lead to an obvious change in the temperature dependence of the results.

1.2.9 Localization and related quantum interference phenomena

Above we deliberately ignored the roughness-driven localization of electrons.

The localization length in quasi-twodimensional films with weak roughness is ex-

ponentially large and can manifest themselves only for the ultrathin films. Lo-

calization corrections within our formalism are discussed in detail in the first of
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Refs. [11] which also contains references to earlier publications on localization and

quantum interference effects associated with the surface disorder.

1.2.10 Discussion of the quasiclassical interference

The most interesting part of our results for the quasiclassical interference be-

tween bulk and surface scattering channels in electron transport in thin films is

our simple asymptotic expression (37) for high quality films with large bulk free

path Lb (i.e., large t) and large lateral size of surface inhomogeneities R (i.e., large

u). We do not know of past publications with such a simple and easily verifiable

result. This result includes a crossover between two different asymptotic behaviors

of the resistivity at Lb ∼ R2/a. Irrespective of the bulk scattering channel, the

crossover in the interference part of the resistivity can be observed as a change in

its dependence on the correlation length (lateral size) of surface inhomogeneities

R from 1/R3 to 1/R. Experimentally this crossover can manifest itself also as a

change in the temperature (phonon scattering) or concentration (impurity scat-

tering) dependencies of the resistivity. Note, however, that when 1/ut term in

the interference contribution (36) , (37) dominates over the 1/t2 term, the tem-

perature/concentration dependence of the interference contribution is exactly the

same as for the bulk term and the only distinguishing feature of the interference

contribution is its 1/R3 dependence on R. Of course, when 1/t2 term dominates,

the temperature/concentration dependence of the interference contribution is quite

distinct from the main surface term.

Inspite of many decades of experiments on conductivity of ultrathin films,

there are few data sets on the functional behavior of the interference between bulk

and roughness-driven scattering. The experimental difficulties are mainly about

ensuring that roughness is the main boundary scattering channel and maintaining

the same surface roughness while manipulating the bulk properties. Currently, we

26



are aware of only one group which does measurements of the interplay between

electron-phonon and roughness scattering channels as a function of temperature

while simultaneously analyzing the surface roughness [19, 34].

It is instructive to compare our semi-analytical quasiclassical results with pre-

vious quantum computations which explicitly include QSE [7, 8, 13, 16]. Refs. [7]

do not contain any explicit equations for the interference terms that can be com-

pared with our results, especially in the quasiclassical regime. The authors of

Ref. [8] were not interested in the interference terms and considered bulk and

roughness scattering as two independent additive channels. Ref. [13] also does

not contain any explicit information about the interference terms except for men-

tioning that these contributions seem to be smaller than the pure wall or bulk

terms. In addition, Refs. [7, 8, 13] use the δ-type (white noise) approximation for

the surface roughness and, therefore, would not be able to see the crossover be-

tween interference regimes even if there were analytical results for the surface-bulk

interference.

In our earlier computations of Ref. [16] we characterized the interference term

by a dimensionless parameter Λ which described the ratio of pure wall and bulk-

wall interference contributions to the effective relaxation (or transport) time or the

resistivity (12),

Λ = 1 +
τw

τ int
.

In our notations,

Λ =
U (t, u)

U (t→∞, u)
.

For high-quality clean films (36) this ratio acquires the simplest form,

Λ = 1 +
5

8π

(
1

tu
+

1

t2

)
(42)

and the correction to the limiting value Λ = 1 is positive.
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The result (42) can be compared with the QSE dependence of Λ on the bulk

free path Lb, ∆ (p0Lb), in Ref. [16] (p0Lb in [16] is equivalent to our 2t). As it is clear

from figures in Ref. [16], the correction to the limiting value Λ = 1 can be positive

or negative, depending on the number of quantum minibands involved though

it tends to become more negative with an increase in the number of minibands

(increase in film thickness). Also, the deviation of Λ from 1 in quantum case seems

to increase with increasing R (i.e., with increasing u). It is not clear why the results

of the same approach in quantum and classical limits are so different. One of the

reasons could be the above mentioned heuristic transition from Eq. (1) to Eq.

(10) in which we averaged the transport time over all minibands while structuring

the result closer to discrete equations of Ref. [16] for the lowest minibands which

contain the gliding electrons.

In experiments [19, 34] the correction to Λ = 1 seems to be negative (the cor-

responding term in resistivity ∆ρ decreases with increasing temperature). Though

it is impossible to make a quantitative comparison with our results, qualitatively

we tend to interpret these results as an experimental manifestation of QSE. There

is one caveat. The experimental values of ρ (T ) is very close to the pure bulk

values ρb (T ) and the functional behavior of both functions is almost very similar.

One cannot discount the possibility that the surface-driven softening of the phonon

modes and the renormalization of the Debye temperature should require the use

a renormalized function ρ̃b (T ) rather than the true bulk function ρb (T ) as the

basis for extracting ∆ρ from experiment [24]. If the mode softening is sufficiently

strong, the extracted values of ∆ρ will actually increase with increasing tempera-

ture and exhibit the temperature dependence consistent with our 1/t dependence

of the interference terms.

The dependence on the film thickness L, 1/τ int (L), in Ref. [16] starts, if one
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disregards the inevitable QSE saw teeth, from the ultra-quantum form 1/L6 and

shifts to 1/L3 in thicker films and finally to 1/L in thick films with dominant

higher minibands. This behavior is consistent with our current results which yield

the 1/L dependence without the quantum cutoff and higher powers when this

cutoff becomes essential, Eq. (41). This also tells us that more often than not one

should not expect a clear-cut power law in experimental dependence of resistivity

on 1/L. Accordingly, experimental data on the dependence of the resistivity on

1/L are inconclusive. One of additional artifacts is the potential presence of grain

boundaries that can distort the roughness contribution if the films are not properly

annealed as it has been recently demonstrated in Ref. [35]. Some of the recent

experimental data have been summarized in Ref. [34]. This summary also does

not lead to any definite conclusion on the power in the dependence of resistivity on

1/L. Recent experimental results of Ref. [36] yield the dependence 1/L1.2 which is

consistent with our results though the number of experimental points is relatively

small to make a definite conclusion. As it was mentioned before, a higher power

of 1/L in experimental data on the dependence of resistivity on film thickness for

ultrathin films should be considered as a sign of QSE in transport at least in the

form of the quantum cut-off.

In summary, we analyzed quasi-classical interference between bulk and surface

scattering processes in electron transport in thin films. The results acquire a very

simple analytical form for high-quality films with large bulk mean free paths Lb

and large lateral size of surface inhomogeneities R. There is a marked cross-over

between two different interference regimes when Lb ∼ R2/a. This crossover should

manifest itself in change in the temperature dependence of the interference contri-

bution when the electron-phonon scattering is the main bulk scattering channel or

in change in the dependence on impurity concentration.
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1.2.11 The quantum interference in a thin film

Resistivity of very thin metal films is an entangled combination of various

surface and bulk scattering processes. The situation is further complicated because

of the classical and quantum interference between different scattering channels. In

this chapter, we try to understand the relative role that the interference between

the surface and bulk scattering plays in the resistivity of ultrathin conductors

in quantum size effect (QSE) conditions with noticeable quantization of electron

motion. For QSE to be fully developed, it is necessary to go beyond the classical

size effect which simply requires the bulk mean free path to be comparable to the

film thickness. Below we assume that the resistivity of the bulk material is known

and is described by the simplest bulk collision operator. For surface contributions,

we will concentrate mostly on scattering by surface roughness assuming that the

surface-driven reconstruction of the energy spectrum is less important as it is often

the case in good metals. We will also neglect the scattering by grain boundaries;

this is justified when the size of the boundaries is larger than both the bulk mean

free path and the film thickness.

It is tempting to use the Mathiessen’s approximation when the resistivity is

due to two seemingly unrelated scattering channels such as bulk and wall scattering,

ρM = ρb + ρw, (43)

and the same for the inverse transport times. Unfortunately, the real resistivity ρ

often differs significantly from the Mathiessen’s value ρM , Eq. (43), due to various

interference processes between the bulk and wall scattering channels. It is well

known that the situation is even worse in the QSE conditions in which the use of

the Mathiessen’s equation (43) requires that both collision operators should have

not just a diagonal, but the δ-type structure with respect to quantized energy

bands (we will encounter the clear signs of this below).
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The entanglement between the surface and bulk contributions to conductivity

comes from two mathematically distinct sources. First, there is what we would call

for the lack of a better term, the ”intrinsic interference” which describes the fact

that the surface and bulk collision operators L̂w and L̂b are never strictly indepen-

dent from each other. In diagrammatic language this corresponds to intersecting

and overlapping of various bulk and surface interaction lines in the diagrammatic

expansion for the Green’s function. By rearranging the terms in the diagrammatic

series, it is always possible to ascribe all the intrinsic interference contributions to

either one of these two collision operators while keeping the other one ”pure”. In

what follows, we assume that L̂b is the pure bulk collision operator, L̂b = L̂
(0)
b and

that the interference terms are taken into account by the wall collision operator

L̂w, L̂w = L̂(0)
w + L̂int.

However, even if these two operators were independent from each other (i.e.,

the intrinsic entanglement could be neglected, L̂b,w → L̂
(0)
b,w), there is still the

second source of interference which we will call the ”mixing interference”. Indeed,

the source of this mixing can be easily understood if one considers, for example,

the quantum transport equation with these supposedly independent L̂(0)
w and L̂

(0)
b ,

dn

dt
=
(
L̂w + L̂b

)
n. (44)

The conductivity, which is proportional to the solution of this equation, would,

therefore, contain the inverse operator
(
L̂(0)
w + L̂

(0)
b

)−1
. It is difficult to imagine the

conditions, except for the simplest relaxation time approximation, under which this

inverse operator can be decomposed into independent bulk and wall parts. This

mixing, which is associated with inverting the overall collision operator, persists

no matter whether we obtain the transport coefficients from solving the transport

equation or from using the response function formalism such as, for example, the

Kubo formulae. Note that in the relaxation time approximation corresponds to
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a unique situation in which the operators L̂b and L̂w are completely independent

and both have the δ-type matrix structure.

To our best knowledge, earlier attempts to analyze the non-Mathiessen’s be-

havior of resistivity did not pay attention to the existence of these two different

sources of interference and dealt more often than not just with the mixing inter-

ference. More recent theoretical approaches still usually highlight just one of these

two sources while neglecting the other. This often makes the comparison of the re-

sults rather meaningless. In those rare situations when the theoretical approaches

are sufficiently general to cover the both sources, the results are somewhat convo-

luted and do not allow for easy interpretation and comparison with experiment.

In this chapter, we trace both sources of interference simultaneously and analyze

the conditions under which one of the interference mechanisms dominates over the

other.

Below we will analyze both sources of interference in high quality ultrathin

films in QSE conditions.

We are interested in conductivity of metal films in quasi-2D films with random

rough surfaces. QSE is caused by quantization of motion in the direction perpen-

dicular to the film, px → πjh̄/L, where L is the film thickness, and leads to a split of

the energy spectrum ǫ (p) into a set of minibands, ǫ (px,q)→ ǫ (πjh̄/L,q) = ǫj (q).

One of the signature features of QSE in metals is a pronounced saw-tooth depen-

dence of the lateral conductivity on, for example, film thickness, σ (L), which is

common for both bulk [37] and surface [8] scattering. However, in order to see

this saw-tooth dependence in experiment with metal films, one has to overcome a

difficulty which one does not encounter in semiconductors. The period of the saw-

tooth QSE oscillations in the dependence σ (L) is usually small, almost atomic,

h̄/pF . For this reason, typical experimental objects are lead or semimetal films
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such as bismuth. In most of other metal films the experimental curves are usually

smooth. This means that for comparison with experiment our theoretical saw-

tooth singularities should be averaged out and smoothed. This is not a major

issue since the amplitude of the saw teeth is usually quite small. Recently we also

predicted [20, 21] a new type of QSE with smooth curves σ (L) and large-period os-

cillations of σ (L) at relatively large values of pFL/h̄ that could lead to observation

of QSE in a wider group of metals.

As mentioned earlier, the usual approach to transport in films is to account

for bulk scattering processes via a collision operator in a transport equation and

to relegate all boundary scattering to some boundary condition (for one of the

best-known examples of earlier work of this type see Refs. [2]). If going this route,

one should express the phenomenological parameters in the boundary condition

(such as, for example, the specularity coefficient p or the Namba [6] ratio of the

amplitude of roughness and the mean free path, ℓ/Lb) via physical characteris-

tics of surface. More sophisticated approaches with integro-differential boundary

conditions could require even more parameters in addition to the geometrical and

statistical properties of surface roughness. There are two issues associated with

such approaches. First, one has to postulate the form of the boundary condition.

This choice of the form of the boundary condition by itself imposes limitations,

which are not always clear, on what kind of surface physics can or cannot be prop-

erly incorporated by this condition. More rigorous approaches of this type require

the derivation of the boundary condition. When addressing the interference be-

tween bulk and boundary scattering, this derivation and, therefore, the resulting

boundary condition should explicitly include the bulk scattering operator. As far

as we know, no one has performed such a derivation.

Below we apply the results of our quantum diagrammatic transport derivation
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[16] to the analysis of non-Mathiessen’s terms. We will try to cut through the

parameter clatter and get results that can be used for experimental applications.

We will also try to look separately at the various sources of the interference and

evaluate their relative importance. Where possible, we will simplify the results

in the limit of ultraclean systems with large mean free path for which it is often

possible to present the results as an expansion in inverse collision frequency.

1.2.12 Main equations in the quantum case

An important feature of ultrathin films is the quantization of motion across the

film, pxj = πjh̄/L, which is responsible for quantum size effect (QSE) in transport

and leads to a split of the 3D spectrum ǫ (p) into a set of S minibands ǫj (q),

S = Int [L/πa] , (45)

where the atomic-size constant a = h̄/pF and q is the component of momentum

along the film [in the simplest case of parabolic spectrum with the effective massm,

ǫ (p) = p2/2m, the minibands are also parabolic, ǫj (q) = (1/2m)
[
(πjh̄/L)2 + q2

]
].

As a result of this quantization, all the equations acquire the matrix character in

the miniband index j.

After usual manipulations and expansion in harmonics, the quantum transport

equation on the Fermi surface reduces to a set of linear equations

qj
m

= −
∑

j′
γjj′νj′ , (46)

where qj is the Fermi momentum in the miniband j, q2j = p2F − (πjh̄/L)2, νj de-

scribes the first angular harmonic (with respect to electric field E) of the deviation

of the distribution function from the equilibrium δf (1),

δf (1) (qj) = νj δ (ǫ− ǫF ) eE, (47)
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and the matrix γ̂ is determined by the zeroth and first harmonics of the collision

vertex,

γjj′ = δjj′
S∑

j′′=1

Γ(0) (qj, qj′′)− Γ(1) (qj, qj′) . (48)

In these notations, the conductivity and the transport time are

σ = − e2

3h̄2

∑

j

νj (qj) qj (49)

and

τtr = −→q γ̂ −1−→q /−→q · −→q (50)

where the ”vector” −→q is the set of parameters qj. Note that σ in Eq. (49) is already

integrated across the film and is the 2D conductivity. It has the dimensionality of

conductance and describes the density of current per unit area of the film.

In this chapter we are not interested in details of the bulk collision operator

which has been thoroughly studied in the literature on metals. Therefore, for the

bulk-related part of the matrices Γjj′ we will use the simplest possible expression

by introducing the single bulk transport time τ btr,

δjj′
S∑

j
′′
=1

Γ
b(0)
jj′′ − Γ

b(1)
jj′′ =

δjj′

τ btr
. (51)

In contrast to the bulk scattering, for wall scattering we will use a more

accurate description. In the end, the overall collision operator γ̂ in the transport

equation (46) acquires the form

γjj′ =
δjj′

τ btr
+

δjj′

τb

S∑

j′′=1

∫ dq′′q′′

4π

W
(0)
jj′′

(
qj,−→q ′′

)

(ǫj′′ (q′′)−TF )
2
+h̄2/4τ2

b

(52)

− 1

τb

∫ dq′q′

4π

W
(1)
jj′

(
qj,−→q ′

)

(ǫj′ (q′)−TF )
2
+h̄2/4τ2

b

.

The poles in the surface scattering (integral) terms in Eq. (1), which are asso-

ciated with bulk scattering i/τb′ , are responsible for what we called the ”intrinsic

interference” in Introduction. The ”mixing interference” appears because of the
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need to invert the full operator γ̂ even though the bulk term 1/τ btr in the expression

for the collision operator (52) has the simplest δ-type form. Even if the roughness

driven scattering probabilities Wjj′ , Eq. (1), were diagonal in the miniband index

j, there would have still been some mixing interference. The mixing interference

disappears completely only if Wjj′ ∝ δjj′ .

Note that the bulk parameters τ btr and τb in Eq. (52) could be significantly

different: one represents the bulk transport time (the pole in the two-particle

propagator) and the other - the collision time (the pole in the single-particle

Green’s function). Below I introduce parameter α for the ratio of these two times,

1

τ btr
=

α

τb
. (53)

If the bulk scattering is associated mostly with impurities, then α is a number of

the order of 1. If, however, the main bulk collision channel is the electron-phonon

scattering, then parameter α is small when the temperature is noticeably below

the Debye temperature TD,

α ∝ (T/TD)
2 ≪ 1. (54)

Earlier [38], instead of inverting the collision operator (46) , (52), I approx-

imated the effect of collision operator by introducing the effective quasiclassical

transport time as

1

τtr(p)
=

1

τ btr
+

1

τb

∫ W (p,p′) (1− cos γ)

(ǫ (p′)− µ)2 /h̄2 + 1/4τ 2b

dp′

(2πh̄)3
(55)

with

σ =
e2τtr
m2

∫ S∑

j′=1

δ (ǫj − ǫF ) q2j
qdq

4πh̄2 =
e2nτ

(eff)
tr

m
,

where W (p,p′) is the quasiclassical surface scattering probability, i.e., Wjj′ (q,q
′)

with j, j′ replaced by j(′) = Lpx(′)/πh̄. As a result, I avoided the mixing interference
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and concentrated on non-Mathiessen’s interference terms 1/τ
(int)
tr which are due to

the difference of the integrand from the δ−function,

1

τ
(int)
tr (p)

=
1

τtr(p)
− 1

τ btr
−
∫

δ (ǫj′ (q
′)− TF )W (p,p′) (1− cos γ)

dp′

(2πh̄)2
, (56)

and, therefore, describe what I called here the ”intrinsic” interference. Note that

such intrinsic interference has also been investigated in various contexts in Refs.

[28–30] as well.

1.2.13 The quantum results

Below I will take QSE into account and perform an accurate inversion of the

collision operator. One of the main feature of QSE is the saw tooth dependence

of the conductivity of films on film thickness σ (L) which, in principle, should be

observed for both bulk [25] and surface [8] scattering. The reason is that the

number of minibands S increases by one each time the film thickness increases by

δL = πh̄/pF . The change in S, by itself, should lead just to kinks on the curve

σ (L); what leads to a sharp drop in σ, and, therefore, to the saw tooth picture is

the opening of a large number S of new scattering channels each time S changes

by one. This means that the saw tooth dependence exists only as long as there are

robust interband transitions which require the presence of noticeable off-diagonal

elements in the matrix γ̂, Eq. (52). Since in this chapter the bulk part of the

collision operator is approximated by a diagonal matrix, the saw tooth structure

of the conductivity curve originates from the surface part of the collision operator.

I will analyze the relative contributions of intrinsic and mixing interference

terms. Note that the mixing interference requires the non-δ-type structure of the

collision operator and is, therefore, associated with the saw tooth picture of QSE in

conductivity of ultrathin films. In principle, the inversion of the collision operator

(46) , (52), is a straightforward numerical task especially because I am interested in
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thin films for which the number of minibands and, therefore, the rank of the matrix

γ̂ are relatively low. The real difficulty here is not solving the quantum transport

equation numerically, but making sense of the results because of a large number

of different parameters, for many of which the experimental information is rather

sparse. Thus one of the main goals is to cut through the parameter clatter and get

physically meaningful results. Let us start from the list of relevant dimensionless

parameters.

The interplay between bulk and roughness scattering can be described by

two dimensionless parameters, t and u, the first of which characterizes the bulk

scattering and the second - the correlation of surface roughness:

t = τb p
2
F/m h̄, u = p2FR

2/h̄2 ≡ R2/a2 ≥ 1, (57)

where pF is the Fermi momentum, and a, defined as a = h̄/pF , is of the order

of the atomic size. It is often convenient to describe transport in films with large

bulk mean free paths as an expansion in 1/t. On the other hand, parameter u

accounts for the effectiveness of surface scattering in which the relative change in

momentum is δq/q ∼ 1/
√
u. The high-quality samples are the ones in which both

t and u are large.

Apart from t and u, other important dimensionless parameters include α,

which characterizes the difference between the bulk collision and transport times

(53), the dimensionless thickness of the film L/a, and the amplitude of roughness

ℓ/a. In these notations, the bulk mean free path Lb is

Lb/a = τ btrvF/a = t/α. (58)

With so many parameters, none of which reduces to a simple scaling, one should

find a way to understand the hierarchy of competing effects that would allow one

to get some clarity.
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Nevertheless, one of the parameters - α or ℓ/a - can still be excluded by a

proper choice of variables leaving behind only the ratio

θ =
αa2

ℓ2
. (59)

To achieve this, I will describe the relative interference contribution to the resis-

tivity ρ and transport time τtr by parameter χ,

χ =
ρ− ρM

ρM
≡ τMtr

(
1

τtr
− 1

τMtr

)
, (60)

where the Mathiessen’s resistivity ρM and transport time τMtr are defined by the

following equations

ρM = ρb + ρw, 1/τMtr = 1/τ btr + 1/τwtr , (61)

and indices b and w refer to the pure independent bulk and wall contributions.

The collision operator γjj′ , Eq. (52), contains two terms. The bulk one is

proportional to α and the wall one - to ℓ2/a2. If instead of γjj′ I will introduce the

matrix

γ̃jj′ =
a2

ℓ2
γjj′ , (62)

this matrix will depend on α and ℓ2/a2 only in the combination θ, Eq. (59). This

means that the solution ν̃j = (ℓ2/a2) νj of the renormalized equation (59) will

also depend only on θ. The same will be true for the renormalized conductivity,

σ̃ = σ (ℓ2/a2), resistivity ρ̃ = ρ (a2/ℓ2), and the inverse transport time, 1/τ̃tr =

(a2/ℓ2) /τtr. Then the relative interference contribution (60),

χ =
ρ− ρM

ρM
≡
(

1

τ̃tr
− θ

τb
− 1

τ̃wtr

)
/

(
θ

τb
+

1

τ̃wtr

)
, (63)

will also contain α and ℓ only in the form of the combination θ. The pure roughness-

driven transport time τ̃wtr in Eq. (63) should be calculated using the surface scat-

tering probabilities Wjj′ , Eqs. (2) , (3), without the factor ℓ2/a2(and, of course, in

the limit τb →∞).
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Note, that parameter θ/t provides one with an estimate for comparative contri-

butions of surface and bulk scattering channels to transport, τwtr and τ btr. However,

this estimate is not very accurate because of a strong dependence of τwtr on L/a and

u, Eq. (4). The ratio τ btr/τ
w
tr is best characterized by the scaled function φ (L/a, u),

τ btr
τwtr

=
t

θ
φ (L/a, u) , (64)

which depends only on u and L/a. The function φ (L/a),

φ =
q · q

q·F̂−1q
, (65)

where,

Fjj′ = 4π5
(
L

a

)6

j2 u e−u exp (cj/2) fjj′ , (66)

and,

fjj′ = δjj′
∑

j′′

(
j′′2 exp (cj′′/2) I0

(
u
√
1− cj/u

√
1− cj′′/u

))

−j′2 exp (cj′/2) I1
(
u
√
1− cj/u

√
1− cj′/u

)
, (67)

with,

cj = π2 u
(
a
L

)2
j2, (68)

is presented in Figure 4 for several values of u = p2FR
2/h̄2.

Note that the thickness of the film, L/a, enters the expression for φ, Eq. (65),

not only as explicit coefficients but also through the upper limit of summation over

j, j′, j′′ since the total number of accessible minibands

S = Int [L/πa] . (69)

It is clear that even the pure wall contribution is comparable to the bulk term at

not very small α only for relatively thin films. This means that the interference
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Figure 4. The function φ (L/a), for different u.

terms, which are small in comparison with both pure surface and bulk contribu-

tions, should be investigated for relatively thin films for which the pure surface

contribution is not negligible in comparison with the bulk one, i.e., the function

φ (L/a, u) is not exceedingly small.

Figure 4 confirms that the surface contribution decreases with increasing u

since the film surface becomes more and more smooth. The second observation

is that the increase in u, i.e., in R/a, results in smoothing of the saw teeth at

L/a = πj, which correspond to usual QSE, and leads eventually to the appearance

of a new type of QSE in accordance with Ref. [20, 21].

As it was indicated above, one of the main issues when dealing with the

interference between the bulk and surface scattering is to separate the sources of

intrinsic and mixing interference. I continue this section with analysis of the pure

intrinsic interference. This is a reasonable approximation for pure films at low

temperatures for which α ≪ 1, Eq. (54). After that, I will analyze the pure

mixing interference by assuming τb → ∞ in the integral term only in Eq. (52).
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As we will see, this approximation might work reasonably well for films with the

dominant impurity scattering in the bulk. Towards the end of the section, I will

look at general results with both types of interference and will try to compare their

contribution under various conditions.

1.2.14 The intrinsic interference

In this subsection I will consider the pure intrinsic interference. There are two

different sets of conditions under which the mixing interference becomes negligible.

The first one is, of course, the case of the vanishingly small value of α. This

situation occurs in ultraclean films at low temperatures when the bulk scattering

is dominated by the longwave phonons making the ratio of bulk collision and

transport times α very small, Eq. (54). In this case one can simply put α = 0

in the collision operator Eq. (52) , (53). Since in this case the bulk transport

time and conductivity are negligible by design, the relative intrinsic interference

contribution (60) reduces to

χintr =
ρ (α = 0)− ρw

ρw
≡ τwtr

(
1

τtr (α = 0)
− 1

τwtr

)
, (70)

where, as above, ρw and τwtr are the pure wall-driven resistivity and transport time

in the absence of bulk scattering (i.e., the resistivity and transport time generated

by the collision operator (52) with α = 0 and τb −→∞). Since here I assume from

the start that α = 0, there is no need to replace the transport times τ in the right

hand side of Eq. (70) by their renormalized values as in Eq. (63) - the parameter

ℓ2/a2 will get cancelled automatically.

In this case, the only remaining parameters in χintr are t, u, and L/a. In high-

quality films, parameter t (i.e., τb) is large, and it is often convenient to expand

the integrand in Eq. (52) in 1/t using

1/xπ

(ǫ (p′)− TF )
2 + 1/x2

= δ (ǫj′ (q
′)− TF ) +

1

x

dδ (ǫj′ (q
′)− TF )

dǫ
(71)
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+
1

2x2

d2δ (ǫj′ (q
′)− TF )

dǫ2
+ ... (72)

Figure 5. The coefficient W1 for different u.

The first, δ−function term in this expansion in the collision operator eventu-

ally generates the pure wall-driven resistivity and transport time ρw and τwtr . Then

the relative interference contribution χintr becomes

χintr =
1

t
W1 (u, L/a) +

1

t2
W2 (u, L/a) + ... (73)

The plots of functions W1,2 (L/a) for several values of u are given in Figs. 5, 6.

The figures indicate that the relative interference contributions to the resistivity

are almost always negative in the case of pure intrinsic interference except for

extremely thin films. Another observation is that the intrinsic interference at

large u looses the saw tooth structure of the usual QSE and acquires the QSE of

Ref. [20, 21].
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Figure 6. The coefficient W2 for different u.

A more important observation concens slightly thicker films than the ones in

Figs. 5 and 6. With further increase in thickness, the values of coefficients W1 for

all values of u andW2 for smaller u remain more or less the same whileW2 (u = 100)

rapidly increases by an order of magnitude, Fig. 6a. This means that in high

quality films with large values of t and u the intrinsic interference can experience a

crossover from 1/t to 1/t2 behavior at large enough values of u. earlier I observed

a similar crossover in our quasiclassical description of the intrinsic interference in

Ref. [38]. Fig. 6a also shows, in accordance with Ref. [20, 21], a restoration of the

usual saw tooth QSE for thicker films for which L/a≫ R/a =
√
u.

The second situation with the dominant intrinsic interference is, with certain

caveats, the case of a diagonal matrix γ̂, Eq. (52), i.e., the diagonal matrix of

roughness-driven scattering probabilities Wjj′ , Eqs. (2) , (3). This can happen for

large scale roughness, u = R2/a2 ≫ L2/a2 when the scattering-driven change in
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Figure 7. The coefficient W2 at u = 100 for thicker films.

the particle momentum δq ∼ h̄/R is insufficient for the particle transition between

the minibands, δq/q ∼ 1/
√
u≪ 1. When the collision operator γ̂ is diagonal,

γjj′ = γjδ
′
jj′ ,

the solution of the transport equation (46) is trivial,

qj
m

= −
∑

j′
γjj′νj′ , νj = −qjγ−1

j /m (74)

and the full transport time τtr, Eq. (50), is quite simple:

1/τtr =
∑

q2j/
∑

q2jγ
−1
j . (75)

Since the wall contributions to γj are different while the bulk ones are the same,

α/τb, Eq. (75) still contains noticeable mixing terms. However, the structure of

the roughness-driven scattering probabilities Wjj′

(
qj−q′

j′

)
, Eqs. (2) , (3) , is such

that the diagonal terms Wjj differ from each other only by the factors j4. Since

q2j decrease with increasing j, the overall transport time 1/τtr, Eq. (75), can with

good accuracy be rewritten as

1/τtr ≈
γ1
q21

∑
q2j =

1

q21

(
α

τb
+

1

τw11

)∑
q2j , (76)
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where 1/τw11 is the integral term with W11 in the expression for γjj′ , Eq. (52). The

approximation (76) emphasizes the dominant role of gliding particles in the lateral

transport in quantized ultrathin films. This equation contains only the intrinsic

interference. The plot of the corresponding function χ is given in Figs. 10-12.

1.2.15 The mixing interference

The mixing interference can be obtained by formally putting τb −→ ∞ in

the wall-driven part of the collision operator (52). Then the bulk relaxation time

enters χmix, Eqs. (60), (63) , only in the combination θ/t,

χmix = χmix (θ/t, u, L/a) . (77)

Unfortunately, the structure of χmix is such that all its variables - θ/t, u, L/a - enter

the equations independently and none of the variables reduces to simple scaling of

χmix or can be eliminated.

One should be very cautious when inverting the collision operator numerically.

The roughness-driven part of the collision operator (52) was calculated in Ref. [16]

only to the main order in the roughness amplitude ℓ. Therefore, many higher

order terms in ℓ2, which arise from the inversion of the collision operator, should

be disregarded.

To solve the transport equation and, therefore, calculate the transport time,

one should simply invert the collision operator (matrix) γ̃jj′ . The wall-driven part

of the matrix γ̃jj′ , Eq. (52), in the limit τb −→ ∞ corresponds to the first, δ-

type term in expansion (71) and becomes relatively simple. Using the notations of

Ref. [20, 21], the matrix γ̃jj′ can then be rewritten as

γ̃jj′ =
a2

ℓ2
γjj′ , γjj′ =

αδjj′

τb
+

1

τjj′
, qj/m = −

∑

j′
νj′ (qj′) /τjj′ , (78)

1

τjj′
=

m

2

∑

j′′

[
δjj′ W

(0)
jj′′ − δj′j′′ W

(1)
jj′

]
.
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In the case of the Gaussian correlation functions, the harmonics of the scattering

probabilities W are given as

ζ(0) (qj, qj′) = 4πℓ2R2
[
e−QQ′

I0 (QQ′)
]
e−(Q−Q′)2/2, (79)

ζ(1) (qj, qj′) = 4πℓ2R2
[
e−QQ′

I1 (QQ′)
]
e−(Q−Q′)2/2, (80)

W
(0,1)
jj′ (q,q′) =

h̄

m2L2

(
πj

L

)2
(
πj′

L

)2

ζ(0,1). (81)

where where Q = qjR, Q′ = qj′R (the corresponding equations for some other

classes of the correlation functions can be found in Ref. [20, 21]).

Since θ and t enter the matrix γ̃jj′ ,Eq. (78), only in the combination θ/t and

only directly via the diagonal elements, the inversion of this matrix obviously makes

χmix (θ/t) a rational function of the polynomials of θ/t. Since χmix (θ/t = 0) = 0,

such structure of χmix (θ/t) means that at θ/t≪ 1

χmix (θ/t≪ 1) =
θ

t
V1 (u, L/a) +

θ2

t2
V2 (u, L/a) + ... (82)

These functions are illustrated in Figs. 7,8. Note that since θ contains a small

parameter ℓ2 in denominator, the condition θ/t≪ 1, necessary to justify expansion

(82) is much stronger than a simple condition of large bulk free paths t ≫ 1

necessary for expansion (73) unless one deals with ultraclean films at ultralow

temperatures for which α≪ 1.

The mixing interference contribution χmix outside of domain (82) is illustrated

in Figs. 9,10. The existence of the mixing interference is related to the presence of

the off-diagonal terms in the collision operator γ̂, Eq. (52). If this whole matrix

were of δ-type, as its bulk-driven counterpart is assumed to be in this chapter, the

inversion would have been trivial and the intrinsic interference from the previous

subsection would have been the only interference mechanism. The wall-driven

scattering probability Ŵ , Eqs. (2) , (3), is indeed close to being diagonal at very
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Figure 8. The coefficient V1 for different u.

large values of the correlation radius R (large u) when the scattering driven change

in momentum δq ∼ h̄/R is too small to ensure transitions between the minibands.

Still, even in this case one can observe a spontaneous, and very sharp, opening

of transition channels j ←→ j + 1 when the film thickness reaches some critical

value Lj =
√
(j + 1/2) aR/2, Ref. [20, 21]. It is instructive to analyze how this

new type of quantum size effect not only results in a strong precipitous drop in

conductivity [20, 21], but also leads to the reemergence of the mixing interference.

At large R, when the thickness of the film approaches the value of L1, the

previously diagonal matrix γ̂, Eq. (52), acquires the first off-diagonal element,

γ12 = γ21 = 1/τw12. (83)

The value of τ12 decreases exponentially when L approaches L1 and becomes prac-

tically equal to the wall-driven part of the diagonal elements γ11,22 which in this

case are approximately 1/τwtr . The overall transport time also rapidly drops with
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Figure 9. The coefficient V2 for different u.

decrease in τw12 as

1

τtr
∼ α

τb
+

1

τwtr
− 1

τw12
− 1

τw2
12

τbτ
w
tr

ατwtr + τb
=

1

τMtr
− 1

τw12
− τMtr

τw2
12

(84)

meaning that the mixing interference grows by the absolute value starting from

zero as

χmix = −τMtr
τw12

(
1 +

τMtr
τw12

)
(85)

until it reaches approximately

χmix ∼ −
(
ατwtr
τb

+ 1
)−2 (

2 +
ατwtr
τb

)
(86)

= −
(
θ

tφ
+ 1

)−2 (
2 +

θ

tφ

)
(87)

at τw12 ∼ τwtr . Eq. (86) gives a good estimate of the mixing interference for walls

with large-scale roughness R≫ a.

1.2.16 General results

The above analysis of intrinsic and mixing interference can serve as a guide

for study of interference effects in more general situations. For example, Figure
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Figure 10. The mixing interference χmix.

10 represents a dependence of the relative interference contribution χ, Eq. (60),

on film thickness at various values of t, t = 1; 50; 100, for films with small-scale

roughness, u = 1 and θ = 0.1. For comparison, I plotted in the same figure

the relative mixing interference (dashed lines marked as mix), χmix (L/a), for the

same values of parameters. The difference between the solid and dashed curves

reflects the contribution from intrinsic interference. Since the mixing interference

is suppressed for single-band systems, i.e., at L/a < 2π, it is absolutely clear

that the intrinsic interference dominates in ultrathin films and is gradually being

replaced by the mixing interference with increasing thickness. Of course, since

the value of θ here is not small, the mixing interference dominates in thick films.

Interestingly, it looks like the intrinsic interference contribution is almost always

negative while the mixing one is positive. The overall interference contribution

tends to be destructive in very thin films and constructive in thicker ones.

Figure 10a extends the curves χ (L/a) and χmix (L/a) (also at u = 1 and

θ = 0.1) to thicker films. It is clear that the interference contribution exhibits a
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Figure 11. The full and mixing interference, χ and χmix at u = 1, θ = 0.1.

maximum at certain thickness and that the positions of the maxima shift to the

right with the increase in the bulk mean free path (with the increase in t). In

very thick films, the bulk scattering obviously dominates the resistivity and all

boundary processes, including the interference ones, become negligible meaning

that χ (L/a→∞)→ 0.

The dependence of χ and χmix (dashed lines marked with the letter m) on

θ = α/ℓ2 is illustrated in Figure 11 at t = 20 and u = 1. Here again at L/a < 2π

I have a pure intrinsic interference, mostly destructive, which is gradually being

replaced by the constructive mixing interference for thicker films. The replacement

occurs faster at higher values of θ. Interestingly, the saw tooth structure of the

curves is much more pronounced for the overall and, therefore, intrinsic interference

than for the mixing one. I do not have a simple explanation for this effect.

The small values of θ for the curves in Figure 11 should be interpreted as the

consequences of small values of α rather than large values of ℓ/a: the computations

were done at u = 1 while our theory is valid at ℓ/a <
√
u. If one wants to suppress
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Figure 12. χ and χmix for thicker films.

θ by increasing the amplitude of inhomogeneities ℓ/a, one should simultaneously

increase the correlation radius of surface roughness R/a ∼ √u.

Finally, Figure 12 presents the curves χ (L/a) (solid lines) and χmix (L/a)

(dashed lines marked as m) for t = 20 and θ = 0.1 at various values of u, u =

1; 10; 100. The curves at u = 100 differ from all the rest in that the contribution

from intrinsic interference here seems to be positive. Also, the QSE of Ref. [20, 21]

is much more pronounced for the intrinsic and overall interference than for the

mixing interference. This is quite understandable since this type of QSE practically

never shows up when the bulk collisions present the dominant scattering channel

(see discussion in the second Ref. [20, 21]).

1.2.17 Summary of the quantum case

In summary, I analyzed interference between bulk and surface scattering pro-

cesses in resistivity of thin films in quantum size effect (QSE) conditions. General

results can sometimes be not very transparent because of parameter clatter. The

main parameters that affect the interference are the pure bulk transport time, the
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Figure 13. χ and χmix for different θ.

amplitude and the correlation radius of surface roughness, the film thickness, and

the ratio of the bulk transport and collision times. Such a rich parameter space

can not only significantly affect the value of the interference contributions, but

even change its sign.

The uncertainty in some of the parameters, especially the values of the bulk

transport and collision times, makes comparison with experiment not very straight-

forward. On the other hand, there is currently one experimental group that mea-

sures the thin resistivity simultaneously with the STM analysis of the surface (see

Refs. [14, 15, 19, 34] and references therein). To the best of our knowledge, none

of the experimental group observed clear signs of QSE in resistivity which makes a

direct comparison of our results with experimental data virtually impossible. One

of the options here is to average out the QSE gyrations and compare averaged

data to experiment. I tried to follow this route with respect to the dependence

of the resistivity on film thickness. However, depending on the method of averag-

ing of the same curve, the results for the transport time exhibited the functional

53



Figure 14. χ and χmix for different u

dependence anywhere between L−2.3 when using the tops of the peaks and L−0.6

when using the minima. Most of all experimental curves, which also exhibit a large

uncertainty (see discussion in Ref. [38]), fit within this range.

Our main emphasis was on revealing and following two distinct sources of such

interference - the entanglement between surface and bulk interaction lines in the

self-energy of the single-particle Green’s functions and the mixing resulting from

the inversion of the collision operator in the generalized response function. I labeled

these two types of interference in the chapter as ”intrinsic” and ”mixing” inter-

ference. The intrinsic and mixing interference lead to different types of behavior

of non-Mathiessen’s terms in resistivity of thin films. Earlier approaches included

only the mixing interference (see Refs. [7, 13–15] and references therein) though

some of recent publications concentrated on intrinsic interference, Refs. [28–30]

without paying attention to the mixing one.

In generic situation, the mixing terms are larger than the intrinsic ones in

thicker films. However, there are several important situations when the intrinsic
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interference clearly dominates. First, this happens in ultrathin films. When the

thickness of the film L is such that the QSE reduces the spectrum to a single

miniband, L/a < 2π, the mixing interference is completely suppressed and only

gradually picks up with increasing thickness. Second, since the intrinsic interfer-

ence is built of the bulk collision time τb while the mixing one contains the bulk

transport time τ btr, the intrinsic interference can dominate when there is a consid-

erable gap between these two times. This can happen, for example in pure films at

low temperatures when the bulk relaxation is due mainly to the phonon scattering.

In this case the bulk transport time can exceed the collision one by a large factor

(TD/T )
2 resulting in the dominant role of the intrinsic interference effects.

I tried to compare our results with other quantum computations which explic-

itly include QSE [7, 8, 13, 16]. Most of earlier publications did not pay sufficient

attention to the interference effects. Refs. [7] do not contain any explicit equations

for the interference terms that can be compared with our results. The authors

of Ref. [8] were not interested in the interference terms and considered bulk and

roughness scattering as two independent additive channels. Ref. [13] also does not

contain any explicit information about the interference terms except for mention-

ing that these contributions seem to be smaller than the pure wall or bulk terms.

As our results show, this is not always the case and the relative interference con-

tribution χ can be quite large. In addition, Refs. [7, 8, 13] use the δ-type (white

noise) approximation for the surface roughness and, therefore, cannot describe the

large-scale roughness and the corresponding crossover between different regimes.

In most of the parameter space the contribution from the intrinsic interference

(thinner films) tends to be negative (destructive) and from the mixing one (thicker

films) - positive (constructive). This qualitatively agrees with the experimental

observation in Refs. [19, 34]. The quantitative comparison is currently impossible
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since there are no yet confirmed observations of QSE in metals.

1.3 Interference in a trapped strongly interacting BEC

The study of the Bose condensation (BEC) of alkali gases in traps has be-

came the focal point in atomic, low temperature, and condensed matter physics.

Phenomena that have been discussed earlier only within theoretical models (see re-

view [39]) can now be observed in these systems. The phenomena in ultracold alkali

gases are incredibly rich and combine features inherent to diverse condensed matter

and low temperature systems (Refs. [40] and references therein) from ”classical”

superfluid or superconducting systems [40] to spin-polarized quantum gases [41] to

Mott transition in the optical lattice [42, 43].

The inhomogeneity of the trapping potential is an unavoidable feature of

trapped BECs. The interplay between the repulsive interaction and the trap-

ping potential complicates BEC. From early on, it was clear that the interaction

and the trap have opposite effects on condensation [44, 45]: while the trap tends to

concentrate the condensate in a narrow region of space around the particle ground

state in the trap, the repulsion widens this condensate droplet. A combined ana-

lytical description has been elusive and our previous experience with condensation

in homogeneous systems is not very helpful. The problem becomes even more com-

plex in the presence of the optical lattice inside the trap which adds two different

localization processes - Mott transition and localization of narrow band particles

by an inhomogeneous potential.

I analyze a situation where it is possible to get an accurate semi-analytical

picture of the condensation in trapped interacting gases. The main goal in this

section is the comparison of the condensate formation in traps with and without an

optical lattice inside. The main attention is paid to the index in the temperature

dependence of the condensate fraction and to the size of the condensate droplet. It
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turns out that this index is not universal even for a low density gas. Furthermore,

the effective dimensionality of the problem depends on the presence of the optical

lattice and changes with condensation making the later stages of BEC different

from initial.

I begin with a more conventional and transparent problem of BEC in trapped

gases in the absence of the optical lattice. Later, I add the complications associated

with the optical lattice. A similar calculation without the optical lattice was

performed in Ref. [46] though at a noticeably lower population of the trap. This

difference strongly affects the results. I assume that the density is still sufficiently

low to neglect the interaction before the onset of condensation even in the center

of the trap. In computations, this condition limits the total number of particles in

our trap N to N < 106. This also means that the critical temperature Tc for the

onset of condensation is practically unaffected by the interaction. The interaction

is brought into play only after the start of condensation, at T < Tc, since the

particles condensate in the center of the trap making the density in the center

large. Thus, the interaction, which is proportional to the particle density, is large

only in and around the condensate droplet. The normal particles are pushed out

by the dense condensate towards the periphery of the trap where the interaction

is negligible. However, the further particles move away from the center the higher

is the gradient of the trapping potential which is responsible for the force pushing

the normal particles back towards the trap center. Therefore, at the later stages

of BEC, the majority of remaining normal particles are distributed in an almost

two-dimensional shell around the condensate droplet and the dimensionality of the

condensation problem changes from the three-dimensional in the beginning of the

condensation to quasi-2D later on.

I consider a 3D harmonic trap with a single-particle ground state of frequency
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ω and spacial size σ0 (the axial asymmetry of experimental traps is largely irrel-

evant in our context). Without interaction, BEC starts at Tc = 0.941h̄ωN1/3 [47]

and the initial size of the condensate droplet is σ0. Particle repulsion increases the

size of the condensate droplet with Nc (T ) particles to σ (T ). Then the potential

well for normal particles U (r) has a shell-type structure,

U (r, T ) =
1

2
h̄ω

[
r2

σ2
0

+
Ncσ

3
0

N0σ3
exp

(
−r2/σ2

)]
, (88)

where N0 = (
√
π/8)ωmσ3

0/h̄as and I assume that the condensate density is Gaus-

sian with the variational parameter σ (in Ref. [46] the shape of the condensate

wave function is calculated self-consistently). The number of normal particles

Nn (T ) = N − Nc (T ) is determined from the condition µ = 0. The size of the

condensate droplet σ (T ) can be obtained from minimization of the condensate

energy, which includes repulsion, in a way similar to Ref. [44]. There are several

reasons that warrant exclusion of the interaction of normal particles between them-

selves from Eq. (88). First, for less than 105 particles in a trap, the interaction

of the normal particles is negligible even in the trap center before condensation.

Even for larger N , the number of the normal particles on the later stages of the

condensation is small. Finally, the density of the normal particles is suppressed

even more by repulsion from the condensate droplet which spreads them through

a large shell around the droplet 4πσ2σ0 instead of concentrating them near the

center in the volume (4π/3) σ3
0. This gives N at least an extra order of magnitude

for which I can neglect the interaction of normal particles.

N0 in Eq. (88) is the minimal number of particles in the condensate that

is sufficient to create a strong repulsive core in the center of the trap. When

N > Nc ≫ N0 the normal particles are pushed away from the center by the

repulsive core (88) into a potential valley surrounding the condensate droplet. For

Rb in a trap with ω = 24 Hz, the values as = 58.2 Å, σ0 = 2.2 × 10−6 m, and
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the critical number N0 that changes the topology of the normal cloud is N0 ≈ 84.

The center of the trap becomes inaccessible for normal particles when T is much

smaller than the repulsion from the core. Using Tc instead of T and N instead of

Nc, one gets σ3N0/σ
3
0 ≪ N2/3 and the critical value of Nc is around 105. All this

means that our results are applicable for N in the range 104 ÷ 106.

I am able to obtain a semi-analytical description of the situation (cf. Refs.

[45, 46]). At the later stages of the condensation, the potential (88) forms a

distinct valley away from the center of the trap as soon as Nc ≫ N0 and equations

for Nc (T ) and σ (T ) reduce to

χ =
√
2− σ4

0√
2σ4

=
4asσ

4
0√

πσ5
Nc, (89)

Nc = N −
∑

n=1

[
exp

[
β̃
(
n+

1

2

)
λ
]
− 1

]−1

−
∑

n,l=0

2l + 1

exp β̃
[(
n+ 1

2

)
λ+ (l2 + l)

σ2
0

2σ2 ln 2χ
]
− 1

with β̃ = h̄ω/T , λ =
√
2 ln (2χ). The summation provides the temperature depen-

dencies Nc (T ) and σ (T ).

I found that the condensate fraction at the later stages of condensation can

be given as

Nc/N = 1− (T/T ∗
c )

α (90)

with a relatively high accuracy. The important feature of Eq.(90) is that the

temperature is normalized not by the critical temperature Tc for the onset of con-

densation but by a different value T ∗
c . Since the squeezing of the normal particles

towards the fringes of the trap accelerates with the number of particles in the con-

densate Nc, the normal shell narrows with increasing Nc, and, therefore, N . As

a result, the effective temperature T ∗
c should be higher than Tc and increase with

increasing N . Dependence of T ∗
c , or, more precisely, T ∗

c /h̄ωN
1/3, on N is presented
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in Figure 15. For comparison, the critical temperature Tc for non-interacting par-

ticles in a 3D harmonic trap is Tc = 0.9h̄ωN1/3 [47]. The authors of [46], who were

working with a much smaller number of particles in the trap, N < 104, did not

observe any difference between Tc and T ∗
c .

Figure 15. The reduced critical temperature, T ∗
c /h̄ωN

1/3, w/o optical lattice

The striking change in behavior of T ∗
c (N) in Figure 15 occurs at N for which

Tc ∼ 1
2
h̄ω (Ncσ

3
0/N0σ

3). At higher densities the repulsion from the condensate

droplet keeps the normal particles near the bottom of the potential valley around

the droplet; at lower densities, the normal particles spread out and can even reach

the center of the trap. An anomaly at the same threshold density is also observed

in α (N), Figure 16, though the index α remains very close to the value 2 and is

practically independent of N , α = 2.02±1%, in a wide range of N from 104 to 106.

Such a weak dependence α (N) is surprising for a nonlinear problem of this nature.

The residual temperature dependence α (T ) lies within the same error bars.

For comparison, the same index in Ref. [46] was much higher, around 2.3,

which reflects the fact that at much lower occupancy of the trap, as in [46], the
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Figure 16. The density dependence of the index α.

dimensionality of the problem is still far away from a 2D one. Another major dif-

ference with Ref. [46] is that we do not see any residual normal fraction, especially

in the center of the trap - our condensate density is too high to allow any normal

component in the center.

Our results confirm the evolution of the effective dimensionality from 3D, for

which α = 3, to an almost perfect 2D value and the effective narrowing of the trap

during condensation.

Using the above results as a reference point, let us turn to BEC in a trap with

an optical lattice with a period a0 inside. The situation with an optical lattice

(Refs. [48] and references therein) inside the trap is much more complex. Here

one deals with the Hubbard Hamiltonian, modified by the trap potential, and can

encounter two localization effects: the localization of narrow-band particles by an

inhomogeneous potential and the Mott transition [49] which requires full occupancy

of the lattice sites. The latter can occur with lowering of the temperature when

particles gravitate towards the bottom (center) of the trap. With sufficiently strong
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on-site repulsion, the localization is practically inevitable for the condensate in the

center of the trap though, of course, the Mott transition is sensitive to the trap

profile [49, 50]. However, in contrast to the ground state particles, it is possible to

disregard the Mott transition for the normal cloud, surrounding the condensate,

due to the increased size of the condensate droplet in comparison to the system

without the lattice (see below).

Condensation can be easily understood qualitatively for low initial density of

particles na30 ≪ 1 and strong on-site repulsion when the condensation starts at the

same temperature Tc as in the absence of the interaction. The condensate forms

in the center of the trap and rapidly expands in size because of the strong on-site

repulsion which tends to keep the density nca
3
0 ≈ 1. Though the strength of the

individual particle-particle repulsion does not depend on the presence of the optical

lattice, all the particles in this lattice are located in or around lattice wells and

are closer to each other than when they are spread continuously throughout the

trap without the lattice inside. As a result, the effect of repulsion in the trap with

the lattice is stronger and the size of the condensate droplet σ ∼ a0N
1/3
c should

be larger than σmax ∼ (2÷ 5) σ0 for traps without the optical lattice (Figure 17).

I will not dwell on potential ”freezing” of the condensate resulting from the Mott

transition and will concentrate on the condensation of the normal gas outside the

condensate droplet.

The main changes in our approach are associated with the band nature of the

energy spectrum for particles in the optical lattice and a more complicated form of

the wave functions. For the sake of comparison, in numerical computations I use

a similar set of parameters: the trap potential and the particle scattering remain

the same. For the particle effective mass, I use the value [42, 49] m∗ = 16m in

most of my computations .
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Figure 17. The condensate droplet σ (T = 0)

The single-particle spectrum in the optical lattice ǫ (p) has a band structure

with a bandwidth ∆. The effect of the trapping potential Utr (r) =
1
2
h̄ω (r/σ0)

2 on

the particles with narrow bands results in localization of particles with energy E =

ǫ (p)+Utr (r) in 2D shells rmin ≤ r ≤ rmax of the thickness ℓ (r) ∼ (∆/h̄ω) σ2
0/r with

rmin,max given by equations E = ±∆/2 +Utr (rmin,max) . An exception is the center

of the trap, where the gradient of the potential is small. Since such localization

suppresses the accessibility range of narrow-band particles, the density in each

point contains the contributions from the particles in a finite range of energies

that are localized close to this point. For example, since only the particles with

very low energies, E < ∆, can reach the center of the trap, the density in the

center is suppressed in comparison with the trap without the optical lattice inside.

The particle wave function consists of three regions: rapid oscillations within

its classically accessible shell and two attenuating tails beyond the classical turning

points. The wave function Ψ = Ψlm (E) for a particle with the energy E decays
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relatively slowly beyond the turning point rmax as the Airy function Ai,

Ψ = B exp

(
iπ

[
E −∆/2− l (l + 1) h̄2/2m∗d2

Aa

])

×Ai
(
r̃ − E − l (l + 1) h̄2/2m∗d2

Aa

)
Ylm (θ, φ) ,

and similarly near rmin. Here B (E) is the normalization coefficient, m∗ is the

effective mass near the band minimum, A = h̄ωrmax/σ
2
0, the dimensionless coor-

dinate r̃ = r/a has a local length scale a =
(
h̄2/2m∗A

)
, Ylm (θ, φ) are the usual

angular harmonics, and d is the position of the minimum of the potential (88).

The spatial distribution of particles should be calculated taking into account all

three regions since for relatively shallow traps the contribution from the tails of

the wave function can be large. As a result, the density distribution of particles

inside the trap becomes a much more complicated function of temperature than in

the case without the optical lattice.

As above, I start from the situation when the particle density above conden-

sation is low and the (Hubbard) repulsion in the normal phase is negligible. The

condition of low density allows us also to disregard the Mott transition in the nor-

mal phase [51]. Since the particles in the optical lattice are located mostly on the

lattice sites of the size a0 rather than spread more or less uniformly, the repulsion is

more effective than without the lattice. This means that the size of the condensate

droplet σ (T ) should be larger than in the absence of the lattice. This is illustrated

in Figure 17 which presents the ratio σ (T = 0) /σ0 for identical traps with (curve

1) and without (curve 2) the optical lattice. The scattering amplitude as, which is

responsible for repulsion, is the same in both cases.

This seemingly innocuous lattice-driven change in the size of the condensate

droplet leads to major changes in the condensation process. Even such a relatively

small increase in σ can eliminate a repulsive bump (88) in the center of the trap.

Indeed, this bump disappears when σ5 > σ5
0 (Nc/N0). At these values of σ the po-
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tential (almost) restores its original parabolic structure in the central area despite

the presence of the condensate. Since the value of N and, therefore, Nc, in our

calculations never exceeds 106 and N0 ≤ 100, the potential remains parabolic for

σ/σ0 > 10. As a result, presence of the optical lattice strongly affects the index α,

Eq. (90), which experiences a much more noticeable change than the condensate

droplet size σ, Figure 18. This density dependence α (N) is dramatically different

from the one in Figure 16 for the trap without the optical lattice inside.

Figure 18. Index α with optical lattice.

In Fig. 18, α starts from a 3D value at small density of particles which is

understandable since there is no repulsive core in the center. With increasing

number of particles the size of the condensate droplet grows leaving fewer normal

particles in the central area and gradually reducing α to its quasi-2D value. What

is not clear is why does α continue to decline with a further increase in N ; however,

since our approach loses accuracy beyond N ∼ 106, I do not present these data

in this figure. Note, that if one also plots in Figure 18 the curve α (N) for a

system without the optical lattice from Figure 16, all its residual dependence on
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N becomes invisible in the scale of Figure 16. This difference in dependences of

the index α on the number of trapped particles between Figure 16 and 18 is due

mostly to the major qualitative changes in the wave functions imposed by the

lattice symmetry. Computations with a smaller effective mass did not lead to any

major changes in behavior of α (N).

In general, the decrease in α (N) is accompanied by an increase in T ∗
c (N),

which in the presence of the optical lattice grows much faster than the N1/3-

dependence inherent to a free gas in a trap, Figure 19.

Figure 19. The reduced critical temperature T ∗
c /h̄ωN

1/3 with optical lattice.

1.3.1 Summary of competing phenomena in a trapped BEC

In summary, I calculated the index for a temperature dependence of the con-

densate fraction for interacting gas inside harmonic trap. The results for traps

without the optical lattice inside are quite clear: the repulsion from the condensate

droplet pushes normal particles away from the center of the trap and concentrates

them in a relatively thin shell around this droplet. Then the condensation becomes

almost quasi-2D with the index α ≈ 2. The presence of the optical lattice inside
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the trap changes the situation in a major way. The index α acquires a strong

dependence on the number of particles inside the trap and gradually falls from a

3D to a 2D value with an increase in the number of particles. This change in the

index, which is caused by the presence of the optical lattice, is explained by the

wider spread of the condensate droplet and the localization of the narrow band

particles by the trap potential.

1.4 Conclusion

In my investigations on restricted systems where competing phenomena influ-

ence the underlying physics of some key properties of the systems, I have found

that when these competing ”forces” or ”channels” are of the same order of mag-

nitude, they often do not act independent of each other. Instead, the effect of

one ”channel” reinforces that of the other and the interference effects due to the

two channels become significant and are measurable. My study shows that in such

situations it is important to have a common mathematical framework that treats

all the competing phenomena in the same manner so that interference effects can

be studied without the obfuscating presence of mathematical artifacts, which are

the usual side effect when one is not able to treat the different phenomena in a

common framework. In keeping with this principle, I have used a collision operator

(first proposed in Ref. [16] ) that incorporates both surface roughness scattering

and bulk impurity scattering in order to investigate non-Matthiessen terms in the

resistivity of thin films. When the films are so thin that the scattering due to the

surface roughness becomes comparable or even stronger than that due to the bulk

impurities, I found that one had to be careful in not neglecting the interference

between the two channels. The Matthiessen’s rule of independent scattering by

the two channels was seen to break down and the interference terms were shown

to have a nontrivial dependence on the temperature, bulk mean free path and the
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amplitude and correlation length of the surface roughness. I derived simple an-

alytical expressions for these dependencies for large bulk free paths Lb and large

correlation radii (lateral sizes) R of surface inhomogeneities that can be used by

experimentalists investigating the same phenomena. When the bulk scattering and

the surface roughness scattering became such that the condition, R2 ∼ aLb, was

satisfied, a crossover could be predicted between two asymptotic regimes for the

interference contributions characterized by a different dependence to temperature

and concentration.

Then I studied a different restricted system: a strongly interacting trapped

BEC in an optical lattice. In my study of these systems, I focussed primarily on

investigating how the strong particle interactions which have a widening effect on

the condensate droplet competes against the confining nature of the trap while

the BEC is made to lie in an optical lattice which causes the particle wave func-

tions to be Airy functions along the walls of the trap. As an application of the

general principle of having a self-consistent common framework to describe all the

competing effects, I used a physical model that can describe the competing effects

of particle interactions and a trap on a BEC in a self-consistent way and derived

important parameters of condensation. I calculated the index for a temperature

dependence of the condensate fraction for the interacting gas inside the harmonic

trap and found that it falls from a 3D to a 2D value with an increase in the number

of condensate particles. This change in the index, which is caused by the presence

of the optical lattice, is explained by the wider spread of the condensate droplet

and the localization of the narrow band particles by the trap potential.
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