Establishing Criterion Validity for the Revised Critical Nutrition Literacy Tool in U.S. College Students

Janette Bedoyan
Jade McNamara
Melissa D. Olfert
Carol Byrd-Bredbenner
Geoffrey Greene

University of Rhode Island, ggreene@uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/nfs_facpubs

Citation/Publisher Attribution

This Article is brought to you for free and open access by the Nutrition and Food Sciences at DigitalCommons@URI. It has been accepted for inclusion in Nutrition and Food Sciences Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons-group@uri.edu.
Establishing Criterion Validity for the Revised Critical Nutrition Literacy Tool in U.S. College Students

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License.

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/nfs_facpubs/104
added sugar was highest in the WVU population (13.09 ± 8.24), followed by URI (12.20 ± 8.46) and then Rutgers (10.82 ± 5.76). There were no significant differences between universities by CNL scores.

Critical nutrition literacy Out of the 1,388 students that completed the survey in full, 459 students (33.1%) were classified with lower CNL, 453 (32.6%) with moderate CNL, and 478 (34.4%) with higher CNL according to scoring described in the Methods. There was a small yet significant effect on both living on campus (F [1,1715] = 29.16, $P < 0.001$) and age (F [6,1434] = 5.78, $P < 0.001$) on CNL total score. Those living on campus had a lower CNL score than those living off campus, and younger participants had lower CNL scores than those who were older [Table 3].

Table 3

| Phase 2 relationship between baseline demographics and critical nutrition literacy* tertiles for completers of Critical Nutrition Literacy Tool |

Age and living on campus were not significant covariates after completing MANOVA tests and thus were not included in the final model. The final model suggests that there was an overall significant effect of CNL on daily consumption of F/V and added sugar (F (2,1321) = 3.121, $P < 0.05$; Wilks' $\Lambda = 0.991$). When examining each dependent variable, students with lower CNL consumed a greater number of daily teaspoons of added sugar compared to those with higher CNL ($P = 0.043$). The mean added sugar intake was 13.54 ± 9.0, respectively, for students with lower CNL and 12.27 ± 7.6 for those with higher CNL. Although not statistically significant, there was a trend for students with lower CNL to consume fewer cups of F/V than those with higher CNL ($P = 0.093$). The mean F/V intake was 2.15 ± 0.89, respectively, for students with lower CNL and 2.28 ± 0.96 for those with higher CNL [Table 4].

Table 4

| Phase 2 relationship between critical nutrition literacy* tertiles and fruits/vegetables and added sugars for completers |

Discussion

Results indicated that there was evidence to