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ABSTRACT  1 

Background. Molecular and clinical factors associated with biofilm-forming methicillin-resistant 2 

Staphylococcus aureus (MRSA) are incompletely understood.  3 

Methods.  Biofilm production was quantified in 182 MRSA isolates from clinical culture sites 4 

(2004-2013).  Microbiologic toxins, pigmentation, and genotypes were evaluated, and patient 5 

demographics were collected. Logistic regression was used to quantify the effect of strong biofilm 6 

production (versus weak) on clinical outcomes and independent predictors of strong biofilm.  7 

Results. Of isolates evaluated, 25.8% (47/182) produced strong biofilm, and 40.7% (74/182) 8 

produced weak biofilm. Strong biofilm-producing isolates were more likely to be from MLST clonal 9 

complex 8 (34.0% vs. 14.9%; P=0.01), but less likely to be from MLST CC5 (48.9% vs. 73.0%, 10 

P=0.007). Predictors for strong biofilm were spa type t008 (aOR 4.54 95%CI 1.21-17.1), and 11 

receiving chemotherapy or immunosuppressants in the previous 90 days (aOR 33.6; 95%CI 1.68-12 

673).  Conversely, patients with high serum creatinine (aOR 0.33; 95%CI 0.15-0.72) or who 13 

previously received vancomycin (aOR 0.03; 95%CI 0.002-0.39) were less likely to harbor strong 14 

biofilm-producing MRSA. Beta-toxin producing isolates (aOR 0.31; 95%CI 0.11-0.89) and isolates 15 

with spa type t895 (aOR 0.02 95%CI <0.001-0.47) were less likely to produce strong biofilm. 16 

Patient outcomes also varied between the two groups.  Specifically, patients with strong biofilm-17 

forming MRSA were significantly more likely to be readmitted within 90 days (aOR 5.43; 95%CI 18 

1.69-17.4), but tended to have decreased 90-day mortality (aOR 0.36; 95%CI 0.12-1.06). 19 

Conclusions: Patients that harbored t008 and received immunosuppressants were more likely 20 

to have a strong biofilm-producing MRSA.  Clinically, patients with strong biofilm-forming MRSA 21 

were less likely to die at 90 days, but five times more likely to be re-admitted.   22 
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BACKGROUND 23 

Biofilms are critical for the pathogenicity of most bacteria, including Staphylococcus.  As a result, 24 

S. aureus infections can develop into chronic, difficult to treat infections that require long durations 25 

of antimicrobial therapy and surgical intervention.  Based on previous reports and various assays 26 

used, 43 to 88% of clinical S. aureus isolates can form biofilms.(1-4)  Biofilm in S. aureus has 27 

been associated with several regulatory and virulence factors such as accessory gene regulator 28 

(agr) downregulation and heteroresistant vancomycin intermediate susceptibility.(5)  Genotypic 29 

variation among strains may also affect biofilm production, but these relationships haven’t been 30 

consistently reported.(6, 7)   31 

 32 

Methicillin-resistant S. aureus (MRSA) causes significant morbidity and mortality.  Risk factors for 33 

infection with MRSA are clearly defined; however, little is known about the molecular and clinical 34 

risk factors for biofilm-producing MRSA.(8-11)  Defining these risk factors and understanding the 35 

clinical outcomes associated with biofilm-producing MRSA can provide critical and timely insight 36 

into the prevention and treatment of these serious infections.  Further, understanding the 37 

phenotypic and genetic characteristics associated with biofilms in MRSA may enable the 38 

development of biofilm detection methods in clinical microbiology laboratories and identify 39 

therapeutic targets. Therefore, the objectives of this study were to quantify clinical outcomes 40 

among adult patients with strong biofilm-producing MRSA (OD ≥ 2.0) or weak biofilm-producing 41 

MRSA (OD ≤ 1.0) and to identify clinical and molecular independent predictors of strong biofilm-42 

producing MRSA. 43 

 44 

MATERIALS AND METHODS 45 

Study design, population, and bacterial isolates.  A retrospective cohort study was conducted 46 

among a sample of inpatient and outpatients with MRSA cultures from any culture site at the 47 

Providence Veterans Affairs Medical Center (PVAMC), a 119-bed federal hospital from May 2004 48 
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to October 2013.  Nares swabs collected for infection control surveillance purposes were 49 

excluded.  Duplicate isolates with the same multi-locus sequence typing (MLST) clonal complexes 50 

(CC) and collected from the same date or admission were excluded. Each isolate included was 51 

treated as an independent event, and therefore patients may have been included in the study 52 

more than once.  This study was approved by the Institutional Review Board and the Research 53 

and Development Committee of the PVAMC. 54 

 55 

Microbiological (phenotypic and genotypic) data. 56 

Biofilm formation assay.  Biofilm formation was determined using a modified Christensen 57 

method as previously described by our group.(12-16)  Staphylococcus epidermidis ATCC 35984 58 

and methicillin-susceptible Staphylococcus aureus ATCC 35556 were used as positive controls. 59 

The isogenic accumulation-negative mutant of ATCC 35984, M7, was used as a negative 60 

control.(17-19)  After incubation, planktonic bacteria were removed by rinsing each well three 61 

times with sterile Millipore water.  Plates were dried overnight then stained with 0.1% crystal violet 62 

for 15 minutes.  Adherent stain was resolubilized with 33% glacial acetic acid for one hour before 63 

measuring optical density (OD) at 570 nm on a spectrophotometer (ELX800, Biotek, Winooski, 64 

VT).  To obtain the final OD values the OD of wells containing tryptic soy broth (TSB) with 1.0% 65 

dextrose only (media control) were subtracted from wells containing isolates to remove 66 

background readings.   Mean OD was calculated for each isolate, using at least four 67 

replicates.(17, 20) We used the degree of biofilm production; strong (OD ≥ 2.0), moderate (1.0 < 68 

OD < 2.0) and weak (OD ≤ 1.0) as previously described.(21)  For this study, we excluded 69 

moderate biofilm-producing isolates.  70 

  71 

Alpha- and Beta-toxin production. Qualitative alpha-toxin production, indicated by clear zones 72 

of hemolysis, was evaluated for each strain on Mueller-Hinton agar with 5% sheep blood after 73 
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24h incubation at 37°C.(22) Plates were then refrigerated at 4°C for 24h to evaluate beta-toxin 74 

production, indicated by green-brown hemolysis.  75 

 76 

Determination of Agr operon function.  Function of the agr operon was measured qualitatively 77 

by delta-toxin production.(22, 23)  Delta-toxin expression was determined by streaking the MRSA 78 

test isolates adjacent to a Beta Lysin Disk (Remel, Lenexa, KS) on tryptic soy agar with 5% sheep 79 

blood and incubated at 37C for 24 hours.  The presence of synergistic hemolysis between the 80 

streak and Beta Lysin Disk indicated the production of delta-hemolysis, therefore a functional agr 81 

locus.(22, 23) The dysfunction of agr was defined as the absence of delta-hemolysis within the 82 

beta-toxin zone, as evidenced by the lack of synergistic hemolysis.(23)  Reference strains 83 

RN4420 and RN6607 were used as negative and positive controls for delta-toxin, respectively. 84 

 85 

Heterogeneous vancomycin intermediate Staphylococcus aureus (hVISA) presence.  86 

Screening for hVISA was conducted using E-test glycopeptide resistance detection (GRD) strips 87 

(bioMérieux, Durham, NC).(24)  Testing was conducted according to manufacturer’s instructions 88 

using a standard 0.5 McFarland bacterial suspension on Mueller-Hinton agar with 5% sheep blood 89 

(BD, Sparks, MD). The results were read at 24 and 48 hours after incubation.  Standard 90 

vancomycin Etests were also conducted according to manufacturer’s instructions, on Mueller-91 

Hinton agar for 24 hours.  Heteroresistance was defined as a vancomycin or teicoplanin MIC of ≥ 92 

8 µg/mL on the GRD Etest plus a standard vancomycin MIC < 4 µg/mL.  Quality control of 93 

susceptibility testing was performed with reference strain ATCC700698 (Mu3, hVISA). 94 

 95 

Pigmentation. Golden pigmentation was evaluated after overnight growth on tryptic soy agar at 96 

37°C.(25, 26) Each strain was compared to a reference white strain of S. epidermidis ATCC35984 97 

and categorized as pigmented or non-pigmented. S. aureus ATCC35556 served as a pigmented 98 
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control. A selection of 60 strains were categorized independently by a second reviewer, with 99 

98.3% agreement.  100 

 101 

Genotyping.  Staphylococcal protein A (spa) genotype was determined by PCR as previously 102 

described, with 1095F and 1517R primers.(27)  Gene sequences were determined using Sanger 103 

sequencing with the forward primer only unless reverse primer was necessary for sequence 104 

clarification.  Spa type was mapped to common MLST CC using the Ridom spa server 105 

(Spaserver.ridom.de). Spa types not matched to a clonal complex in the Ridom spa server were 106 

matched by literature search.   107 

 108 

Patient data.  Data was collected through a chart review of electronic medical records and 109 

included diagnoses and procedures, clinical measurements, microbiology data, patient 110 

demographics, health-care exposure within 90 days of index culture (hospitalization >72 hours 111 

and surgical procedures), receipt of antimicrobials or medications that may influence biofilm 112 

formation in the previous 90 days (i.e. gastric acid suppressants [proton-pump inhibitors or H2-113 

blockers], chronic corticosteroid use, non-steroidal anti-inflammatory [NSAID], HMG-CoA 114 

reductase inhibitors [statins])(28-32), presence of prosthetic/foreign devices (i.e. orthopedic, 115 

cardiovascular, urinary Foley, intravenous catheters), and infection/colonization history in the 116 

previous year.   117 

 118 

Clinical outcome definitions.  Clinical outcomes of interest were all-cause mortality, admission 119 

among outpatient or re-admission among inpatients, MRSA infection and MRSA-related 120 

admission among outpatients or re-admission among inpatients.  As the risk period for poor 121 

outcomes in these patients is not known, we evaluated outcomes at follow-up periods of 30 and 122 

90 days.   123 

 124 
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The index date was defined as the collection date of the MRSA isolate tested for biofilm production 125 

(index culture).  MRSA infection was confirmed from microbiology data, and diagnosis of infection 126 

in the medical record.  Readmission was defined as admission for any reason after the discharge 127 

date of the index culture.  For index isolates collected in the outpatient setting, admission was 128 

defined as admission for any reason after the index date.   129 

 130 

Statistical analysis.  Between-group differences were assessed using X2 or Fisher exact tests 131 

for categorical variables and the T-test or Wilcoxon rank sum test for continuous variables.  132 

Logistic regression models were used to quantify the effect of strong biofilm on each clinical 133 

outcome, while controlling for confounders of the exposure-outcome relationship.(33)  In 134 

multivariable modeling, a manual, non-computer-generated backward elimination approach was 135 

implemented.  Logistic regression was also used to identify independent predictors associated 136 

with strong MRSA biofilm production.(33)  All baseline variables were evaluated as potential 137 

confounders in the clinical outcome models, and as independent predictors of biofilms in the 138 

predictive model.  Crude and adjusted odds ratios (OR) and respective 95% confidence intervals 139 

(CI) are presented.  All statistical tests were conducted using SAS, version 9.2 (SAS Institute, 140 

Cary, NC), with a two-tailed α value of 0.05 required for statistical significance. 141 

  142 



 

 8 

RESULTS  143 

Isolate and clinical characteristics. In total, 121 MRSA isolates were included for biofilm 144 

production, 38.8% (47/121) produced strong biofilms (OD ≥ 2.0) and 61.2% (74/121) produced 145 

weak biofilms (OD ≤ 1.0). Race was significantly different between the groups, with the strong 146 

biofilm group having a higher number of whites (93.6% vs. 79.7%; P=0.04). There was no 147 

difference between the groups in age, gender or BMI. Serum creatinine and creatinine clearance 148 

was significantly different between the two groups. Median (Q1-Q3) serum creatinine was 0.9 (0.8 149 

- 1.1mg/dl) for the strong biofilm group vs 1.3 (0.9 - 2.2 mg/dL) for the weak biofilm group 150 

(P=0.001). The median (Q1 – Q3) creatinine clearance was 92.6 (range 67.6-117.6 mL/min) in 151 

the strong biofilm group vs 58.4 (31.7 – 89.2 mL/min) for the weak biofilm group (P=0.001).  152 

Significantly lower number of patients in the strong biofilm group had chronic renal failure (12.8% 153 

vs 31.1%; P=0.02). There was no difference between the groups in Charlson comorbidity index 154 

or other comorbidities such as diabetes, cardiovascular disease, liver disease, malignancies and 155 

anemia.  The groups did not differ in IV drug use, alcohol abuse or smoking. The presence of 156 

foreign material/device was lower in patients with a strong biofilm-producing isolate (25.5% vs 157 

50.0%; P=0.01). Significantly lower number of patients in the strong biofilm group were 158 

hospitalized for two or more days in the previous 90 days (27.7% vs 52.7%; P=0.007).  Overall 159 

antimicrobial use in the previous 90 days from culture was not significantly different between the 160 

groups but use of vancomycin was significant with 27.0% of patients receiving vancomycin in the 161 

weak biofilm group whereas only 2.1% in the strong biofilm group (P=0.001). There were fewer 162 

patients on hemodialysis in the strong biofilm-producing group (0% vs. 13.5%; P=0.006). Patients 163 

in the strong biofilm group had a lower number of bacteremias (4.3% vs 17.6%; P=0.03) and 164 

pneumonias (10.6% vs 25.7%; P=0.04) in the year prior to the index culture. Patients in the strong 165 

biofilm group tended to present in the outpatient setting at the index culture (51.1% vs 32.4%; 166 

P=0.04). (Table 1).  167 

 168 
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Alpha-toxin was produced by 79.3% (n=96) of the isolates overall (74.5% strong biofilm vs 169 

82.4%weak biofilm, p=0.29). Beta-toxin production was less common, with 69.4% (n=84) of 170 

isolates (59.6% strong biofilm vs 75.7% weak biofilm, p=0.06). Presence of hVISA was rare 171 

among strong biofilm and weak biofilm-producing isolates (8.5% vs 4.4%; P=0.44).  The 172 

proportion of isolates with agr dysfunction (61.7% vs 43.2%; P=0.05) and pigmentation (76.6% 173 

vs 54.1%; P=0.01) were significantly higher in the strong biofilm group. The distribution of 174 

vancomycin MIC was similar among both groups. MRSA isolates represented seven MLST CC, 175 

the most common were CC5 (63.6%) and CC8 (22.3%).  Strong biofilm-producing isolates had 176 

significantly lower MLST CC5 (48.9% vs 73.0%; P=0.007) and significantly higher CC8 (34.0% vs 177 

14.9%; P=0.01). There were 24 different spa types identified among the isolates.  Of those spa 178 

types, the most common were t002 (32.2%), t895 (15.7%), t008 (14.9%), and t1094 (5.8%).  179 

Strong biofilm-producing isolates contained significantly more spa type t008 (25.5% vs 8.1%; 180 

P=0.01) and less t895 (2.1% vs 24.3%; P=0.001). (Table 2).      181 

 182 

Clinical Outcomes and Independent Predictors. After controlling for potential confounders, 183 

patients with strong biofilm-producing MRSA were more than five times as likely to be (re)-184 

admitted within 90 days of discharge (adjusted OR 5.43; 95% CI 1.69-17.4). The strong biofilm 185 

group was 64% less likely to die within 90 days (adjusted OR 0.36; 95% CI 0.12-1.06), but this 186 

was not statistically significant. There was no difference in 30 day mortality, 30 day (re)-admission, 187 

MRSA reinfection at 30 or 90 days, or MRSA related (re)-admission at 30 or 90 days among 188 

patients with strong or weak biofilm-producing MRSA. (Table 3) 189 

 190 

Patients who were on chemotherapy and/ or used immunosuppressants within 90 days of index 191 

culture had a 33.6 times higher odds for strong biofilm-producing MRSA isolate (adjusted OR 192 

33.6; 95% CI 1.68-673).  Patients harboring isolates from t008 (adjusted OR 4.54; 95% CI 1.21-193 

17.1) also had increased risk of a strong biofilm-producing MRSA. Further, patients with isolates 194 
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from t895 (adjusted OR 0.02; 95% CI <0.001-0.47) or that produced beta-toxin were less likely to 195 

produce strong biofilm (adjusted OR 0.31; 95%CI 0.11-0.89). Patients who had increased serum 196 

creatinine (adjusted OR 0.33; 95% CI 0.15-0.72) or who received vancomycin in the previous 90 197 

days (adjusted OR 0.03; 95%CI 0.002-0.39) were less likely to produce strong biofilm. (Table 4). 198 

  199 
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DISCUSSION  200 

This study demonstrated that strong biofilm formation among clinical MRSA isolates was 201 

associated with increased readmission at 90 days and a trend toward decreased 90-day mortality.  202 

Strong biofilm formation was also associated with MRSA lineage, agr dysfunction, pigmentation, 203 

and several patient factors including serum creatinine, race, and immunosuppressants.  204 

 205 

Biofilm formation has been previously associated with patient mortality. A previous study 206 

demonstrated increased mortality with biofilm-forming isolates, but the attributable mortality was 207 

low.(3) Similar to our study, included patients were primarily male, and members of military 208 

services (however they were younger than our Veterans), but whereas our study was only in 209 

MRSA isolates, this study included multiple types of bacterial cultures and found a five-fold 210 

increased association of MRSA among the biofilm-positive group (OR 5.09, 95% CI 1.12-23.1). 211 

Overall mortality with initial infection was 16% versus 5% in biofilm versus non-biofilm group 212 

(p=0.01), with an attributable mortality of 7%.(3) Unfortunately, it is difficult to tell how many of 213 

these are due to biofilm-forming versus non-biofilm forming MRSA in the study, as opposed to 214 

other bacterial types. 215 

 216 

The majority of MRSA isolates in our study represented CC5, typically referred to as hospital-217 

associated strains and CC8 historically of community origin.  In the multivariate analyses, there 218 

was no association between clonal complex and biofilm formation, which has been found in other 219 

studies.(34-36) This may be due to limited number of isolates, or the clinical source of the isolates 220 

used, which may play a role in their biofilm formation. However, in univariate analyses, weak 221 

biofilm isolates had more CC5, which is traditionally hospital-associated, as well as more previous 222 

hospitalization within the previous 90 days, dialysis, bacteremia and pneumonia within the 223 

previous year, and treatment with vancomycin. Although not statistically significant, weak biofilm 224 

isolates had more antimicrobial use in the prior 90 days and more infections in the previous year 225 
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in all categories. This may represent a higher severity of illness, and may help to explain the 226 

increased mortality seen at 90 days. In contrast, CC8, the traditionally community-acquired clone, 227 

has been previously associated with strong biofilm production, as well as community-acquired 228 

skin infections and colonization.(34, 37) These types of infections and colonization may be 229 

associated with lower mortality, as seen in our study. The most common spa types were t002, 230 

t008, t895, and t1094.  Though t002 and t895 are related to CC5, t002 was not related to biofilm 231 

formation.  We found that isolates from spa type t008 were predictive for the strong biofilm 232 

phenotype, while t895 was significantly higher in weak biofilm-producing isolates. At least for this 233 

subset of isolates, spa type served as a better predictor of biofilm formation than MLST CC, 234 

potentially due to the greater degree of resolution in spa typing.  This finding is consistent with 235 

previous studies evaluating genotypically different clones of MRSA in the production of biofilm.(6, 236 

7)   237 

 238 

Previously published data suggest that agr dysfunction is associated with biofilm formation in S. 239 

aureus.(5, 38-40)  This is in line with our own data, which demonstrated agr dysfunction was 240 

present in 61.7% of strong biofilm formers versus 43.2% of weak biofilm formers. Some data 241 

demonstrate conflicting results with regard to agr function and biofilm, depending whether the 242 

biofilm is formed in vivo or in vitro.(41) In vitro biofilm formation may yield a different relationship 243 

with agr than in vivo biofilms, since there is no host response-relationship.  It is suggested that 244 

the host response and agr-dependent virulence factors secreted in vivo regulate biofilm 245 

formation.(41) Previous studies have also suggested that agr dysfunction is associated with 246 

hVISA development, however because our overall numbers of hVISA were low, we could not 247 

confirm this finding.(22, 42)  Beta-toxin was associated with weak biofilm formation, and was a 248 

negative predictor for strong biofilm in the logistic regression model (adjusted OR 0.31; 95%CI 249 

0.11-0.89). Although there is limited data on the connection between beta-toxin and biofilm 250 

formation, in previous studies, beta-toxin was associated with skin colonization, and colonization 251 
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was associated with a low biofilm phenotype, consistent with our findings.(43, 44) Alpha-toxin has 252 

also been associated with biofilm formation,(45, 46) however, we did not quantify how much 253 

alpha-toxin these isolates produce in this study, which may have correlated better to biofilm 254 

formation than a dichotomous presence or absence of alpha-toxin.  Overall, these findings 255 

underscore the need for additional studies to better describe the mechanisms responsible for the 256 

presence of biofilms. 257 

 258 

This study had several limitations. A limited sample size may have impaired the ability to find 259 

associations between biofilm production and covariates previously noted to play a role in biofilms. 260 

Of course, we cannot guarantee that in vitro biofilm formation equates to clinical biofilm formation 261 

in an infection. Due to the retrospective design of this study, not all variables or potential 262 

confounders may have been included in the analysis of clinical factors, and we are reliant on the 263 

accuracy of data as entered into the patient electronic medical record. To minimize selection bias, 264 

the investigator collecting clinical data was blinded to the biofilm status of each isolate.  Biofilm 265 

formation is determined using a standard assay.(14, 15, 18, 19, 47) Additionally, we utilize a 266 

negative control isolate to ensure comparability between results. By removing the moderate 267 

biofilm category, we may have limited our power in the number of isolates, but the isolates had 268 

the most different biofilm classifications to see differences in the predictors and outcomes.   269 

 270 

In summary, strong biofilm formation among MRSA isolates is associated with multiple features 271 

of the host and organism including phenotypic and genotypic factors, demographics, and clinical 272 

characteristics. Patients with a strong biofilm-forming MRSA isolate are 5 times more likely to be 273 

admitted or readmitted within 90 days, and tend to have decreased mortality at 90 days.   274 
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Table 1. Baseline Characteristics 

Characteristic 

Strong Biofilm  

OD ≥ 2.0 

(n=47) 

Weak Biofilm  

OD ≤ 1.0 

(n = 74) 

P value 

Age, years a 67.8 ± 13.5 68.1 ± 12.8 0.90 

Male sex 44 (93.6) 72 (97.3) 0.37 

Race - white 44 (93.6) 59 (79.7) 0.04 

Residence – home 39 (83.0) 51 (68.9) 0.08 

Weight, kg a 89.9 ± 23.0 84.4 ± 21.0 0.18 

BMI a 29.4 ± 7.9 27.1 ± 6.4 0.08 

SCr, (mg/dL) b 0.9 (0.8-1.1) 1.3 (0.9-2.2) 0.001 

CrCl, mL/min b 92.6 (67.6-117.6) 58.4 (31.7-89.2) 0.001 

Charlson Comorbidity Index b 5.0 (3- 8) 5.0 (3-8) 0.91 

Comorbidities  

IV Drug User 

Alcohol Abuse 

Diabetes 

Cardiovascular 

Chronic respiratory disease 

Liver disease 

Chronic renal disease 

Malignancy  

Anemia 

Other 

 

2 (4.3) 

6 (12.8) 

17 (36.2) 

36 (76.6) 

14 (29.8) 

5 (10.6) 

6 (12.8) 

14 (29.8) 

9 (19.2) 

13 (27.7) 

 

2 (2.7) 

6 (8.1) 

35 (47.3) 

59 (79.7) 

19 (25.7) 

7 (9.5) 

23 (31.1) 

21 (28.4) 

24 (32.4) 

11 (14.9) 

 

0.64 

0.53 

0.23 

0.68 

0.62 

1.00 

0.02 

0.87 

0.11 

0.08 

Smoking Status  

Non-Smoker 

Smoker 

Unknown 

 

23 (48.9) 

14 (29.8) 

10 (21.3) 

 

32 (43.2) 

23 (31.1) 

19 (25.7) 

0.80 

Foreign material/device 

Orthopedic  

Other 

None 

12 (25.5) 

2 (4.3) 

10 (21.3) 

35 (74.5) 

37 (50.0) 

2 (2.7) 

35 (47.3) 

37 (50.0) 

0.01 

0.01 

 

No. Foreign material/device b 0 (0-1) 0.5 (0-1) 0.01 

Patient History  

Hospitalization ( 2 days) c 13 (27.7) 39 (52.7) 0.007 

Surgery c  13 (27.7) 18 (24.3) 0.68 

Medications c 

Chemotherapy/Immunosuppr

essants 

Chronic corticosteroids d 

NSAID 

Gastric acid suppressor e 

HMG-CoA reductase inhibitor 

 

5 (10.6) 

 

6 (12.8) 

19 (40.4) 

21 (44.7) 

21 (44.7) 

 

2 (2.7) 

 

5 (6.8) 

35 (47.3) 

44 (59.5) 

28 (37.8) 

 

0.11 

 

0.33 

0.46 

0.11 

0.45 

Antimicrobial Use c 

Vancomycin 

29 (61.7) 

1 (2.1) 

57 (77.0) 

20 (27.0) 

0.07 

0.001 
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Penicillin  

Cephalosporin  

Beta-Lactams 

Fluoroquinolone 

Other 

9 (19.2) 

9 (19.2) 

14 (29.8) 

11 (23.4) 

14 (29.8) 

21 (28.4) 

19 (25.7) 

30 (40.5) 

24 (32.4) 

26 (35.1) 

0.25 

0.41 

0.23 

0.29 

0.54 

No. Antibiotic c b 1 (0-2) 1 (0-2) 0.08 

Infections f 

Skin and soft tissue 

Pneumonia 

Urinary tract infection 

Bacteremia 

Other  

 

5 (10.6) 

5 (10.6) 

14 (29.8) 

2 (4.3) 

7 (14.9) 

 

9 (12.2) 

19 (25.7) 

24 (32.4) 

13 (17.6) 

13 (17.6) 

 

0.80 

0.04 

0.76 

0.03 

0.70 

1 S. aureus infection previous f 

MRSA 

12 (25.5) 

11 (23.4) 

21 (28.4) 

18 (24.3) 

0.73 

0.91 

Source of previous S. aureus 

infection g 

Tissue 

Urine 

Blood 

Other 

 

 

5 (10.6) 

6 (12.8) 

0  

3 (6.4) 

 

 

3 (4.1) 

5 (6.8) 

5 (6.8) 

11 (14.9) 

 

 

0.26 

0.33 

0.15 

0.15 

Index isolate same site as previous 

S. aureus infection 

 

9 (19.2) 

 

12 (16.2) 

 

0.68 

Previous Polymicrobial infections 13 (27.7) 23 (31.1) 0.69 

MRSA nares positive f 6 (12.8) 15 (20.3) 0.29 

Index Culture 

Culture Site (%) 

Blood  

Tissue 

Urine 

            Catheter 

Other 

 

9 (19.1) 

16 (34.0) 

11 (23.4) 

10 (21.3) 

1 (2.1) 

 

23 (31.1) 

20 (27.0) 

13 (17.6) 

15 (20.3) 

3 (4.1) 

 

0.15 

0.41 

0.43 

0.89 

1.0 

Bacteremia Source 

Foreign material  

cSSTI/Osteomyelitis  

Other 

 

3 (6.4) 

0 

6 (12.8) 

 

10 (13.5) 

4 (5.4) 

16 (21.6) 

 

0.22 

0.16 

0.22 

Trauma associated  5 (10.6) 9 (12.2) 0.80 

 

At Index Culture 

Setting 

Inpatient 

Outpatient 

 

23 (48.9) 

24 (51.1) 

 

50 (67.6) 

24 (32.4) 

0.04 

Inpatient admission 

ICU 

Non-ICU 

 

6 (26.1) 

17 (73.9) 

 

11 (22.0) 

39 (78.0) 

0.70 

 

 

Length of stay, days b 14.0 (4.0-28.0) 12.5 (7.0-20.0) 0.47 
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Surgery/procedure during admission 13 (27.7) 32 (43.2) 0.08 

Hospital days prior to index culture b 0 (0-3) 0 (0-2) 0.85 

MRSA nares positive 10 (21.3) 26 (35.1) 0.10 

Urinary foley catheter 18 (38.3) 27 (36.5)  0.84 

IV catheter > 48 hours 6 (12.8) 20 (27.0) 0.06 

Mechanical ventilation 3 (6.4) 7 (9.5) 0.74 

Dialysis 0 10 (13.5) 0.006 

Data are presented as No. (%) unless otherwise specified. 
Abbreviations: BMI, body mass index; SCr, Serum creatinine; CrCl, creatinine clearance (Cockcroft-gault); 
cSSTI, complicated skin and soft tissue infection; ICU, intensive care unit; IV, intravenous;  
a Mean ± SD 
b Median (Q1-Q3) 
c Previous 90 days  
d Prednisone 20 mg every day or equivalent for ≥ 14 days  
e Proton-pump inhibitor or H2-antagonists  
f Previous one year 
g   1 previous infection source 
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Table 2. Phenotypic and Genotypic Characteristics  

Phenotypic  Strong Biofilm  

OD ≥ 2.0 

(n=47) 

Weak Biofilm  

OD ≤ 1.0 

(n=74) 

P value 

Alpha-toxin 35 (74.5) 61 (82.4) 0.29 

Beta-toxin 28 (59.6) 56 (75.7) 0.06 

Agr operon dysfunction 

(delta-toxin negative) 

29 (61.7) 32 (43.2) 0.05 

hVISA 4 (8.5) 3 (4.4) 0.44 

Pigmented 36 (76.6) 40 (54.1) 0.01 

Vancomycin MIC 

≥ 1.5 μg/mL 

< 1.5 μg/mL 

 

28 (59.6) 

19 (40.4) 

 

50 (67.6) 

24 (32.4) 

0.37 

Genotypic  Strong Biofilm  

OD ≥ 2.0 

(n=47) 

Weak Biofilm  

OD ≤ 1.0 

(n=74) 

 

MLST CC  

CC 5 

CC 8 

Other a 

 

23 (48.9) 

16 (34.0) 

8 (17.0) 

 

54 (73.0) 

11 (14.9) 

9 (12.2) 

 

0.007 

0.01 

0.45 

Spa Type 

t002 

t895 

t008 

t1094 

Other b 

 

14 (29.8) 

1 (2.1) 

12 (25.5) 

4 (8.5) 

16 (34.0) 

 

25 (33.8) 

18 (24.3) 

6 (8.1) 

3 (4.1) 

22 (29.7) 

 

0.65 

0.001 

0.01 

0.43 

0.62 

Data are presented as No. (%) unless otherwise specified. 
Abbreviations: Agr, accessory gene regulator; hVISA, heteroresistant vancomycin intermediate S. aureus; 
MLST CC, multi-locus sequence typing clonal complex 
a CC1, CC4, CC20, CC30, CC45, and unable to obtain genotypic characteristics (eleven isolates) 
b t004, t010, t018, t062, t064, t067, t088, t1340, t189, t1904, t2032, t242, t2666, t334, t548, t681, t693, t985, 
and unable to obtain genotypic characteristics (eleven isolates) 
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Table 3. Clinical Outcomes  

Outcome 

No. of events/No. of patients (%) Unadjusted 
OR (95% CI) 

Adjusted 
OR (95% CI) Strong Biofilm Weak Biofilm P Value 

Mortality 

30-day 

90-day 

 

3/47 (6.4) 

6/47 (12.8) 

 

18/74 (24.3) 

27/74 (36.5) 

 

0.01 

0.004 

 

0.21 (0.06-0.77) 

0.25 (0.10-0.68) 

 

0.32 (0.08-1.26) a 

0.36 (0.12-1.06) a 

(Re)-admission 

30-day 

90-day 

 

11/45 (24.4) 

20/43 (46.5) 

 

17/61 (27.9) 

23/57 (40.3) 

 

0.69 

0.54 

 

0.84 (0.35-2.02) 

1.28 (0.58-2.86) 

 

1.65 (0.58-4.65) b 

5.43 (1.69-17.4) c 

MRSA (Re)-

infection 

30-day 

90-day 

 

 

3/47 (6.4) 

8/45 (17.8) 

 

 

8/66 (12.1) 

14/58 (24.1) 

 

 

0.36 

0.43 

 

 

0.49 (0.12-1.97) 

0.68 (0.26-1.80) 

 

 

0.33 (0.08-1.37) d 

0.74 (0.25-2.18) e 

MRSA related 

(Re)-admission 

30-day 

90-day 

 

 

5/44 (11.4) 

8/43 (18.6) 

 

 

8/61 (13.1) 

9/57 (15.8) 

 

 

0.79 

0.71 

 

 

0.85 (0.26-2.80) 

1.22 (0.43-3.47) 

 

 

1.20 (0.34-4.25) f 

1.75 (0.56-5.45) f 

Abbreviations: OR, odds ratio; CI, confidence interval; ICU, intensive care unit; BMI, body mass index 
a Adjusted for hospitalized during previous 90 days for > 2days and admission type (inpatient or outpatient 
setting) 
b Adjusted for hospitalized during previous 90 days for > 2days and infection with confirmed bacteremia at the 
time of index culture 
c Adjusted for hospitalized during previous 90 days for > 2days, MLSTcc5, serum creatinine and infection with 
confirmed pneumonia at the time of index culture 
d Adjusted for pigmentation 
e Adjusted for MLSTcc5 and pigmentation 
f Adjusted for hospitalized during previous 90 days for > 2days 
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Table 4: Predictors of Strong Biofilm Producing MRSA 

Variable OR (95% CI) 

Beta-toxin 0.31 (0.11–0.89) 

Chemotherapy or immunosuppressants 
used in previous 90 days 

33.6 (1.68–673) 

Serum creatinine (per unit increase) 0.33 (0.15–0.72) 

Spa type t008 4.54 (1.21-17.1) 

Spa type t895 0.02 (<0.001–0.47) 

Vancomycin in the previous 90 days 0.03 (0.002–0.39) 

Abbreviations: OR, odds ratio; CI, confidence interval 
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