
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Department of Electrical, Computer, and 
Biomedical Engineering Faculty Publications 

Department of Electrical, Computer, and 
Biomedical Engineering 

2020 

Improved Spatial Resolution of Electroencephalogram Using Improved Spatial Resolution of Electroencephalogram Using 

Tripolar Concentric Ring Electrode Sensors Tripolar Concentric Ring Electrode Sensors 

Xiang Liu 

Oleksandr Makeyev 

Walter Besio 

Follow this and additional works at: https://digitalcommons.uri.edu/ele_facpubs 

http://ww2.uri.edu/
http://ww2.uri.edu/
https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/ele_facpubs
https://digitalcommons.uri.edu/ele_facpubs
https://digitalcommons.uri.edu/ele
https://digitalcommons.uri.edu/ele
https://digitalcommons.uri.edu/ele_facpubs?utm_source=digitalcommons.uri.edu%2Fele_facpubs%2F101&utm_medium=PDF&utm_campaign=PDFCoverPages




dipoles resembling visual evoked potentials, implementa-
tion of Laplacian estimation approaches, calculation of half-
sensitivity volume, and application of spatial subspace decom-
position. In the comparison, the global surface Laplacian
estimation is based on the spherical spline interpolation
method introduced by Perrin et al. [6], while the local sur-
face Laplacian estimation is based on the TCRE Laplacian
algorithm [9]. Noise is added to the simulations to make
the results more realistic.

2. Materials and Methods

2.1. Global Surface Laplacian Estimation Based on
Spherical Spline Interpolation. The spherical spline interpo-
lation method was introduced by Perrin et al. [6]. This
model approximates the head as the surface of a sphere.
The equations described by Perrin et al. for the spherical
spline interpolation are

V rð Þ = c0 +
1
4π〠

N

i=1
ci 〠

∞

n=1

2n + 1
nm n + 1ð Þm pn cos r, rið Þð Þ, ð1Þ

where N is the number of electrodes, m is the order of the
spline interpolation (m = 3 for this study), r is the vector of
the location where the potential is interpolated, ri is the vec-
tor of the location of the ith electrode, pn is the nth degree
Legendre polynomial. With n increasing in (1) as part of
the sum, in Perrin et al. [6], pn was “computed via the recur-
rence relation” and “the sum of the first 7 terms of the series”
was “sufficient to obtain a precision of 10-6”. In this study, the
maximum value of n was increased to 60 to further improve
the precision. The parameters vector C is the solution of
equations (2) and (3):

GC + Tc0 = Z, ð2Þ

T ′C = 0, ð3Þ

where T ′ = ð1, 1,⋯, 1Þ, C′ = ðc1, c2,⋯, cNÞ, Z ′ = ðz1, z2,⋯,
zNÞ, G = ðgijÞ = ðgðcos ðr, riÞÞÞ, and gðxÞ = 1/4π∑∞
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/nmðn + 1ÞmÞpnðxÞ.The surface Laplacian operator in the
spherical coordinate system is defined as
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Applying the operator from equation (4) to equation (1)
produces the surface Laplacian of the spherical interpolation:

Δsur f V rð Þ = −
1
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∞
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We used a truncated singular value decomposition
method to solve the inverse problem of the ill-posed matrix
in equations (2) and (3) [12].

2.2. Local Surface Laplacian Estimation Based on Tripolar
Concentric Ring Electrode. Based on the 2-dimensional Tay-
lor expansion of the potential on the surface Laplacian
nine-point locations, the tripolar Laplacian is given by the
combination of the potentials from the three recording sur-
faces of the TCRE [9]:

SL = −
16 Vm −Vdð Þ − Vo − Vdð Þ

3R2 : ð6Þ

In equation (6), SL denotes the surface Laplacian, Vd
denotes the potential from the central disc, Vm denotes the
potential from the middle ring,Vo denotes the potential from
the outer ring, and R is the radius of the middle ring. As R
changes, the size of the sensor changes, and the spatial reso-
lution also varies with it.

2.3. The Four-Layer Spherical Head Model and the Analytical
Surface Laplacian. In our simulations, we used a four-layer
concentric inhomogeneous spherical model [10] to represent
the human head (Figure 2). Current dipoles, described later,
are employed to model the brain activity.

The potential on the surface of the model due to a current
dipole located at the z-axis in the brain is given by the follow-
ing equations [10]:

Vx =
Px cos ϕ
4πσ4R2 〠

∞

n=1
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nΓ
, ð7Þ

for the x-direction component of the dipole,

Vy =
Py sin ϕ

4πσ4R
2 〠

∞

n=1

2n + 1ð Þ4 f n−1 cdð Þ2n+1P1
n cos θð Þ

nΓ
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Figure 1: Tripolar concentric ring electrode with dimensions of its
central disc, middle ring, and outer ring.
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for the y-direction component of the dipole, and

Vz =
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for the z-direction component of the dipole, where
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Applying the surface Laplacian operator equation (4) to
equations (7), (8), and (9), the analytical surface Laplacian
is given by
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Px cos ϕ
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By rotating the coordinate system, the analytical potential
and surface Laplacian imposed by a dipole at an arbitrary
brain location area can be computed according to equations
(7)–(9) and (11)–(13).

2.4. Sensitivity Distribution of Conventional Electrodes and
TCREs Based on Half-Sensitivity Volume. The sensitivity dis-
tribution of an electrode is directly related to its spatial reso-
lution. In this comparison, the lead field was used to calculate
the sensitivity distribution. The lead field is the current den-
sity distribution in the volume conductor generated by feed-
ing current to electrode pairs [13]. We also employed the
concept of half-sensitivity volume (HSV), which is defined
as the volume where the measured sensitivity is at least half
of the maximum sensitivity [13], to quantize the sensitivity
distribution for the electrodes.

2.5. Sensitivity Comparison of Conventional Electrodes and
TCREs Based on Spatial Subspace Decomposition Method.
Common spatial subspace decomposition (CSSD), which
helps to retrieve signal components specific to one condition
from complex EEG background, was developed to separate
specific brain activities from the background [14]. Since
EEG is considered to have spatial resolution of 3.0 to 4.0 cm
[15–17], we tested at a higher spatial resolution for compar-
ison. In our simulation, an 8 by 8 simulated electrode array
was placed on the scalp above the visual cortex area with a
1.0 cm center-to-center distance between electrodes to maxi-
mize the spatial resolution. Potential integration was per-
formed separately and independently for each electrode to
eliminate mutual influence of neighboring electrodes. A sim-
ulated signal dipole with eccentricity of 0.9 was placed under
the electrode array. Two simulated noise dipoles with an
eccentricity of 0.75 were concurrently activated with the sig-
nal dipole under the array as background brain activity. In
the simulation, we first calculated the simulated background
by setting the magnitude of the signal dipole to zero. Then,

Z

Y

X

Dipole

fR

R

dR

bR
cR

𝜎3
𝜎4

𝜎2𝜎11

Figure 2: Four-layer concentric inhomogeneous spherical head
model with the radii of the layers equal to R = 8:8cm, dR = 8:5 cm,
cR = 8:1 cm, and bR = 7:9 cm and the conductivities of the layers
equal to σ1 = 3:3 × 10−3, σ2 = 10:0 × 10−3, σ3 = 4:2 × 10−5, and σ4 =
3:3 × 10−3S/cm, from inside to outside, respectively.
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we calculated the simulated visual evoked potential (VEP)
combined with background. Finally, the CSSD was applied
to the simulated data to extract the VEP. The simulated
TCRE EEG (tEEG) VEP from the TCRE was calculated for
comparison. Another simulation with only the signal dipole
was also conducted to compare the power distribution of
the simulated disc potential and tripolar Laplacian. In all of
the simulations, potentials on the disc electrodes were calcu-
lated from the conventional disc electrodes that had the same
diameter as the outer ring of the TCRE, 1.0 cm.

2.6. Comparison of Global Spline Surface Laplacian and Local
TCRE Surface Laplacian with Computer Simulation. To
model the activities of the brain cortex area, ten dipoles with
an eccentricity around 0.89 were used one at a time (Table 1).
The locations of the dipoles were modeled in the visual cortex
area of the brain to compare the simulation results to those
of actual VEP recording experiments. The moments of the
first five dipoles had a radial direction, and the remaining
five dipoles were at the same locations, but with a tangential
direction.

Since an electrode shunts the scalp area under it, to sim-
ulate the potential on the recording surfaces of the TCREs
and conventional disc electrodes, we averaged a number of
“sampling points” uniformly distributed on the surface of
the electrode. To determine the number of sampling points
needed for stable calculations, we incrementally increased
their density and compared the averaged potential until the
difference in potential due to adding more points was less
than 0.1%. The order of magnitude of that number was in
the thousands of sampling points per electrode. We used
the same density of sampling points for each of the recording
surfaces of the TCREs and the same sampling points for each
TCRE. A similar procedure was used for the disc electrodes.
In the simulation, TCREs were given the same dimensions
as shown in Figure 1, and conventional disc electrodes were
simulated with the same diameter as the outer ring of the
TCREs, 1.0 cm.

The global spline surface Laplacian and the local TCRE
surface Laplacian were calculated at the locations of the elec-

trodes and then compared to the analytical surface Laplacian
using the correlation coefficient.

2.7. Statistical Analysis. All the statistical analysis was per-
formed using Design-Expert software (Stat-Ease Inc., Minne-
apolis, MN, USA). Full factorial design of analysis of variance
(ANOVA) was used with four categorical factors [18]. The
first factor (A) was the type of the electrode presented at
two levels corresponding to conventional disc electrodes
and tripolar concentric ring electrodes. The second factor
(B) was the number of electrodes presented at four levels cor-
responding to 19, 32, 64, and 128 electrodes. The 19 elec-
trodes were placed at the standard 10-20 system while 32,
64, and 128 electrode locations were selected from the 5-5
system [19]. The third factor (C) was the presence and type
of noise presented at four levels corresponding to no noise,
presence of white Gaussian noise (WGN) at 20% standard
deviation ratio of the WGN to the potential [20], presence
of a deep noise dipole with an eccentricity of around 0.85
(simulating brain activity not considered to be the brain
source of interest), and presence of both WGN and the noise
dipole. Finally, the fourth factor (D) was the dipole location
presented at ten levels corresponding to 10 signal dipole loca-
tions from Table 1. The response variable was the correlation
coefficient of the simulated surface Laplacian and the analyt-
ical surface Laplacian calculated for each of the 2 ∗ 4 ∗ 4 ∗
10 = 320 combinations of levels of four factors. The full facto-
rial design of our study is presented in Table 2.

2.8. Visual Evoked Surface Potential and Laplacian Recording
Experiment. In this experiment, the scalp was prepared with
the mild abrasive NuPrep (Natus Medical West Warwick
RI). Next, recording electrodes with approximately 0.2 cm
of Ten20 paste (for skin-to-electrode impedance matching
and to hold the electrodes in place) were placed over the
visual cortex. Finally, reference and ground electrodes were
placed on the forehead between the eyes in an identical man-
ner. Signals from the outer ring of the TCREs were used to
emulate the disc electrodes. Synchrony between these two
signals has been demonstrated in time domain using cross-
correlation in phantom and human data (r ≥ 0:99) [21] as
well as in frequency domain using coherence in human data
(C ≥ 0:98) [22]. Both of the results strongly suggesting equiv-
alency of signals from the outer ring of the TCRE, and signals
from conventional disc electrodes were later confirmed on a
more comprehensive human dataset [23]. A flashing LED
array, PS60/LED, and Comet AS40 (Natus Medical, West
Warwick, RI) were used to activate the visual cortex, similar
to the computer model, of the human brain and record the
EEG. The visual stimulus was expected to generate a signal
source in the visual cortex similar to the dipoles we placed
in the computer simulation. The signals were filtered (1-
70Hz) and digitized (200 S/s). Due to the limit of the hard-
ware, only 15 channels were available in the experiments.
To keep the electrodes at a similar density as we used in
the simulation, all 15 electrodes were placed over the visual
cortex area from the standard 10-5 system. The locations of
the electrodes are listed in Table 3. The frequency of the
PS60/LED was 2Hz. The subjects (n = 6) were seated in a

Table 1: Locations and moments of the ten dipoles for modeling
brain activities.

Dipole number X (cm) Y (cm) Z (cm)
Moment (R, radial; T,
tangential; U, unit; and

D, dipole)

1 4.3 -5.3 4 RUD

2 6 -3 4 RUD

3 5 -4.6 4.1 RUD

4 -2.3 -4.4 6 RUD

5 -2.2 4.6 6 RUD

6 4.3 -5.3 4 TUD

7 6 -3 4 TUD

8 5 -4.6 4.1 TUD

9 -2.3 -4.4 6 TUD

10 -2.2 4.6 6 TUD

4 Journal of Sensors



comfortable chair with their eyes approximately 4.0 cm
from the photic stimulator. For each subject, we recorded
about two-and-a-half minutes of EEG signals. There was
approximately 30 seconds of baseline EEG, with no photic
stimulation, and then approximately two minutes of photic
stimulation.

The photic trigger signal was also recorded to synchro-
nize epochs during ensemble averaging. The analysis of
recorded EEG signals depended on the type of signals
recorded. For the EEG from the outer ring of the TCREs,
the spline interpolation and surface Laplacian methods dis-
cussed above were applied to calculate the spline surface

Laplacian and map them to the surface of the spherical
head model over the visual cortex area. For the TCRE
EEG surface Laplacian, we simply applied the interpolation
algorithm to map the recorded Laplacian values to the
corresponding surface.

3. Results

3.1. Sensitivity Distribution of Conventional Electrodes and
TCREs Based on Half-Sensitivity Volume. Figure 3 shows
the simulated HSV of a pair of conventional disc electrodes
and a TCRE. In the HSV computer simulation, a pair of disc

Table 2: Full factorial design of analysis of variance and obtained response variable.

Group averages for 10 levels of
factor D (signal dipole location)

Categorical factors Correlation between the simulated
and the analytical surface Laplacians

(mean ± standard deviation)
A: type of

the electrode
B: number
of electrodes

C: presence and
type of noise

1 Conventional disc 19 No noise 0:5882 ± 0:1581
2 TCRE 19 No noise 0:9908 ± 0:0196
3 Conventional disc 32 No noise 0:6669 ± 0:1693
4 TCRE 32 No noise 0:9823 ± 0:0406
5 Conventional disc 64 No noise 0:8242 ± 0:1141
6 TCRE 64 No noise 0:9937 ± 0:0073
7 Conventional disc 128 No noise 0:8885 ± 0:0989
8 TCRE 128 No noise 0:9737 ± 0:0311
9 Conventional disc 19 WGN 0:4801 ± 0:2041
10 TCRE 19 WGN 0:9649 ± 0:0104
11 Conventional disc 32 WGN 0:6035 ± 0:1138
12 TCRE 32 WGN 0:9634 ± 0:0074
13 Conventional disc 64 WGN 0:7095 ± 0:0139
14 TCRE 64 WGN 0:9619 ± 0:0411
15 Conventional disc 128 WGN 0:7515 ± 0:0783
16 TCRE 128 WGN 0:9633 ± 0:0050
17 Conventional disc 19 Noise dipole 0:4662 ± 0:2787
18 TCRE 19 Noise dipole 0:8846 ± 0:1186
19 Conventional disc 32 Noise dipole 0:6199 ± 0:2052
20 TCRE 32 Noise dipole 0:9236 ± 0:0877
21 Conventional disc 64 Noise dipole 0:7950 ± 0:1177
22 TCRE 64 Noise dipole 0:9549 ± 0:0424
23 Conventional disc 128 Noise dipole 0:9082 ± 0:0904
24 TCRE 128 Noise dipole 0:9877 ± 0:1334
25 Conventional disc 19 WGN+dipole 0:4752 ± 0:0224
26 TCRE 19 WGN+dipole 0:9480 ± 0:1864
27 Conventional disc 32 WGN+dipole 0:6780 ± 0:0738
28 TCRE 32 WGN+dipole 0:9390 ± 0:0376
29 Conventional disc 64 WGN+dipole 0:7329 ± 0:0156
30 TCRE 64 WGN+dipole 0:9551 ± 0:0611
31 Conventional disc 128 WGN+dipole 0:7614 ± 0:0881
32 TCRE 128 WGN+dipole 0:9580 ± 0:0097
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electrodes was placed on the spherical surface separated by
90 degrees. This separation angle was selected based on
where the reference and signal electrode placements were in
physical experiments. In our physical human VEP experi-
ments, the separation angle, from the forehead to the visual
cortex, was more like 180 degrees, rather than just 90 degrees;
however, the larger angle would not affect the results. A sin-
gle TCRE was utilized since it can be seen as a combination of
two pairs of electrodes at a single location: the outer ring
minus the disc and the middle ring minus the disc. Simulated
potentials on the electrodes were calculated from a unit
dipole located in the inner sphere of the brain. After the
potentials were calculated, the dipole was moved. This proce-
dure was repeated until the HSV volume could be deter-
mined. The simulation shows that the HSV of the disc
electrode is 9.6 times greater than the HSV of TCREs.

3.2. Sensitivity Comparison of Conventional Electrodes and
TCREs Based on Spatial Subspace Decomposition Method.
The 64 extracted signals from the 8 × 8 arrays of TCREs
and disc electrodes were normalized separately. The aver-
age power of the 64 normalized disc potentials was equal
to 0:44 ± 0:31 while the average power of the 64 normalized
tripolar Laplacians was equal to 0:23 ± 0:24 (mean ±
standard deviation). These results indicate that the distribu-
tion of the power of the tripolar Laplacian is more focused
on a smaller number of TCREs, while the power of the
disc potential tends to be distributed over a larger number
of disc electrodes.

Figure 4 shows the simulated normalized VEP from a
location near the center of the 64-electrode array. The x-axis
is the distance from the electrodes to the signal dipole, the
y-axis is the normalized magnitude of the signal calculated at
each electrode of the 8 × 8 array, “∗” denotes the disc elec-
trode, “o” denotes the TCRE, and “+” denotes the analytical
Laplacian. From Figure 4, as the distance increases between
the electrode and the dipole source, the magnitude of the

recorded signal on TCREs attenuates much quicker than that
recorded on the disc electrodes. In other words, the VEP
power was mainly distributed on just a few close TCREs,
while it was distributed over a wider area of the conventional
disc electrode array. It can also be seen that the TCRE Lapla-
cian is very similar to the analytical Laplacian.

3.3. Comparison of Global Spline Surface Laplacian and Local
TCRE Surface Laplacian with Computer Simulation. Correla-
tion coefficient data obtained in this simulation for 320 com-
binations of factor levels is presented in Table 2 averaged for
ten dipole locations.

The effect of factors A, B, C, and D on the correlation
coefficient was assessed along with the effect of all possible
two- and three-factor interactions. The effect of the four-
factor interaction ABCD could not be evaluated. The
ANOVA results suggest that all the factors and all of the
assessed interactions have statistically significant effects in
the model (d:f : = 238, F = 17:6, p < 0:0001) for the optimal
power transformation of 2.81 determined using the Box-
Cox procedure [18]. The effects of the main factors were A
(d:f : = 1, F = 2736:5, p < 0:0001), B (d:f : = 3, F = 120:1, p <
0:0001), C (d:f : = 3, F = 34:7, p < 0:0001), and D (d:f : = 9,
F = 10:3, p < 0:0001).

3.4. Visual Evoked Surface Laplacian Comparison
Experiments. From Figure 5, we can see that the TCRE Lapla-
cian sensors were able to separate VEP sources. In panel (a),
the spline Laplacian map from the 15 disc electrode signals at
95ms in panel (c), in the top central area there is a red and
orange area (designated with an arrow). In the same area of
panel (b), from 110ms in panel (d), we can see the TCRE
Laplacian sensor map from the 15 TCRE signals which shows
that there were two distinct sources (shown by arrow). Panels
(c) and (d) show the normalized grand-averaged EEG and
tEEG VEPs used to build the maps in panels (a) and (b),
respectively. From panel (c), it can be seen that many of the
traces are similar while this is not the case in panel (d) from
the TCREs. From panels (c) and (d), we can see that there is a
positive wave at approximately 50 to 110ms and 105 to
115ms, respectively, after the photic stimulation pulse.

4. Discussion

We conducted multiple computer simulations and acquired
real signals to compare spatial sensitivity between disc elec-
trode and TCRE sensors. The sensitivity comparison of the
disc electrode spline Laplacian and tripolar Laplacian based
on HSV shows that the tripolar Laplacian is more sensitive
than the disc electrode spline Laplacian. The HSV for the tri-
polar Laplacian is nearly 10 times smaller than the disc elec-
trode spline Laplacian HSV (Figure 3). These results show
that the tripolar Laplacian records signals from a local vol-
ume compared to two broad volumes for the disc electrode
spline Laplacian.

We also used the CSSD method and showed that TCRE
sensors are more focused on local potentials. This can be
explained in terms of obtained HSV results. The TCRE sen-
sors are sensitive to local sources so only the sensors that

Table 3: Electrode locations in the VEP experiments.

Electrode location X (cm) Y (cm) Z (cm)

CP5 -7.885 -2.974 2.499

P3 -4.990 -5.958 4.127

Pz 0.000 -6.283 6.151

P4 4.981 -5.958 4.127

CP6 7.885 -2.974 2.499

P5 -6.521 -5.588 1.874

P6 6.521 -5.588 1.883

P7 -7.075 -5.157 -0.774

PO7 -5.139 -7.101 -0.616

PO3h -2.526 -8.008 2.622

POz 0.000 -8.175 3.238

PO4h 2.517 -8.008 2.622

P8 7.075 -5.166 -0.774

O1 -2.702 -8.351 -0.414

O2 2.702 -8.351 -0.414

6 Journal of Sensors



are close to the sources (whether they are signal or noise
sources) will correspond to high power. At the same time,
conventional disc electrodes, which have a nearly 10-fold
larger HSV, record signals from a much larger volume there-
fore providing less discrimination between source locations.
This relative lack of discrimination for conventional disc
electrodes suggests that we can place TCRE sensors closer
together (i.e., at higher spatial resolution than disc electrodes)
and still detect independent sources.

ANOVA results for comparing the global spline surface
Laplacian to the local TCRE surface Laplacian show statisti-
cal significance of the effect of all four categorical factors
included in this study. While it was important to confirm that

the quality of Laplacian estimation increases with an increase
in the number of electrodes (factor B), decreases in the pres-
ence of the noise (factor C), and is affected by the signal
dipole location (factor D), the most important result is that,
for the case of the factor A, the local TCRE Laplacian is sig-
nificantly better than the global spline Laplacian at approxi-
mating the analytic Laplacian.

A potential limitation of the current full factorial design
is that we could not assess the effect of interaction of all four
factors. Without replications, including this interaction into
the model makes it overspecified with all the degrees of free-
dom being in the model and none assigned to the residual
(error). On the other hand, adding replications to the design
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Figure 3: The red (hashed) lines show the HSV of conventional disc electrodes (a) and TCREs (b).
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would be of limited value since all of the factor levels except
for the two levels of factor C involving stochastic WGN are
deterministic in nature so replicating the simulation for
majority of level combinations would have yielded identical
results. For the same reason, randomization of the simula-
tion run order would have also been of limited value in our
case even though in other cases it may help balancing out
the effect of nuisance factors [18]. Other assumptions of
ANOVA including normality, homogeneity of variance,
and independence of observations were confirmed ensuring
the validity of the analysis with no studentized residuals
being outliers, i.e., falling outside the [-3, 3] range [18].

In the simulation, the eccentricities of signal dipoles were
set at around 0.9, closer to the surface of the brain. This alter-
ation was made since we were mainly interested in the visual
cortex area of the brain. In a previous study [24], the eccen-
tricities of the dipoles were usually set at 0.85 or smaller.
The eccentricity of the dipole has considerable impact on
the Laplacian estimation. Generally, smaller eccentricities
improve the performance for both spline and tripolar Lapla-
cian estimations.

The VEP experiments showed that we can acquire
VEP signals from humans and, according to the map of
Figure 5(b), were able to show two separate positive regions
in the TCRE Laplacian maps that were not separated in the
spline Laplacian maps (Figure 5). It should be noted that
we are not certain where the sources are in the visual cortex.
Panels (a) and (b) are representative of the other subjects,
where there were distinct positive regions in the TCRE Lapla-
cian maps but not in the spline Laplacian maps.

Directions of future work include moving to a more real-
istic head model, assessing other standard EEG responses
(for example, P300), and comparing how the sensitivity pro-
file maps on the cortical surface for TCREs and conventional
disc electrodes.

5. Conclusion

In this study, computer simulation results serve as an analyt-
ical basis for the human visual evoked potential results using
half-sensitivity volume, common spatial subspace decompo-
sition, and a comprehensive comparison between global
spline surface Laplacian and local surface Laplacian estimates
via tripolar concentric ring electrodes on four-layer spherical
head model using full factorial design of analysis of variance.
Both computer simulations and human visual evoked poten-
tial experiments suggest that there is a statistically significant
improvement in spatial resolution and estimation of the
Laplacian via tripolar concentric ring electrodes compared
to conventional disc electrodes and the spline Laplacian but
further investigation is needed for conclusive proof.

Data Availability

Part of the data used to support the findings of this study are
available from the corresponding author upon request. The
rest was lost due to a hardware failure after the manuscript
was finalized.

Disclosure

The content is solely the responsibility of the authors and
does not necessarily represent the official views of the
National Science Foundation.

Conflicts of Interest

The authors declare no conflict of interest.

N
or

m
al

iz
ed

 p
ow

er

0

(a) (b)

(c) (d)

–1

–0.5

0

50 100 150
Time (ms)

200 250

0.5

N
or

m
al

iz
ed

 m
ag

ni
tu

de

1

–1

–0.5

0

50 100 150
Time (ms)

200 250

0.5

N
or

m
al

iz
ed

 m
ag

ni
tu

de

1

1

–1

Figure 5: (a) Spline Laplacian VEP map (95ms), (b) tripolar Laplacian VEP map (110ms), (c) the normalized grand-averaged EEG VEP
signals from each channel, and (d) the normalized grand-averaged tEEG VEP signals from each channel.
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