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Antiferromagnetic Long-Range Order in the Anisotropic
Quantum Spin Chain

Josef Kurmann1, Harry Thomas1, Gerhard Müller2

1 Institut für Physik, Universität Basel, CH-4056 Basel, Switzerland
2 Department of Physics, University of Rhode Island, Kingston RI 02881, USA

This is a study of the ground-state properties of the one-dimensional spin-s (1/2 < s <∞) anisotropic XY Z
antiferromagnet in a magnetic field of arbitrary direction. It provides the first rigorous results for the general
case of this model in non-zero field. By exact calculations we find the existence of an ellipsoidal surface
h = hN in field space where the ground state is of the classical two-sublattice Néel type with non-zero
antiferromagnetic long-range order. At hN there are no correlated quantum fluctuations. We give upper and
lower bounds for the critical field hc where antiferromagnetic long-range order is suppressed by the field. The
zero-temperature phase diagrams are discussed for a few representative cases.

1. Introduction

As fundamental results of the theory of critical phenomena it has been found that the impor-
tance of fluctuations in a system of interacting spins depends crucially on
(i) the dimensionality of the system,
(ii) the range of interaction,
(iii) the symmetry of the Hamiltonian in spin space,
(iv) at T → 0, the question whether the spins are treated quantum-mechanically or as classical

n-vectors.
Accordingly, among the most strongly fluctuating systems of interacting spins are one-dimensional
(1D) spin- 12 chains with nearest-neighbour exchange coupling. Here the thermal fluctuations pre-
vent ordering at any non-zero temperature, and in cases where the Hamiltonian has a continuous
rotational symmetry in spin space, the zero-point fluctuations may destroy long-range order (LRO)
even at T = 0 [1]. In the light of these findings it is of particular interest to study the ground-state
(GS) properties of the 1D quantum antiferromagnet (AFM) in a magnetic field. The Hamiltonian
reads

H =
N∑
l=1

{
JxS

x
l S

x
l+1 + JyS

y
l S

y
l+1 + JzS

z
l S

z
l+1 − h · Sl

}
. (1.1)

The exchange parameters Jµ are considered to be non-negative. We shall see that the GS properties
depend strongly on the commutability of the exchangeand Zeeman parts HEX and HZE of the
Hamiltonian. For the s = 1

2 XYZ model (1.1) at h = 0, a number of exact results such as the
energies of the GS [2] and of the low-lying excited states [3] are already known. The present work
contains the first rigorous results for the general XYZ model in non-zero field. In order to emphasize
quantum effects we shall compare our results for the quantum chain (1.1) with those of the classical
counterpart (1.1) where the spin operators are replaced by three-dimensional vectors of length s.

It is evident from all known results on T = 0 properties of the 1D AFM (1.1) in zero and non-
zero magnetic field that the GS is usually very complicated [4-13]. Below a certain critical value
hc of the field, the GS either displays true AFM LRO or only "incipient" LRO, depending on the
symmetry of the Hamiltonian. In the latter case the asymptotic behavior R→∞ of the correlation
functions 〈Sµl S

µ
l+R〉 is governed by a power-law decay. In the case of true LRO the appropriate
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Antiferromagnetic long-range order in the anisotropic quantum spin chain

correlation function approaches a constant 〈Sµl 〉2, and the correlations of the fluctuations Sµl −〈S
µ
l 〉

decay exponentially.
In a recent study on the isotropic s = 1

2 XY AFM (Jx = Jy = J, Jz = 0) with an in-plane field
h = hx [14] we discovered that at the special value hN =

√
2J of the field the GS becomes identical

to the GS of the corresponding classical chain, i.e. it factorises into single-site states exhibiting the
same expectation values 〈Sµl 〉 as in the classical two-sublattice Néel-type state with spins of the two
sublattices being in a spin-flop configuration within the XY plane. The quantum fluctuations which
are considerable both below and above hN become completely uncorrelated at this particular value
hN . The existence of a quasi-classical GS is actually a general feature of the anisotropic quantum
AFM chain in a magnetic field. In section 2 we present a general solution for the conditions under
which a Néel-type GS exists for the Hamiltonian (1.1) with arbitrary s. We give explicit results for
the GS configurations for fields varying in either of the coordinate planes in spin space. In section
3 we elucidate the role of the particular field hN in the classical limit. For this purpose we discuss
briefly the effect of a magnetic field on the GS and the spin-wave normal modes of the classical
chain. The aim of section 4 is to determine the critical field hc where (true or incipient) AFM LRO
is suppressed by the magnetic field. In section 5 we use these results for a discussion of the phase
diagrams of a few representative classes of system (1.1).

2. Néel ground state of the quantum antiferromagnet

In this section we investigate the existence of a Néel-type GS of Hamiltonian (1.1). It is conve-
nient to treat first the case s = 1

2 , and then generalize the results to arbitrary s. In a first step we
look for an eigenstate of (1.1) which factorises into alternating single-site states as follows:

|N〉 =
N∏
l=1

|ψl〉, (2.1a)

|ψ2l−1〉 = a1|2l − 1, ↑〉+ b1|2l − 1, ↓〉, (2.1b)
|ψ2l〉 = a2|2l, ↑〉+ b2|2l, ↓〉. (2.1c)

We use z as quantization axis. It is useful to represent the complex coefficients ai and bj in terms
of angular coordinates, θj , φj , j = 1, 2:

a1 = cos
θ1
2

exp
(
−ıφ1

2

)
, b1 = sin

θ1
2

exp
(
ı
φ1

2

)
,

a2 = cos
θ2
2

exp
(
−ıφ2

2

)
, b2 = sin

θ2
2

exp
(
ı
φ2

2

)
, (2.2)

The resulting expectation values of the single-site spin components are

〈ψ2l−1|Sx2l−1|ψ2l−1〉 =
1
2

sin θ1 cosφ1,

〈ψ2l−1|Sy2l−1|ψ2l−1〉 =
1
2

sin θ1 sinφ1,

〈ψ2l−1|Sz2l−1|ψ2l−1〉 =
1
2

cos θ1, (2.3)

and analogous expressions for sites 2l. This is equivalent to saying that the spins of one sublattice
(2l− 1) are pointing in direction (θ1, φ1) and those of the other sublattice (2l) in direction (θ2, φ2)
of a polar coordinate system. Thus, for the particular Néel state (2.1), the original nontrivial
many-body problem reduces to a simple eigenvalue problem involving only two lattice sites:

Hl,l+1|ψl〉|ψl+1〉 = εN |ψl〉|ψl+1〉, (2.4)

with

Hl,l+1 = JxS
x
l S

x
l+1+JyS

y
l S

y
l+1+JzSzl S

z
l+1−

1
2
[
hx(Sxl +Sxl+1)+hy(Syl +Syl+1)+hz(Szl +Szl+1)

]
. (2.5)
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Apart from the solution of (2.4) for |h| → ∞ which is not interesting for our purposes, we find
that there exists a solution with energy (per site)

εN = EN/N = −1
4

(Jx + Jy + Jz) (2.6)

for finite fields, provided the field vector points to the surface of an ellipsoid characterized by

h2
x

(Jx + Jy)(Jx + Jz)
+

h2
y

(Jx + Jy)(Jy + Jz)
+

h2
z

(Jx + Jz)(Jy + Jz)
= 1. (2.7)

In other words, we can freely choose a field direction (Θ, Phi) in spin space such that h =
h(sin Θ cos Φ, sin Θ sin Φ, cos Θ), and shall always find a Néel-type eigenstate if the magnitude h of
the field takes the value

hN =
[

(Jx + Jy)(Jx + Jz)(Jy + Jz)
(Jy + Jz) sin2 Θ cos2 Φ + (Jx + Jz) sin2 Θ sin2 Φ + (Jx + Jy) cos2 Θ

]1/2
. (2.8)

We now show that the existence of a Néel eigenstate |N〉 for s = 1
2 implies the existence of a

Néel eigenstate for any s. For this purpose, we note that the unitary transformation Ul to a new
basis consisting of the state

|ψl〉 = al|l, ↑〉+ bl|l, ↓〉 (2.9a)

given by (2.1b,c), and an orthogonal state

|ϕl〉 = −b∗l |l, ↑〉+ a∗l |l, ↓〉 (2.9b)

with al, bl given by (2.2), defines a rotation Rl of the spin vector Sl

U−1
l Sµl Ul =

∑
µ′

Rµµ
′

l Sµ
′

l . (2.10)

We call the new spin components Sξ,η,ζl . Then the local ζ-axis represents the spin direction at site
l in the Néel state. (There exists actually a whole family of such transformations, because (2.9b)
may still be multiplied by an arbitrary phase factor, corresponding to a rotation about the ζ-axis).

If the Hamiltonian H has a Néel eigenstate (2.1), then the transformed Hamiltonian

H′ = U−1HU, (2.11)

where U = ΠlUl, has a ferromagnetic eigenstate. Expressing H′ in terms of the operators Sζl and
S±l = Sξl ± ıS

η
l ,

H′ =
1
2

∑
nn

[
ASζl S

ζ
l′ + (BS−l +B∗S+

l )Sζl′ + (CS−l S
−
l′ + C∗S+

l S
+
l′ ) +DS+

l S
−
l′

]
−
∑
l

[
hζS

ζ
l + h+S

−
l + h−S

+
l

]
, (2.12)

where the sum nn is over nearest neighbours, the A,B,C are linear combinations of the exchange
constants Jµ and hζ and h± = hξ ± ıhη represent the components of h along the new axes, then
we find as conditions for a ferromagnetic eigenstate with spin direction along ζ

C = 0, Bs+ h+ = 0. (2.13)

Now, the rotations Rl defined by (2.10) may be applied to the spin operators for any spin quantum
number s. In other words, the SU(2) unitary transformation (2.9) induces an SU(2s + 1) unitary
transformation by the requirement that both define the same rotation for spin vectors. One can
therefore transform the Hamiltonian for arbitrary spin s to the same form (2.12) as above. This
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proves the following theorem: If H has a Néel eigenstate for exchange constants Jµ and field h
for s = 1

2 , then H has also a Néel eigenstate for the same exchange constants and field 2sh for
arbitrary s.

In order to prove that the Néel state |N〉 is the GS of H, it is sufficient to show that εN is the
GS energy of the pair Hamiltonian (2.5). The proof is especially simple if the field is along one of
the axes. For h = hx, we find that we can write the pair Hamiltonian in the form

Hl,l+1 − εN =
1
2

(Jx + Jy)
[
(s− Sζl )(s− Sζ

′

l+1) + (s− Sζ
′

l )(s− Sζl+1)
]

+ Jz
[
s2 − (Sξl S

ξ
l+1 + Sηl S

η
l+1 + Sζl S

ζ
l+1)

]
− (h− hxN )Sxl , (2.14)

where Sζ
′

l refers to the spin configuration shifted by a lattice constant, and εN = −s2(Jx+Jy+Jz).
For h = hxN , we have thus expressed Hl,l+1 − εN as a sum of positive operators, which proves that
|ψl〉|ψl+1〉 is the GS of Hl,l+1 and therefore |N〉 is the GS of H. For s = 1

2 , we have checked the
GS property of |ψl〉|ψl+1〉 numerically for various sets of exchange constants and fields in arbitrary
directions on the ellipsoid (2.7). But for s > 1

2 and general field direction we have as yet found no
formal proof.

The spin configuration of the Néel state is determined by the eigenvalue equation (2.4) which
leads in terms of the new variables

θ =
1
2

(θ1 + θ2), φ =
1
2

(φ1 + φ2); α =
1
2

(θ1 − θ2), β =
1
2

(φ1 − φ2) (2.15)

to the following equations
Jy + Jz 0 0 0 −hz −hy

0 Jx + Jz 0 −hz 0 hx
0 0 Jx + Jy −hy −hx 0
0 −hz −hy Jy + Jz 0 0
−hz 0 −hx 0 Jx + Jz 0
−hy hx 0 0 0 Jx + Jy




cos θ cosφ
cos θ sinφ
sin θ cosβ
cosα sinφ
cosα cosφ
sinα sinβ

 = 0. (2.16)

In order to survey the diversity of solutions, it is sufficient to study the special cases with the field
in the xy plane, i.e. Θ = π/2, for (i) Jx ≥ Jy ≥ Jz, (ii) Jz ≥ Jx ≥ Jz, and (iii) Jy ≥ Jz ≥ Jx. The
results for a definite ordering Jx ≥ Jy ≥ Jz with the field in either of the three coordinate planes
may then be obtained by a suitable transformation of axes.

In case (i) (Jx ≥ Jy ≥ Jz) the Néel state configuration obviously lies in the xy plane, i.e.
θ = π/2, α = 0. The angle φ characterizes the direction of the net magnetization, and 2β is the
angle between the directions of the sublattice magnetizations. The solution of (2.16) yields

tanφ = tan Φ
Jx + Jz
Jy + Jz

, (2.17)

cosβ =

[
(Jx + Jz)(Jy + Jz)

[
(Jx + Jz) sin2 Φ + (Jy + Jz) cos2 Φ

]
(Jx + Jy)

[
(Jx + Jz)2 sin2 Φ + (Jy + Jz)2 cos2 Φ

] ]1/2

. (2.18)

In case (ii) (Jz ≥ Jx ≥ Jz) the sublattice spins lie in a plane perpendicular to the xy plane. Here,
we have θ = π/2, β = 0, and the angle between the directions of the two sublattice magnetizations
is 2α. Eqs. (2.16) are then solved by (2.17) and

cosα =

[
(Jx + Jy)

[
(Jx + Jz)2 sin2 Φ + (Jy + Jz)2 cos2 Φ

]
(Jx + Jz)(Jy + Jz)

[
(Jx + Jz) sin2 Φ + (Jy + Jz) cos2 Φ

]]1/2

. (2.19)

The case (iii) (Jy ≥ Jz ≥ Jx) shows more complex behavior since we know from (i) and (ii)
that for Φ = 0 the spins of the two sublattices lie in the xy-plane, whereas for Φ = π/2 they are
pointing out of the xy-plane. In fact there is a critical field direction ΦF given by

tan ΦF =
Jy + Jz
Jx + Jz

[
Jy − Jz
Jz − Jx

]1/2
, (2.20)
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where one type of behavior changes into the other. It is a continuous transition. For Φ < ΦF the
spin configuration is characterized by (2.17) and (2.18) with spins in the xy plane. At Φ = ΦF
the angle β vanishes and the ground state is ferromagnetic with spins pointing in direction φF
determined by

tanφF =
[
Jy − Jz
Jz − Jx

]1/2
, (2.21)

which, in general, is not the direction of the field. For Φ > ΦF the configuration is given by (2.17)
and (2.19), i.e. lying in a plane perpendicular to the plane of the configuration at Φ < ΦF . These
results, transformed by suitable rotations of axes to fixed ordering Jx > Jy > Jz, are illustrated in
Fig. 1. As a remarkable result we have thus found that in the general anisotropic quantum AFM
(1.1) there is always a special field direction [Φ = 0, Θ = ΘF for Jx ≥ Jy ≥ Jz] where the GS is
ferromagnetic in a finite field.

Figure 1. The figure shows one octant of the ellipsoidal surface (2.7) where the GS of Hamiltonian
(1.1) is of the simple Néel-type. The configurations of the two sublattices are indicated by arrows
for fields along the coordinate axis and for the special point F. (i), (ii) and (iii) refer to the cases
discussed in detail in the text. Note that both inside and outside the ellipsoid the GS is, in
general, not of the Néel-type but has a complicated structure due to fluctuations.

This general picture simplifies when H is chosen more symmetric. For the Heisenberg AFM
(Jx = Jy = Jz = J) the ellipsoid (2.7) becomes a sphere with radius hN = 2J and the GS is
ferromagnetic for all directions. For the isotropic XY model (Jx = Jy = J, Jz = 0) the ellipsoid
is disk-like. The GS on the poles (h = hz) is ferromagnetic whereas on the equator the spins of
both sublattices lie in the xy-plane at right angles to one another. For the Ising model (Jx = Jy =
0, Jz = J) the ellipsoid degenerates into a line. The spins of the two sublattices are antiparallel for
|hzN | < J , hxN = hyN = 0 and become parallel for hzN = J .

The existence of a Néel GS in the quantum AFM is an extraordinary phenomenon. Generally,
the GS is very complicated both inside and outside the ellipsoidal surface, and only at h = hN
it behaves quasi-classically. The only exceptions are systems with [HEX,HZE] = 0, where the GS
stays simply ferromagnetic for all |h| > |hN |. The question arises, how these quasiclassical features
of the quantum chain at |h| = |hN | are embedded in the behavior of the classical chain. In the
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following section we shall therefore briefly discuss the T = 0 properties of the classical anisotropic
AFM with special emphasis on the study of the role of hN .

3. Role of hN in the classical limit

The GS properties of the classical anisotropic AFM (1.1) have thoroughly been studied in the
past [15]. Here we summarize a few results which are important for our purpose. In the classical
chain the spin operators Sl of (1.1) are replaced by vectors

Sl = s(sin θl cosφl, sin θl sinφl, cos θl).

The classical GS is found by minimizing H with respect to the polar angles{θl, φl}. A sketch of the
phase diagram for the ordering Jx > Jy > Jz is shown in Fig. 2. There is a closed surface h = hs
separating the ferromagnetic (FM) phase outside from states with nonzero AFM LRO inside. In
the (hx, hz)-plane there exists a line h = hSF given by the hyperbola

h2
x

J2
x − J2

y

− h2
z

J2
y − J2

z

= (2s)2, (3.1)

where the sublattice magnetizations change their directions discontinuously in a spin-flop (SF)
transition. The SF-phase boundary h = hSF terminates in a bicritical point B on the FM phase
boundary h = hs.

Figure 2. Zero-temperature phase diagram of the classical anisotropic AFM (1.1) in a magnetic
field. The surface h = hs, separates the ferromagnetic phase from two-sublattice Néel-type states
inside. In the (hx, hz)-plane there exists a line h = hSF, where the sublattice magnetizations
change their directions discontinuously in a spin-flop transition. The spin-flop phase boundary
terminates in a bicritical point B on the ferromagnetic phase boundary. For fields along the
coordinate axes and for the bicritical point B, the configurations of the two sublattices are
indicated by arrows.

The phase boundary h = hs for fields in the xy plane is obtained as solution of the equation

h2
x + h2

y = 4s2(Jx + Jy)2 +
4s2(Jx − Jy)2h2

xh
2
y

4h2
xh

2
y + {h2

x − h2
y − 4s2(J2

x − J2
y )}2

. (3.2)
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For weak anisotropy s(Jx − Jy)� hs this curve deviates only slightly from a circle:

h2
x = 4s2(Jx + Jy)2 + s2(Jx − Jy)2 sin 2Φ, tan Φ = hy/hx. (3.3)

For fields in the yz plane, hs describes an elliptic curve

h2
x

4s2(Jx + Jz)2
+

h2
y

4s2(Jy + Jz)2
= 1. (3.4)

For fields in the xz plane, the saturation field lies on different curves on either side of the bicritical
point. The part joining the x-axis has the structure of (3.4) and the part joining the z-axis the
structure (3.2), both with indices changed accordingly. For h parallel to any of the coordinate axes,
the saturation field

hxs = 2s{Jx + max(Jy, Jz)}, etc, (3.5)

is always larger than the Néel-state field

hxN = 2s[(Jx + Jy)(Jx + Jz)]1/2, etc, (3.6)

except for the case of rotational symmetry around the field axis, for which [HEX,HZE] = 0. Here
the two values coincide. Evidently the Néel-state ellipsoid h = hN is located in the interior of the
surface h = hs. For anisotropic cases the two surfaces have only the bicritical point B in common.
In fact, the point B in the phase diagram of the classical chain (Fig. 2) coincides with the special
point F on the surface h = hN (Fig. 1). We have verified that the classical GS configurations
for fields h = hN are identical to the configurations found in section 2 by a quantum-mechanical
calculation.

By looking only at the GS of the classical chain, the Néel field hN is not distinguished in any way.
The characteristic features showing up at h = hN in the quantum chain, appear, however, already
when we introduce quantum fluctuations about the classical GS. Linear spin-wave theory yields
the normal modes and the linear response function of the classical Hamiltonian (1.1). Quantum
fluctuations are then obtained via the quantum-mechanical fluctuation-dissipation theorem. We
shall discuss here the case Jx > Jy > Jz, h = hz. The GS is of the SF type with sublattice spins
in the xz plane as indicated in Fig. 2. For h below the saturation field hzs = 2s(Jx + Jz) the angle
2α between the spins of the two sublattices is given by cosα = h/hzs. Starting with this GS, linear
spin-wave theory yields the following energies for the normal modes contributing, respectively, to
the fluctuations parallel and perpendicular to the field direction:

ω‖(q) = 2s[(Jx − Jy cos q)(Jx + [Jz − (h/2s)2/(Jx + Jz)] cos q)]1/2, (3.7a)

ω⊥(q) = 2s[(Jx + Jy cos q)(Jx − [Jz − (h/2s)2/(Jx + Jz)] cos q)]1/2. (3.7b)

We use here a representation in the extended Brillouin zone Iql � π (see Ref. [16]). It has the
advantage that the fluctuation function Φµµ(q, ω), the Fourier transform of 〈(Sµl (t)− 〈Sµl 〉)(S

µ
l′ −

〈Sµl′〉)〉 can be written in the simple form

Φxx(q, ω) = 2πIxx(q)δ[ω − ω⊥(q)], (3.8a)
Φyy(q, ω) = 2πIyy(q)δ[ω − ω⊥(q)], (3.8b)
Φzz(q, ω) = 2πIzz(q)δ[ω − ω‖(q)], (3.8c)

The fluctuation intensities are obtained by calculating also the linear-response function in the
spin-wave approximation and applying the fluctuation-dissipation theorem. An equivalent but even
simpler way [16,17] is to use the fact that the first frequency moment of Φµµ(q, ω)

Kµµ(q) =
∫ ∞

0

dω

2π
ωΦµµ(q, ω) = −1

2
〈[H, Sµ(q)], Sµ(−q)]〉 (3.9)

7
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is exactly known in terms of the magnetization σz and the static nearestneighbour correlation
functions Fµ = 〈Sµl S

µ
l+1〉,

Kxx(q) = −Jy(Fy − Fz cos q)− Jz(Fz − Fy cos q) +
1
2
hσz, (3.10a)

Kyy(q) = −Jx(Fx − Fz cos q)− Jz(Fz − Fx cos q) +
1
2
hσz, (3.10b)

Kzz(q) = −Jx(Fx − Fy cos q)− Jy(Fy − Fx cos q). (3.10c)

For the classical GS at h ≤ hzs we have σz = s cosα, Fx = −s2 sin2 α, Fy = 0, Fz = s2 cos2 α,
cosα = h/hzs. With these ingredients we obtain from (3.8), (3.9) and (3.10) the following fluctuation
intensities:

Ixx(q) =
1
2
s

(
h

hzs

)2 [
Jx + Jy cos q

Jx − [Jz − (h/2s)2/(Jx + Jz)] cos q

]1/2
, (3.11a)

Iyy(q =
1
2
s

[
Jx − [Jz − (h/2s)2/(Jx + Jz)] cos q

Jx + Jy cos q

]1/2
, (3.11b)

Izz(q) =
1
2
s
{

1− (h/hzs)
2
} [ Jx − Jy cos q

Jx + [Jz − (h/2s)2/(Jx + Jz)] cos q

]1/2
. (3.11c)

By studying the field dependence of these functions we observe the following:
(i) At h = hzN all three components Iµµ(q) of the fluctuation intensities are constant, i.e.

the fluctuations are completely uncorrelated. This means that the correlations in real space are
δ-functions without decaying terms despite the presence of fluctuations.

(ii) Generally, the spectrum (3.7) is gapless only at h = hzs. Here the transverse fluctuations
(Ixx) are divergent. This reflects the phase transition where AFM LRO is destroyed.

In conclusion we may say that the Néel-type GS’s of the classical chain are altered by the
introduction of quantum fluctuations except for field on the ellipsoid h = hN .

4. The critical field

In this section, we study the critical surface h = hc which separates GS’s with true or incipient
AFM LRO from GS’s without AFM LRO. In the classical limit s→∞, this transition occurs at the
saturation field hs, and the results of section 3 show that the values of the Néel field are generally
smaller than those of the critical field hs for the same direction. There are two exceptional cases
where hN = hs = hc (for arbitrary s): (i) in the bicritical point B; (ii) in the rotationally symmetric
case [HEX ,HZE ] = 0. For the other cases the behavior becomes more complex for s < ∞. Here
the quantum fluctuations are expected to have two major effects: (i) there is no longer a finite
saturation field; (ii) the critical field hc is reduced from its classical value hs.

In order to localize the true critical field in the quantum case, we use our result of section 2
that the AFM order parameter is non-zero at h = hN . Thus, for a given field directionhn is a
lower bound for the critical field. On the other side, it is highly plausible to use as upper bound
the classical saturation field hs, for it is a reasonable assumption that the quantum fluctuations
will diminish the ordering and therefore reduce the value of hc. Hence, we have

hN ≤ hc ≤ hs. (4.1)

This localization of hc is perfect for isotropic systems (where hN = hs, and still fairly efficient
for weak anisotropies as is implicit in the analytic expressions for hN and hs. A case with relatively
strong anisotropy (Jx = 1.5, Jy = 1.0, Jz = 0.5) is illustrated in fig. 3. It shows the intersections
of both surfaces h = hN and h = hs as sketched in figs. 1 and 2, respectively, with the three
coordinate planes.

Apart from hN , hs, hc there is a further characteristic field in the system described by the
Hamiltonian (1.1). It is obtained from the energy gap ∆e between the GS and the lowest excited
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Figure 3. Intersections of the surfaces h = hN (Néel-state field) and h = hs, (classical saturation
field), respectively, with the three coordinate planes. The true critical field h = hc is expected
to lie between the two surfaces; in particular it will contain the bicritical point B.

state for h� Jµ. A perturbation theory to first order in Jµ/h yields ∆E = h−hA+ O(h−1) which
defines a field hA where the linear dependence extrapolates to zero. The explicit calculation yields
for arbitrary s (with Θ,Φ the polar angles of the field)

hA = s(Jx + Jy + Jz) + s(Jx sin2 Θ cos2 Φ + Jy sin2 Θ sin2 Φ + Jx cos2 Θ). (4.2)

An expansion of (2.8) for weak anisotropies εx = Jx/Jz − 1, εy = Jy/Jz − 1 (Jz ≡ J) yields a
positive definite quadratic form for hA − hN :

hA − hN =
1
2
Hxxε

2
x +Hxyεxεy +

1
2
Hyyε

2
y, (4.3)

Hxx = sJ(1− sin2 Θ cos2 Φ)− 3
4
sJ(1− sin2 Θ cos2 Φ)2, (4.4a)

Hyy = sJ(1− sin2 Θ sin2 Φ)− 3
4
sJ(1− sin2 Θ sin2 Φ)2, (4.4b)

Hxy =
1
2
sJ(1− sin2 Θ)− 3

4
sJ(1− sin2 Θ cos2 Φ)(1− sin2 Θ cos2 Φ). (4.4c)

Hence, we have HN ≤ hA, at least for weak anisotropies. In cases with the field parallel to any of
the coordinate axes (e.g. h = hz) we obtain for the three characteristic fields

hzN = 2s
√

(Jx + Jz)(Jy + Jz), hzA = s(Jx + Jy + 2Jz), Hz
s = 2s[Jz + max(Jx, Jy)]. (4.5)

Obviously they satisfy the relation (for arbitrary anisotropy)

hzN ≤ hzZ ≤ hzs . (4.6)
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Figure 4. Energy gap ∆E between the singlet GS and the lowest excited state for the system
(1.1) with Jx = Jz = J, Jy = 0, h > hz

N . The lowest full line is the result (4.7) for the classical
chain. The other three full lines represent finite-chain results for s = 1

2
systems of lengths

N = 4, 6, 8, respectively. For large fields all these lines approach the dashed line representing
∆E = h− hz

A of (4.5).

The equality signs hold if [HEX ,HZE ] = 0, i.e. if Jx = Jy.
The possible significance of hA is connected with the fact that we expect the GS to be twofold

degenerate (for N → ∞) in the whole region 0 ≤ h ≤ hc due to the presence of AFM LRO, and
to become nondegenerate at h > hc when the AFM ordering is suppressed. We therefore study
the field dependence of the energy gap ∆e between the GS and the lowest excitation for large h.
For a representative example (Jx = J, Jy = 0, Jz = J, h = hz) this is illustrated in fig. 4. In the
classical limit s → ∞,∆E(h) = ω‖(0) = ω⊥(π) can be calculated exactly in the framework of
linear spinwave theory, yielding

∆E(h) = [(h− hzs)(h− hzs + 2s|Jx − Jy|)]1/2, h = hz. (4.7)

It vanishes at h = hzs, the critical field for s→∞, as shown in fig. 4. For large h, (4.7) approaches
the same asymptotic behavior ∆E(h) ∼ h − hzA, (dashed line in fig. 4) as obtained above for
the quantum chain. The corresponding characteristic field hzA lies, however, clearly below the true
critical field hzs of the classical chain. Therefore, hzA has no obvious physical significance in the
limit s → ∞. In the quantum chain, ∆E(h)) is not known except for its asymptotic behavior at
h� Jµ, as calculated above. For s = 1

2 , we can resort to finite-chain calculations on systems with
up to N = 8 spins for further information.1 Fig. 4 shows such finite-chain results for the above
example. For finite N , the gap ∆E(h) is zero only at h = hN and at a discrete set of special fields
below hN . On the other hand, by use of our exact results for h = hN , we can prove that the slope
of ∆E(h) at h = hN goes to zero in the thermodynamic limit. This indicates that for N → ∞
the GS may stay twofold degenerate in a finite interval hN ≤ h ≤ hc beyond the Néel-state field
hN . The remarkable feature of the finite-chain results in fig. 4 is that the corresponding curves for
the gap energy do not cross the dashed line ∆E(h) = h− hzA. Although we cannot prove that for
larger N this crossing cannot occur, the rapid convergence for h > hzA is indicative that it does not.
Analogous calculations on a variety of systems with different anisotropies confirm this observation.

1Details about the method of finite-chain calculations are found in ref. 18 and in references therein.
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Therefore, it is highly suggestive to conjecture that for s = 1
2 , ∆E(h) = h− hzA, is a lower bound

for the true energy gap, or equivalently, that hzA of (4.5) is an upper bound for the critical field.
As testing ground for this conjecture we can use the result of Barouch and McCoy [11] for

the anisotropic XY model with h = hz, the only nontrivial case where the critical field is exactly
known:

hzc =
1
2

(Jx + Jy). (4.8)

It coincides with hzA, of (4.7) for Jz = 0 and hence is consistent with our conjecture. For systems
with s > 1

2 the critical field hzc is expected to be closer to the classical saturation field hzs. Thus
hzA will certainly lose its significance which it may have for s = 1

2 . It would be interesting to have
finite-chain results for systems with s > 1

2 in order to illustrate this point.

5. Phase diagrams

Here we use the results of the preceding sections for a discussion of the variety of features
appearing in the phase diagrams of the 1D quantum AFM (1.1) at T = 0 in a magnetic field.
So far exact results have been available only for the anisotropic s = 1

2 XY model (Jz = 0) [10]
and the uniaxial s = 1

2 XXZ model (Jx = Jy) [8] both with field in the z-direction. The former
system can be mapped onto a system of noninteracting fermions, the latter model is amenable to
Bethe-Ansatz calculations.

Before we discuss the phase diagrams for a few explicit examples, it is useful to characterize
the various phases which are realized by (1.1) for s = 1

2 with hh parallel to a coordinate axis. We
distinguish five different phases:

(i) Antiferromagnetic (AFM) phase: It is characterized by a non-zero staggered magnetization
parallel to the applied field. This phase is realized by all easy-axis systems (biaxial or uniaxial)
in a field parallel to the easy axis.

(ii) Spin-flop (SF) phase: Here the AFM order parameter is perpendicular to h. This phase is
realized by uniaxial (easy-axis or easy-phase) systems in a field perpendicular to the axis, as
well as by biaxial systems with h along any axis.

(iii) Incommensurate (INC) phase: It is realized only by systems with [HEX ,HZE ] = 0, i.e. by
uniaxial systems with h parallel to the axis and by the isotropic Heisenberg model. In this
phase, the rotational symmetry of H has the effect of enhancing the fluctuations resulting in
the absence of true LRO. Nevertheless, ordering is present as incipient LRO in the power-
law decay of the correlation functions 〈Sµl S

µ
l+R〉 ∼ cos(qµR) · R−(d−2+η). As a remarkable

result it has been found that the leading term in the asymptotic behavior of 〈Sµl S
µ
l+R〉 with

h = hµ. corresponds to a mode with a wave number qµ which is incommensurate to the
underlying lattice structurel [12,13]. This wave number is related to the magnetization σµ
through qµ = π(1− 2σµ).

(iv) Paramagnetic (PM) phase: In this phase the AFM ordering is suppressed by the field, but
due to the quantum fluctuations arising from the noncommutability of HEX and HZE the
magnetization is not saturated. The correlation functions decay exponentially. The PM phase
occurs in all systems with [HEX ,HZE ] 6= 0.

(v) Ferromagnetic (FM) phase: Here the magnetization is saturated, and the fluctuations are
uncorrelated. The FM state is an eigenstate in all systems with [HEX ,HZE ] = 0.

In the limit h = 0, the AFM and SF phases are indistinguishable. Both are characterized by
a doublet GS (in the thermodynamic limit), separated by an energy gap from the lowest band of
excited states. In the INC phase there is no energy gap, and the GS is a singlet. Note that at h = 0
the INC phase is not really INCommensurate but still displays INCipient LRO. Both the PM and
the FM phase are realized in strong fields. There is a gap of magnitude ∆E ' h− hc between the
singlet GS and the lowest excitation.
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As typical representatives of anisotropic AFM chains we discuss the phase diagrams of the
uniaxial XXZ model (see fig. 5) with field (a) parallel, (b) perpendicular to the axis, and the
anisotropic XY model (see fig. 6) with (a) in-plane, (b) out-of-plane field. In two of the four cases,
exact results are available for s = 1

2 , which may serve as testing-ground for our approach.

Figure 5. Zero-temperature phase diagram of the uniaxial XXZ model with field (a) parallel,
(b) perpendicular to the axis. The various phases and critical fields are explained in the text.

Figure 6. Zero-temperature phase diagram of the anisotropic XY model with (a) in-plane, (b)
out-of-plane field. The various phases and critical fields are explained in the text.

5.1. J x = Jy ≡ J⊥, h = hz (fig. 5a)

Due to the rotational symmetry of H, the critical field which separates the INC phase from the
FM phase is exactly known,

hc = hN = hA = hs = 2s(J⊥ + Jz). (5.1)

For easy-plane anisotropy (Jz < J⊥) the INC phase stays stable down to h = 0. For easy-axis
anisotropy (Jz > J ⊥), the low-field phase is the AFM phase, separated from the INC phase by

12
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the discontinuous spin-flop transition at h = hsSF . The spin-flop field hsSF strongly depends on the
spin quantum number s. For s = 1

2 , h
1/2
SF has been calculated exactly by Yang and Yang [8]. The

classical result reads
h∞SF = 2s

√
J2
z − J2

⊥. (5.2)

We observe that the quantum fluctuations which are strongest for s = 1
2 have the effect of desta-

bilizing the AFM phase and shifting the SF transition to lower fields.

5.2. J x = Jy ≡ J⊥, h = h⊥ (fig. 5b)

At h = 0, there is incipient LRO for Jz ≤ J⊥, and true LRO for Jz > J . In the easy-plane
case, an in-plane field induces a continuous transition from the INC phase to the SF phase, with
an AFM order parameter going to zero for h→ 0. In the isotropic Heisenberg case (Jz = J⊥) the
INC phase persists. Nevertheless the system behaves singularly at h⊥ = 0+ which is due to the
reduction of rotational invariance of H [6,8,13]. The AFM ordering present in low fields vanishes
at a critical field hc located between hN and hs:

hN = 2s
√

2J⊥(J⊥ + Jz), hs = 2s[J⊥ + max(Jz, J⊥)]. (5.3)

In the classical limit the transition occurs at hs, whereas for s = 1
2 the critical field is expected –

according to our arguments of section 4 – to be located rather at or below

hA = s(3J + Jz). (5.4)

Coincidence of the critical field with hA for s = 1
2 is confirmed by exact results only for Jz/J⊥ = 1

and Jz/J⊥ =∞.

5.3. J z = 0, h = hy (fig. 6a)

Here the low-field phase has SF character for Jy/Jx < 1 and AFM character for Jy/Jx > 1. As
a special case the h = 0 phase of the isotropic XY model (J x = Jy) has INC character. The AFM
phase is destabilized at the spin-flop field hsSF , which again appears to be strongly s-dependent.
In the classical limit it is given by

h∞SF = 2s
√
|J2
x − J2

y |. (5.5)

For s = 1
2 it has been obtained numerically from extrapolations of finite-chain results. Again we

observe that the AFM phase is destabilized at lower fields in the s = 1
2 case, owing to quantum

fluctuations. At higher fields the AFM LRO in the SF phase vanishes at the critical field hc located
between

hN = 2s
√
Jx(Jx + Jy) and hs = 2s(Jx + Jy). (5.6)

We know that in the classical limit hc = hs, and for s = 1
2 we expect

hA = s(Jx + 2Jy) (5.7)

to be an upper boundary for hc.

5.4. J z = 0, h = hz (fig. 6b)

At h = 0 there is true AFM LRO for Jy/Jx 6= 1 and incipient LRO in the isotropic case
Jy/Jx = 1. This ordering persists up to the critical field hc located between hN and hs,

hN = 2s
√
JxJy, hs = 2smax(Jx, Jy). (5.8)
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Here we know the exact critical field hc both in the classical and quantum limits [11]: For s =∞,
hc = hs, and for s = 1

2

hc = hA =
1
2

(Jx + Jy). (5.9)

A general feature of the four examples discussed in this section is that in the classical system
the low-field phases are stable up to higher fields than in 1 the s = 1

2 system. This is in agreement
with our argument used in section 4 that quantum fluctuations generally lower the value of the
critical field.

6. Conclusion

We have investigated the GS properties of the anisotropic 1D spin-s AFM in a magnetic field of
arbitrary direction. As an extraordinary phenomenon we have found that for a given field direction
there always exists a particular field value hN , where the GS behaves quasi-classically. For a given
set of exchange parameters Jx, Jy, Jz, these special values hN lie on an ellipsoidal surface in field
space. For fields both inside and outside this ellipsoid, the GS is, generally, very complicated due
to the presence of quantum fluctuations. We have reviewed the phase diagram of the classical chain
and shown that the special features occurring at h = hN are to some degree also present in the
linear spin-wave approximation appropriate for s → ∞. It was found that the ellipsoid hN lies
within the closed surface hs representing the classical saturation field. We have demonstrated that
hN and hs can be used as lower and upper bound, respectively, for the critical field hc, where
the (true or incipient) AFM LRO vanishes. Finally, we have characterized the variety of phases
occurring in the anisotropic quantum spin chain at T = 0, and discussed the phase diagrams for a
few representative systems.
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