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A Newcomer’s Guide to Functional Near Infrared
Spectroscopy Experiments

Rand K. Almajidy, Kunal Mankodiya , Member, IEEE, Mohammadreza Abtahi, and Ulrich G. Hofmann

(Methodological Review)

Abstract—This review presents a practical primer for
functional near-infrared spectroscopy (fNIRS) with respect
to technology, experimentation, and analysis software. Its
purpose is to jump-start interested practitioners consider-
ing utilizing a non-invasive, versatile, nevertheless chal-
lenging window into the brain using optical methods. We
briefly recapitulate relevant anatomical and optical founda-
tions and give a short historical overview. We describe com-
peting types of illumination (trans-illumination, reflectance,
and differential reflectance) and data collection methods
(continuous wave, time domain and frequency domain). Ba-
sic components (light sources, detection, and recording
components) of fNIRS systems are presented. Advantages
and limitations of fNIRS techniques are offered, followed by
a list of very practical recommendations for its use. A variety
of experimental and clinical studies with fNIRS are sampled,
shedding light on many brain-related ailments. Finally, we
describe and discuss a number of freely available analy-
sis and presentation packages suited for data analysis. In
conclusion, we recommend fNIRS due to its ever-growing
body of clinical applications, state-of-the-art neuroimaging
technique and manageable hardware requirements. It can
be safely concluded that fNIRS adds a new arrow to the
quiver of neuro-medical examinations due to both its great
versatility and limited costs.

Index Terms—Functional near infrared spectroscopy,
fNIRS, neuroimaging.

I. INTRODUCTION

THE brain is undoubtedly one of the most complex struc-
tures known to humankind, as evidenced by its sheer num-

bers of neurons (ca. 1011), supported in the cortex by about
four times as many glial cells [1], and building some 1014
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synaptic connections [2]. As such, grasping the inner work-
ings and functions of the human brain is among the most pro-
found and far-reaching challenges of our time. This quest for
understanding promises new treatments for brain disorders, fun-
damental discoveries about the brain’s functions, and impact-
ful applications spanning from neuro-medicine and live brain
monitoring to new communication devices. Unfortunately, the
progress is slow, and there are many open questions, not least
because of a lack of unobtrusive, high resolution and fast mea-
surement systems for natural environments. This leads to over-
simplifications of the brain’s workings. For example, it is a very
common misconception to view the brain as simply a collec-
tion of neurons, ignoring the essential roles of both glial cells
and blood supply in the brain. It is estimated that almost every
neuron has its own nourishing capillary, altogether constituting
a 400-mile supply infrastructure [3].

As neurons do not maintain any substantial provisions of
oxygen or glucose, an increase in neural activity due to com-
putational workload has to be followed by an increase in blood
supply by vessels [4], most likely triggered by chemical sig-
naling from the neurons themselves [5]. However, the true
relationship between local neural activity and the resulting adap-
tations in cerebral hemodynamics, called neurovascular cou-
pling (NVC), is not fully understood. Most investigations into
NVC employ expensive, bulky, stationary functional magnetic
resonance imaging (fMRI) devices with limited time resolution.
Despite the superior spatial resolution offered by fMRI, its high
cost, low temporal resolution, and limited mobility represent a
challenge for many researchers.

Thankfully, this situation might improve with the emergence
of functional near infrared spectroscopy (fNIRS) systems which
provide a portable and less costly imaging modality for cerebral
hemodynamics [6]. Similar to the BOLD [Blood-Oxygen-Level
Dependent] signal-the hallmark of fMRI, fNIRS data relies on
NVC. However, fNIRS spatial resolution is limited when com-
pared to that of fMRI signals. As the acronym suggests, fNIRS
uses near-infrared light of wavelengths longer than visible at
750 nm–1200 nm and benefits from the particular optical prop-
erties of tissue regarding this low energy radiation [6].

II. fNIRS PRINCIPLES AND THEORY

Different brain imaging techniques measure changes in tis-
sues’ physical or chemical properties, including during brain
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activity. These changes are then translated in accordance with
prior knowledge of the tissues’ properties principles of the mea-
surement techniques into data that reflects changes in brain
activity.

fMRI BOLD signals employ changes in the blood’s magnetic
susceptibility during neural activity to measure changes in brain
activity [4]. fNIRS on the other hand, monitors changes in op-
tical properties of tissues, primarily blood’s absorbance, during
neural activity to measure that activity. fNIRS employs light in
the NIR range for that purpose. Hence its beneficial for fNIRS
researchers to understand the light propagation principles and
the tissues’ optical properties that govern fNIRS.

Light propagation depends on the light’s wavelength and the
medium’s optical properties which govern incident light’s re-
flection, scattering, and absorption. Absorption depends on the
medium’s chemical constitution [6], whereas scattering (con-
sidered as a deviation from a straight trajectory), is influenced
by many parameters such as wavelength and particulate consis-
tency [7]. Reflection, on the other hand, depends on the incident
angle between the light and tissue, and on the materials optical
density [6].

Absorbed light is dissipated as heat in the absorber medium
and its molecular makeup determines the specific wavelength
at which maximal absorption occurs [8]. The most important
chromophores, or chemical groups absorbing light at specific
wavelengths [9], in healthy perfused tissue are oxygenated
hemoglobin HbO2 , deoxygenated hemoglobin Hb, their sum
- total hemoglobin HbT [10], and Cytochrome c oxidase [11],
[12]. These concentrations change over time and with oxygen
concentration [13].

Near infrared light displays advantageous propagation char-
acteristics in biological tissue, with limited absorbance by water
or relevant chromophores in tissue (“Optical Window”). Light
above 1200 nm is predominantly absorbed by the tissue’s water
content [6].

Absorption is quantified by the molar extinction coefficient a
as a function of wavelength and shows to what extent the chro-
mophore absorbs light at that wavelength. It results in a unique
absorption spectrum for each chromophore [13]. The prominent
Cytochrome c oxidase (Caa3 in Fig. 1) is not used as an indicator
for tissue oxygenation, as it is a mitochondrial enzyme repre-
senting intracellular oxygenation whose concentration relies on
factors other than changes in oxygen [14]. Instead, Hb and HbO2
concentrations are of primary interest in tissue monitoring.

The computations translating NIR photons collected from the
body surface to information about tissue activation depend upon
the optical properties of these illuminated tissues. The following
paragraphs will introduce some of these optical properties with
the description on how to deduce the diffusion paths of NIR
photons through tissue, and how to estimate the concentration
changes of Hb and HbO2 using these properties.

A. Beer-Lambert Law

As both absorption and scattering contribute to light atten-
uation, both parameters should be considered in NIRS. The
Beer-Lambert law relates light attenuation by absorption to

Fig. 1. Absorption spectra of Hb, HbO2, H2O and other chromophores
in NIR range (redrawn after Murkin and Arango 2009 [11]). The isosbestic
point of the HB/HbO2 absorption spectrum is circled in white within the
NIR optical window.

chromophore concentration:

A = − log10

(
I

Io

)
= a ∗ c ∗ d

The attenuation A of incident light is given by the logarithmic
ratio of the intensity of the received light (I) to the intensity
of the source light (Io ). This equals the product of the molar
extinction coefficient a, the molar chromophore concentration
c, and the distance between the light source and the detector d.

The second major factor in light attenuation is scattering,
where a photon’s trajectory is changed by an interaction with
matter without substantial energy loss. Scattering is the dom-
inant mechanism of light propagation in biological tissue.
Mie-scattering (where the scatterer’s dimension is similar to
the incident wavelength) is weakly wavelength dependent. The
human head is composed of many different layers with unique
densities and thicknesses, resulting in many different scattering
paths for NIR light. Thus, skin, bone and cerebral matter must
be treated carefully in simulations [10].

A photon crossing through a medium containing a uniform
distribution of identical scatterers may be scattered away from
its straight path with a probability Ps(z) over a distance z.
This probability is characterized by its scattering coefficient µs ,
the inverse of the distance a photon may cover without being
deflected in 1/cm. The inverse of µs can be interpreted as the
scattering free mean path length mfps, or the average distance
a photon travels before scattering events.

To correct for a tissue’s anisotropic scattering properties, µs

must be corrected to the reduced scattering coefficient µ′
s , which

considers the anisotropy factor g [9], [15]:

µ′
s = µs(1 − g)

Typical reduced scattering coefficients for grey and white
matter in the brain are 11.8 1/cm and 11.1 1/cm at the 760 nm
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and 830 nm wavelengths respectively, that are generally used in
fNIRS.

Since NIR light photons suffer more from scattering than
absorption in body tissues, NIR photon diffusion through the
body can be described (and simulated) as a random walk with a
step size of 1/µs’ [cm] [16].

B. Modified Beer-Lambert Law

As photons do not travel the distance from source to detector
in a straight line, but instead follow a random path and thus
travel greater distances than d, this increased true path distance
is introduced as the differential path length (DP ). To modify the
Beer-Lambert law, the differential path length factor (DPF ) is
introduced [17] as follows:

A = a ∗ c ∗ d ∗ DPF + G

In the modified Beer-Lambert law, the attenuation is not lin-
early related to the extinction coefficient because of the un-
known term G, which includes the effect of the shape of the
optodes and the scattering factor. Therefore, it is not possible
to calculate exact chromophore concentrations with the modi-
fied Beer-Lambert law. However, by assuming G to be constant
for all chromophores, it is possible to eliminate G from the
equations and calculate changes in the chromophore’s concen-
trations [18]. Those can be found by assuming that d and DPF
are constant over the experimental time frame.

Fig. 1 depicts the NIR sweet spot of low water absorbance
between 700 nm and 950 nm, with Hb and HbO2 spectra
crossing at an isosbestic point around 805 nm. The unknowns
from the equation can be eliminated by solving the Beer-
Lambert law for two (or more) measurement wavelengths on
either side of the isosbestic point. This helps to actually find
changes in Hb and HbO2 concentrations [13], [18], [19]. As we
detect small changes in attenuation for both wavelengths

ΔAλ1 = aλ1
H b.L.[Hb] + aλ1

H bO2
.L.[HbO2 ]

ΔAλ2 = aλ2
H b.L.[Hb] + aλ2

H bO2
.L.[HbO2 ]

with L representing the total mean path length d ∗ DPF , a
representing the respective extinction coefficients, and the re-
spective concentrations denoted as [HbX], we can solve for the
concentrations [20] :

[HbO2 ] =
aλ2

H bO2
.ΔAλ1 − aλ1

H b.ΔAλ2

L.(aλ1
H bO2

.aλ2
H b − aλ2

H bO2
.aλ1

H b)

[Hb] =
aλ1

H bO2
.ΔAλ2 − aλ2

H b.ΔAλ1

L.(aλ1
H bO2

aλ2
H b − aλ2

H bO2
.aλ1

H b)

Additional wavelengths may be used to measure the con-
centration of other chromophores such as Cytochrome c oxi-
dase and water or to improve the accuracy of Hb and HbO2
concentration measurements [14], [18]. It is feasible to deter-
mine NIR wavelengths that can minimize errors in calculations
carried out using these equations, introduced by the assumptions
above [19].

III. CHRONOLOGY OF fNIRS EVOLUTION

Glenn Millikan’s attempt to measure oxygen concentration
in well-perfused muscle (with an Oximeter) in the 1940s [21]
is considered the origin of optical sensing methods [22], [23].
Frans Jöbsis presented one of his first efforts to measure blood
oxygenation levels and its variation in a cat’s brain using trans-
illumination spectroscopy in 1977 [6]. He explained the relative
transparency of brain tissues to NIR light and demonstrated the
feasibility of monitoring changes in the brain’s Hb oxygena-
tion using NIRS [6]. These experiments and his subsequent
research [24] made him the founder of in vivo NIRS.

In the 1980s, Marco Ferrari started to measure brain oxygena-
tion and its changes in animals. His results further confirmed that
NIR light can efficiently detect blood oxygenation changes [25],
[26]. In 1985, Ferrari carried out experiments to monitor blood
oxygenation changes in human adults using custom-made NIRS
instruments [27]. These experiments and those by Brazy and his
colleagues (including Jöbsis) to monitor preterm infants cere-
bral oxygenation [28] represent the first successful applications
of NIRS in human patients. In 1986, Ferrari and colleagues pre-
sented more cerebrovascular measurements from neonates [29]
and cerebrovascular patients. The data showed the effect of
carotid artery compression on regional cerebral blood volume
and oxygenation [30]. The same time frame witnessed the first
quantitative data showing HbO2 , Hb and HbT changes col-
lected from sick infants’ cerebral blood by David Delpy and
his colleagues (including M Cope). They employed a custom-
made, four wavelength trans-illumination NIRS system to moni-
tor oxygenation level changes [31]. Their findings paved the way
for NIRS’ use as a bedside cerebral oxygenation monitor. Their
1988 experiments provided the hemoglobin absorption spectra
at different NIR wavelengths, facilitating the quantification of
NIRS data collected from the brain [12] and estimation of the
optical path length of NIR light through the rat brain [17]. They
also presented a description of their system [32], which served
as the base design for the first commercial NIRS system pro-
duced by Hamamatsu Photonics K.K. (Hamamatsu City, Japan)
in 1989.

Delpy and his co-workers efforts to accurately calculate the
optical path length for NIR photons with time-of-flight mea-
surements [17] were extended by Duncan and colleagues, who
collected precise differential path length factor (DPF) values, the
absolute path lengths divided by the distances between sources
and detectors, using phase resolved spectroscopy from 100
adults and 35 newborn infants heads. Their findings indicated
differences between infants and adults, between males and fe-
males, and between wavelengths [33]. It was not until 1993 that
the first human fNIRS systems measurements were published.
These experiments utilized single-channel fNIRS systems and
included the work of Hoshi [34], Chance [35], Villringer [36],
Kato [37] and Okada [38]. Hoshi’s data showed an increase in
HbO2 and a decrease in Hb in the relevant area during brain
activation from a cognitive task (solving an arithmetic prob-
lem). This change is associated with an increase in cerebral
blood flow and was more prominent in younger subjects than in
adults [34]. Chance and colleagues interpreted the variation in
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Fig. 2. A chronology showing some of the early experiments and developments contributing to the evolution of fNIRS.

blood oxygen concentration in a relatively limited illuminated
tissue (a banana shape) as a measure of brain activation during
a similar cognitive task (problem solving). They concluded that
NIRS can monitor localized brain activity [35].

In the year of 1993, Villringer and colleagues used a NIRS
setup to assess hemodynamic changes in the brain during cogni-
tive tasks and visual stimulation. Their results demonstrated that
NIRS can indeed record changes in brain activity and not only
hemodynamic changes in the skin [36]. Kato and colleagues in-
vestigated HbO2 and Hb changes during visual stimulation [37].
Okada and colleagues (including Hoshi and Tamura) docu-
mented differences due to handedness and gender [38]. They
also published the first clinical use of fNIRS with schizophrenic
patients in 1997 [39].

Gratton and colleagues tested the feasibility of employ-
ing NIRS for optical scanning. They provided the first ev-
idence of the indirect relationship between changes in the
brain’s optical properties and neuronal activity. They showed the
feasibility of measurement in reflectance mode by demonstrat-
ing the interaction of near infrared light shined from a strong
light source with chromophores. The interaction happened on
the long, random path of the light through tissue. A sensitive
photodetector has detected some backscattered photons [40].
These efforts supported the emergence of the first multi-
channel fNIRS system (for details see the review by Ferrari and
Quaresima [41]).

Currently, fNIRS is a very useful neuroimaging technique
because of its lower cost and greater portability than fMRI or

PET. It has found its place in clinical and research settings
monitoring cerebral functionality related to vision [42], hear-
ing [43], speech [44], motor tasks [45], learning [46], and emo-
tional stimuli [47].

NIRS signals are highly correlated with regional cerebral
blood flow and thus cost-effectively augment PET or fMRI’s
BOLD measurements [48], [49]. They can therefore shed
light on the coupling of hemodynamic responses with neu-
ronal activity [50], [51], as revealed by electroencephalography
(EEG) [52].

NIRS performance is influenced by handedness and gen-
der [38], and in particular by aging [53] due to changes in the
optical properties of scalp tissues [54] and decreased brain ac-
tivation [55]. The increasing popularity of fNIRS is owed to its
portability, its moderate spatial and temporal resolution, its ease
of use, and its ability to scan slowly moving human subjects.
All these advantages have encouraged researchers to utilize it
individually or along with other modalities such as fMRI [8],
[56]–[58] or EEG [59]–[64].

IV. DIFFERENT TYPES OF NIRS

The different applications of NIRS systems require a basic
understanding of their principles. There are three main types
of NIRS systems: I) Continuous Wave (CW), II) Time Domain
and III) Frequency Domain spectrometers (see Fig. 3). Each
type has its strengths and weaknesses. Therefore, researchers
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Fig. 3. Principles of three different NIRS types.

must design their experiments in accordance with system
characteristics.

• Continuous Wave NIRS: CW-NIRS is the oldest and
the most common commercially used NIRS system
(reviewed by [65]). This type of device uses multi-
ple wavelength sources and measures the attenuation
of light (see Fig. 3) with a photodiode or a photode-
tector [66]. Compared to other types of NIRS, CW-
NIRS has advantages in simplicity, size, weight, and
cost. However, it is very difficult to separate attenua-
tion from absorption and scattering, and some systems
have a small light penetration depth due to short source-
detector distance (SDD) [66].
• Time Domain NIRS: Also known as time-resolved or

time-of-flight NIRS systems, a solid-state laser is usu-
ally used to provide very short but powerful pulses.
Light attenuation is measured by very sensitive special
cameras or even single photon counters sorting them
based on their arrival time [66] (reviewed by [67]).
This type of NIRS has the advantage of higher accu-
racy and spatial resolution [68], [69], but it is limited
by the system’s bulkiness and higher cost [70].
• Frequency Domain NIRS: Also known as frequency-

resolved or intensity modulated NIRS systems, an LED,
laser diode [68], [71], [72], or white light source usu-
ally provides input light. These systems measure the
attenuation, phase shift and modulation depth of the
light with respect to the systems’ incident light [70],
[73]. They exploit the linear relation between the op-
tical path length and a phase shift for the frequencies
<200 MHz [73], [74]. A gain-modulated area detector
or a photon counting device is used to take measure-
ments [66], [75].

V. NIRS ILLUMINATION MODES (FIGURE 4)

1) Trans-illumination: This mode is applicable to newborn
infants [32]. Due to changes in the optical properties of
scalp tissues as a function of aging and the increased
head size, this mode is not used with adults.

2) Reflectance: This mode is utilized in most current NIRS
devices [70], [76]. In reflectance mode, the penetration
depth of NIRS is estimated at around 1/3 of the SDD [9].

3) Differential reflectance: More than one NIR detector
(or source) is utilized to measure the difference between
extra and intra cranial light paths [76].

VI. NIRS SYSTEMS

The major factors controlling the efficiency of NIRS are 1)
the type of NIR source and detector, 2) the efficiency of NIR
transmission into/collection from the tissue, and 3) the accu-
racy of tissue optical property coefficients and models used to
calculate HbO2 and Hb [78].

Previously, NIRS penetration’s depth was limited to 3 mm of
the skull [79]. However, current instrumentation allows the light
to reach up to 1–2 cm in depth [9], depending on several factors
including NIR light radiant energy [9], the optical properties of
the head beneath the NIRS optodes (NIR source/detector), the
SDD [80], and the detector area [81].

Although increasing SDD is believed to increase the penetra-
tion depth [82], data quality deteriorates with increasing SDD
beyond specific limits [83].

Hence, SDDs between 2–4cm [79], [81], [83], [84] are
usually employed for NIRS systems. In the implementations
with longer SDDs, small detectors are associated with un-
stable DPF. Hence, detectors must be chosen in accordance
with SDDs [81]. There are currently efforts underway to im-
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Fig. 4. Different NIRS operation modes: trans-illuminance, reflectance and differential reflectance (redrawn after [76], [77]).

Fig. 5. Multiparametric comparison of fNIRS (blue), EEG (red), fMRI (yellow), PET (purple) and MEG (green). (a) Depth resolution, relation to
neural activity, intrusivity, temporal resolution, spatial resolution, estimated system costs, and running costs. (b) Handling, size, head fixture, ease
of long term studies, subjects’ mobility, environment, safety, and portability.

prove fidelity in both light sources and detectors to achieve
timing precision, permitting zero source-detector distances
(0SD) and thus improving the localization of hemodynamic
responses [67].

NIRS systems contain the following main components:
� NIR Light Source: In most cases, the light source is ei-

ther a light emitting diode (LED) [85]–[89] or a laser
diode [34], [48], [90]–[92] with 670 and 890nm [88],
730, 805, and 850nm [93] or 760 and 850 nm (widely
used combinations by developers and commercial sys-
tems) [65], [85] wavelengths. LEDs are often preferred
for safety reasons [94]. Picosecond lasers are used in
experimental 0SD systems [67].

� NIR Detector: Photodiodes [85], [90], [95]–[97],
avalanche photodiodes [87], [88], [92], [98] or photo-
multiplier tubes (PMT) [32], [54], [65], [99], are usually
utilized as NIRS detectors. They exhibit low wavelength
selectivity and thus caution must be taken to block or
avoid ambient light.

� Control and Data Collection Electronics: NIRS sources
and detectors must be controlled by sophisticated elec-
tronic circuits. Data collected by NIRS detectors are
either amplified and saved on the same hardware or
transmitted tethered [85] or wirelessly [86], [87], [96],
[100] to another electronic circuit or a computer where

further amplification, noise reduction and signal analy-
sis is performed.

� NIR Light Transfer Module: NIR light is shone directly
to the scalp from the NIR source [85], [97] or conveyed
by optic fibers [101]. The reflected NIR light is either
received from the head directly by the NIR detector [97],
[100] or guided via optic fibers to the NIR detector [85],
[88], [102], [103].

VII. ADVANTAGES

Portable, Low Power and Low Cost: A 16 channel (=16 dual
sources and 2 detectors) NIRS setup can be powered with a
single 3.6 V–1000 mAh battery [100]. fNIRS devices can be
designed to be portable for employment with freely moving
subjects. NIRS can be utilized at bed sides [104], in an emer-
gency situation, or in an ambulance [89], [105]–[107]. A basic
system may cost around $10.000 [65], with lower operational
costs than MRI [9].

Non-invasive and Safe: LEDs and even laser diodes can stay
well below the critical heat deposition of 0.2 W/cm2 (at 630 nm)
to 0.4 W/cm2 (at 850 nm) [9] known to cause pain or heat damage
to the skin [105], [108], [109].

Easy Preparation and Setup: No special skin adhesive is
required to attach optodes to the scalp. Optodes in most
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systems are reusable and last for long periods over many mea-
surements [110], [111]. Optodes’ cleaning after employment is
generally easy but may depend on the manufacturers.

Motion Artifacts: Motion artifacts are less pronounced for
minimized fNIRS systems where NIRS optodes and the con-
trolling circuits are in close proximity and both attached to the
body [107] than in fNIRS systems employing optical fibers.
The fibers may shift position during vigorous motion affecting
optical coupling [112].

SNR and Temporal and Spatial Resolution: fNIRS sampling
rate may exceed 25 Hz/channel versus 1 Hz for fMRI [113].
In other words, fMRI provides brain images at the rate of
1 frame/second while fNIRS could provide 25 images per sec-
ond. Therefore, the temporal resolution of fNIRS is considerably
higher than that of fMRI, but slightly lower than that of EEG, as
illustrated in Fig. 5(a). However, the spatial resolution of fMRI
is far greater than that of fNIRS. The spatial resolution of fNIRS
is also slightly lower than that of EEG [114]. This is depicted
in Fig. 5(a) as well. Cui et al. (2011) performed a detailed com-
parison of fNIRS and fMRI signals in the temporal and spatial
domains. They reported a weaker signal to noise ratio (SNR) in
fNIRS than in fMRI. Although the SNR is reported to be weaker,
the signals are highly correlated. In the spatial domain, they re-
ported that the banana-shaped path of the photons is strongly
correlated to the BOLD signal [115].

Application in Special Populations: fNIRS is feasible for pa-
tients with implanted devices. For example, no interference in
the fNIRS optodes have been detected in patients with pacemak-
ers [116]. fNIRS is more convenient for young and claustropho-
bic patients as compared to fMRI [9], [117]. Patient acceptance
is better in fNIRS as the narrow ”tube” of fMRI is avoided [107].

Response compared to fMRI: Minati et al. (2011) recorded
NIRS and fMRI simultaneously in event-related visual stim-
ulation. They measured inter-subject coefficients of variation
(CVs) for the response peak amplitude and reported consid-
erably larger CVs for NIRS than in fMRI. The inter-subject
CVs for response latencies and intra-subject CVs for response
amplitudes are reported to be comparable in their study [118].

VIII. LIMITATIONS

Susceptibility to Ambient Light: As the light transfer module
always contains a minimal air gap between transducer and skin
or glass fiber and skin, it is challenging to avoid ambient light
influencing measurements [94], [102]. As such, the placement
of optodes on the head to send and receive light in the proper
angle is important.

Shallow Penetration: fNIRS cannot reach the deeper areas of
the brain with its shallow penetration depth of around 1–3 cm
in the cortex [110]. As fNIRS in reflectance mode depends on
photons scattered towards the sensor, the number of photons
decays exponentially with SDD. This cannot be easily compen-
sated for with higher flux as damage to the skin must be avoided
at all costs. Consequently, hemodynamic responses from deeper
brain structures may not be measured with a simple fNIRS de-
vice [113].

Fig. 6. Example of the author’s spring loaded fNIRS (a) source, (b)
detector, and (c) exemplary montage of optodes and comparable EEG
channels map.

Fig. 7. NIR light path between source and detector [129].

Low Temporal Resolution (compared to EEG): Although
fNIRS measurement is more rapid than fMRI, its temporal
resolution is lower than that of EEG [119], [120] which dis-
plays between 1 msec [104] and 100 msec [121] time constants.
Consequently, utilizing fNIRS in applications such as brain-
computer interfaces (BCI) requires longer task periods [107],
[111], [122]. However, this may be inadequate to monitor de-
lays in activity between brain areas [123].

Low Spatial Resolution (compared to fMRI): fNIRS’ spatial
resolution is quite limited to about 1cm [57], [113], compared
to fMRI’s millimeter voxel sizes [104], [110]. Even with the
picturesque simplification of a “banana-shaped” light path be-
tween source and sensor, it is hard to talk about a single “spatial
resolution,” given that absorption acts in an integrative manner
along each individual photon’s path.

Noise, Artifacts, and Interference: fNIRS offers sometimes
noisy channels with a small bandwidth, so in line with the
Shannon-Hartley theorem, the reported information transfer rate
is low at about 4 bits/min [110], [124], [125]. As fNIRS is an
optical method, the presence of hair -especially dark hair- in
the region of interest (ROI) may block light and reduce sig-
nal strength both entering and exiting the skull [9]. A longer
preparation period may be necessary to ensure minimal hair
presence below optodes [106]. Hence, pre-experimental prepa-
ration time and signal strength depend on the ROI. Although the
signals are not affected by muscle artifacts from body motion,
signal quality may still be negatively affected by head move-
ment [89], [112]. This may cause fluctuations in the efficiency
of light transfer. Noise due to various physiological oscillations
around 0.1 Hz Mayer waves are reported, which are caused
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Fig. 8. NIRS data visualization and analysis employing different software (a) 2D visualization of brain activation by employing HOMER2, (b) 2D
visualization of brain activation, (c) NIRS data filtering, and (d) blood oxygenation change calculation utilizing NIRS lab.

by slow changes in blood pressure [107]. Respiratory oscilla-
tions (0.2–0.5 Hz) [125] and heartbeat artifacts (1–1.5 Hz) [107]
were found as well. Extracranial activity is reflected in NIRS
data [79], [126]–[129]. This contribution may have a strong
impact on data accuracy in some cases.

Participant Discomfort in Long-term Use: An easy way to
minimize ambient light artifacts, optodes placements, and opti-
mize coupling in the light transfer module is to press the working
ends of glass fibers or LEDs into the skin. However, this becomes
uncomfortable after a while, causing stress or headaches which
can affect experimental trials [89], [102], [130]–[132].

IX. RECOMMENDATIONS

Spring-Loaded Optodes: One of the challenges with the
fNIRS optodes and cap is to handle the hair. As shown in
Fig. 6(a) and (b) [9], [94], [133], a spring-loaded mechanism
have been developed and implemented to accomplish: 1) part-
ing the hair away from the light path and 2) sustaining secure
pressure between the optode and skull [89], [106].

Optode Shielding and Special Caps: Studies have shown that
ambient light has a significant influence on the performance of
fNIRS [134]. It is generally a good practice to shield optodes
from ambient light with dark caps. For example, 3D printing and
laser cutting technologies are used to design optode capsules
made of dark materials encapsulating optodes to reduce the
influence of ambient light [132]. In addition to dark shields for
the optodes, fNIRS caps are also covered with a black overcap
to further reduce ambient light. Employing special caps [130],
[131] and/or secondary caps to hold the optodes can support

secure optode-skin coupling and minimize ambient light [89]
and motion artifacts [112].

Safety: The long-term use of fNIRS may elevate the tempera-
ture at the contact point of the light source and the scalp [135]. In
general, commercial fNIRS systems have to pass safety or regu-
latory standards. However, when employing a laser light source,
care must be taken to prevent eye or skin injury [94]. Study par-
ticipants should be communicated with regarding safety limits
of the fNIRS device in use. Laboratory designed fNIRS systems
must meet the requirements of IEC80601-2-71:2015, that is
they must be designed to regulate the basic safety and essential
performance of fNIRS equipment.

Signal Quality: To reduce extracerebral or superficial influ-
ences, optodes with different SDD are employed. Data col-
lected from the short SDDs will indicate superficial activity
(Fig. 7) which can be then be isolated from deeper brain activ-
ity by means of proper modeling [89]. It is always important
to implement appropriate approaches to filtering, noise reduc-
tion [9], [110], [112] and channel rejection for channels with
weak/extremely noisy signals.

X. fNIRS APPLICATIONS

As fNIRS is a rather mature technology that remains open to
new developments and creative implementations, it has led to
an ever-increasing field of applications. Naturally, they are all
based on the hemodynamic response of the brain under a wealth
of conditions and research paradigms. These experiments are at
least augmenting, and in some cases replacing, the use of more
expensive, stationary imaging modalities. It is therefore used
in functional connectivity and cognitive neuroscience experi-
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TABLE I
SELECTED STUDIES USING fNIRS TECHNOLOGY FOR VARIOUS APPLICATIONS

ments, as well as in neurological diagnostics or rehabilitation
and neuroimaging and, not the least, as communication modal-
ity. Table I lists a deliberately incomplete list of applications
from the literature.

XI. ANALYSIS SOFTWARE

No matter what fNIRS hardware is used to perform the de-
sired experiments, whether custom built or commercial, post-
processing and data analysis are a huge part of any researcher’s
workload. Rather than re-inventing the wheel, it is very much

worth the effort to gain proficiency and even improve on existing
software tools.

The factors a researcher needs to consider when choosing
fNIRS software are a) compatibility with the OS and fNIRS data
format, b) the range, speed, and accuracy of the fNIRS data pro-
cessing it offers, c) the software price, d) the software language,
which can expedite or hinder understanding of the software
depending on the researcher’s experience, e) the software’s ex-
tendibility and customizability, and f) software-specific features
or advantages. Table II summarizes some currently available
fNIRS software.
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TABLE II
A LIST OF EXISTING fNIRS SOFTWARE
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TABLE II
CONTINUED

XII. CONCLUSION

Although near-infrared spectroscopy is established and has
widespread applications in the non-destructive testing of agri-
cultural, pharmaceutical or textile products [242], its more ex-
citing applications deal with its ability to provide a versatile
window into the processes of the human brain. fNIRS technol-
ogy has come a long way from single optode systems capable
of limited spectroscopy to multi-channel miniaturized wireless

systems, easily deployed in natural settings and no longer lim-
ited by bulky lab systems. The relative simplicity of setting up
and utilizing these systems to gain useful data from elegant ex-
periments is further supported by a range of high-powered soft-
ware suites. They form a crucial link between experiments and
understanding and build the backbone of many current publica-
tions. fNIRS technology and methods are thus gaining ground in
the health sciences and proving capable in more than intra-ICU
monitoring applications. Due to its versatility and its increased
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coverage of the human cortex, fNIRS has found its way into ba-
sic neuroscience, shedding light on the most important activation
patterns and connectivities in the cortex–on the very processes
of being human. Most recently, a strong interest in combining
fNIRS with other modalities such as EEG and fMRI with objec-
tives ranging from validation to data fusion to brain-computer
interfaces has grown, allowing fNIRS to widen our non-invasive
and minimally obtrusive windows to the human brain.

The future prospects of fNIRS are promising, not least be-
cause the number of commercially available fNIRS systems has
grown rapidly in the last decade. Nevertheless, further improve-
ments in fidelity, sensors and analysis methods will expand its
applications to true bedside and emergency health care as well.
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