
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Physics Faculty Publications Physics 

4-15-1996 

Order-Parameter Fluctuations in the Frustrated Heisenberg Model Order-Parameter Fluctuations in the Frustrated Heisenberg Model 

on the Square Lattice on the Square Lattice 

Shu Zhang 
University of Rhode Island 

Gerhard Müller 
University of Rhode Island, gmuller@uri.edu 

Follow this and additional works at: https://digitalcommons.uri.edu/phys_facpubs 

Citation/Publisher Attribution Citation/Publisher Attribution 
Shu Zhang and Gerhard Müller. Order-parameter fluctuations in the frustrated Heisenberg model on a 
square lattice. J. Appl. Phys. 7979 (1996), 6630-6632. 
Available at: http://dx.doi.org/10.1063/1.361906 

This Article is brought to you by the University of Rhode Island. It has been accepted for inclusion in Physics 
Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact 
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly. 

http://ww2.uri.edu/
http://ww2.uri.edu/
https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/phys_facpubs
https://digitalcommons.uri.edu/phys
https://digitalcommons.uri.edu/phys_facpubs?utm_source=digitalcommons.uri.edu%2Fphys_facpubs%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1063/1.361906
mailto:digitalcommons-group@uri.edu


Order-Parameter Fluctuations in the Frustrated Heisenberg Model on the Square Order-Parameter Fluctuations in the Frustrated Heisenberg Model on the Square 
Lattice Lattice 

Publisher Statement Publisher Statement 
Copyright 1996 American Institute of Physics. This article may be downloaded for personal use only. Any 
other use requires prior permission of the author and the American Institute of Physics. 

The following article appeared in Journal of Applied Physics and may be found at http://dx.doi.org/
10.1063/1.361906. 

Terms of Use 
All rights reserved under copyright. 

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/phys_facpubs/98 

http://dx.doi.org/10.1063/1.361906
http://dx.doi.org/10.1063/1.361906
https://digitalcommons.uri.edu/phys_facpubs/98


Order-parameter fluctuations in the frustrated Heisenberg model
on the square lattice

Shu Zhang and Gerhard Müller
Department of Physics, The University of Rhode Island, Kingston, Rhode Island 02881-0817

The T50 dynamics of the two-dimensionals51/2 Heisenberg model with competing
nearest-neighbor (J1) and next-nearest-neighbor (J2) interactions is explored via the recursion
method, specifically the frequency-dependent fluctuations of the order parameters associated with
some of the known or suspected ordering tendencies in this system, i.e., Ne´el, collinear, dimer, and
chiral order. The results for the dynamic structure factors of the respective fluctuation operators
show a strong indication of collinear order atJ2 /J1*0.6 and a potential for dimer order at
0.5&J2 /J1&0.6, whereas the chiral ordering tendency is observed to be considerably weaker.
© 1996 American Institute of Physics.@S0021-8979~96!00808-5#

The impact of quantum fluctuations on the zero-
temperature phase diagram of a quantum many-body system
tends to be strongest if that system contains competing inter-
actions. A particular, sometimes exotic phase may be stabi-
lized by quantum fluctuations in the presence of interactions
that frustrate each other’s ordering tendencies. The two-
dimensional~2D! Heisenberg antiferromagnet with nearest-
neighbor (nn) and next-nearest-neighbor (nnn) coupling on
the square lattice,

H5J1(
r
Sr•~Sr1x̂1Sr1ŷ!1J2(

r
Sr•~Sr1x̂1ŷ1Sr1x̂2ŷ!,

~1!

has been a prominent object of study in this context.1

The Néel long-range order~LRO! present in the ground
state of thenn model disappears at some critical coupling
ratio, J2 /J1.0.4, and is replaced, at sufficiently large
J2 /J1 , by Néel LRO within each of the twonnn sublattices.
The latter is preceeded, atJ2 /J1*0.65, by collinear LRO,
which breaks the~discrete! rotational symmetry ofH on the
lattice but not yet its~continuous! rotational symmetry in
spin space. The Ne´el and collinear order parameters~OPs!
are described by the operators
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whereNr5Sr
z , Cr5Sr•(Sr1x̂1Sr2x̂2Sr1ŷ2Sr2ŷ).

At intermediate coupling ratios, 0.4&J2 /J1&0.65, the
Néel and collinear ordering tendencies keep each other at
bay and thus make the frustrated ground state susceptible to
different kinds of ordering potentialities. Dimer order,2,3

twist order,4 and chiral order5 have been proposed in this
context. The dimer and chiral OPs considered here are de-
fined by the following expressions in terms of spin operators:
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where D r5Sr•Sr1x̂ , x r 5 Zr,r1x̂,r1x̂1ŷ 2 Zr,r1x̂1ŷ,r1ŷ ,
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They probe the long-range phase coherence of singlets
stacked in columns along they axis and the handedness of
the spin configuration on a plaquette, respectively, in the

ground-state wave functionuG&. Whether any one of these
types of LRO is, in fact, realized, or whether a ground state
with short-range correlations of the resonating-valence-bond
type,6,7 for example, is stabilized, has not been determined
for certain.

The absence or presence of a specific type of LRO de-
termines whether the associated OP correlation function de-
cays to zero or not. In the finite-cluster data, the relevant
information on the asymptotic behavior is best captured by
the expectation value of the squared OP. The problem here is
to find a meaningful reference point for any enhancement in
that quantity.3

An alternative avenue to comparing the different order-
ing tendencies in the spin-frustrated ground state of~1! is to
explore the dynamic~i.e., frequency-dependent! fluctuations
of any proposed OP. The recursion method8 in conjunction
with recently developed techniques of continued-fraction
analysis9,10 is very suitable for that purpose. Here the dy-
namical information is derived from the finite-size ground-
state wave function. No excited states have to be computed.
This is an important advantage for the study of systems with
complicated spectra and with potential OPs that have widely
varying symmetry properties, as is the case here.

We investigate the fluctuations of the four OPs defined in
~2! and~3! as they manifest themselves in the dynamic struc-
ture factors
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whereFq
A5N21/2S re

iq•rAr is the fluctuation operator asso-
ciated with a given OP, andAr stands forNr , Cr , D r , or
x r , as defined above.

The recursion algorithm in the present context is based
on an orthogonal expansion of the wave functionuCq

A(t)&
5 Fq

A(2t)uG&. It produces~after some intermediate steps!
a sequence of continued-fraction coefficientsD1

A(q),
D2
A(q), . . . for the relaxation function
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which is the Laplace transform of the symmetrized correla-
tion function R^Fq

A(t)F2q
A &/^Fq

AF2q
A &. The T50 dynamic

structure factor is then obtained from~5! via

SAA~q,v!54^Fq
AF2q

A &Q~v! lim
«→0

R@c0
AA~q,«2 iv!#, ~6!

wherêFq
AF2q

A &5SAA(q) is the integrated intensity.11

All the results presented here are for clusters of
N5434 sites with periodic boundary conditions. Extreme
care must be exercised in separating finite-size effects from
properties that reflect the physics of the infinite system. This
distinction can be made with more confidence for coupling
ratiosJ2 /J1&0.7 than atJ2 /J1.0.7, where the gradual de-
coupling of the twonnn sublattices causes a crossover in the
finite-size effects.

The Néel OP fluctuations are probed by the dynamic
structure factorSNN(q,v) at the wave vectorq5(p,p).
This quantity is shown in Fig. 1 for various coupling ratios.
The presence of Ne´el LRO at J2 /J150 implies that
SNN(p,p,v) is governed by a zero-frequency peak. Quan-
tum fluctuations split the ground-state level for finiteN. In a
434 cluster the finite-size gap is known to be of magnitude
DE/J1.0.57.10 The peak position of the curve for
J2 /J150 must be interpreted with this fact in mind.

What are the effects of thennn coupling on the Ne´el OP
fluctuations? For 0<J2 /J1&0.4, i.e., over the estimated
range of the Ne´el phase, we observe only small changes in
peak position and line shape. Then the Ne´el OP fluctuations
begin to change rapidly in two stages:

~i! Over the range 0.4& J2 /J1 & 0.6, the peak position
moves to higher frequencies at an accelerated rate, the line-
width shrinks, and the integrated intensity~not shown! drops
to 32% of its value atJ2 /J150. This signals the presence of
some non-Ne´el type ordering tendency which supports well-
defined Ne´el modes at increasingly high frequencies.

~ii ! At J2 /J1*0.6 the linewidth ofSNN(p,p,v) grows
rapidly, while the peak position moves further up and the

integrated intensity continues to fade away quickly. As the
two nnn sublattices begin to decouple, the system ceases to
support well-defined Ne´el modes.

The dynamic structure factorSCC(0,0,v), which de-
scribes the collinear OP fluctuations, is shown in Fig. 2. At
J2 /J150, we observe a fairly sharp collinear mode at
v/J1.3.0. As the Ne´el ordering tendency weakens with in-
creasingJ2 /J1 , the collinear mode shifts to lower frequen-
cies, while its line shape broadens considerably. The width
reaches a maximum atJ2 /J1.0.4. Between here and
J2 /J1.0.55, where the competing dimer and chiral ordering
tendencies are at their peak, the collinear mode moves to
v50, and the integrated intensity more than triples in rela-
tion to its value atJ2 /J150. In the interval 0.55& J2 /J1
& 0.7, the functionSCC(0,0,v) transforms into a narrow

FIG. 3. T50 dynamic structure factor~4! normalized by its integrated in-
tensity for the dimer fluctuation operatorFq

D atq5(p,0) of the Hamiltonian
~1! at various values of the coupling ratioJ2 /J1 , obtained via strong-
coupling continued-fraction reconstruction from the coefficients
D1 , . . . ,D6 and a Gaussian terminator.

FIG. 1. T50 dynamic structure factor~4! normalized by its integrated in-
tensity for the Ne´el fluctuation operatorFq

N at q5(p,p) of the Hamiltonian
~1! at various values of the coupling ratioJ2 /J1 , obtained via strong-
coupling continued-fraction reconstruction from the coefficients
D1 , . . . ,D6 and a Gaussian terminator as explained in Refs. 9 and 10.

FIG. 2. T50 dynamic structure factor~4! normalized by its integrated in-
tensity for the collinear fluctuation operatorFq

C at q5(0,0) of the Hamil-
tonian~1! at various values of the coupling ratioJ2 /J1 , obtained via strong-
coupling continued-fraction reconstruction from the coefficients
D1 , . . . ,D6 and a Gaussian terminator.
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central peak, andSCC(0,0) increases by another factor of
.1.6. This clearly reflects the onset of collinear LRO in the
infinite system.

The dimer OP fluctuations as described by the dynamic
structure factorSDD(p,0,v) and shown in Fig. 3 resemble
those of the collinear OP with respect to line shape and peak
position for as long as the Ne´el ordering tendency is percep-
tible in the ground state (J2 /J1&0.4). Both modes become
soft and very broad atJ2 /J1.0.55, but then they part com-
pany. While the collinear mode has been observed to trans-
form into a high-intensity narrow central peak, the dimer
mode, which has reached its maximum intensity here (. 1.8
times its value atJ2 /J150), broadens further and loses in-
tensity very rapidly. It literally dissolves as the inter-
sublattice correlations begin to weaken atJ2 /J1*0.7. Nev-
ertheless, the softness of the dimer OP fluctuations at
J2 /J1.0.55 in the 434 cluster is consistent with dimer
LRO in the infinite system.

The chiral OP fluctuations are based more significantly
on intra-sublattice correlations than the dimer OP fluctua-
tions and, therefore, evolve differently. This is illustrated in
Fig. 4. At J2 /J150 the dynamic structure factor
Sxx(0,0,v) exhibits a sharp mode atv/J1.3.8. At J2 /J1
.0.55, the peak position has moved down tov/J1.1.6,
while the linewidth has increased only slightly, and the inte-
grated intensity has grown to a maximum value of.2.3
times its value atJ2 /J150. Then the peak position starts to
move back out to higher frequencies, the line shape begins to
broaden, but less so compared to that of the dimer fluctua-
tions, and the integrated intensity drops rapidly. The mini-
mum gap of the chiral mode is perhaps too large to be en-
tirely attributable to a finite-size effect, which would indicate
that the observed chiral ordering tendency does not turn into
chiral LRO asN→`.
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FIG. 4. T50 dynamic structure factor~4! normalized by its integrated in-
tensity for the chiral fluctuation operatorAq

x at q5(0,0) of the Hamiltonian
~1! at various values of the coupling ratioJ2 /J1 , obtained via strong-
coupling continued-fraction reconstruction from the coefficients
D1 , . . . ,D6 and a Gaussian terminator.
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