
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Natural Resources Science Faculty Publications Natural Resources Science 

2012 

Variation and trends of landscape dynamics, land surface Variation and trends of landscape dynamics, land surface 

phenology and net primary production of the Appalachian phenology and net primary production of the Appalachian 

Mountains Mountains 

Yeqiao Wang 
University of Rhode Island, yqwang@uri.edu 

Jianjun Zhao 
University of Rhode Island 

Yuyu Zhou 

Hongyan Zhang 

Follow this and additional works at: https://digitalcommons.uri.edu/nrs_facpubs 

Citation/Publisher Attribution Citation/Publisher Attribution 
Yeqiao Wang, Jianjun Zhao, Yuyu Zhou, Hongyan Zhang, "Variation and trends of landscape dynamics, 
land surface phenology and net primary production of the Appalachian Mountains," Journal of Applied 
Remote Sensing, 6(1), 061708 (17 December 2012). https://doi.org/10.1117/1.JRS.6.061708. 
Available at: https://doi.org/10.1117/1.JRS.6.061708 

This Article is brought to you by the University of Rhode Island. It has been accepted for inclusion in Natural 
Resources Science Faculty Publications by an authorized administrator of DigitalCommons@URI. For more 
information, please contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact 
the author directly. 

http://ww2.uri.edu/
http://ww2.uri.edu/
https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/nrs_facpubs
https://digitalcommons.uri.edu/nrs
https://digitalcommons.uri.edu/nrs_facpubs?utm_source=digitalcommons.uri.edu%2Fnrs_facpubs%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1117/1.JRS.6.061708
mailto:digitalcommons-group@uri.edu


Variation and trends of landscape dynamics, land surface phenology and net Variation and trends of landscape dynamics, land surface phenology and net 
primary production of the Appalachian Mountains primary production of the Appalachian Mountains 

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/nrs_facpubs/96 

https://digitalcommons.uri.edu/nrs_facpubs/96


Variation and trends of landscape
dynamics, land surface phenology and
net primary production of the
Appalachian Mountains

Yeqiao Wang
Jianjun Zhao
Yuyu Zhou
Hongyan Zhang

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Applied-Remote-Sensing on 11/26/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Variation and trends of landscape dynamics, land
surface phenology and net primary production

of the Appalachian Mountains

Yeqiao Wang,a Jianjun Zhao,a,b Yuyu Zhou,c and Hongyan Zhangb
aUniversity of Rhode Island, Department of Natural Resources Science, Kingston, Rhode

Island 02881
yqwang@uri.edu

bNortheast Normal University, School of Urban and Environmental Sciences, Changchun, Jilin
130024, China

cPacific Northwest National Laboratory/University of Maryland, Joint Global Change Research
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Abstract. The gradients of elevations and latitudes in the Appalachian Mountains provide a
unique regional perspective on landscape variations in the eastern United States and southeastern
Canada. We reveal patterns and trends of landscape dynamics, land surface phenology, and eco-
system production along the Appalachian Mountains using time series data from Global
Inventory Modeling and Mapping Studies and Advanced Very High Resolution Radiometer
Global Production Efficiency Model datasets. We analyze the spatial and temporal patterns
of the normalized difference vegetation index (NDVI), length of growing season (LOS), and
net primary production (NPP) of selected ecoregions along the Appalachian Mountains regions.
We compare the results in different spatial contexts, including North America and the
Appalachian Trail corridor area. To reveal latitudinal variations, we analyze data and compare
the results between the 30°-to-40°N and the 40°-to-50°N latitudes. The result reveal significant
decreases in annual peak NDVI in the Appalachian Mountains regions. The trend for the
Appalachian Mountains regions was a −0.0018 (R2 ¼ 0.55, P < 0.0001) NDVI unit decrease
per year during 25 years from 1982 to 2006. The LOS was prolonged by 0.3 days per year−1

during the 25-year percent. The NPP increased by 2.68 gCm−2 yr−2 from 1981 to 2000. © 2012
Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JRS.6.061708]

Keywords: Appalachian Mountains; normalized difference vegetation index; land surface
phenology; net primary production; variations and trends.
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1 Introduction

The Appalachian Mountains, also known as the Appalachians, are a system of mountains in
eastern North America. They run from central Alabama to the New England region of the north-
east United States and extend into sections of Quebec, New Brunswick, and Newfoundland in
Canada. The mountain range forms a natural barrier between the eastern coastal regions and the
interior lowlands of northeastern America. The forests of the Appalachians sustain a variety of
ecosystems and native biological diversity. The environmental effects and ecosystem functions
and services associated with the Appalachians have long been the focus of scientific research in
understanding the mountain range as a unique geographic entity and in comparison with differ-
ent spatial contexts for providing a regional reference and validation.

The Appalachian Trail is an iconic footpath that traverses high-elevation ridges of the
Appalachian Mountains. The trail extends over 3500 km across 14 states in the eastern
United States from Springer Mountain in northern Georgia to Mount Katahdin in central Maine.
The gradients in elevation, latitude, and moisture sustain a rich biological assemblage of
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temperate zone forest species. The north-south alignment of the Appalachian Trail corridor rep-
resents a cross-section mega-transect of the eastern U.S. forests and alpine areas and provides a
barometer for early detection of undesirable changes in the natural resources, such as develop-
ment encroachment, acid precipitation, invasions of exotic species, and climate change
impacts.1,2

Climate change studies reveal the effects of global warming on the growing season of ter-
restrial vegetation at middle and high latitudes.3,4 Over the 20th century, the global average sur-
face temperature increased 0.6� 0.2°C. Observable warming occurred between 1976 and 2000,
and temperatures are projected to increase5,6 by 1.4°C to 5.8°C from 1990 to 2100. Tracking
variations in landscape dynamics provides an understanding of the changing environment,
the impacts and threats caused by changes, and the likely trends in the future for natural resour-
ces and associated ecosystems.7 Time series remote sensing data provide necessary observations
in revealing patterns of landscape dynamics either by abrupt change or gradual variations.

The normalized difference vegetation index (NDVI) has been effectively used for monitoring
vegetation dynamics. Consistent and long time-series NDVI data are important for analysis of
vegetation responses to global change in terrestrial ecosystems.8 The Global Inventory
Monitoring and Modeling Studies (GIMMS) NDVI dataset derived from Advanced Very
High Resolution Radiometer (AVHRR) has been broadly used for studying vegetation activity
on regional and global scales.

Phenology studies have long been reported in different domains, such as climate change.9

biodiversity,10 wildlife ecology,11 snow dynamics,12 fire effects,13 and crops.14 Land surface phe-
nology (LSP) is one of the measures of landscape dynamics. It reflects the response of vegetated
surfaces to seasonal and annual changes in the climatic and hydrologic cycle. LSP is strongly
linked to climatic factors.15 It has been broadly studied in the context of ecosystem responses to
climate change16 and for monitoring and understanding global change in vegetation lifecycle
events. Because of spatial resolution of remote sensing data, LSP is described as an indicator
of mixtures of land covers and is distinct from traditional notion of species-centric phenology,
such as seasonal flowering or budburst.17,18 Because LSP is based on remote sensing observa-
tions at regional and global scales, it serves as a key biological indicator for detecting the
response of terrestrial ecosystems to climatic variation.

LSP metrics are primarily based on time series images of vegetation indices from optical
sensors such as AVHRR, spot-vegetation (VGT), and moderate resolution imaging spectroradi-
ometer (MODIS). These metrics typically retrieve the time of the onset of greenness as the start
of the season (SOS), onset of senescence or time of end of greenness as the end of the season
(EOS), timing of the maximum of the growing season by peak vegetation indices, and the length
of growing season (LOS) or duration of greenness. An increasing number of studies have
reported the shifts in timing and length of the growing season based on phenology, satellite
data, and climatological studies.6

Net primary production (NPP) plays an important role in the Earth surface system’s health19

and the terrestrial carbon cycle.20,21 NPP and its response to climate change have been the focus
of global change research.22 Studies have been conducted based on historical datasets.23–32

Recent climatic changes have enhanced plant growth in northern middle and high latitudes.31

Various NPP models have been developed to analyze NPP response to climate change.32–42

Regional scale carbon cycle processes and climate patterns provide indications of potential
responses and feedback to climate change.43

Other studies showed that temperatures across the northeastern United States have been
increasing steadily since the 1970s. A wide range of indicators in the Northeast have already
been observed to be responsive to the changes, which in turn have the potential to impact urban
and rural life, agriculture, industry, tourism, and natural ecosystems.44 The U.S. Global Change
Research Program reported that the annual average temperature in the Northeast has increased by
1.1°C, with winter temperatures rising twice that much, since 1970. At the same time, warming
has resulted in many other climate-related changes, including more frequent days with temper-
atures above 32.2°C, longer growing seasons, increased heavy precipitation, more winter
precipitation falling as rain instead of snow, reduced snowpack, earlier breakup of winter ice
on lakes and rivers, and earlier spring snowmelt resulting in earlier peak river flows and rising
sea surface temperatures and sea levels.45 Projections along the Appalachian Trail corridor area
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showed a steady temperature increase ranging from 2°C to 6°C by the end of the 21st century.
Precipitation, however, did not show any significant trend or decadal variation.46

Therefore, the objective of this study is to investigate the patterns and trends of NDVI, LSP,
and NPP of the Appalachian Mountains regions and make comparisons of those variables with
different scales of spatial contexts using time series GIMMS and Global Production Efficiency
Model (GloPEM) datasets.37,47

2 Materials and Methods

2.1 Study Areas

The selected Appalachian Mountains regions consist of four provinces of ecoregions in the
United States and Canada covering a latitudinal range between 34°4 0N and 49°15 0N and
406;944 km2 in area (Fig. 1). The provinces of ecoregions include the Adirondack-New
England Mixed Forest-Coniferous Forest-Alpine Meadow Province, the Eastern Broadleaf
Forest Province, and the Central Appalachian Broadleaf Forest-Coniferous Forest-Meadow
Province in the United States48 and a section of the Eastern Canadian Forests.

The Adirondack-New England Mixed Forest-Coniferous Forest-Alpine Meadow Province
has a modified continental climatic regime with long, cold winters and warm summers.
Annual precipitation is evenly distributed. The landscape is mountainous and was previously
glaciated. Forest vegetation is a transition between boreal on the north and broadleaf deciduous
to the south. The Eastern Broadleaf Forest Province has a continental-type climate of cold
winters and warm summers. Annual precipitation is greater during the summer. Topography
is variable, ranging from plains to low hills of low relief along the Atlantic coast. Interior

Fig. 1 The study area consists of four provinces of ecoregions along the Appalachian Mountains
in the eastern United States and southeastern Canada. The selected Appalachian Mountains
ecoregion provinces include (A) Eastern Canadian Forests, (B) Adirondack-New England
Mixed Forest-Coniferous Forest-Alpine Meadow Province, (C) Eastern Broadleaf Forest
Province, and (D) Central Appalachian Broadleaf Forest-Coniferous Forest-Meadow Province.
North America and an Appalachian Trail corridor area are selected for the comparative studies.
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areas are high hills to semi-mountainous, parts of which were glaciated. Vegetation is charac-
terized by tall, cold-deciduous broadleaf forests. The Central Appalachian Broadleaf Forest-
Coniferous Forest-Meadow Province is a moderately dissected plateau of irregular plains
and open hills. Geologic formations are mostly marine deposits of limestones, shales, and sand-
stone. The existing land cover type is mainly agricultural and urban. Small areas of natural cover
types remain, consisting of forests of oak-hickory, maple-beech-birch, and oak-gum-cypress
cover types. The Eastern Canadian Forests are characterized by forested land in eastern
Quebec, much of Newfoundland, the highlands of New Brunswick, and Cape Breton Island,
Nova Scotia. The climate ranges from high and mid-boreal and perhumid mid-boreal to
Oceanic, Atlantic, and maritime mid-boreal. Summers are generally cool, with average temper-
atures ranging from 8.5°C in the north to 14.5°C in the south. Winter temperatures vary accord-
ing to the proximity to the ocean and continental landmass.

In order to reveal the differences and similarities of NDVI, SOS, and NPP in the Appalachian
Mountains regions, we compared the variables in different spatial scales with North America and
the Appalachian Trail corridor area (Fig. 1), and in different latitudinal ranges from 30°N to 40°N
and 40°N to 50°N in North America.

2.2 Datasets

GIMMS49 data derived from AVHRR have been used extensively for global-scale vegetation
monitoring and detection of trends in vegetation conditions.50 GIMMS data provide global
time series NDVI measurements at a spatial resolution of 8 × 8 km2. The data are composited
over a period of approximately 15 days with the maximum value compositing (MVC)
technique51 to reduce cloud cover and to maintain temporal frequency. The data have been
corrected for calibration, view geometry, volcanic aerosols, and other effects not related to veg-
etation change.49,52–55 GIMMS data have been used broadly in LSP studies.15,56–63 The GIMMS
data were fitted yearly with a Gaussian function to generate smoothed data for each of the
25 years from 1982 to 2006. We used monthly composites of GIMMS data to calculate the
LSP metrics. The NPP dataset estimated by AVHRR GloPEM was designed to run with both
biological and environmental variables derived.37,47 The GloPEM dataset is available from 1981
to 2000 in 10-day periods or a summed annual level. The dataset is derived from AVHRR images
at an 8-km resolution from the AVHRR Pathfinder Project.

2.3 Land Surface Phenology Metrics

The methods to obtain LSP metrics include thresholds, derivatives, smoothing functions, and
fitted models.64 The TIMESAT software program65,66 is among those widely used12,13,67–70

In order to reduce dropouts or gaps from long time-series data, TIMESAT uses Savitzky-
Golay filtering, asymmetrical Gaussian, or double logistic functions for fitting NDVI data.71

The local Savitzky-Golay function can capture subtle and rapid changes in the time series,
but it is also sensitive to noise. The asymmetrical Gaussian and double logistic functions are
less sensitive to the noise and can derive a better description of the beginnings and endings
of the seasons.65,72 In this study, we adopted the asymmetrical Gaussian approach:

gðt; x1; x2; x3; x4; x5Þ ¼

8>>><
>>>:

exp

�
−
�

t−x1
x2

�
x1
�

if t > x1

exp

�
−
�

x1−t
x4

�
x5
�

if t < x1

; (1)

where x1 determines the position of the maximum or minimum with respect to the independent
time variable t, x2 and x3 determine the width and flatness (kurtosis) of the right half function,
and x4 and x5 determine the width and flatness of the left half function.2,71

In order to make comparisons of LSP in different scales, we employed the GIMMS and the
phenology data from the USDA Forest Service that possess 231-m spatial resolution and cover
the time period from 2003 to 2006. We then determined the parameter. The SOS is defined as the
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time for which the left edge has increased to 20% (seasonal amplitude from minimum NDVI to
maximum NDVI) measured from the left minimum NDVI. The EOS is defined as the time for
which the right edge has decreased to 20% (seasonal amplitude from minimum NDVI to maxi-
mum NDVI) measured from the right minimum NDVI. The LOS is the time period measured in
days from the SOS to the EOS. We built the smooth time series of NDVI from TIMESAT.
We derived the LSP metrics based on and adopted the adaptation strength of 2.0, no spike filter-
ing, and amplitude. We calculated the SOS and EOS for each year and obtained LOS as the
difference between SOS and EOS in each grid cell. In this paper, we analyzed the spatial
and temporal variation of LOS in the study areas. We used the nonparametric Mann-Kendall
test for testing the presence of the monotonic increasing or decreasing trends and the Sen’s
method for estimating the slope of linear trends of annual peak values of NDVI, LOS, and NPP.

3 Results

3.1 Spatial Pattern Of NDVI, LSP, and NPP

Figure 2 illustrates spatial patterns of the mean value of peak NDVI, LSP, NPP, Temperature,
Precipitation, and Land Cover. The peak NDVI, LSP, and NPP represent the maximum value of
the year and were obtained using the MVC method. The mean peak NDVI, LSP, and NPP were
obtained similarly. Land cover types were considered in obtaining the spatial variation of NDVI,
as shown in Fig. 2(a) and 2(f). For example, forests are mainly distributed in humid climatic
zones of the Appalachian Mountains73 and therefore possess high NDVI values. At pixel scale,
the data illustrate spatial dynamics of LOS of the Appalachian Mountains between 1982 and
2006. The spatial variation indicates that the average LOS varied from 144 to 262 days, and
extended LOS was observed in low-latitude areas, as shown in Fig. 2(b). The patterns indicate
that LOS increased from northeast to southwest in these areas. Spatial pattern reveals that LOS
was more responsive to the variation of temperature [Fig. 2(d)] than to precipitation [Fig. 2(e)].
Annual mean NPP ranged from 450 to 1;541 gCm−2 yr−1 [Fig. 2(c)] in the Appalachian
Mountains over the 20 years from 1991 to 2000. NPP values reflected the latitudinal effects
from southwest to northeast at 34°N to 40°N, 40°N to 45°N, and 45°N to 50°N. Areas with
low NPP were found in the high-latitude regions, consistent with the changes in temperature
[Fig. 2(d)]. The pattern of temperature variation showed a decreasing trend from southwest
to northeast. The mean temperature showed high values from 34°N to 40°N, medium values
from 40°N to 45° N, and low values from 45°N to 50°N. The precipitation was highest with
2;181 mm∕year in the low-latitude regions, as shown in Fig. 2(e). In the southwestern region,
the NPP, temperature, and precipitation measures were higher than those in other regions.
A combination of higher temperature and precipitation contributes to high NPP in the
southwestern region of the Appalachian Mountains.

3.2 Trends Of NDVI, LSP, and NPP

The trend of NDVI in the Appalachian Mountains regions varied from −0.012 to 0.0056 units.
The declining trends of peak NDVI occurred in the Appalachian Mountains, particularly in the
central regions [Fig. 3(a)]. Only the section area within the Eastern Canadian Forests showed
increasing trends of peak NDVI.

Spatial variations in LOS trends indicate that LOS varied between −2.34 days (decreasing) to
2.97 days (increasing) per year from 1982 to 2006 over the Appalachian Mountains regions
[Fig. 3(b)]. The decreasing trends (< − 1 days yr−1) were mainly found in the Central
Appalachian Broadleaf Forest-Coniferous Forest-Meadow Province and the Eastern Canadian
Forests. Positive LOS trends mainly occurred in the Adirondack-New England Mixed Forest-
Coniferous Forest-Alpine Meadow Province, as shown in Fig. 3(b).

We calculated the trends in NPP at the pixel level (8 km) from 1981 to 2000 using linear least
squares. These calculations are shown in Fig. 3(c). Positive and negative NPP trends were found
across the Appalachian Mountains regions. Observable increases occurred in the Central
Appalachian Broadleaf Forest-Coniferous Forest-Meadow Province and the Northeastern
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Mixed Forest Province. A decrease in NPP occurred in the northeast, and an increased trend was
observed in the southwest of the Appalachian Mountains.

3.3 Comparison of Appalachian Mountains with Different Spatial Contexts

The NDVI data were calculated for vegetated area only. For Figs. 4–6, the straight lines were
generated using the method of linear least squares. Significant decrease in annual peak NDVI
was observed in the Appalachian Mountains, as well as the Appalachian Trail corridor area
(Fig. 4). The average slope in the Appalachian Mountains was a −0.0018 (R2 ¼ 0.55,
P < 0.0001) NDVI unit decrease per year during the 25 years from 1982 to 2006. For the
Appalachian Trail corridor area, the average slope was a −0.0022 (R2 ¼ 0.62, P < 0.0001)
NDVI unit decrease per year over the 25 years. However, there was no observable trend in
North America or in the selected latitudinal ranges from 30°N to 40°N and from 40°N to
50°N (Fig. 4 and Table 1).

The prolonged LOS was 0.3 day yr−1 over the entire Appalachian Mountains, 0.39 day yr−1

in latitudinal zone from 40°N to 50°N, 0.02 day yr−1 in North America, and 0.28 day yr−1 in the

Fig. 2 The spatial patterns of mean peak NDVI, LSP, NPP, Temperature, Precipitation, and Land
Cover of the studied Appalachian Mountains regions.
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Fig. 3 Trends in peak NDVI, LOS, and NPP within the selected Appalachian Mountains regions
from 1982 to 2006.

Fig. 4 The interannual variability of NDVI for the Appalachian Mountains, North America, the 30°
N–40°N range in North America, the 40°–50°N range in North America, and the Appalachian Trail
corridor area between 1982 and 2006.

Fig. 5 The variation of LOS for the Appalachian Mountains, North America, the 30°N–40°N range
in North America, the 40°N–50°N range in North America, and the Appalachian Trail corridor area.
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Appalachian Trail corridor area. However, the LOS trend was shortened by 0.06 day yr−1 in
latitudes from 30°N to 40°N. Although there was no indication of a significant trend in LOS
in any region during the study time periods, abnormal values in some years (e.g., 1998 and
1999) were observable against the calculated mean values and are shown in Fig. 5.

We calculated the annual mean NPP values for the Appalachian Mountains, North America,
and the Appalachian Trail corridor area (Fig. 6 and Table 1). The average NPP values were
1,008, 797, 597, 802, and 876 gCm−2 yr−1, in the 30°N–40°N range, the 40–50°N range,
North America, the Appalachian Mountains, and the Appalachian Trail corridor area,

Fig. 6 The variation in NPP for the Appalachian Mountains, North America, the 30°N–40°N range
in North America, the 40°N–50°N range in North America, and the Appalachian Trail corridor area.

Table 1. The parameters of NDVI, LOS, and NPP

Parameter
30°N–40°

N
40°N–50°

N
North

America
Appalachian
Mountains

Appalachian
Trail

Corridor

NDVI
1982–
2006

Max 0.6567 0.7404 0.6422 0.8865 0.8715

Min 0.6167 0.6931 0.6032 0.8267 0.8047

Mean 0.6380 0.7135 0.6208 0.8603 0.8430

Slope −0.0004 −0.0004 −0.0004 −0.0018 −0.0022

R2 0.0194 0.0132 0.0432 0.5505 0.6202

P 0.2369 0.2622 0.1624 0.0000 0.0000

LOS
1982–
2006

Max 237 216 199 251 256

Min 213 182 176 208 215

Mean 225 199 185 227 233

Slope −0.0588 0.3937 0.2167 0.3000 0.2841

R2 −0.0394 0.1126 0.0396 0.0149 0.0085

P 0.7651 0.0561 0.1718 0.2550 0.2836

NPP
1981–
2000

Max 1117 871 651 872 948

Min 931 694 550 740 802

Mean 1009 797 597 802 877

Slope 5.7980 4.4441 2.8544 2.6820 3.2669

R2 0.4347 0.3731 0.3879 0.2399 0.2485

P 0.0009 0.0025 0.0020 0.0165 0.0147
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respectively. The increasing trend in NPP was observed for all the regions during the 20-year
period (Fig. 6). The NPP increased 2.68 gCm−2 yr−2 (R2 ¼ 0.24, P ¼ 0.016) from 1982 to 2006
in Appalachian Mountains. The trends in NPP showed an increase of 5.80 gCm−2 yr−2

(R2 ¼ 0.43, P < 0.0009) in the 30°N–40°N range, 4.44 gCm−2 yr−2 (R2 ¼ 0.37,
P ¼ 0.0025) in the 40°N–50°N range, 2.85 gCm−2 yr−2 (R2 ¼ 0.39, P ¼ 0.002) in North
America, and 2.17 gCm−2 yr−2 (R2 ¼ 0.25, P ¼ 0.015) in the Appalachian Trail corridor.

4 Conclusions and Discussion

This study revealed the spatial and temporal variations and trends in landscape dynamics, LSP,
and NPP in the study area. The comparisons examined the Appalachian Mountains as a unique
geographic entity and their topographic and elevation effects in the spatial context. Our conclu-
sions are as follows.

The peak NDVI values decreased significantly in the Appalachian Mountains and the
Appalachian Trail corridor area (Fig. 4). Both trends possessed higher negative slopes than
those in the 30°N–40°N and 40°N–50°N latitudinal zones and North America. The mean
peak NDVI values were 0.86 in the Appalachian Mountains and 0.84 in the Appalachian
Trail corridor, higher than those of North America. Other studies have suggested that the average
annual peak NDVI presented a declining trend over many protected areas in North America.50

Given that neither temperature nor precipitation showed a correlation with NDVI, this may imply
that the observed decrease in NDVI was mainly driven by the combination of urban expansion
and outbreaks of hemlock wooly adelgids (Adelges tsugae)74–76 and other insect pests.
Consistent with the patterns observed in the AVHRR GIMMS data along the Appalachian
Trail corridor, analyses using other types of remote sensing data have shown a decrease in forest
cover in the eastern U.S., mainly due to the growth of urban areas since the 1970s.7,77–79

There are different results from different methods for calculation of LSP parameters.64 For
example, the results from four methods were very much different. The SOS calculated by the
moving average method was the lowest, and the EOS value was the highest, but the derivative
method delivered the highest SOS value and the lowest EOS value.

A reported LSP study suggested that the EOS in North America was delayed by 8.1 days per
decade from 1982 to 1999 and by 1.3 days per decade from 2000 to 2008.80 Another study
reported that SOS advanced by approximately 8 days, EOS was delayed by 4 days, and
LOS increased by 12 days in North America from 1982 to 1999.81 The results of this study
suggested that LOS in the Appalachian Mountains advanced 7.5 days from 1982 to 2006.
The longest annual mean LOS value (233 days) was observed in the Appalachian Trail corridor
area, and the second longest LOS value (227 days) was observed in the Appalachian Mountains
regions. The mean LOS in the latitudinal range between 40°N and 50°N increased by
0.39 days yr−1 (R2 ¼ 0.11, P ¼ 0.056) from 1982 to 2006; that increase was higher than
those in other regions. The overall trend along the Appalachian Mountains, despite local var-
iations, agreed with broader patterns obtained for the Northern Hemisphere and North America.
The local variations were caused by topographic and elevation effects, as well as associated land
cover types and ecosystems.

To further understand the effect of elevation, we divided the LOS into 20 categories from
−5 m to 2,025 m. We found that the LOS was shortened by 1.2 days (R2 ¼ 0.86, P < 0.001) for
every 100-m increase in elevation. The prolonged LOS was mainly attributed to delayed EOS.
This study concluded that the variations and trends of LSP metrics in the Appalachian Mountains
were comparable to those obtained for the Appalachian Trail corridor area.82 The LOS anomalies
in 1987, 1994, and 1998 followed the pattern of warm and cold episodes based on a threshold of
þ∕ − 0.5°C for the Oceanic Niño Index (ONI). The reversed LOS patterns correspond to El Niño
in 1997 to 1998 and La Niña in 1999 to 2000 events.83 This indicates that LOS is sensitive to
climate variations.

NPP modeling studies have documented that terrestrial photosynthetic activity has increased
over the past two to three decades in the middle and high latitudes in the Northern
Hemisphere.28–30,32,84 The mean annual NPP in North America (north of 22°N) was reported
as 6.2 PgC yr−1, increasing by 0.028 PgC yr−2 (significant at the 99% level) from 1982 to
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1998.28 The results from this study illustrated significant increasing trends of NPP from 1981 to
2000 in all the study regions. The NPP in the Appalachian Mountains increased by
2.68 gCm−2 yr−2 (R2 ¼ 0.24, P ¼ 0.017), a smaller rate than that for North America
(2.85 gCm−2 yr−2, R2 ¼ 0.39, P ¼ 0.002). The largest annual mean NPP value
(1009 gCm−2 yr−1) and the largest trend increase (5.8 g Cm−2 yr−2, R2 ¼ 0.43, P ¼ 0.0009)
were observed in the latitudinal range between 30°N and 40°N. The mean NPP in the
Appalachian Trail corridor area increased by 3.23 gCm−2 yr−2 (R2 ¼ 0.25, P ¼ 0.015),
which was larger than that for North America and smaller than that for the Appalachian
Mountains regions.

While prolonged LOS and increasing trends of annual NPP were observed in the
Appalachian Mountains and the Appalachian Trail corridor, peak NDVI showed a decreasing
trend. There are many factors that could affect the change of NDVI, LOS, and NPP in different
spatial contexts of the study areas. The similar pattern of variations and trends between the
Appalachian Trail corridor area and the Appalachian Mountains regions suggested that the
Appalachian Trail corridor area can serve as a mega-transect to reflect such variations and trends
of the Appalachian Mountains regions.
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