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ABSTRACT 

Since its inception, the biotechnology industry has faced the problem of pH 

control and CO2 management. This research paper explores the challenges of 

developing a first principles, unstructured, dynamic, nonlinear mathematical model 

to maintain pH and control carbon dioxide levels in an aerobic Chinese hamster 

ovary (CHO) cell culture in a perfusion bioreactor. Perfusion bioreactor is an 

extremely complex bioreactor to model because the cells grow in a quasi-steady 

state system. Cell growth, feed, substrate consumption, by-product formation and 

product formation are all time dependent, equations for which can only be solved 

through numerical methods. Added complexity comes from presence of stiffness in 

solving the non-linear equations due to the different time scale of each set of 

equations. Equations related to pH that involve acid/base ionization have reaction 

rates on the order of nano- or pico-seconds. CO2 or O2 hydration and bubble 

dynamics involve the reaction rates on the order of seconds and cell growth 

equations are on the order of days. This research paper also presents a framework 

for software development to solve these equations without conducting 

experiments, except as a final trial before using the results of the model on the 

manufacturing floor. 
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PREFACE 

Father of the term, “biotechnology,” Károly (Karl) Ereky, a Hungarian 

scientist, published Biotechnologie in 1919 in Berlin, Germany (Bud, 1993). In that 

book, Ereky related biotechnology to nucleic acids and observed that both plant 

and animal proteins contain the same amino and nucleic acids (Fári and 

Kralovánszky, 2006). At about the same time, in 1921, Canadian physiologists, Sir 

Frederick Grant Banting and Charles Herbert Best, extracted insulin from the 

pancreatic tissue of dogs with the help of a British physiologist, John James Rickard 

Macleod (Microsoft Student, 2008). The Canadian biochemist, James Bertram 

Collip, then isolated pure insulin that could be injected into humans. In this way, 

insulin became the first protein to be administered as a drug to humans and in 

1965, became the first human protein to be synthesized for medicinal applications 

(Microsoft Student, 2008). 

 The journey of development of the biotechnology industry, which produces 

therapeutic proteins from genetically engineered living cells, is quite fascinating. 

This nascent industry gained much needed boost in the United States in 1980 when 

the Supreme Court of the United States ruled in favor of General Electric genetic 

engineer, Ananda Mohan Chakrabarty and granted him the right to patent a 

genetically engineered bacterial cell pursuant to a patent application he had filed in 

1972. Diamond v. Chakrabarty, 447 U.S. 303 (1980). Still in its infancy, the new age 

biotechnology industry, however, played second fiddle to the pharmaceutical 
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companies because besides insulin, the market did not have many 

biopharmaceutical products with medical promise.  

Before the widespread availability of biopharmaceuticals and in the absence 

of any treatment or cure, patients inflicted with the rare diseases had to simply 

learn to live with that disease. All that changed when biopharmaceutical companies 

began seeing some tangible progress and began discovering drugs for diseases that 

inflicted a small number of people for which no treatment was not available. For 

example, when Abbey Meyers could not find any drug to treat her son’s Tourette’s 

syndrome, she lobbied the United States Congress to change the law to give 

companies incentives to develop drugs for rare diseases (Anand, 2005). In 1983, her 

efforts led the United States Congress to enact the Orphan Drug Act, which in 

addition to tax credits, entitled the orphan drugs to market protection that was in 

some respects better than a patent. Id. This law provided the necessary fortitude 

that catapulted the genetic engineers from their “garage laboratories” to executives 

in increasingly confident biotechnology companies in the marketplace. Thus began 

a new era of biotechnology companies that produced biopharmaceutical drugs that 

act similar to naturally occurring proteins in the human bodies. Today, the 

biotechnology industry is at the forefront of developing treatments for difficult 

diseases for which the pharmaceutical drugs are not readily available (Hopkins et 

al., 2007). 
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Proteomic scientists discovered that scientific advances enabled geneticists 

to identify propitious traits in living organisms which could have biopharmaceutical 

applications. Biotechnologists physically manipulated the genetic structure of living 

cells to create genetically engineered living cells programmed to manufacture 

proteins that promise to improve human life. Bioprocess engineers exploited a 

variety of technologies to manipulate the artificial growth environment of these 

genetically modified mammalian cells to produce commercial quantities of 

desirable biopharmaceutical protein (Shuler and Kargi, 1992). However, unlike 

process engineers in the chemical industry who can reasonably rely on established 

scientific and mathematical principles to predict a process and its outcome, even 

small changes in pH, temperature, pressure, ionic strength or even genetic 

mutations, render a bioprocess unpredictable. The biological environment of the 

cells determines the rate, extent and type of biological processes that take place in 

a growth medium. Consequently, bioprocess engineering challenges involve 

optimizing the growth environment of genetically engineered cells to maximize 

product formation and eventually harvesting the product by separating protein 

from cells and cell debris.  

 This research paper presents a first principles, unstructured, dynamic, 

nonlinear mathematical model to maintain pH and control carbon dioxide levels in 

aerobic Chinese hamster ovary (CHO) cell culture in a perfusion bioreactor. CHO 

cells are preferred hosts for mass production of recombinant proteins because of all 
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animal cells, CHO cells grow more rapidly, have higher stability and are efficient in 

foreign gene expression (Matsunaga, 2009a). CO2 is preferred for regulating cell 

culture pH because  

(i) CO2 reduces high pH quickly 

(ii) At approximately neutral pH, CO2 is self-buffering 

(iii) Unlike strong acids, CO2 does not produce local areas of very low pH, 

which could harm the sensitive mammalian cells 

(iv) CO2 is cheaper and safer to handle in a manufacturing plant because it is 

not corrosive and its handling can be completely automated. 

Chapter 1 discusses the need for the current thesis, its scope and 

limitations. This chapter also discusses the statement of the problem and the 

hypothesis. Chapter 2 discusses the background theories relevant to the current 

project. It gives a brief history of cell culture perfusion systems, types of 

mathematical models, and then evaluates parameters that influence a mammalian 

cell culture. Chapter 3 provides methodology employed to solve the problem of CO2 

management and pH control including material balance equations. Chapter 4 

provides MATLAB® simulation details and chapter 5 concludes this thesis and makes 

some suggestions for future work. 
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NOTATION INDEX 

a  gas-liquid interfacial area (𝑎 = 6𝜀
𝑑𝐵

) (m2) 

A Volumetric agitated gas-liquid interfacial area at the top of the liquid as 
defined in Gray et al. (1996) 

B Cell broth bleeding rate from the vessel (L/min) as defined in Gray et al. 
(1996) 

𝐶𝐶𝑂2
𝑇  Total aqueous concentration of CO2 (M) 

𝐶𝐶𝑂2 Aqueous concentration of CO2 (M) 

𝐶𝑂2 Aqueous concentration of O2 (M) 

𝐶𝐶𝑂2
∗  Aqueous concentration of CO2 in equilibrium with the gas phase CO2 (M) 

𝐶𝑂2
∗  Aqueous concentration of O2 in equilibrium with the gas phase O2 (M) 

CL Dissolved oxygen concentration in the bulk liquid (mmol/L) 

C* -CL  Concentration difference across the film at the interface, ‘driving force’ 
(mmol/L) 

𝐶𝐺𝑙𝑛     Concentration of glutamine in the culture (mM) 

𝐶𝑁𝐻3     Concentration of NH3 in the culture (mM) 

𝐶𝑁𝐻3
𝑖𝑛     Concentration of NH3 in the feed (mM) 

𝐶𝑂2       Concentration of oxygen in water (mg/L) 

dB Bubble diameter (m) 

D Medium exchange rate (L/hr) 

F0 Feed flow rate going into the bioreactor (L/hr) 

F1 Recycle flow rate from cell separator device into bioreactor (L/hr) 

ℋ𝐶𝑂2 Henry's Law constant for CO2 (L.atm/mol) 

ℋ𝑂2 Henry's Law constant for O2 (L.atm/mol) 

𝑘𝐴 CO2 transfer coefficient at liquid surface, as defined in Gray et al. (1996) 
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𝑘𝑎2      Equilibrium constant for CO2 hydration, 5.2 × 10−7𝑀 as defined in Gray et 
al. (1996) 

𝑘𝐶𝑂2
𝑠𝑢𝑟𝑓𝑎𝑐𝑒 Surface aeration contribution to kLa (1/hr) as defined in Zupke and 

Green (1998) 

𝑘𝐶𝑂2
𝑠𝑝𝑎𝑟𝑔𝑒 Sparger contribution to kLa (1/hr) as defined in Zupke and Green 

(1998) 

𝑘𝑂2
𝑠𝑢𝑟𝑓𝑎𝑐𝑒 Surface aeration contribution to kLa (1/hr) as defined in Zupke and 

Green (1998) 

𝑘𝑂2
𝑠𝑝𝑎𝑟𝑔𝑒 Sparger contribution to kLa (1/hr) as defined in Zupke and Green 

(1998) 

kL  Individual mass transfer coefficient for liquid phase, based on concentration 
difference (m/s) 

KL Overall mass transfer coefficient for liquid phase, based on concentration 
difference (m/s) 

𝑘𝐿𝑎𝐶𝑂2 Volumetric CO2 transfer coefficient (L/min) for Gray et al. (1996) equations 
and CO2 gas-liquid mass transfer coefficient (L/hr) as defined in Zupke and 
Green (1998) 

KS Saturation constant (g/L) 

[𝑂2]𝑒𝑞
𝑠𝑢𝑟𝑓𝑎𝑐𝑒 Aqueous concentration of O2 in equilibrium with headspace gas (M) 

[𝑂2]𝑒𝑞
𝑠𝑝𝑎𝑟𝑔𝑒 Aqueous concentration of O2 in equilibrium with sparge gas (M) 

P Medium withdraw rate from the cell separator (L/min) as defined in Gray et 
al. (1996) 

PB Pressure at the bottom of the tank (atm) as defined in Zupke and Green 
(1998) 

Pg Power consumption the presence of gas (W) 

PT Pressure at the top of the tank (atm) as defined in Zupke and Green (1998) 

Q Gas flow rate (L/min) 

 

〈𝑄〉 =
𝑋𝑉 − 𝑘𝑂2

𝑠𝑢𝑟𝑓𝑎𝑐𝑒�[𝑂2]𝑒𝑞
𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − [𝑂2]�

𝑘𝑂2
𝑠𝑝𝑎𝑟𝑔𝑒(−[𝑂2])
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〈𝑄〉 Average gas sparge rate (L/min) 

𝑄𝑚𝑎𝑥 Maximum gas sparge rate (L/min) 

𝑞𝐶𝑂2 Specific CO2 production rate (mmol/cell/hr) 

𝑞𝑂2 Specific O2 production rate (mmol/cell/hr) 

𝑞𝑃  Specific product production rate (mmol/cell/hr) 

𝑞𝑆  Specific substrate consumption rate (mmol/cell/hr) 

𝑄𝑜𝑣𝑒𝑟𝑙𝑎𝑦 Bioreactor headspace overlay gas flow rate (L/min) 

R Universal gas constant (L.atm/mol.K) 

rX Rate of cell growth (hr-1) 

S Substrate concentration in bioreactor (g/L) 

S0 Substrate concentration in feed going into the bioreactor (g/L) 

T Temperature (°C) 

V Cell culture (liquid) volume in the bioreactor (L or m3 , will be specified) 

𝑉𝐿 Volume of liquid in bioreactor (m3) 

𝑉ℎ Volume of headspace in the bioreactor (m3) 

Vg Superficial gas velocity (m/s) 

X Cell concentration in the bioreactor (g/L) 

Xv Viable cell density (cells/mL) 

𝑥𝐶𝑂2 Mole fraction of CO2 

𝑥𝐶𝑂2
𝑜𝑣𝑒𝑟𝑙𝑎𝑦 Mole fraction of CO2 in headspace overlay 

𝑥𝐶𝑂2
𝑠𝑝𝑎𝑟𝑔𝑒 Mole fraction of CO2 in sparge gas 

𝑥𝑂2 Mole fraction of O2  

𝑥𝑂2
𝑜𝑣𝑒𝑟𝑙𝑎𝑦 Mole fraction of O2 in headspace overlay 

𝑥𝑂2
𝑠𝑝𝑎𝑟𝑔𝑒 Mole fraction of O2 in sparge gas 

X0 Cell concentration in the feed stream going into bioreactor (g/L) 
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X1 Cell concentration in the recycle stream going into bioreactor (g/L) 

X2 Cell concentration in effluent stream from the cell separator (g/L) 

 

Greek Letters 

ε  Fractional gas hold up (%) 

μ Specific growth rate (hr-1) 

 

Superscripts 

* At equilibrium; dimensionless quantities as used in Hill 2006 

Subscripts 

0 Initial value 

aq Aqueous 

eff Effective 

F Feed as used in equations by Gray et al. (1996) 

L Liquid phase 

LM Log mean 

m Maximum 

T Total 

Abbreviations  

CER CO2 Evolution Rate 

CPR CO2 Production Rate 

CTR CO2 Transfer Rate 

OUR O2 Uptake Rate 

OTR O2 Transfer Rate 

sCPR Specific CO2 Production Rate; (mol/cell/min – for Gray et al., 1996 
equations) and (mmol/cell/hr for Zupke and Green, 1998 equations) 
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sLPR Lactic acid production rate (lactate/cell/hr) 

VCD Viable Cell Density 
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CHAPTER 1 

INTRODUCTION 

Biopharmaceutical drug manufacturing process is very different from the 

small molecule classical drug manufacturing process. Under appropriate living 

conditions, live cells with recombinant DNA produce a protein, which is purified for 

use as a safe and effective treatment for serious diseases. These cells are cultivated 

in bioreactors, which provide optimum living conditions for the drug producing 

cells. As discussed in Section 2.2 and depending on the cell line, these bioreactors 

can be operated in batch, fed-batch or perfusion modes with the goal of increasing 

yield of protein drug per volume by providing optimum amount of nutrient and 

removing waste. These bioreactors can cultivate anchorage-dependent or 

suspension cell cultures.  

Since mammalian cells are extremely sensitive to physiological growth 

conditions, ongoing operation of these bioreactors required precise and careful CO2 

management and pH maintenance strategies. This thesis provides a mathematical 

model for maintaining steady CO2 concentration and pH levels in a perfusion 

bioreactor growing Chinese hamster ovary cells in a suspension culture. 

In the biotech industry, a precise mathematical description of drug 

producing cells is immensely valuable as such a model, in addition to saving  
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 significant capital, will significantly aid process development both to start out initial 

drug manufacturing trials and subsequent troubleshooting during production. Such 

a model forms the backbone of adaptive control strategies, which require complete 

knowledge of the process including complete analytic expressions (Van Impe and 

Bastin, 1995). Researchers have presented many different kinds of modeling 

strategies, for example, neural networks (Karim et al., 1997; Nagy, 2007), data 

based modeling (Karim et al., 2003), and stochastic simulation (Li et al., 2008). 

However, none of these strategies have been applied to CO2 balance and pH 

control. 

 One of the primary and well-known challenges of a bioreactor operation is 

CO2 management and pH control. Optimum growth conditions, including CO2 

concentration and pH levels, highly cell line dependent. If two companies use Cho 

cells but different cell lines, then growth condition requirements are different for 

each cell line. Nevertheless, the published scientific literature has a dearth of 

articles on modeling CO2 concentration and pH control in the bioreactors (Yoon et 

al., 2005). Such a model would lead to the development of a control strategy to 

maintain CO2 concentration and pH level. 

Today, biopharmaceutical industry routinely produces therapeutic proteins 

from aerobic mammalian cells. Obviously then, the industry has addressed the 

challenge of CO2 management and pH control but each company has knowledge 

regarding its own particular cell line. Conceivably, these individualized solutions to 
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the CO2 management and pH control issues exist in the proprietary knowledgebase 

of these respective corporations. Consequently, there is a dire need for a publicly 

available first principles model of CO2 concentration and pH control in bioreactors 

that can be applied to multiple cell lines. This thesis fills this void by presenting a 

way to model CO2 concentration and control pH in an perfusion bioreactor. 

Methodology developed in this thesis can be modified  for application to batch and 

fed batch modes of operation of bioreactors.  

1.1. Statement of the Problem 

Cell growth in a bioreactor requires steady state conditions i.e. steady 

nutrient levels and a steady physiological environment. However, in a bioreactor, 

viable and total cell counts fluctuate appreciably during cultivation due to known 

and unknown causes and as such, a bioreactor system is unlikely to be in a true 

steady state (Vits and Hu, 1992). Thus, in a bioreactor, cells exist in a quasi-steady 

state and the equilibrium continuously shifts. For example, with the passage of 

time, cells divide and number of cells increase. Each of these mammalian cells alters 

the pH of the fermentation broth by releasing metabolic by-products – ammonia, 

CO2 and lactic acid (Wu et al., 1993). The goal of this model is to develop a 

mathematical strategy to maintain pH and CO2 within a specified narrow range. 

High-density mammalian cell cultures that use CO2 to regulate pH have 

three sources of CO2/CO3
2-: (1) CO2 that the aerobic cells excrete as part of their 

normal growth process (Krebs cycle); (2) HCO3
-/CO3

2- that is added to regulate 
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(raise) pH; and (3) CO2 sparged into the bioreactor to regulate (lower) pH (Zanghi et 

al., 1999). Excess CO2 can be defined as the cell line dependent amount of CO2 

concentration above which cell growth is appreciably negatively impacted. Excess 

CO2 is not only toxic to the mammalian cells, it may also affect the quality of protein 

products (Gray et al., 1996; Matsunaga, 2009b). This thesis presents a mathematical 

strategy to regulate CO2 levels in a perfusion bioreactor. 

In addition to multiple sources of CO2, aerobic cell cultures with high VCD 

pose their own unique challenges because as VCD increases, so does cell stress due 

to environmental conditions. Cells experience stress if the physiological growth 

conditions deviate optimum growth conditions. For example, cells can experience 

stress in if the broth is highly acidic or highly basic or due to excessive agitation in 

the bioreactor. For these mammalian cells, the nature of the stress is key to product 

formation because certain stress would induce the cells to produce the protein-

product while other types of stress may inhibit cell growth and/or protein synthesis.  

Cell cultures with high VCD produce large amounts of CO2 and require large 

quantities of O2 for respiration. If high VCD causes anorexic and/or low O2 

conditions, then in response, the CHO cells may begin to excrete lactic acid, which 

lowers pH and eventually the CHO cells switch to metabolizing the lactic acid 

instead of glucose (Wu et al., 1993). CHO cell growth on lactic acid is undesirable 

because such growth adversely affects the quality of the protein-product.  
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In high density mammalian cell cultures, perfusion systems address the 

problem of accumulation of highly soluble CO2 and the high demand for sparingly 

soluble O2 in the bioreactor fermentation broth, by exchanging spent media with 

oxygen-rich fresh media and by recycling the viable cells into the bioreactor. 

Appropriate agitation of the fermentation broth can alter local concentrations of 

CO2 and O2, as higher agitation rates lead to more homogeneous growth conditions 

(Arjunwadkar, 1998). However, the mammalian cells in bioreactors must be gently 

agitated because as the agitation rates increase, risk of cell lyses also increases.  

As cells grow in the perfusion bioreactor, increasing VCD increases the 

amount of NH3, CO2 and lactic acid in the cell culture broth; and correspondingly 

the cells consume increasing amounts of nutrients and O2. Depending on the 

amount dissolved in the fermentation broth, CO2 can be both – a nutrient and a 

toxin. CO2 is toxic in high concentrations but is also essential for survival and for 

general well-being of the cells. 

1.2. Research Goals of the Current Thesis 

Specific goals of this thesis project are: 

1. To understand and model the effect of carbon dioxide concentration on 

specific growth rate of CHO cells. 



6 
 

2. The solution to the equations must maintain steady state in terms of pH 

and concentrations of NH3, CO2, lactic acid and O2 in the cell culture 

broth. 

3. To develop a framework for a computer program that is easily adaptable 

for any cell line by changing few characteristic constants that are specific 

to a particular cell line. 

4. To optimize the addition of sodium carbonate ion and CO2 gas to 

regulate pH. 

5. To incorporate carbon dioxide stripping due to its subsurface sparging 

into the mathematical model. 

1.3. Scope or Limitations of the Problem 

Biological processes involve intricate and interdependent reaction 

pathways. In this thesis, non-linear, dynamic equations describe an unstructured, 

first principles mathematical model of perfusion bioreactor. Certain simplifying 

assumptions help solve these modeling equations. A more detailed description of 

the assumptions used to solve these equations is presented alongside the solutions 

to those equations.  

Fermentation stability is of paramount importance for a viable cell culture. 

However, time-dependent increases in CHO cell density in a bioreactor under 

dissolved oxygen undergo spontaneous bifurcations losing stability. (Chung et. al., 

2003). This loss in stability means sustained and amplified perturbation in the 
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bioreactor dissolved oxygen concentration and in oxygen gas flow rate to the 

bioreactor. Id. In this mathematical model, the high-density CHO cell culture is 

assumed to be inherently stable.  

Cell cultures grown at constant hydrostatic pressures of 105 – 9 x 105 Pa, 

show little variation in cell growth or specific glucose consumption rates (Takagi et 

al., 1995). However, as the pressure is increased (to ~ 5 x 105 Pa), specific lactate 

production rate slightly decreases and specific glutamine consumption and 

ammonia production rates increase. Id. Perfusion bioreactors considered in this 

thesis typically contain 3-4 m3 of fermentation broth and CHO cells. For this reason, 

hydrostatic pressure effects because of liquid height in a bioreactor are ignored as 

negligible (for example, approximately 3,000 L bioreactor filled to a height of 1.5 m 

with water, exerts a pressure of ~1.5 x 10-4 atm or ~15 Pa at the bottom of the 

tank).  

Heat balance is not considered. Heat is transported into and out of a 

perfusion bioreactor broth through convective and molecular transport when new 

feed is added to the system and through media exchange. Additionally, each cell 

produces and consumes heat because of various intra- and intercellular reactions 

(Riet, 1983). Similarly, mechanical energy or power applied to propel the agitator 

does work on the system, which degrades into the broth as thermal energy: as the 

agitator rotates, each shell of broth that is adjacent to the agitator blade rubs 

against that agitator blade. This friction between adjacent layers of fluid and the 
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wall of the agitator blades produces heat. Finally, the electric wires around the 

bioreactor may produce electric and magnetic fields that may affect the 

temperature of the broth. All these sources and sinks of heat are ignored. The 

mathematical model assumes that a heat jacket around the reactor keeps the 

temperature inside the bioreactor steady i.e. the system is diabatic or non-

adiabatic. In solving the modeling equations, the temperature of the broth is 

assumed to be within the range of 36.5 °C to 37.5 °C.  

From inoculation until the time when the downstream processes begin, 

many generations of CHO cells produce the desired protein product. It is 

conceivable that genetic mutations are introduced over several generations that 

can alter the metabolism of the cells. This model assumes that number of cells with 

such mutations is very small to have any material effect on the behavior of the bulk 

of the bioreactor. Likewise, this thesis ignores the effects of microgravity 

(Anderson, 2004) and various mechanical and environmental factors on cell 

behavior and gene expression.  

Bubble dynamics play an important role in gas transport and cell 

survivability in a bioreactor. However, effects of bubbles that are produced as a 

result of CO2 and O2 sparging and as a result of agitation are not considered (Wang 

et al., 1994; Meier et al., 1999; Ma et al., 2006). Similarly, position dependence of 

agitators is neither considered nor investigated, which has been shown to have an 

impact on oxygen and carbon dioxide transfer rates (Arjunwadkar, 1998). 
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Eddy dynamics affect material transport and diffusion into and out of gas 

and liquid phases in a bioreactor (Croughan and Wang, 1989). This model assumes 

that mixing between randomly dispersed eddies is instantaneous. Dynamics of 

mixing within eddies is ignored. Finally, a bioreactor has many coupled reactions. 

That is, they require co-substrates or co-factors, which are either recycled or 

regenerated by another companion reaction. This unstructured model also ignores 

these coupling effects. 

1.4. Hypothesis 

Contois equation (Contois, 1959) best describes substrate-limited specific 

growth rate of CHO cells in a perfusion bioreactor that has a high viable cell density 

(Shuler and Kargi, 1992). 

Maintaining CO2 concentration and pH at a steady state would require 

dynamic CO2 material balance and dynamic control of pH. 

1.5. Justification for and Significance of the Study 

Biopharmaceutical drugs are prohibitively expensive due to high research 

costs and long development time that is required to understand and then develop 

the drug manufacturing process. A mathematical model that addresses a primary 

challenge of a mammalian cell culture would greatly reduce process development 

related time and costs. The fact that work described in this thesis is highly sought 
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after and timely can be gauged from the fact that even though bicarbonate 

management is a long standing problem, there is no effective solution available.  

In 1957, Dr. Theodore T. Puck initiated the use of Chinese hamster ovary 

cells for research in mammalian somatic cell genetics (Gamper et al., 2005). Since 

then, CHO cells have become the most popular industrial cells that are used to 

produce tissue plasminogen activator, erythropoietin, granulocyte colony 

stimulating factor, factors VIII and IX, deoxyribonuclease I, glucocerebrosidase, 

beta-interferon, MAb against GPIIb/IIIa, CD20, tumor necrosis factor alpha, tumor 

necrosis factor receptor and HER2 (Xie and Zhou, 2006). Today, CHO cells produce 

nearly 70% of all recombinant protein therapeutics that account for $30 billion in 

annual sales (Jacob et al., 2009). Manufacture of these blockbuster 

biopharmaceutical therapies from mammalian cell cultures is capital intensive and 

requires implementation of robust and reliable bioprocesses that consistently 

produce uniform product. Such production in turn requires a detailed 

understanding of dynamics and interplay amongst critical bioprocess parameters 

such as temperature, dissolved CO2 and O2 and concentrations of lactic acid and 

ammonia.  

Increasing the product titer requires extensive manipulation of growth 

conditions inside a bioreactor (Leist, 1990). And although this manipulation is 

routinely performed in the industry, it is usually a closely guarded trade secret 

(Yoon et al., 2005; Frick and Junker, 1999). Similarly, despite their numerous 

applications for producing therapeutic proteins, publications on CHO cell culture 
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processes are quite limited (Xie and Zhou, 2006). Rarer still are publications and 

purported solution to the problem of carbon dioxide/bicarbonate management in a 

bioreactor even though bicarbonate management is an overarching issue that 

biotechnologists deal with every day. Currently, empirical models exist in the 

industry that are cell line specific, in which, cells are grown under well-characterized 

conditions. This research thus fills a major void and advances the knowledge about 

CHO cells growth processes by focusing on mathematically modeling one of the 

primary challenges that such cultures face – accumulation of CO2 in bioreactors 

(Frick and Junker, 1999).  

A perfusion bioreactor requires elaborate i.e. expensive support system as 

compared to a batch or fed-batch bioreactor. The goal of such a support system is 

to ensure optimum growth conditions for CHO cells while minimizing conditions 

that are damaging to cell health and growth. Mathematical and computer models 

aid in estimation of capital outlay by forecasting bioprocess system needs. 

Frequently changing culture conditions can influence the consistency of protein 

product. However, consistent process performance and product quality is a 

regulatory requirement (21 C.F.R. part 211; Woodside et al., 1998). Thus, in the 

highly regulated biopharmaceutical manufacturing industry, compliance and 

regulatory promises and not just economic considerations often dictate bioprocess 

choices. 

Ideally, an accurate representation of cell growth in a bioreactor accounts 

for every conceivable variation in the process. Not surprisingly, such a description 
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would be computationally onerous and financially impractical (Haag et al., 2005). 

This thesis has a direct impact on such considerations by examining the 

relationships between the critical parameters by focusing specifically on CO2 

management.  
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CHAPTER 2 

LITERATURE REVIEW 

Living cells produce proteins that have become blockbuster 

biopharmaceutical drugs like Enbrel® and Remicade®. Chinese hamster ovary (CHO) 

cells are primary host cells that the biopharmaceutical industry uses to produce 

recombinant therapeutic proteins. Manufacture of these proteins in bioreactors 

consists of two distinct processes: upstream process during which the viable cell 

density (VCD) increases to a predetermined level and downstream process during 

which the biopharmaceutical protein that the living cells have produced is purified 

and isolated. As with any other manufacturing process, protein production through 

living cells is rife with opportunities for improvement.  

A longstanding problem that the biotechnology industry faces is carbon 

dioxide/bicarbonate management especially in mammalian cell cultures. This thesis 

focuses on developing a first principles, unstructured, dynamic mathematical model 

for regulating carbon dioxide and pH in a bicarbonate buffered perfusion bioreactor 

for aerobic Chinese hamster ovary (CHO) cell system. A perfusion bioreactor is the 

focus of this research because it is the established bioreactor system in large-scale 

recombinant protein commercial production facilities. However, perfusion systems 

are significantly more complex, hence more expensive, and more prone to 

contamination than batch or fed-batch systems (Fenge and Lüllau, 2006).   
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2.1. Cell Culture Perfusion Systems 

Production of biopharmaceutical protein molecules from mammalian cells 

begins with a single genetically engineered living cell when it is inoculated into a 

bioreactor containing favorable growth media and environmental conditions. 

According to Graff and McCarty (1958), a cell culture is a highly artificial expedient 

in which host influences are abolished but can be simulated. Suitably then, 

bioprocess engineers induce the genetically engineered cells to multiply and 

produce desired protein drug by maintaining optimum growth conditions. In 

addition to mechanical characteristics of a bioreactor, the growth conditions and 

critical parameters include optimum concentrations of ammonia, dissolved carbon 

dioxide, dissolved oxygen, lactic acid, osmolality, pH, substrate and temperature 

and ionic strength of the fermentation broth. Controlling all these parameters at 

the same time to ensure optimum environment for the cells is a challenging task 

that requires simultaneous calculations and real time decision-making. As one 

scientist noted, “[e]ven the simplest living cell is a system of such forbidding 

complexity that any mathematical description of it is an extremely modest 

approximation” (Bailey, 1998).  

As the aerobic mammalian cells grow, they consume nutrients and O2 and 

excrete CO2, NH3 and lactic acid. As the cell density increases, the concentration of 

excreted by-products progressively increases in the medium, which can lead to 

unnatural extremes. Both, dissolved carbon dioxide and lactic acid are mild acids 
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and tend to lower the pH of the biological medium, which is unfavorable for cell 

growth. Thus, bioprocess engineers must closely monitor dissolved carbon dioxide 

and nutrient levels.  

2.2. Bioreactor Operation Modes: Batch, Fed Batch and Perfusion 

A bioreactor can be operated in one of three different modes based on the 

how often cell culture media is replenished and removed: (a) batch; (b) fed-batch; 

(c) continuous or perfusion with cell recycle.  

2.2.1. Batch and Fed Batch Bioreactors 

In a batch bioreactor, where there is neither inflow nor outflow of cells or 

media, the cells grow undisturbed in the initially supplied media. Frequently, 

oxygen is sparged. Thus, only pH, temperature and aeration are controlled in batch 

reactors. However, over time, local cell environment constantly changes as the cells 

multiply and consume available nutrients and excrete by-products like CO2, NH3 and 

lactic acid. 

 In a fed-batch operation, a substrate feed maintains the concentration of 

the nutrients at a predetermined steady state. However, there is no outflow of cells 

or media. The disadvantage of fed-batch operation is that accumulation of 

metabolic by-products such as lactate and ammonia limit cultivation times (Vits and 

Hu, 1992).  
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Figure 1: Types of Bioreactors 

2.2.2. Perfusion Bioreactor Systems 

Perfusion systems are characterized by media exchange. These perfusion 

systems can either be “open” in which fresh, enriched media is continuously added 

and spent media is correspondingly removed; or the perfusion system can be 

closed in which the spent media is withdrawn and pumped through an 

“oxygenator” before being re-circulated back into the bioreactor (Griffiths, 1990; 

Hu and Wang, 1986).  

In addition to replenishing dissolved oxygen in the bioreactor, the exchange 

of media in perfusion bioreactors removes metabolites like NH3, CO2 and lactic acid 

that can become toxic in high concentrations (Riley, 2006). According to Hu and 

Wang, assuming oxygen consumption rate of 1.5 mmol/L.h in the cell culture, a 

media recirculation rate (or perfusion rate) of approximately 8 volumes/hr is 

needed to avoid oxygen limitation. In this manner, by varying the perfusion rate 
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according to the demands of the cell population, a perfusion bioreactor avoids 

alternate periods of “famine and feast” in a cell culture, which are characteristic of 

fed batch reactors (Graff and McCarty, 1958; Nahapetian, 1986). 

 

Figure 2: A Typical Perfusion Bioreactor 

Any media exchange in a suspension culture requires a cell retention device 

and can consist of either submerged spin filters or membrane filtration devices 

outside the bioreactor (Woodside et al., 1998). Perfusion bioreactor systems offer a 

relatively constant culture environment over months of operation, a short product 

residence time and increased product concentration, while operating at a high cell 

density of 106-107 cells/mL (Drouin et al., 2007; Kumar et al., 2007). 
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2.3. Cell Cultivation: A Brief History 

Perfusion systems are characterized by a bioreactor with a filtration system 

that retains cells during media exchange. Today, the biopharmaceutical industry 

employs perfusion systems to cultivate high-density cell cultures by providing, 

controlling and maintaining for the cells, a steady state homogenous environment 

that attempts to closely approximate the cells’ natural physiological growth 

conditions. However, the perfusion systems were initially developed for medical 

applications to examine animal tissues in vitro under the microscope and to 

cultivate organs outside of an organism.  

2.3.1. Early Development of Perfusion Techniques 

As early as 1907, Ross Granville Harrison of Johns Hopkins University grew a 

nerve cell outside the animal body (Patterson, 1975). Subsequently, a young 

medical student, Montrose Burrows and Harrison, together developed a perfusion 

system as part of their studies involving tissues from frog embryos in which they 

used blood plasma as growth medium (Butler, 1986; Friedman and Friedland, 

1998). 

In 1912, French physician, Alexis Carrel of the Rockefeller Institute of 

Medical Research, New York, who won the Nobel Prize in Medicine that same year, 

described a method for cultivating a large quantity of tissue for extended 

observation under a microscope (Carrel, 1912a). That same year, Carrel reported 
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cultivating cell suspension culture and a heart of an eighteen-day-old chick fetus 

(Carrel, 1912b). Finally, in 1935, American aviator, Charles A. Lindbergh developed 

one of the first perfusion systems and Carrel perfected the techniques for 

cultivation of whole organs in that perfusion system (Lepicard, 2008).  

Parenthetically, Friedman and Friedland’s investigation into history of cell 

cultivation revealed that Carrel had delegated his laboratory duties to Albert 

Eberling who had modified Carrel’s original tissue culture technique. Eberling 

cultured the heart by placing it on the floor of a glass culture vessel and feeding it a 

drop of chick blood plasma and a drop of watery extract of chicken embryonic 

tissue. Once the cell culture used up all the nutrients in the clot, Eberling would 

repeat the process with half the resultant grown tissue. Eberling claimed that this 

heart, the size of a match head (called an explant), was alive until two years after 

Carrel himself died in 1944. However, Friedman and Friedland found that Eberling 

was continuously adding new cells to the culture.  

The 1950s was an eventful decade in the advancement of perfusion systems, 

cell culture medium development and biotechnology in general. In 1953, James 

Watson and Francis Crick published the structure of deoxyribonucleic acid (DNA) in 

Nature. Graff and McCarty (1957 and 1958) published their articles on perfusion 

cell cultures wherein they described method for controlling pH by controlling “CO2 

tension.”  
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In 1953, Christiansen et al. and Danes et al. published their twin studies on 

continuous tissue culture; Harry Eagle published a series of papers from 1955 to 

1960 reporting results regarding amino acids, vitamins, ionic species, energy 

sources and other factors essential for the survival and growth of mammalian cells 

in culture (Darnell et al., 2005; Eagle, 1977). Together these discoveries laid the 

foundation for biotechnological advances by making large-scale high-density cell 

cultures possible. 1960s saw the development of cell culture techniques that had 

direct application for large-scale high-density cell cultures. In 1969, Himmelfarb et 

al., described a perfusion system using a spin filter in suspension culture. Using this 

spin filter, they achieved cell densities close to 108 cells/mL.  

2.3.2. Foundation for Modern Biotechnology 

1970s saw major advancements in the biotechnological techniques including 

the developments in bioreactors, monitoring technologies and of course applied 

recombinant DNA techniques. In 1975, Köhler and Milstein developed hybridoma 

technology, which allowed production of monoclonal antibodies. In 1988, 

Riechmann et al. developed a technique to generate humanized antibodies with 90-

95% human content. All these advancements laid the foundation for eventual FDA 

approval in 1986 of the first therapeutic monoclonal antibody, Orthoclone® OKT3® 

(Ortho Biotech) and of first humanized diagnostic monoclonal antibody, 

Arcitumomab® (Immunomedics/Pharmacia, Inc.) in 1996.  
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From the Biologics Control Act of 1902 to the modern day Food, Drug and 

Cosmetics Act, regulatory framework has also advanced with the developments in 

drug manufacturing technologies. Of course, discussion of statutory and legal 

framework is outside the scope of this work. However, it must be mentioned that 

U.S. laws, like Orphan Drug Act have played a pivotal role in development of the 

entire biopharmaceutical drug industry. 

2.4. Types of Mathematical Models 

Depending on application and the level of desired detail, different types of 

models have been proposed that characterize a suspension cell culture in a 

perfusion bioreactor. 

2.4.1. Black Box, Gray Box and White Box Models 

Black box (or empirical or input-output) models link input factors with 

output responses. These models are constructed when the mechanism underlying a 

process is not understood sufficiently well, or is too complicated, to allow an exact 

model to be postulated from theory (Lübbert and Jørgensen, 2001; Box et al., 2002; 

van Lith, 2002). These models are straightforward and their results can be readily 

interpreted.  

 White box (or first principles or fundamental or mechanistic) models 

are based on known biological, chemical and physical laws (van Lith, 2002; Lübbert 

and Jørgensen, 2001). Such models are typically nonlinear and thus formulated in 
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terms of ordinary or partial differential equations with supporting linear algebraic 

equations. These models are employed when understanding a process or a system 

is essential to progress or when the state of the art is sufficiently advanced to make 

a useful white box model easily reliable (Box et al., 2002). Consequently, these 

models require a high level of effort and can be constructed even when the system 

itself is not yet constructed (van Lith, 2002). Thus, a first principles model is 

mathematically rigorous albeit computationally expensive. 

As the name suggests, gray box models are hybrid models, which are a 

combination of first principles and empirical models. Models that are based on 

heuristic knowledge are termed gray box models to distinguish them from the 

purely data driven black box models and models based on mechanistically 

completely understood mathematical models (Lübbert and Jørgensen, 2001). 

Today, most models are gray box models to some extent (van Lith, 2002).  

2.4.2. Dynamic and Static Models 

Static models can generally be described by 𝑦 = 𝑓(𝑢) where the value of 

the independent variable does not change with time. Dynamic models on the other 

hand, seek to describe the behavior of independent variables with respect to time. 

In a dynamic model, values of parameters can vary discretely or continuously with 

time. A continuous variable can take any value within a time interval. A discrete 

variable can take only a certain number of values within a time interval. Many 

techniques are available to mathematically manipulate discretised form of dynamic 
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control functions, for example, orthogonal collocation method or control vector 

parameterization (CVP). However, added complexities emerge when the dynamic 

problems are stiff.   

2.4.3. Linear and Nonlinear Models 

Simultaneous linear algebraic equations describe a linear model. For such 

equations, condition for existence and uniqueness of the solution is trivial. These 

equations can be solved by explicit numerical methods like vector/matrix 

operations or various elimination methods (Constantinides and Mostoufi, 1999). A 

linear algebraic model will have a unique solution if it is well defined (Beers, 2007). 

However, biological systems are seldom well defined and seldom completely 

defined only by linear models.  

A nonlinear model is at least partially described by nonlinear equations 

wherein the output is a nonlinear function of the input. All nonlinear equations 

have the form 𝑓(𝑥) = 0, where x is a single variable that can have multiple roots 

that satisfy this equation. For example, the function 𝑓(𝑥) may assume many 

nonlinear functionalities like higher order polynomial, trigonometric, exponential 

and logarithmic terms. Methods of solution of nonlinear systems and differential 

equations use the technique of linearization of the models, thus requiring the 

repetitive solution of sets of linear algebraic equations (Constantinides and 

Mostoufi, 1999). Thus, nonlinear equations require implicit numerical solution like 
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finite difference methods, Newton-Raphson method, Runge-Kutta methods, 

Eigenvalue method etc. 

2.4.4. Segregated and Non-segregated Models 

A segregated model considers individual cells that are different from one 

another depending on some distinguishable characteristic (Shuler and Kargi, 1992). 

Non-segregated models consider the population as lumped into one biophase that 

interacts with the external environment so that a single variable can describe the 

cell concentration (Blanch and Clark, 1996).  

2.4.5. Structured and Unstructured Models 

The concept of structure arises when considering the detailed reactions 

occurring within the cell (Blanch and Clark, 1996). For example, a structured model 

may consider the kinetics of compounds involved in a Tricarboxylic Acid (TCA) or 

Krebs cycle and describe reactions and ATP, CO2 and O2 consumption and 

production in detail. That is, structured models break the population into distinct 

subcomponents (Shuler and Kargi, 1992). Thus, structured models require a 

thorough knowledge of intracellular reactions and their regulation mechanisms 

(Zeng and Bi, 2006).  

Unstructured models on the other hand, consider cell as an entity and 

models its interactions with the environment assuming fixed cell composition 

(Shuler and Kargi, 1992). These models are based on fundamental observations of 
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biological processes (Zeng and Bi, 2006). They can be used to qualitatively and 

quantitatively describe important features of cell culture, for example, effect of pH 

on cell growth. However, since the unstructured models quantify cell mass as a 

single component, they cannot describe transient behavior very well (Shuler and 

Kargi, 1992).  

2.4.6. Transient and Steady State Models 

A steady state of a dynamic system is defined as one in which the time 

derivatives of each state variable are zero (Beers, 2007). In other words, over time, 

the input and output parameters of a system are held constant. A steady state is 

stable, if following every infinitesimal perturbation away from a steady state, xs, the 

system returns to xs. If any infinitesimal perturbation causes the system to move 

away from xs, then a steady state xs is unstable. Finally, a neutrally stable steady 

state exists when a perturbation neither grows nor decays with time (Beers, 2007).  

A transient state exists when a bioreactor is brought into operation or is 

being shut down so that concentrations, pH, temperature and other parameters 

continually change with time. Alternatively, an unstable steady state can be nudged 

into a transient state due to some perturbation caused by changes in environment 

or some feedback control. 
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2.5. Biomass, Cell Growth Kinetics and pH Control 

 The primary objective of every step in the production of protein from 

mammalian cells is to increase titer – the protein concentration. Amount of titer 

can be increased by increasing (1) the cell mass; (2) the productivity of each cell; 

and (3) time. Given ample supply of nutrients, growth of cells in a bioreactor is an 

autocatalytic process. The amount of change in cell population at any given time is 

proportional to the initial cell concentration. Thus, the following overall reaction 

describes cell growth in unstructured models: 

 Cells (biomass) + Substrates  Byproducts + more cells (biomass) (2.1)  

 𝜇 =
1
𝑋
𝑑𝑋
𝑑𝑡

 
(2.2)  

where μ is specific cell growth rate (hr-1), X is cell mass concentration (g/L) and t is 

time (h) (Shuler and Kargi, 1992). Under favorable growth conditions in an ideal 

system, a cell population increases exponentially.  

As VCD increases, aerobic CHO cells consume O2 and produce CO2 and lactic 

acid. Equation (2.2) includes a multitude of cellular reactions that produce and 

consume various acids and bases, altering pH in a bioreactor. However, ideal 

growth conditions require steady state operation at desired pH, temperature and 

control of other parameters. To maintain a bioreactor at a certain pH, an acid or a 

base is added at commercial production facilities where mammalian cells are 

cultivated in a series of bioreactors. However, because of the variability associated 
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with each individual cell, it is difficult to predict how much acid or base must be 

added.  

2.5.1. Criteria, Limitations and Considerations for Modeling Equations 

The model in this research assumes balanced growth of the CHO cells by 

assuming a fixed cell composition for all CHO cells and by treating the entire cell 

culture in the bioreactor as homogeneous. In doing so, this black box model 

disregards the microscopic expression of cells and ignores stoichiometry and the 

behavior of various organelles inside each cell.  

The following sections describe the roles and significance of four 

compounds – CO2, NH3, lactic acid and O2, in CHO cell growth cycle in a bioreactor. 

The mathematical model will then address the individual challenges of maintaining 

steady state by focusing on the interactions of CO2 with the concentration profiles 

of NH3, lactic acid and O2.  

2.5.2. Ammonia/Ammonium Ion 

In a 1996, Schneider et al. published a survey of research work done on the 

toxic and inhibitory effects of ammonia/ammonium ion in mammalian cell cultures. 

Ammonia is one of the two major metabolic by-products of mammalian cell growth 

(the other is lactate) that accumulates in high-density mammalian cell cultures as a 

result of glutamine metabolism and its spontaneous decomposition (Xie and Wang, 

1996; Yoon et al., 2005; Gódia and Cairó, 2006). Ammonia negatively influences cell 
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growth, recombinant protein productivity of CHO cells and protein quality (Chen 

and Harcum, 2005).  

2.5.2.1. NH3/NH4
+ in Aqueous Solutions 

Ammonia, which due to its polarity, is highly soluble in water, exists in two 

forms in aqueous solutions. At low pH (below ~8.75), ammonia exists as ammonium 

ion (NH4
+) and as the pH rises above ~9.75, the ammonium ion converts to un-

ionized form of dissolved ammonia (NH3). Thus, in CHO cell fermentation broth 

which is at pH 7.0, ammonia exists as ammonium ion. Total ammonia in an aqueous 

solution is the sum of ammonium ion and ammonia concentrations.  

 𝑁𝐻3(𝑎𝑞. ) + 𝐻2𝑂(𝑙) ⇌ 𝑁𝐻4+(𝑎𝑞. ) + 𝑂𝐻−(𝑎𝑞. ) (2.3)  

 
𝐾𝑏 =

[𝑁𝐻4+][𝑂𝐻−]
[𝑁𝐻3] = 1.8 × 10−5 𝑎𝑡 25℃ 

(2.4)  

 𝑁𝐻4+(𝑎𝑞. ) + 𝐻2𝑂 ⇌ 𝑁𝐻3(𝑎𝑞. ) + 𝐻3𝑂+(𝑎𝑞. ) (2.5)  

 
𝐾𝑎 =

[𝑁𝐻3][𝐻3𝑂+]
𝑁𝐻4+

=
1 × 10−14

1.8 × 10−5
= 5.6 × 10−10 

(2.6)  

As the above equations demonstrate, dissolved ammonia acts as a weak 

base and the ammonium ion acts as a weak acid in aqueous solutions. Since at the 

targeted pH of 7.0, about 99% of total concentration of ammonia/ammonium is 

present as NH4
+, in aqueous solutions, the following equation describes the 

ammonia and ammonium equilibrium: 
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 𝑝𝐻 = 𝑝𝐾 + 𝑙𝑜𝑔
[𝑁𝐻3]
[𝑁𝐻4+]

 
(2.7)  

where pK has a value of 9.3 at 37°C (Schneider et al., 1996). 

2.5.2.2. Toxic and Inhibitory Effects of Ammonia/Ammonium 

High concentration of ammonium ion in the fermentation broth is toxic to 

CHO cells because ammonium ion rapidly diffuses into the cytoplasm of a cell 

through the cell membrane forcing ammonia out into the extracellular broth. This 

release of cellular ammonia causes cytoplasmic acidification and extracellular 

alkalinization (Martinelle, 1996). Such a ammonium ion transport highway causes 

cell death – both through necrosis and through apoptosis. Id. Moreover, 

ammonium ion partially inhibits the TCA cycle shifting metabolic pathways (Lao and 

Toth, 1997). Ammonium ion also affects the quality of the protein product (Xing et 

al., 2008; Harcum, 2006). For these reasons, one of the major design parameters of 

CHO cell bioreactor includes reducing ammonium ion formation and/or removing 

ammonium ion from the bioreactor.  

Just like any other physiochemical parameter in a bioreactor, the toxic and 

inhibitory effects of ammonia/ammonium ion are highly cell line dependent 

(Schneider et al., 1996). For example, Kurano et al. (1990b) reported a 50% 

reduction in the growth of CHO cells at 8 mM ammonium ion concentration. 

Hansen and Emborg’s study in 1994 corroborated this observation when they 

reported that in continuous cultures like perfusion bioreactors, CHO cells 
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experience inhibition of growth at ammonium ion concentration above 8 mM. 

However, according to Xing et al. (2008), ammonium ion levels above 5.1 mM 

inhibit CHO cell growth and Takagi et al. (2001) reported even lower threshold of 

4mM of ammonium ion concentration. 

The extent of toxic and inhibitory effects of ammonium ion depends on 

whether the cells have had time to adapt to the new environment. For instance, Xie 

and Zhou (2006) reported substantial growth inhibition in CHO cells for 2 mM 

ammonium ion at inoculation. However, they did not observe growth inhibition for 

up to 12.5 mM ammonium ion concentration when the cells had extended time to 

adapt to the culture.  

Mammalian cells produce ammonia in direct proportion to their glutamine 

consumption (Faraday et al., 2001). At low glutamine concentrations, adding non-

essential amino acids into the CHO cell media minimizes ammonia production (Xie 

and Wang, 1996; Chen and Harcum, 2005). Consequently, the strategies to reduce 

ammonium ion accumulation involve reducing glutamine concentration in the 

fermentation broth and lowering or eliminating the CHO cell demand for glutamine 

(Xie and Zhou, 2006; Zeng and Bi, 2006).  

2.5.3. Carbon Dioxide 

Carbon dioxide (CO2) concentration – both in the fermentation broth and in 

the headspace above the broth, is one of the most important parameters in a 
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mammalian cell bioreactor. For aerobic CHO cells, the process of CO2 management 

in a bioreactor is complicated because CO2 is a metabolic by-product and in small 

quantities, a nutrient when it is required for synthesis of pyrimidines, purines and 

fatty acids in animal cells (Ma et al., 2006; Zeng and Bi, 2006). For example, during 

carboxylation of pyruvate to oxaloacetic acid, CO2 acts as a nutrient even for 

aerobic cells (Gódia and Cairó, 2006). However, in large quantities, not only is CO2 

toxic, it also adversely affects the quality of the protein product (e.g. Gray et al., 

1996; Xing et al., 2008). For this reason, bioengineers must design bioreactors with 

active CO2 management systems.  

2.5.3.1. Sources and Effects of CO2 in Fermentation Broth 

In a bicarbonate buffered medium, there are three sources of CO2 – the 

aerobic mammalian cells, bicarbonate buffer used to regulate pH and sparged CO2. 

At low cell densities, the buffer capacity of the media compensates for the 

variations in cell culture pH due to minor changes in concentrations of ammonia, 

CO2 and lactic acid that the mammalian cells release into the medium. However, as 

VCD increases, these three metabolic by-products can significantly alter the pH of 

the medium easily overwhelming the buffer capacity of the CO2/HCO3
-/CO3

2- buffer 

system. Addition of sodium bicarbonate can restore the buffer capacity and thus 

the pH of the medium. Unfortunately, accumulation characterizes HCO3
- and CO3

2- 

buffered media thereby affecting the CO2 balance, increasing the pH to above the 

optimum level of 7.0 – 7.4 (Zanghi et al., 1999; Neeleman, 2000). For this reason, it 
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is necessary to sparge CO2 gas, which helps lower the pH. The sparged CO2 adds to 

the complexity of the CO2/water system because of the specific reactions that CO2 

undergoes with water even though a small fraction (<1%) of dissolved CO2 converts 

to carbonic acid (H2CO3). 

CO2, a non-polar molecule that is 25 times more soluble in fermentation 

broth as compared to O2, readily diffuses across cell membranes and lowers the 

intracellular pH (Frick and Junker, 1999; Pattison et al., 2000). Significantly, 

methods that serve to enhance O2 transfer to the broth also enhance CO2 transfer 

rate (Frick and Junker, 1999).  

Higher intracellular CO2 concentration affects the activity of intracellular 

enzymes and alters cellular metabolism (Nyberg, 1999). Mammalian cells produce 

relatively low quantities of protein (approximately several pg/cell). Protein quantity 

and quality is related to cell growth, maintenance and metabolism (Nyberg, 1999). 

If the concentration of CO2 is higher in the media, then cells grow under stress. In 

such conditions, cells produce an undesirable quality of protein. Thus, during the 

cell growth phase, bioengineers take care to reduce the stress that cells experience.  

Increasing the cell density will cause the dilution and perfusion rates to 

increase requiring active control of CO2 and O2 sparging regime. Increasing the CO2 

sparge rate will strip CO2 from the cell culture broth causing it to drop below the 

ideal limit of 5% thus raising the pH. However, it is expected that increased VCD will 

also cause more CO2 to be released into the broth and lower the pH. In fact, the 
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local CO2 concentrations could become so high that CO2 will become toxic to the 

cells requiring a higher agitation speed, which in turn must be balanced against the 

shear tolerance of the CHO cells.  

2.5.3.2. CO2 Reactions 

Concentration of different species of CO2 in the aqueous phase vary as a 

function of pH and other factors. In the aqueous solution of a cell culture, following 

reactions involving CO2 may take place: 

 𝐶𝑂2(𝑔) ⇌ 𝐶𝑂2(𝑎𝑞. ) (2.8)  

 𝐶𝑂2(𝑎𝑞. ) + 𝐻2𝑂 ⇌ 𝐻2𝐶𝑂3(𝑎𝑞. ) (2.9)  

 𝐻2𝐶𝑂3(𝑎𝑞. ) + 𝐻2𝑂 ⇌ 𝐻3𝑂+(𝑎𝑞. ) + 𝐻𝐶𝑂3−(𝑎𝑞. ) 

At 37°C (Goudar et al. 2011) 

𝐾1 = 10−6.30 

(2.10)  

 𝐻𝐶𝑂3−(𝑎𝑞. ) + 𝐻2𝑂 ⇌ 𝐻3𝑂+(𝑎𝑞. ) + 𝐶𝑂32−(𝑎𝑞. ) 

At 37°C (Goudar et al., 2011) 

𝐾2 = 10−10.23 

(2.11)  

At low pH, [𝐻𝐶𝑂3−]dominates, while at high pH, [𝐶𝑂32−] dominates. [H2CO3] and 

[𝐶𝑂32−] concentrations are negligible as compared to [𝐻𝐶𝑂3−] and [CO2] 

concentrations because H2CO3 almost instantly hydrolyses into HCO3
- and H3O+.  

Consequently, at the target pH of 7.0, reactions 2.9 and 2.10 predominate (Goudar 

et al., 2011). 
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As these reactions demonstrate, sparging CO2 will lower the pH of the cell 

culture. Additionally, maximum amount of CO2 dissolved in water is a function of pH 

because the fraction of total dissolved CO2 in aqueous solution changes as the pH of 

the solution changes. Thus, total CO2 concentration affects the pH of the cell culture 

broth according to the following equations (Gray et al., 1996; Ma et al., 2006): 

 𝐶𝐶𝑂2 = [𝐶𝑂2] + [𝐻2𝐶𝑂3] +  [𝐻𝐶𝑂3−] +  [𝐶𝑂32−] (2.12)  

Since at the target pH of 7.0, carbon dioxide is primarily present as [𝐻𝐶𝑂3−], 

equation (2.12) simplifies to: 

 𝐶𝐶𝑂2 = [𝐻𝐶𝑂3−] + [𝐶𝑂32−] (2.13)  

And according to Gray et al. (1996), accumulation of [𝐻𝐶𝑂3−] can be characterized 

as: 

 𝑑𝐶𝐶𝑂2
𝑑𝑡

= �𝑘𝐿𝑎𝐶𝑂2 + 𝑘𝐴𝐴��𝐶𝐶𝑂2
∗ − 𝐶𝐶𝑂2� 

(2.14)  

Gray et al. derived a model to predict pCO2 level in perfusion bioreactor. They 

predicted that the following equations describe the steady state dissolved CO2 

concentration in the perfusion cell culture broth, 𝐶𝐶𝑂2: 

 𝐶𝐶𝑂2 =
𝛾𝑉�𝑘𝐿𝑎𝐶𝑂2. 𝐶𝐶𝑂2

∗ + 𝑘𝐴𝐴. 𝐶𝐶𝑂2
∗ + 𝑠𝐶𝑃𝑅. 𝑋� + 𝛾𝐹0�𝐶𝐶𝑂2

𝑇 �
𝐹

𝛾𝑉�𝑘𝐿𝑎𝐶𝑂2 + 𝑘𝐴𝐴� + 𝑃 + 𝐵
 (2.15)  

 

where, 

𝛾 =
10−𝑝𝐻

10−𝑝𝐻 + 𝑘𝑎2
 

(2.16)  
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However, their equations are not applicable when either [𝐻𝐶𝑂3−] or [𝐶𝑂32−] is used 

to adjust cell broth pH. Consequently, equations (2.15) and (2.16) are not applicable 

to the model developed in this thesis. Relevant equations, that account for  [𝐻𝐶𝑂3−] 

or [𝐶𝑂32−]  addition, are presented in Section 3.2.3. 

2.5.4. Effect of Lactic Acid/Lactate in Fermentation Broth 

CHO cells produce lactate as a result of their inefficient metabolism of 

glucose consumption (Faraday et al., 2001; Hinterkörner et al., 2007). As VCD 

increases, glucose consumption increases leading to production of large amounts of 

lactate (Gramer and Ogorzalek, 2007). High concentration of lactic acid in the cell 

fermentation broth inhibits CHO cell growth by decreasing specific Adenosine 

Triphosphate (ATP) production rate and ATP yield from glutamine (Takagi et al., 

2001; Hinterkorner et al., 2007). Modeling lactic acid concentration in the 

mammalian cell fermentation broth is complicated by the fact that although lactate 

is an inhibitory metabolic product, under high stress i.e. in glucose limiting 

conditions, CHO cells switch over from glucose to using lactate as a carbon and 

energy source (Takagi et al., 2001; Tsao et al., 2005).  

A weak acid, lactic acid partially hydrolyses into lactate and hydronium ions 

according to the following equation: 

 𝐶𝐻3𝐶𝐻(𝑂𝐻)𝐶𝑂𝑂𝐻 (𝑎𝑞. ) + 𝐻2𝑂

⇌ 𝐶𝐻3𝐶𝐻(𝑂𝐻)𝐶𝑂𝑂−(𝑎𝑞. ) + 𝐻3𝑂+(𝑎𝑞. ) 

(2.17)  
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Or the above equation can be written as, 

𝐻𝐿𝐴𝐶 (𝑎𝑞. ) + 𝐻2𝑂 ⇌ 𝐿𝐴𝐶−(𝑎𝑞. ) + 𝐻3𝑂+(𝑎𝑞. ) 

 𝐾𝑎 = 1.38 × 10−4 

𝑝𝐾𝑎 = 3.86 

(2.18)  

Since the fermentation broth for the CHO cells is typically maintained at a pH ~7.0 

at 37°C (Shuler and Kargi 1992), majority of lactic acid hydrolyses and is present in 

the fermentation broth as lactate. In a CHO cell culture, the specific rate of lactate 

production (sLPR) goes from 70 pg lactate cell-1 hr-1 at the beginning of the culture 

to about 20 pg lactate cell-1 hr-1 after 5 days of cultivation (Godoy-Silva et al., 2009).  

 According to Gramer and Ogorzalek (2007), at the pH of approximately 7.0, 

1 mol of lactic acid produced by the cells requires addition of 1 mol of base. 

Assuming that lactic acid is the dominant metabolite contributing to pH change and 

that primarily pH is raised by base addition, then 1 mole of lactic acid that the cells 

produced will consume 1 mol of base, which must then leave the bioreactor in the 

form of CO2 because in this model, bicarbonate is used as a base. 

2.5.5. Oxygen and Volumetric Mass Transfer Coefficient 

Dissolved oxygen (DO) in the fermentation broth is a vital substrate for 

optimum growth of aerobic CHO cells. Oxygen is sparingly soluble in water and can 

easily become a growth limiting substrate as the VCD increases (Shuler and Kargi, 

1992). Additionally, due to CO2 and O2 sparging regimes employed to maintain pH 
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and O2 levels respectively, O2 (and CO2) can be stripped from the fermentation 

broth due to sparging if the gas flow rate is too high. 

Blanch and Clark, in their 1996 study observed that the solubility of O2 in 

water can be correlated with temperature according to the following equation: 

 𝐶𝑂2 = 14.16 − 0.394𝑇 + 0.007714𝑇2 − 0.000646𝑇3 (2.19)  

where 𝐶𝑂2 is in mg/L and T is in °C. 

Jorjani and Ozturk (1999) quantitatively studied the effect of temperature 

on oxygen consumption rate (now referred to as oxygen uptake rate, OUR) on three 

different cell lines – baby hamster kidney (BHK), murine hybridoma and CHO. They 

reported 10% decrease in OUR for each 1% decrease in cell culture temperature. 

For this thesis, Specific Oxygen Uptake Rate, qO2, for CHO cells is taken to be 1.99 x 

10-13 mol cell-1 hr-1 and the Respiratory Quotient is assumed to be 1. 

In summary, the beneficial effects of low culture temperature on specific 

productivity depend on cell types and target proteins (Tang et al., 2009) and the 

benefits are especially pronounced for high density perfusion cultures of 

mammalian cells (Zeng and Bi, 2006). 

2.5.6. Culture pH 

Cell culture pH is arguably the most important parameter that affects cell 

growth in the bioreactors. Elaborate process analytical technology (PAT) systems 

and hardware are dedicated to controlling and maintaining broth pH. Mammalian 
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cells grow over a narrow pH range, typically ±0.1 pH units, significant deviations 

from which profoundly impact cell growth, cell metabolism and protein 

biosysnthesis (Ozturk and Palsson, 1991; Tang, 2009). This impact results in altered 

substrate and product formation rates and if not addressed, may cause cell 

damage.  

Slightly acidic pH in a CHO cell culture reduces glucose consumption and 

increases lactic acid buildup (Ozturk and Palsson, 1991; Tsao et al., 2005). Lactic 

acid is one of the contributors to localized pH deviation from steady state. 

Additionally, the region where base is added to raise pH also experiences a local 

spike in pH that causes cell damage (Langheinrich and Nienow, 1999). Another 

metabolic by-product, CO2 also causes pH deviations as mentioned in Section 2.5.3. 

For example, although the physiological range of partial pressure of CO2 in the 

fermentation broth, pCO2, is 31 – 54 mmHg, typical range of pCO2 in a high-density 

bioreactor is 150 – 200 mmHg High pCO2 levels causing cell growth inhibition if the 

pH is not actively controlled (deZengotita et al., 2002; Goudar et al., 2006).  

Similar to the buffer system in human blood, a CO2-bicarbonate buffer 

system maintains pH in the CHO cell culture in a bioreactor. The Henderson-

Hasselbalch equation relates the constituents of the CO2-bicarbonate buffer system 

per equation (2.10): 

 
𝑝𝐻 = 𝑝𝐾𝑎 + 𝑙𝑜𝑔

[𝐻𝐶𝑂3−]
[𝐻2𝐶𝑂3] 

(2.20)  
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𝑝𝐻 = 𝑝𝐾𝑎 + 𝑙𝑜𝑔

[𝐻𝐶𝑂3−]
ℋ𝐶𝑂2 ∗ 𝑝𝐶𝑂2

 
(2.21)  

where [𝐻𝐶𝑂3−] is the bicarbonate concentration in the cell culture; 

[𝐻2𝐶𝑂3] is the carbonic acid concentration in the cell culture;  

ℋ𝐶𝑂2 is Henry’s Law constant; and  

pCO2 is the partial pressure of CO2 in the cell culture broth. According to Zeng and 

Bi, the following expression relates the equilibrium bicarbonate concentration, pH 

and pCO2 at 37 °C:  

 𝑙𝑜𝑔[𝐻𝐶𝑂3−] = 𝑝𝐻 + 𝑙𝑜𝑔[𝑝𝐶𝑂2] − 7.543 (2.22)  

 

Assuming that the activity coefficients of the ions is approximately equal to 

1 and the value of Ka is constant over around the temperature of 37 °C ±0.1 °C , the 

following equation gives the buffer capacity, β, of the CO2-bicarbonate buffer 

system: 

 
𝛽 =

[𝐻𝐶𝑂3−]
𝑑(𝑝𝐻)  

(2.23)  

 
𝛽 = 2.303�[𝐻+] +

[𝐻2𝐶𝑂3]𝐾𝑎[𝐻+]
(𝐾𝑎 + [𝐻+])2 + �

𝐾𝑊
𝐻+�� 

(2.24)  

 

To control pH, two separate control loops are needed – one to raise pH and 

one to lower pH. Such a control loop must avoid excessive control impulses 
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otherwise the increase in CO2 flow will increase cell culture osmolality, which 

impedes cell growth. 

2.5.7. Temperature 

Temperature is a cell line specific critical variable in cell growth kinetics that 

affects product yield and product quality (Kumar et al., 2007). Bioreactors 

cultivating the CHO cells traditionally tend to simulate the normal body 

temperature of a Chinese hamster of around 37°C (Kurano et al., 1990a; Tang et al., 

2009).  

CHO cells are sensitive to variations in temperature. If the bioreactor 

temperature rises above the optimal temperature range of a particular cell line, 

then the growth rate decreases and thermal death of the cells may occur leading to 

a net decrease in VCD (Shuler and Kargi, 1992). To guard against possible excursions 

from optimal range of temperature, bioprocess engineers use growth media 

fortified with d-glucose, d-galactose or d-mannose, which increase the survival of 

CHO cells at higher temperatures in a concentration-dependent and time-

dependent manner (Henle et al., 1984). Lower temperature, on the other hand, 

results in a more complex physiological response from the CHO cells.  

Chuppa et al. (1997) reported that in a high-density perfusion cell culture, 

where oxygen may become limited, reducing the temperature allows the bioreactor 

to be operated at a lower perfusion rate and simplify pH control regime while 
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improving product quality. Similarly, while investigating the production of 

erythropoietin (EPO) by CHO cells, Ahn et al. (2008) observed that lowering the 

perfusion culture temperature to below 37°C increased cell viability for a longer 

period of time and resulted in higher cumulative EPO production. They cited high 

shear resistant characteristics of mammalian cells at low temperatures as one of 

the possible reasons for this behavior. Additionally, they reported that the quality 

of EPO as measured by glycosylation also improved at a lower temperature. Id. On 

the other hand, Chen et al. (2004) reported that lowering the temperature only had 

a marginal effect on glucose and lactate metabolism.  

Variations in temperature of a cell culture must be minimized to obtain 

desirable culture performance. A perfusion bioreactor poses unique challenges in 

maintaining a constant temperature by virtue of its design and purpose. Perfusion 

cell cultures achieve high cell density (106-107 cells/mL), which may lead to very 

high local temperatures in the broth (Lara et al., 2006). Agitation together with 

cooling jackets with feedback control loop easily solves this problem. A cell 

retention device that allows the removal spent medium and secreted product (if 

present), while retaining the cells in the bioreactor, characterizes a perfusion 

bioreactor. Consequently and if the cell separator device is outside the perfusion 

bioreactor, then the whole apparatus must be designed to maintain the cell culture 

at the same constant temperature that the cells experience inside the perfusion 

bioreactor. Although short term, transient exposures to high temperatures are not 
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deleterious for CHO cells a bioreactor must be operated within a well-defined range 

of cyclic temperatures that have no significant impact on cell productivity and 

growth rate (Drouin et al., 2007; Lee et al., 2008).  

Varying solubility of various gases at different temperatures adds a new 

dimension to the analysis of cell growth kinetics. For example, with an increase in 

temperature from 30°C to 40°C, the solubility of CO2 decreases by approximately 

25% (Pattison et al., 2000). Moreover, although concentrations of both CO2 and NH3 

in fermentation broth must be regulated, since dissolution of CO2 in aqueous 

ammonia is endothermic (Δh > 0), with rising temperature, the solubility of CO2 in 

ammonia solution also increases (Pazuki et al., 2006). However, the model 

presented in this research does not consider the variations in solubility with 

variations in temperature for carbon dioxide and oxygen.  

2.5.8. Cell Growth Kinetics 

Scientists have proposed many equations to model cell growth kinetics (e.g. 

Gomes and Menawat, 2000). The Monod equation is the most commonly used cell 

growth equation. This thesis uses Contois equation (Contois, 1959) to model CHO 

cell growth in perfusion bioreactors because the Contois cell growth model depends 

on the concentration of both the substrate and the cells with the cell growth being 

inhibited at high cell density. The Contois equation is used to quantify the growth 

kinetics of exponential and balanced growth of CHO cell culture: 
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 𝜇 =  
𝜇𝑚𝑆

𝐾𝑆𝑋 + 𝑆
 (2.25)  

where μm is the maximum growth rate, S is substrate concentration and KS is 

saturation constant (Shuler and Kargi, 1992). The saturation constant, which is 

proportional to the cell concentration, describes the substrate-limited growth at 

high cell densities. Thus, the Contois equation predicts that the specific growth rate 

decreases with decreasing substrate concentrations eventually becoming inversely 

proportional to the cell concentration in the medium. Substituting equation (2.2) 

into the cell growth equation (2.25) gives the rate of cell growth expression: 

 𝑟𝑋 =
𝑑𝑋
𝑑𝑡

= 𝜇𝑋 =  
𝜇𝑚𝑆

𝐾𝑆𝑋 + 𝑆
𝑋 (2.26)  

In a perfusion bioreactor, viable and total cell counts fluctuate appreciably 

during cultivation due to unknown causes and as such, the system is unlikely to be 

in a true steady state (Vits and Hu, 1992).  

2.6. Tank Geometry and Hydrodynamics 

Current work focuses on the high-density perfusion cultures of CHO cells 

wherein oxygen transfer is quite often the rate-limiting step. As mentioned in 

Section 2.5.6, solubility of oxygen is low in aqueous solutions and even more so in 

the presence of ionic salts. In such situations, increasing the productivity of 

mammalian cell cultures requires, in addition to prolific cell lines, a vigorous 

fermentation process that incorporates an efficient bioreactor that can achieve a 

uniform gas-liquid mass transfer coefficient, kLa.  



44 
 

A number of variables affect bioreactor performance (e.g. Kompala and 

Ozturk, 2006; Lara et al., 2006). Many researchers have published reviews of 

bioreactor design for cultivating mammalian cells (e.g. Prokop and Rosenberg, 

1989; Lübbert and Jørgensen, 2001). Maximizing kLa values for gas transfer and 

minimizing any “dead zones” – areas exhibiting poor local mass transfer, is one of 

the primary performance parameters for the mechanical construction and 

hydrodynamics inside the bioreactor. Many techniques have been proposed to 

minimize these “dead zones,” which are more pronounced in high-density perfusion 

cultures (Gogate and Pandit, 1999). These techniques include optimizing kLa by 

altering aspect ratio, tip speed, type, location and number of impellers, etc. Each of 

these techniques has its advantages and limitations and must function under its 

own set of constraints. Although a complete modeling of these parameters is 

outside the scope of this thesis, this chapter briefly explores the impact of these 

techniques on cell growth in a bioreactor. 

2.6.1. kLa 

In a perfusion reactor or continuous stirred tank reactor with cell recycle, 

the goal of the agitation scheme it to improve gas-liquid mass transfer coefficient, 

kLa. Oxygen is an important substrate for CHO cells. Since oxygen is sparingly 

soluble in water, it is often a growth limiting substrate in the bioreactors. 

Consequently, bioreactors are designed to ensure that the kLa is as high as possible.  
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Zeng and Bi (2006) describe static gassing out method and dynamic gassing 

out method of measuring oxygen uptake rate (OUR) and kLa for a particular 

bioreactor. In the static method, the cell culture is grown to a known cell density 

and then killed. Oxygen is removed from the headspace and aeration is turned on at 

the typical gas flow rate and the impeller is operated at a typical level. The increase 

in oxygen concentration is followed until oxygen saturation (C*) is reached. Change 

in dissolved oxygen concentration is given by  

 𝑙𝑛 �1 −
𝐶
𝐶∗
� = −𝑘𝐿𝑎 ∗ 𝑡 (2.27)  

where C is concentration of oxygen in solution 

C* is equilibrium solubility of oxygen (oxygen saturation); and  

t is time. 

A plot of ln(1-C/C*) versus time gives a slope of – kLa. In Zeng and Bi’s dynamic 

method, aeration to an active culture is briefly turned off and the unsteady state 

mass balance of oxygen is tracked while taking care that oxygen concentration does 

not drop so as to negatively impact the cell growth. This is so that rate of oxygen 

uptake is independent of oxygen concentration. In this method,  

 𝑘𝐿𝑎 =
𝑙𝑛 �𝐶𝑆 − 𝐶1

𝐶𝑆 − 𝐶2
�

𝑡2 − 𝑡1
 (2.28)  

where CS is the steady state dissolved oxygen concentration. Zeng and Bi (2006) 

describe that the OUR can be calculated from  
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 𝑂𝑈𝑅 ∗ 𝑋 = 𝑘𝐿𝑎 ∗ (𝐶∗ − 𝐶𝑆) (2.29)  

where X is cell density (cells/L) 

OUR is oxygen uptake rate (g O2/106 cells-hr). 

The kLa is characteristic of each cell line and bioreactor configuration and is a 

proprietary value and a closely guarded trade secret. In this thesis, only publicly 

available values are used which may not be typical of the bioreactor modeled.  

2.6.2. Agitation  

In 2005, Puthli et al. reported that under steady state conditions, kLa values 

increase from single impeller to dual impeller to triple impeller. Their studies 

revealed that the triple impeller configuration exhibited good uniform dispersion, 

good mass transfer rate and consumed least amount of power. Additionally, kLa 

values increase as impeller speed increases. Based on their experiments, Puthli et 

al. proposed the following correlations for kLa based on the number of impellers in 

a bioreactor:  

Single impeller: 

 𝑘𝐿𝑎 = 1.38 × 10−4 �
𝑃𝑔
𝑉
�
0.58

�𝑉𝑔�
0.43

 (2.30)  

Dual impeller: 

 𝑘𝐿𝑎 = 1.36 × 10−4 �
𝑃𝑔
𝑉
�
0.61

�𝑉𝑔�
0.43

 (2.31)  

Triple impeller for simulated media that includes salts: 
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 𝑘𝐿𝑎 = 2.93 × 10−6 �
𝑃𝑔
𝑉
�
0.98

�𝑉𝑔�
0.53

 (2.32)  

where Pg is power consumption in presence of gas (W) 

 Vg is superficial gas velocity (m/s) 

 V is volume of liquid (m3) 

Following are the design considerations: 

1. Impeller tip speed is limited by amount of shear stress and rate of shear cells 

can handle. 

2. As impeller speed increases, it increases frictional forces, shear stress and 

rate of shear.  Thus, increase in impeller speed increases temperature of the 

broth. 

3. The distance between any two impellers must be greater than their 

diameter otherwise the individual impellers will generate liquid streams 

which are inclined towards each other and combine halfway between the 

impellers acting as a impeller producing a radial outflow (Puthli et al., 2005). 

Although the Overall Volumetric Mass Transfer Coefficient (KLa) for carbon 

dioxide in a well-mixed bioreactor may be available in literature, such values are 

typically highly specific to the actual experimental conditions. For this reason, it 

may be best to calculate the KLa values as suggested by Hill (2006): 
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 𝐾𝐿𝑎 = 33.9 + 7.96𝑇∗ + 15.7𝑄∗ + 18.8𝑅𝑃𝑀∗ + 6.46𝑄∗2

+ 8.25𝑇∗𝑄∗ 
(2.33)  

where, 

 𝑇∗ =
𝑇 − 27.5

7.432
 (2.34)  

 𝑄∗ =
𝑄 − 1.1
0.5351

 (2.35)  

 𝑅𝑃𝑀∗ =
𝑅𝑃𝑀 − 375

133.8
 (2.36)  

 

2.6.3. Bioreactor Parameters: Gas Hold-up, Bubbles and Sparging 

Two kinds of hydrodynamic forces are constantly at work in a bioreactor – 

direct forces like agitator or bubble bursting causing cell lysis and indirect forces like 

microgravity and chronic exposure to energy dissipation rate (EDR), which is used to 

quantify local mixing performance in stirred tanks (Godoy-Silva et al., 2009). CHO 

cell lines are sensitive to lower values of energy dissipation rate (EDR) (relative to 

the values needed for cell lysis in one exposure), if the exposure to such levels of 

EDR is chronic (Godoy-Silva et al., 2009).  
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An important hydrodynamic design parameter of any bioreactor, fractional 

gas hold up, ε, is defined as the ratio of the gas phase volume to total volume in a 

bioreactor (Arjunwadkar et al., 1998b). Fractional gas hold up, together with mean 

bubble diameter, determines the gas-liquid interfacial area (𝑎 = 6𝜀
𝑑𝐵

) (Arjunwadkar 

et al., 1998a). Consequently, fractional gas hold-up determines the mass transfer 

coefficient, kLa. Arjunwadkar et al., (1998a) have observed approximately 30% 

decrease in actual gas hold-up as compared to simple air-water system. They 

attribute this behavior to larger mean bubble diameter, which has higher rise 

velocity and correspondingly lower residence times as compared to bubbles with 

smaller diameters. 

2.6.4. Viscosity 

As viable cell density increases, the rheology of fermentation broth, which is 

initially similar to water becomes viscous and non-Newtonian (Moilanen et al., 

2006). At a constant agitation rate, changes in viscosity do not significantly affect 

the metabolic activity of CHO cells (Moreira et al., 1995). Increased viscosity, 

however, has a detrimental effect on the mass transfer coefficient, kLa (Puthli et al., 

2005). For example, in 1987, Schumpe and Deckwer reported that in aerobic 

fermentations, the oxygen transfer rates into viscous broths are low in all fermentor 

types.  
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Puthli et al. (2005) note that with increase in the viscosity, the resistance to 

the mass transfer increases. They reason that only turbulent eddies with sufficiently 

high energy can overcome the resistance of the viscous layer to cause bubble 

break-up or gas-solute transfer, resulting in an overall decrease in the kLa, which is 

more than that expected on the basis of variation in fractional gas phase hold-up 

alone. According to Dahod (1993), actual CO2 dissolved in fermentation broth can 

far exceed its value calculated from the assumption of an equilibrium between the 

broth and the air leaving the fermentor. The departure from the equilibrium value 

increases as the broth viscosity increases.   
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CHAPTER 3 

METHODOLOGY 

 A large number of factors affect cell growth in a high-density perfusion 

bioreactor. Although each individual cell in a bioreactor experiences a unique 

physiochemical environment, technology has enabled bioprocess engineers to 

collect data regarding various growth factors and predict cell behavior under given 

set of physiochemical conditions. This multivatiate analysis is most suited for 

modeling cell growth, requires simultaneous solution to partial differential 

equations and differential algebraic equations (Xing et al., 2008). In this thesis, the 

mathematical model considers the impact of various correlated variables.  

An a priori mathematical description provides insight into the physical 

interactions and the nonlinearities involved in the variables that impact cell growth. 

Ideally, a mathematical model of a typical perfusion bioreactor containing trillions 

of cells for biopharmaceutical drug production, should contemplate every single 

reaction occurring within each one of those trillions of cells. Such a model would 

contain large number of model parameters – identification and estimation of which 

would be an arduous task. Apart from being unwieldy, such a model would be 

unappealing because results from such a complex mathematical model would 

distract from and fail to discriminate crucial parameters from the noise that affect 

the kinetics of cell death, growth, substrate consumption, and metabolite and 
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product formation. To be useful, a mathematical model must explain parameter 

expression and predict cell behavior in a straightforward manner.   

3.1. Model Development 

Primary challenge in modeling bioprocesses is discriminating between 

biologically significant and trivial information because it is extremely difficult to 

pinpoint the exact cause of perturbations that have a measurable impact on 

biologically significant parameters. For this reason, a typical mathematical model 

describing a typical bioprocess focuses only on select processes while entirely 

ignoring the impact or consequence of other processes. Chapter 2 describes the 

interaction of some of these parameters with CO2 however, it does not present an 

exhaustive list of these parameters. Following flow diagram describes steps to take 

to calculate pH.   

 

Figure 3: Steps to take to calculate pH 
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3.1.1. Design Considerations and Modeling Approach 

The mathematical model developed in this thesis is based on recently 

published research involving CHO cell cultures in a perfusion bioreactor. Since 

bioreactor modeling involves a substantial number of parameters, published 

articles discuss only a specific cell behavior. This thesis brings all of that research 

together as a black box model, which takes inputs like cell density, growth rate, 

specific glucose uptake rate, etc. and provides an output of growth profile, product 

concentration profile, and acid/base addition profile to maintain bulk pH within a 

given range. The current thesis project does not involve any laboratory 

experiments.  

3.1.2. Model Objective 

 In a CHO cell culture, the model seeks to maintain steady state CO2 and pH 

profiles as a function of time as described in the picture below: 

 

Figure 4: A Basic Modeling Approach 
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3.1.3. Modeling Inputs and Outputs 

Modeling inputs include initial concentrations of [NH3], [CO2], [lactic acid] 

and [O2], CER, OUR, CO2 and O2 sparge rates, perfusion and feed rates, feed 

composition, power input and cell growth. Additionally, a complete understanding 

of all the specific rates, rate constants etc. is needed. In practice, such complete 

information about a bioprocess is never available necessitating a need for 

simplifying assumptions (Van Impe et al., 1995). The figure below depicts the input 

and output parameters. 

 

Figure 5: Primary Input and Output Parameters for Carbon Dioxide and pH Profiles 

Inputs and outputs can be categorized into two groups: cell kinetics parameters like 

cell growth rate and tank geometry/ physical bioprocess parameters like aspect 

ratio, impeller configuration. Both types of parameters are equally important in 

fully describing dynamics inside the bioreactor. Since this thesis focuses on cell 
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kinetics parameters, a few simplifying assumptions make the modeling more 

manageable.  

3.1.4. Simplifying Assumptions 

A rigorous first principles model must be computationally efficient to be 

practical. As the parameters in a model are varied, the qualitative nature of an 

equation and of its numerical solution can change (Beers, 2007). The goal of the 

assumptions is to simplify the field by partial differential equations of mass 

balances into simultaneous differential algebraic equations.  

Following assumptions were made in deriving the mathematical model: 

1. Bioreactor is completely homogenous, ideally well mixed so that the 

species concentration and temperature are uniform throughout the 

bioreactor. Thus, tank geometry, like aspect ratio, power input are not 

considered in the model. 

2. All CHO cells are fully-grown cells of the same size. This assumption is 

made because big cell diameter and the low surface to volume ratio are 

limiting factors of the internal mass transfer and uptake rate of nutrients 

thus influencing cell growth and metabolic rates (Leist et al., 1990). 

3. CHO cell division does not result in random genetic mutations that have 

any material impact on their predictable behavior in the cell culture. 
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4. CHO cells do not exhibit shifting metabolic pathways in the middle of the 

growth cycle, which results in diauxic growth (Shulder and Kargi, 1992).  

5. As part of pH control mechanism, the dissociations of NH3 and H2O, the 

first and second dissociation of CO2, and the formation of carbonate ion 

are the most important chemical reactions in the CO2/HCO3
-/CO3

2-/H2O 

and NH3/NH4
+/H2O systems (Pazuki et al., 2006).  

3.2. Material Balance in a Perfusion Bioreactor 

For a perfusion cell culture (or a continuous culture with cell recycle or a 

chemostat with cell recycle), material balance is performed on three systems: the 

bioreactor, the recycle system and both the bioreactor and the recycling system 

combined.  

3.2.1.  Biomass and Substrate Balance Using Contois Equation 

Material balance on biomass in a bioreactor with cell recycle gives: 

Rate of Mass – Rate of Mass + Rate of Mass = Rate of Mass 
                In                    Out             Generation      Accumulation 

Based on this principle, Fenge and Lüllau (2006) have proposed the following 

equations for mass balance for an ideal perfusion bioreactor, which assumes no cell 

death, no cell lysis, no accumulation of product and no product degradation. From 

equation (2.26),  
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𝑑𝑋
𝑑𝑡

= 𝜇𝑋 =  
𝜇𝑚𝑆

𝐾𝑆𝑋 + 𝑆
𝑋 (2.26) 

where S represents substrate like glucose and glutamine and other symbols have 

the same meaning as described in Section 2.5.8. The Contois equation has 

saturation constant proportional to cell concentration that describes substrate-

limited growth at high cell densities (Shuler and Kargi, 1992). According to this 

equation, the specific growth rate decreases with decreasing substrate 

concentrations and eventually becomes inversely proportional to the cell 

concentration in the cell culture. Id.  

Fenge and Lüllau (2006) have proposed the following equation for substrate 

consumption: 

 𝑑𝑆
𝑑𝑡

= −𝑞𝑆𝑋 + 𝐷(𝑆0 − 𝑆) (3.1)  

 𝐷 =
𝐹0
𝑉

 (3.2)  

And the following equation provides product formation: 

 𝑑𝑃
𝑑𝑡

= 𝑞𝑃𝑋 − 𝐷𝑃 (3.3)  

where, D is medium exchange rate (L/hr) 

F is feed flow rate into the bioreactor (L/hr) 

P is product concentration (mol/L) 

S0 substrate concentration in the feed (mol/L) 

S is substrate concentration in the bioreactor 
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qS is specific substrate consumption rate (mmol/cell/hr) 

qP is specific product production rate (mmol/cell/hr) 

3.2.3. Mass Balance 

 Material balance of carbon involves balancing inorganic carbon that exists in 

the bioreactor in the form of hydrated and gaseous carbon dioxide. In 1996, Gray et 

al. modeled the CO2 concentration in a perfusion bioreactor. Their equations are 

presented in Chapter 2. However, Zupke and Green (1998) presented a more 

intuitive model that takes into account the headspace gas composition, sparging, 

surface and bubble mass transfer and generation by mammalian cells.  

Zupke and Green suggested the following equation for headspace gas 

composition in which the first parenthesis represents gas flow into the headspace, 

the second parenthesis represents gas flow out of the headspace and the third term 

represents surface mass transfer. 
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For CO2 in headspace gas, 

 

𝑑𝑥𝐶𝑂2
𝑑𝑡

=
1
𝑉ℎ
�𝑥𝐶𝑂2

𝑜𝑣𝑒𝑟𝑙𝑎𝑦𝑄𝑜𝑣𝑒𝑟𝑙𝑎𝑦 + 𝑥𝐶𝑂2
𝑠𝑝𝑎𝑟𝑔𝑒〈𝑄〉�

−
𝑥𝐶𝑂2
𝑉ℎ

�𝑄𝑜𝑣𝑒𝑟𝑙𝑎𝑦 + 𝑥𝐶𝑂2
𝑠𝑝𝑎𝑟𝑔𝑒〈𝑄〉�

−
𝑅𝑇𝑉𝐿𝑘𝐶𝑂2

𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑃𝑇𝑉ℎ
�
𝑥𝐶𝑂2𝑃𝑇
ℋ𝐶𝑂2

− 𝐶𝐶𝑂2� 

(3.20)  

For O2 in headspace gas, 

 

𝑑𝑥𝑂2
𝑑𝑡

=
1
𝑉ℎ
�𝑥𝑂2

𝑜𝑣𝑒𝑟𝑙𝑎𝑦𝑄𝑜𝑣𝑒𝑟𝑙𝑎𝑦 + 𝑥𝑂2
𝑠𝑝𝑎𝑟𝑔𝑒〈𝑄〉�

−
𝑥𝑂2
𝑉ℎ

�𝑄𝑜𝑣𝑒𝑟𝑙𝑎𝑦 + 𝑥𝑂2
𝑠𝑝𝑎𝑟𝑔𝑒〈𝑄〉�

−
𝑅𝑇𝑉𝐿𝑘𝑂2

𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑃𝑇𝑉ℎ
�
𝑥𝑂2𝑃𝑇
ℋ𝑂2

− 𝐶𝑂2� 

(3.21)  

where the following equation gives the value of 〈𝑄〉 in which Zupke and Green 

(1998) further described the gas sparging requirements: 

 〈𝑄〉 = 𝑄𝑚𝑎𝑥
𝑞𝑂2𝑋𝑉 − 𝑘𝑂2

𝑠𝑢𝑟𝑓𝑎𝑐𝑒�[𝑂2]𝑒𝑞
𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − [𝑂2]�

𝑘𝑂2
𝑠𝑝𝑎𝑟𝑔𝑒�[𝑂2]𝑒𝑞

𝑠𝑝𝑎𝑟𝑔𝑒 − [𝑂2]�
 (3.22)  
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According to Zupke and Green (1998), the following equation gives the liquid phase 

CO2 composition wherein the first parenthesis gives the surface mass transfer, the 

second term accounts for the bubble mass transfer and the final term, CPR, 

represents CO2 generation by cells. 

 

𝑑𝐶𝐶𝑂2
𝑇

𝑑𝑡
= 𝑘𝐶𝑂2

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 �𝑥𝐶𝑂2
𝑃𝑇
ℋ𝐶𝑂2

− 𝐶𝐶𝑂2�

+ 𝑘𝐶𝑂2
𝑠𝑝𝑎𝑟𝑔𝑒�𝐶𝐶𝑂2

∗ − 𝐶𝐶𝑂2�𝐿𝑀 + 𝐶𝑃𝑅 
(3.23)  

Where, 

 ℋ𝐶𝑂2 = 35 
𝐿. 𝑎𝑡𝑚
𝑚𝑜𝑙

 (3.24)  

When CO2 and 𝐻𝐶𝑂3− are at equilibrium, then  

 𝐶𝐶𝑂2 =
𝐶𝐶𝑂2
𝑇

1 +
𝑘𝑒𝑞

10−𝑝𝐻
 

(3.25)  

where 𝑘𝑒𝑞 is the combined equilibrium constant of equations (2.10) and (2.11). 

Zupke and Green (1998) also presented an implicit solution for bubble composition 

for CO2 and O2 gases sparged into the bioreactor broth as needed to maintain pH: 
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 𝐶𝐶𝑂2
∗ =

𝑥𝐶𝑂2
𝑠𝑝𝑎𝑟𝑔𝑒𝑃𝑇
ℋ𝐶𝑂2

 (3.26)  

 𝐶𝐶𝑂2,0
∗ =

𝑥𝐶𝑂2,0
𝑠𝑝𝑎𝑟𝑔𝑒𝑃𝐵
ℋ𝐶𝑂2

 (3.27)  

 𝐶𝑂2
∗ =

𝑥𝑂2
𝑠𝑝𝑎𝑟𝑔𝑒𝑃𝑇
ℋ𝑂2

 (3.28)  

 𝐶𝑂2,0
∗ =

𝑥𝑂2,0
𝑠𝑝𝑎𝑟𝑔𝑒𝑃𝐵
ℋ𝑂2

 (3.29)  

 𝑥𝐶𝑂2
𝑠𝑝𝑎𝑟𝑔𝑒 =

𝑥𝐶𝑂2,0
𝑠𝑝𝑎𝑟𝑔𝑒𝑃𝐵𝑄
𝑅𝑇 + 𝑟𝐶𝑂2

𝑃𝐵𝑄
𝑅𝑇 + 𝑟𝐶𝑂2 + 𝑟𝑂2

 (3.30)  

 𝑥𝑂2
𝑠𝑝𝑎𝑟𝑔𝑒 =

𝑥𝑂2,0
𝑠𝑝𝑎𝑟𝑔𝑒𝑃𝐵𝑄
𝑅𝑇 + 𝑟𝑂2

𝑃𝐵𝑄
𝑅𝑇 + 𝑟𝐶𝑂2 + 𝑟𝑂2

 (3.31)  

 
𝑟𝐶𝑂2 = 𝑉𝐿𝑘𝐶𝑂2

𝑠𝑝𝑎𝑟𝑔𝑒 𝐶𝐶𝑂2
∗ − 𝐶𝐶𝑂2,0

∗

𝑙𝑛 �
𝐶𝐶𝑂2
∗ − 𝐶𝐶𝑂2,0

∗

𝐶𝐶𝑂2 − 𝐶𝐶𝑂2,0
∗ �

 
(3.32)  
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𝑟𝑂2 = 𝑉𝐿𝑘𝑂2

𝑠𝑝𝑎𝑟𝑔𝑒 𝐶𝑂2
∗ − 𝐶𝑂2,0

∗

𝑙𝑛 �
𝐶𝑂2
∗ − 𝐶𝑂2,0

∗

𝐶𝑂2 − 𝐶𝑂2
∗ �

 
(3.33)  

where r represents rates of transfer of respective species in mol/hr. Finally, the CO2 

gas (to lower pH) or base (to raise the pH) requirements can be calculated from the 

following equilibrium equation: 

 

∆[𝐻+]2 + ∆[𝐻+]�(𝑎𝑐𝑖𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑) + [𝐻𝐶𝑂3−]0 + [𝐻+]

+ 𝐾𝑒𝑞� + [𝐻𝐶𝑂3−]0(𝑎𝑐𝑖𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑)

− 𝐾𝑒𝑞𝐶𝑃𝑅 = 0 
(3.34)  

Here the quantity “acid produced” requires elaboration. Following equations 

contain the species that have a material direct or indirect impact on the cell culture 

pH broth: 

 𝐻2𝐶𝑂3 ⇌ 𝐻+ + 𝐻𝐶𝑂3− (3.35)  

 𝐻𝐶𝑂3− ⇌ 𝐻+ + 𝐶𝑂32− (3.36)  

 𝐻𝐸𝑃𝐸𝑆 ⇌ 𝐻+ + 𝐻𝐸𝑃𝐸𝑆− (3.37)  
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 𝐻𝐿𝐴𝐶 ⇌ 𝐻+ + 𝐿𝐴𝐶− (3.38)  

 𝑁𝐻4+ ⇌ 𝐻+ + 𝑁𝐻3 (3.39)  

 𝐻2𝑂 ⇌ 𝐻+ + 𝑂𝐻− (3.40)  

To calculate the instantaneous pH, the concentration of each of these species must 

be known at that instant. At any given time, their concentration is impacted by 

1. Feed coming into the bioreactor 

2. Feed leaving the bioreactor and into the cell separator 

3. Feed exiting the system product is removed from the cell separator 

4. Feed leaving the cell separator and into the bioreactor 

5. CO2 and O2 sparged into the bioreactor 

6. Base feed added to raise pH 

Equation (2.12) provides the mass balance for carbon dioxide species in the cell 

broth. To calculate the pH of the cell culture broth, mass and charge balance for all 

the species in equations (3.37) through (3.40) must also be calculated which 

requires solving simultaneous partial differential kinetic equations. Such an analysis 

is outside the scope of this research project. Consequently, the term “acid 

produced” in equation (3.34) is not calculated in this thesis.  
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3.3. Solution Method 

In developing an unstructured mathematical model for this thesis, following 

steps were taken:  

1. Describe cell growth in a perfusion bioreactor using Contois equation – 

described in Section 3.2.1. 

2. Describe steady state – described in Section 3.2.2. 

3. Write unstructured material balance equations for CO2 – described in 

Section 3.2.3. 

4. Model change in CO2 and pH profiles as a function of cell growth and 

time. 

3.3.1. Key Parameter Limits 

All the constraints, constants, linear and nonlinear inequalities and linear 

and nonlinear equations must be identified before simulation can begin. The 

following equations (from Xing et al., 2008) provide some of the constraints and 

limits that apply to a CHO cell culture: 

 6.95 ≤ 𝑝𝐻 ≤ 7.05 (3.41)  

 [𝐴𝑀𝑀] < 5.1 𝑚𝑀 (3.42)  
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 35 < 𝐶𝐶𝑂2
𝑇 < 111 𝑚𝑚𝐻𝑔 (3.43)  

 [𝐿𝐴𝐶] < 58 𝑚𝑀 (3.44)  

 𝑂𝑠𝑚𝑜𝑙𝑎𝑙𝑖𝑡𝑦 < 382 
𝑚𝑂𝑠𝑚
𝑘𝑔

 (3.45)  

 𝑂𝑠𝑚𝑜𝑙𝑎𝑙𝑖𝑡𝑦 �
𝑚𝑂𝑠𝑚
𝑘𝑔

� = 0.31𝐶𝐶𝑂2
𝑇 (𝑚𝑚𝐻𝑔) + 122 (3.46)  

According to Goudar et al. (2011), following are the specific carbon dioxide 

production and specific oxygen uptake rates: 

 𝑠𝐶𝑃𝑅 = 6.25 
𝑝𝑚𝑜𝑙

𝑐𝑒𝑙𝑙. 𝑑𝑎𝑦
 (3.47)  

 𝑠𝑂𝑈𝑅 = 5.53 
𝑝𝑚𝑜𝑙

𝑐𝑒𝑙𝑙. 𝑑𝑎𝑦
 

(3.48)  

These rates will be multiplied by instantaneous cell count to get CPR and 

OUR for that instant. 

For IMDM medium, which is considered in this thesis the following 

equations provide the limits of substrate present (Burgener and Butler, 2006): 
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 𝐾𝐼[𝐴𝑀𝑀] = 15 𝑚𝑀 (3.49)  

 𝐾𝐼[𝐿𝐴𝐶] = 90 𝑚𝑀 (3.50)  

 Assume 

[𝐴𝑀𝑀]0 = 0 

(3.51)  

 Assume 

[𝐿𝐴𝐶]0 = 0 

(3.52)  

 [𝐺𝐿𝐶]0 = 25 𝑚𝑀 (3.53)  

 [𝐺𝐿𝑁]0 = 4 𝑚𝑀 (3.54)  

 [𝐻𝐶𝑂3−]0 = 36 𝑚𝑀 (3.55)  

 [𝐻𝐸𝑃𝐸𝑆]0 = 25 𝑚𝑀 (3.56)  

 𝑝𝐾𝑎,𝐻𝐸𝑃𝐸𝑆 = 7.3 (3.57)  
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3.3.2. Solving the Equations in MATLAB® 

The model equations presented in this thesis are stiff. Stiffness arises when 

the control functions vary unevenly with time. In these systems, small and large 

time constants occur in the same system – small time constant controls the earlier 

response, whereas the large constant controls the tailing response (Rice and Do, 

1995). This model contains equations with three different time scales 

corresponding to three different reaction rates of the equations modeled in this 

thesis: 

1. For some equations, which are primarily related to pH, e.g. water, base 

or H2CO3 ionization, reaction rates are very high – on the order of nano- 

or pico-seconds.  

2. Some equations, e.g. CO2 or O2 hydration, the reaction rates are slower, 

on the order of seconds. 

3. Cell growth equations are on the order of days.  

This presence of fast changing and slow changing components in 

simultaneous equations render some numerical methods unstable leading to the 

requirement of very small step sizes to obtain numerically stable solutions.  

The model developed in this thesis is solved using MATLAB® computing 

language (MathWorks, Inc., Natick, MA). The equations to be solved are contained 

in various .m files that the user accesses via a graphical user interface (GUI), which 
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is developed and programed for easy manipulation of the parameters. Appendix 1 

contains the code from various .m files.  

This mathematical model contains differential algebraic equations, which 

can be solved using MATLAB® stiff solvers ODE15s, ODE23, ODE23s and ODE45. 

ODE15s is a multistep variable order solver while ODE23s is a one-step solver based 

on Rosenbrock formula of order 2, which is better suited at crude tolerances. They 

both dynamically vary the step size based on local error and mathematically 

generate Jacobians. MATLAB® solvers ODE45 and ODE23 solve the stiff equations 

by employing variable step Runge-Kutta integration methods. ODE23 uses 2nd and 

3rd order pair of formulas for medium accuracy and ODE45 uses a 4th and 5th order 

Dormand-Prince pair for higher accuracy.  

 

Figure 6: Software Flowchart 
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The computer code presented in Appendix 1 demonstrates how the code 

could be written to solve these equations. However, mathematical modeling and 

not the computer programming was the focus of the current thesis. The 

mathematical model presented in this thesis can be properly solved by employing 

the full power of MATLAB® especially the Partial Differential Equation Toolbox® and 

the Optimization Toolbox®. Per MATLAB®, when using the Optimization Toolbox®, 

the following steps must be taken: 

1. Separate bounds, linear equalities, linear inequalities, nonlinear equalities, 

and nonlinear inequalities 

2. Combine all variables into one vector (x) 

3. Write vectors for lower and upper bounds (lb, ub) 

4. Write matrix and vector of inequalities (A, b) 

5. Write matrix and vector of equalities (Aeq, beq) 

6. Write nonlinear constraint function 

7. Write the objective function or vector, f 

8. Call the solver 

As mentioned in section 3.2.3., the term “acid produced” in equation 3.34 is not 

calculated in this thesis because calculation of pH involves PID control strategies 

and computer programming complexities that are outside the scope of this thesis. 

Additionally, any simulation that is run must be verified against experimental data, 
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which is not available for this thesis. For this reason, a demonstrative MATLAB® 

code is written for the purposes of this thesis. 
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CHAPTER 4 

FINDINGS 

Researchers have reported a large number of factors that affect cell growth, 

metabolism, product and toxin formation, and cell death. Chapter 2 discusses some 

of these factors. However, optimal growth of the cells in a bioreactor may or may 

not involve intricate interactions amongst all these factors. A robust mathematical 

model must take care to not overly define a bioreactor problem. For example, 

although both lactate and ammonium adversely affect cell growth, for most cell 

cultures, lactate and ammonium cannot be the dominant factors determining 

growth rate (Zeng and Bi, 2006).  

In line with the first hypothesis stated in Section 1.4, the Contois equation 

adequately describes the cell growth in the perfusion bioreactor. As the second 

hypothesis predicted, maintaining CO2 concentration and pH at a steady state does 

require dynamic CO2 material balance and dynamic control of pH. As discussed in 

Chapter 3, determining instantaneous CO2 concentration and pH requires 

experimentation that is not part of current research even though the equations can 

be adequately solved using MATLAB®.  
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4.1. Simulation in MATLAB®  

To solve the mathematical equations, the following graphical user interface 

(GUI) was developed using MATLAB® GUIDE®: 

 

Figure 7: GUI Interface 

The GUI then calls a set of .m files, which in turn call a subset of .m files. This 

structure ensures maximum possible clarity in the computer code. The code is 

presented in Appendix 1 in its entirety.  
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Figure 8: Substrate, S, and Cell Concentration, X, as a function of Dilution Rate, D 

The computer program uses a set of simulated data to generate the graph in 

Figure 5 that presents the depletion in substrate level as the cell population 

increases with dilution rate in a perfusion bioreactor. Since calculation of pH 

involves PID control strategies and complex computer programming, “acid 

produced” term in equation (3.34) was not calculated. Deschênes et al. (2006) have 

developed guidelines for controller parameter tuning through linear approximation 
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of the closed loop dynamics. The code presented in this research is representative 

of how the mathematical model that is presented in this thesis can be solved. 

 

Figure 9: Graphs showing simulated prediction of response of cell growth, glucose 

consumption, growth rate, and product formation curve in a perfusion bioreactor.  

The model generating the graphs in Figure 9, demonstrate that as expected 

cell growth and product formation increases with time, substrate consumption 

increases resulting in decrease in substrate concentration. The cell growth rate is 
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stabilized around day 11. Similar to Deschênes et al. (2006), for simplicity, cell death 

parameter is ignored, this multivariable approach demonstrates that the cell death 

parameter cannot be completely disregarded. Equations from Fenge and Lüllau 

(2006) were used to generate the graphs in Figure 9. The code used to generate 

these graphs is presented in Appendix 1, which uses parameters from both 

Deschênes et al. (2006) and Fenge and Lüllau (2006).  
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CHAPTER 5 

CONCLUSION 

The goal of a mathematical model is to understand cell growth in a 

bioreactor so that the protein-drug production from the cells could be maximized. 

Of course, the resulting efficiency in drug production has a direct and positive 

impact on it bottom-line and competitiveness – especially if competing against 

potential biosimilar manufacturer. A mathematical and computer model that is 

applicable across cell lines and to different types of bioreactors would be highly 

sought after in the biopharmaceutical industry because it will simulate drug-

manufacturing process with limited need for expensive experiments because such a 

model must still be validated against experimental data. However, the need and 

cost of those experiments would be greatly reduced due to this model. 

5.1. Future direction 

Further additions to mathematical and computer model of cell growth in a 

bioreactor might include using equations of state (e.g. NRTL, SAFT, PC-SAFT, UNIFAC 

or UNIQUAC) to model solubility of inorganic salts and amino acids in a background 

medium that more closely mimics the actual fermentation medium in the 

bioreactor. Those models might also use Kirkwood equation �ln Sp
S0
� = KiI − KsI 

(Harrison et al., 2003) to model solubility of protein in the broth and also 
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incorporate broth characteristics like viscosity (Lapasin et al., 1996) and tank 

geometry, hydrodynamics and bubble dynamics.  

As can be seen from the foregoing thesis, these are just a few factors that 

can be considered in this type of a mathematical and computer model. A 

mathematical model that considers more of these parameters is correspondingly 

more accurate in predicting actual cell behavior under actual process conditions.  

From a computer-programming standpoint, such a model would be highly 

complex especially since that model must be applicable across cell lines so that it 

appeals to a majority biotechnology companies. Additionally, such mathematical 

models can employ neural network and artificial intelligence programming that 

“learn” from past runs (Karim et al., 1997; Acuña et al., 1998; Nagy, 2007). Neural 

networks can be “trained” to anticipate parameter changes needed for scaling the 

model – further reducing the costs associated with funding pilot scale laboratories. 

Such programming would greatly reduce the need for expensive experiments.  

5.2. Continuation of the Current Work 

One of the major challenges of this research has been limiting the scope of 

the model to make it more manageable. Some equations are available in published 

literature and some can be derived from laboratory scale experiments. However, 

incorporating those equations in a computer program requires intimate 

programming knowledge, which was not the focus of this research project.  
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Focus of this thesis was to demonstrate how to develop a mathematical 

model that biopharmaceutical companies can use for maintaining CO2 levels and a 

steady state pH in a mammalian cell culture perfusion bioreactor. This thesis 

analyzes many of the parameters that can have a significant impact on such cell 

cultures. Mathematical and computer model developed in this thesis is based on 

the published equations and published laboratory research. Although this model 

has generated expected results, they must be verified against data from actual 

laboratory assays. As mentioned in earlier, programming charge and mass balance 

equations for all the ions present in the cell culture medium is outside the scope of 

this research. Similarly, the impact of ionic strength must be taken into account as 

discussed in Nagy (2007) and Goudar et al. (2011). For a more complete model that 

predicts pH and models how perturbations in one of the parameters affects values 

of other parameters as a function of time, such programming is essential.  

Future work that concentrates on these aspects of the model will certainly 

produce a mathematical and computer model that would be highly sought after in 

the biopharmaceutical industry because such a model would further reduce costs 

and advance the understanding of mammalian cell cultures. 
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APPENDIX 1 

This Appendix contains the MATLAB® Code used to solve the equations 

developed in this thesis. The mathematical equations are run via graphical user 

interface (GUI) developed using MathWorks GUIDE tool.  

Following is the code for the GUI: 

function varargout = AGABioreactorGUI(varargin) 
% AGABIOREACTORGUI M-file for AGABioreactorGUI.fig 
%      AGABIOREACTORGUI, by itself, creates a new AGABIOREACTORGUI or raises 
the existing 
%      singleton*. 
% 
%      H = AGABIOREACTORGUI returns the handle to a new AGABIOREACTORGUI or 
the handle to 
%      the existing singleton*. 
% 
%      AGABIOREACTORGUI('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in AGABIOREACTORGUI.M with the given input 
arguments. 
% 
%      AGABIOREACTORGUI('Property','Value',...) creates a new AGABIOREACTORGUI 
or raises the 
%      existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before AGABioreactorGUI_OpeningFunction gets called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to AGABioreactorGUI_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
  
% Edit the above text to modify the response to help AGABioreactorGUI 
  
% Last Modified by GUIDE v2.5 09-Jun-2011 13:12:11 
  
% Begin initialization code - DO NOT EDIT 
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gui_Singleton = 0; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @AGABioreactorGUI_OpeningFcn, ... 
                   'gui_OutputFcn',  @AGABioreactorGUI_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
  
% --- Executes just before AGABioreactorGUI is made visible. 
function AGABioreactorGUI_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to AGABioreactorGUI (see VARARGIN) 
  
% Choose default command line output for AGABioreactorGUI 
handles.output = hObject; 
  
% Update handles structure 
guidata(hObject, handles); 
  
% UIWAIT makes AGABioreactorGUI wait for user response (see UIRESUME) 
% uiwait(handles.BioreactorGUI); 
  
  
% --- Outputs from this function are returned to the command line. 
function varargout = AGABioreactorGUI_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
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% Get default command line output from handles structure 
varargout{1} = handles.output; 
  
%% 
====================================================================
==== 
% Bioreactor Parameters 
% 
====================================================================
==== 
%% Number of Baffles 
function txtBaffles_Callback(hObject, eventdata, handles) 
% hObject    handle to txtBaffles (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of txtBaffles as text 
%        str2double(get(hObject,'String')) returns contents of txtBaffles as a double 
  
val = str2double(get(hObject,'String')); % Get the value entered by the user 
if isnan(val) || isempty(val) 
    errordlg('Enter a numerical value for number of baffles in the bioreactor.','Error'); 
    set(handles.txtBaffles,'Value',0); 
end 
if val <= 0 || val >= 5 
    errordlg('Number of baffles must be between 0 and 5','Error'); 
    set(handles.txtBaffles,'Value',0); 
end 
handles.txtBaffles = val; % store in "data" structure as a field (add to existing) 
guidata(hObject, handles); 
  
% --- Executes during object creation, after setting all properties. 
function txtBaffles_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to txtBaffles (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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%% Tank Diameter 
function txtTankDiameter_Callback(hObject, eventdata, handles) 
% hObject    handle to txtTankDiameter (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of txtTankDiameter as text 
%        str2double(get(hObject,'String')) returns contents of txtTankDiameter as a 
double 
  
val = str2double(get(hObject,'String')); % Get the value entered by the user 
if isnan(val) || isempty(val) 
    errordlg('Enter a numerical value for Tank Diameter (m).','Error'); 
    set(handles.txtTankDiameter,'Value',1); 
end 
handles.txtTankDiameter = val; % store in "data" structure as a field (add to 
existing) 
guidata(hObject, handles); 
  
  
% --- Executes during object creation, after setting all properties. 
function txtTankDiameter_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to txtTankDiameter (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
%% Liquid Height 
function txtLiqHeight_Callback(hObject, eventdata, handles) 
% hObject    handle to txtLiqHeight (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of txtLiqHeight as text 
%        str2double(get(hObject,'String')) returns contents of txtLiqHeight as a double 
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val = str2double(get(hObject,'String')); % Get the value entered by the user 
if isnan(val) || isempty(val) 
    errordlg('Enter a numerical value for height of liquid in tank (m).','Error'); 
    set(handles.txtLiqHeight,'Value',3); 
end 
handles.txtLiqHeight = val; % store in "data" structure as a field (add to existing) 
guidata(hObject, handles); 
  
% --- Executes during object creation, after setting all properties. 
function txtLiqHeight_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to txtLiqHeight (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
%% Tank Height 
  
function txtTankHeight_Callback(hObject, eventdata, handles) 
% hObject    handle to txtTankHeight (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of txtTankHeight as text 
%        str2double(get(hObject,'String')) returns contents of txtTankHeight as a 
double 
  
val = str2double(get(hObject,'String')); % Get the value entered by the user 
if isnan(val) || isempty(val) 
    errordlg('Enter a numerical value for height of tank (m).','Error'); 
    set(handles.txtTankHeight,'Value',4); 
end 
handles.txtTankHeight = val; % store in "data" structure as a field (add to existing) 
guidata(hObject, handles); 
  
% --- Executes during object creation, after setting all properties. 
function txtTankHeight_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to txtTankHeight (see GCBO) 
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% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
%% Tank Liquid Volume 
  
function txtLiqVol_Callback(hObject, eventdata, handles) 
% hObject    handle to txtLiqVol (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of txtLiqVol as text 
%        str2double(get(hObject,'String')) returns contents of txtLiqVol as a double 
  
val = str2double(get(hObject,'String')); % Get the value entered by the user 
if isnan(val) || isempty(val) 
    errordlg('Enter a numerical value for liquid volume in tank (L).','Error'); 
    set(handles.txtLiqVol,'Value',3000); 
end 
handles.txtLiqVol = val; % store in "data" structure as a field (add to existing) 
guidata(hObject, handles); 
  
  
% --- Executes during object creation, after setting all properties. 
function txtLiqVol_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to txtLiqVol (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
%% Total Tank Volume 
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function txtTotVol_Callback(hObject, eventdata, handles) 
% hObject    handle to txtTotVol (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of txtTotVol as text 
%        str2double(get(hObject,'String')) returns contents of txtTotVol as a double 
  
val = str2double(get(hObject,'String')); % Get the value entered by the user 
if isnan(val) || isempty(val) 
    errordlg('Enter a numerical value for total tank volume (L).','Error'); 
    set(handles.txtTotVol,'Value',4000); 
end 
handles.txtTotVol = val; % store in "data" structure as a field (add to existing) 
guidata(hObject, handles); 
  
% --- Executes during object creation, after setting all properties. 
function txtTotVol_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to txtTotVol (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
%% Impeller Type/Combination 
  
% --- Executes on selection change in popImpeller. 
function popImpeller_Callback(hObject, eventdata, handles) 
% hObject    handle to popImpeller (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: contents = get(hObject,'String') returns popImpeller contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from popImpeller 
  
Impeller_Sel = get(hObject,'Value'); % Get the value entered by the user 
Impeller_List = get(hObject,'String'); 
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Selected_Impeller = Impeller_List{Impeller_Sel}; %Convert from cell array to string 
handles.popImpeller = Selected_Impeller;  
guidata(hObject, handles); 
  
% --- Executes during object creation, after setting all properties. 
function popImpeller_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popImpeller (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
%% 
====================================================================
==== 
% Broth Parameters 
% 
====================================================================
===== 
%% Broth Rheology 
  
% --- Executes on selection change in popRheology. 
function popRheology_Callback(hObject, eventdata, handles) 
% hObject    handle to popRheology (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: contents = get(hObject,'String') returns popRheology contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from popRheology 
  
Rheo_Sel = get(hObject,'Value'); % Get the value entered by the user 
Rheo_List = get(hObject,'String'); 
Selected_Rheo = Rheo_List{Rheo_Sel}; %Convert from cell array to string 
handles.popRheology = Selected_Rheo;  
guidata(hObject, handles); 
  
% --- Executes during object creation, after setting all properties. 
function popRheology_CreateFcn(hObject, eventdata, handles) 
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% hObject    handle to popRheology (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
%% Cell Growth Kinetics Equation 
  
% --- Executes on selection change in popKineticsEqn. 
function popKineticsEqn_Callback(hObject, eventdata, handles) 
% hObject    handle to popKineticsEqn (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: contents = get(hObject,'String') returns popKineticsEqn contents as cell 
array 
%        contents{get(hObject,'Value')} returns selected item from popKineticsEqn 
  
Eqn_Sel = get(hObject,'Value'); % Get the value entered by the user 
Eqn_List = get(hObject,'String'); 
Selected_Eqn = Eqn_List{Eqn_Sel}; %Convert from cell array to string 
handles.popKineticsEqn = Selected_Eqn;  
guidata(hObject, handles); 
  
% --- Executes during object creation, after setting all properties. 
function popKineticsEqn_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popKineticsEqn (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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%% 
====================================================================
==== 
% ODE Solver 
% 
====================================================================
===== 
% --- Executes on selection change in popODE. 
function popODE_Callback(hObject, eventdata, handles) 
% hObject    handle to popODE (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: contents = get(hObject,'String') returns popODE contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from popODE 
  
Ode_Sel = get(hObject,'Value'); % Get the value entered by the user 
Ode_List = get(hObject,'String'); 
Selected_Ode = Ode_List{Ode_Sel}; %Convert from cell array to string 
handles.popODE = Selected_Ode;  
guidata(hObject, handles); 
  
% --- Executes during object creation, after setting all properties. 
function popODE_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popODE (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
%% 
====================================================================
==== 
% Initial Gas Sparge Rate 
% 
====================================================================
===== 
%% CO2 Sparge Rate 
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function txtCO2SpargeValue_Callback(hObject, eventdata, handles) 
% hObject    handle to txtCO2SpargeValue (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of txtCO2SpargeValue as text 
%        str2double(get(hObject,'String')) returns contents of txtCO2SpargeValue as a 
double 
  
CO2Value = get(handles.txtCO2SpargeValue,'String'); 
CO2Value = str2num(CO2Value); 
if (isempty(CO2Value) || CO2Value < 0 || CO2Value > 200) 
    set(handles.sldCO2Sparge,'Value',0); 
    set(handles.txtCO2SpargeValue,'String','0'); 
    errordlg('Enter a numerical value between 0 and 200.','Error'); 
else 
    set(handles.sldCO2Sparge,'Value',CO2Value); 
end 
  
% --- Executes during object creation, after setting all properties. 
function txtCO2SpargeValue_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to txtCO2SpargeValue (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
  
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
% --- Executes on slider movement. 
function sldCO2Sparge_Callback(hObject, eventdata, handles) 
% hObject    handle to sldCO2Sparge (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'Value') returns position of slider 
%        get(hObject,'Min') and get(hObject,'Max') to determine range of slider 
  
CO2Value = get(handles.sldCO2Sparge,'value'); 
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set(handles.txtCO2SpargeValue,'string',int2str(CO2Value)) 
guidata(hObject, handles); 
  
% --- Executes during object creation, after setting all properties. 
function sldCO2Sparge_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to sldCO2Sparge (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: slider controls usually have a light gray background. 
if isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
end 
  
  
%% O2 Sparge Rate 
function txtO2SpargeValue_Callback(hObject, eventdata, handles) 
% hObject    handle to txtO2SpargeValue (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of txtO2SpargeValue as text 
%        str2double(get(hObject,'String')) returns contents of txtO2SpargeValue as a 
double 
  
O2Value = get(handles.txtO2SpargeValue,'String'); 
O2Value = str2num(O2Value); 
if (isempty(O2Value) || O2Value < 0 || O2Value > 200) 
    set(handles.sldO2Sparge,'Value',0); 
    set(handles.txtO2SpargeValue,'String','0'); 
    errordlg('Enter a numerical value between 0 and 200.','Error'); 
else 
    set(handles.sldO2Sparge,'Value',O2Value); 
end 
  
% --- Executes during object creation, after setting all properties. 
function txtO2SpargeValue_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to txtO2SpargeValue (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 



91 
 

%       See ISPC and COMPUTER. 
  
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
% --- Executes on slider movement. 
function sldO2Sparge_Callback(hObject, eventdata, handles) 
% hObject    handle to sldO2Sparge (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'Value') returns position of slider 
%        get(hObject,'Min') and get(hObject,'Max') to determine range of slider 
  
O2Value = get(handles.sldO2Sparge,'value'); 
set(handles.txtO2SpargeValue,'string',int2str(O2Value)) 
guidata(hObject, handles); 
  
% --- Executes during object creation, after setting all properties. 
function sldO2Sparge_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to sldO2Sparge (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: slider controls usually have a light gray background. 
if isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
end 
%% 
====================================================================
==== 
% Initial pH 
% 
====================================================================
===== 
function txtpH_Callback(hObject, eventdata, handles) 
% hObject    handle to txtpH (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
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% Hints: get(hObject,'String') returns contents of txtpH as text 
%        str2double(get(hObject,'String')) returns contents of txtpH as a double 
pHval = str2double(get(hObject,'String')); % Get the value entered by the user 
if isnan(pHval) || isempty(pHval) 
 errordlg('Enter a numerical value for pH.','Error'); 
 set(handles.txtpH,'Value',7.2); 
end 
if pHval < 0 || pHval > 14 
    errordlg('pH must be between 0 and 14.','Error'); 
    set(handles.txtpH,'Value',7.2); 
end 
handles.txtpH = pHval; % store in "data" structure as a field (add to existing) 
guidata(hObject, handles); 
  
% --- Executes during object creation, after setting all properties. 
function txtpH_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to txtpH (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
%% 
====================================================================
==== 
% Process Parameters 
% 
====================================================================
===== 
%% Recycle Ratio 
function txtRecycleRatio_Callback(hObject, eventdata, handles) 
% hObject    handle to txtRecycleRatio (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of txtRecycleRatio as text 
%        str2double(get(hObject,'String')) returns contents of txtRecycleRatio as a 
double  
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val = str2double(get(hObject,'String')); 
if isnan(val) || isempty(val) || val < 0 
 errordlg('Enter a positive numerical value for Recycle Ratio (Alpha).','Error'); 
 set(handles.txtRecycleRatio,'Value',0.6); 
end  
handles.txtRecycleRatio = val; % store in "data" structure as a field (add to existing) 
guidata(hObject, handles); 
  
% --- Executes during object creation, after setting all properties. 
function txtRecycleRatio_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to txtRecycleRatio (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
%% Cell Concentration Factor 
  
function txtCellConcFactor_Callback(hObject, eventdata, handles) 
% hObject    handle to txtCellConcFactor (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of txtCellConcFactor as text 
%        str2double(get(hObject,'String')) returns contents of txtCellConcFactor as a 
double 
  
CellFactor = str2double(get(hObject,'String')); % Get the value entered by the user 
if isnan(CellFactor) || isempty(CellFactor) || CellFactor < 0 
 errordlg('Enter a numerical value for Cell Concentration Factor (c).','Error'); 
 set(handles.txtCellConcFactor,'Value',2); 
end 
handles.txtCellConcFactor = CellFactor; % store in "data" structure as a field (add to 
existing) 
guidata(hObject, handles); 
  
% --- Executes during object creation, after setting all properties. 
function txtCellConcFactor_CreateFcn(hObject, eventdata, handles) 
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% hObject    handle to txtCellConcFactor (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
%% Feed Flow Rate Into Tank 
  
function txtFeedIn_Callback(hObject, eventdata, handles) 
% hObject    handle to txtFeedIn (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of txtFeedIn as text 
%        str2double(get(hObject,'String')) returns contents of txtFeedIn as a double 
  
FeedIn = str2double(get(hObject,'String')); % Get the value entered by the user 
if isnan(FeedIn) || isempty(FeedIn) || FeedIn < 0 
 errordlg('Enter a numerical value for Feed Flow Rate into the Tank (L/hr).','Error'); 
 set(handles.txtFeedIn,'Value',20); 
end 
handles.txtFeedIn = FeedIn; % store in "data" structure as a field (add to existing) 
guidata(hObject, handles); 
  
  
% --- Executes during object creation, after setting all properties. 
function txtFeedIn_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to txtFeedIn (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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%% Perfusion Rate 
  
function txtFeedOut_Callback(hObject, eventdata, handles) 
% hObject    handle to txtFeedOut (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of txtFeedOut as text 
%        str2double(get(hObject,'String')) returns contents of txtFeedOut as a double 
  
valFeedOut = str2double(get(hObject,'String')); % Get the value entered by the user 
if isnan(valFeedOut) || isempty(valFeedOut) || valFeedOut < 0 
 errordlg('Enter a numerical value for Perfusion Rate (L/h).','Error'); 
 set(handles.txtFeedOut,'Value',2); 
end 
handles.txtFeedOut = valFeedOut; % store in "data" structure as a field (add to 
existing) 
guidata(hObject, handles); 
  
  
% --- Executes during object creation, after setting all properties. 
function txtFeedOut_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to txtFeedOut (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
%% Saturation Constant 
  
function txtSatConstant_Callback(hObject, eventdata, handles) 
% hObject    handle to txtSatConstant (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of txtSatConstant as text 
%        str2double(get(hObject,'String')) returns contents of txtSatConstant as a 
double 
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SatCon = str2double(get(hObject,'String')); % Get the value entered by the user 
if isnan(SatCon) || isempty(SatCon) 
 errordlg('Enter a numerical value for Saturation Constant (Ks).','Error'); 
 set(handles.txtSatConstant,'Value',0.05); 
end 
handles.txtSatConstant = SatCon; % store in "data" structure as a field (add to 
existing) 
guidata(hObject, handles); 
  
% --- Executes during object creation, after setting all properties. 
function txtSatConstant_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to txtSatConstant (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
%% Maximum Specific Growth Rate 
  
function txtMuMax_Callback(hObject, eventdata, handles) 
% hObject    handle to txtMuMax (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of txtMuMax as text 
%        str2double(get(hObject,'String')) returns contents of txtMuMax as a double 
val = str2double(get(hObject,'String')); % Get the value entered by the user 
if isnan(val) || isempty(val) 
 errordlg('Enter a numerical value for Maximum Specific Growth Rate (1/h).','Error'); 
 set(handles.txtMuMax,'Value',2.3); 
end 
handles.txtMuMax = val; % store in "data" structure as a field (add to existing) 
guidata(hObject, handles); 
  
% --- Executes during object creation, after setting all properties. 
function txtMuMax_CreateFcn(hObject, eventdata, handles) 
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% hObject    handle to txtMuMax (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
  
%% Broth Temperature 
  
function txtTemp_Callback(hObject, eventdata, handles) 
% hObject    handle to txtTemp (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of txtTemp as text 
%        str2double(get(hObject,'String')) returns contents of txtTemp as a double 
  
val = str2double(get(hObject,'String')); % Get the value entered by the user 
if isnan(val) || isempty(val) 
    errordlg('Enter a numerical value for Temperature (C).','Error'); 
    set(handles.txtTemp,'Value',37); 
end 
if val < 35 || val > 38 
    errordlg('Temperature must be between 35 C and 38 C','Error'); 
    set(handles.txtTemp,'Value',37); 
end 
handles.txtTemp = val; % store in "data" structure as a field (add to existing) 
guidata(hObject, handles); 
  
% --- Executes during object creation, after setting all properties. 
function txtTemp_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to txtTemp (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
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if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
%% Simulation Duration (Time) 
  
function txtTime_Callback(hObject, eventdata, handles) 
% hObject    handle to txtTime (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of txtTime as text 
%        str2double(get(hObject,'String')) returns contents of txtTime as a double 
  
val = str2double(get(hObject,'String')); % Get the value entered by the user 
if isnan(val) || isempty(val) || val <= 0 
    errordlg('Enter a numerical value for Time (h).','Error'); 
    set(handles.txtTime,'Value',72); 
end 
handles.txtTime = val; % store in "data" structure as a field (add to existing) 
guidata(hObject, handles); 
  
% --- Executes during object creation, after setting all properties. 
function txtTime_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to txtTime (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
%% Cell Concentration in Tank 
  
function txtCellinTank_Callback(hObject, eventdata, handles) 
% hObject    handle to txtCellinTank (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
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% Hints: get(hObject,'String') returns contents of txtCellinTank as text 
%        str2double(get(hObject,'String')) returns contents of txtCellinTank as a double 
  
val = str2double(get(hObject,'String')); % Get the value entered by the user 
if isnan(val) || isempty(val) || val < 0 
    errordlg('Enter a numerical value for Cell Concentration in Tank (g/L).','Error'); 
    set(handles.txtCellinTank,'Value',10); 
end 
handles.txtCellinTank = val; % store in "data" structure as a field (add to existing) 
guidata(hObject, handles); 
  
  
% --- Executes during object creation, after setting all properties. 
function txtCellinTank_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to txtCellinTank (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
%% Cell Concentration in Feed 
  
function txtCellinFeed_Callback(hObject, eventdata, handles) 
% hObject    handle to txtCellinFeed (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of txtCellinFeed as text 
%        str2double(get(hObject,'String')) returns contents of txtCellinFeed as a double 
  
val = str2double(get(hObject,'String')); % Get the value entered by the user 
if isnan(val) || isempty(val) || val < 0 
    errordlg('Enter a numerical value for Cell Concentration in Feed (g/L).','Error'); 
    set(handles.txtCellinFeed,'Value',5); 
end 
handles.txtCellinFeed = val; % store in "data" structure as a field (add to existing) 
guidata(hObject, handles); 
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% --- Executes during object creation, after setting all properties. 
function txtCellinFeed_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to txtCellinFeed (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
%% 
====================================================================
==== 
% Push Buttons 
% 
====================================================================
===== 
%% Reset Button 
%--- Executes on button press in btnReset. 
function btnReset_Callback(hObject, eventdata, handles) 
% hObject    handle to btnReset (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
selection = ... 
questdlg('Are you sure you want to RESET Bioreactor Simulator?', ... 
    'Reset Bioreactor Simulator', ... 
    'Yes', 'No', 'Yes'); 
     if strcmp(selection, 'No') 
         return; 
     else 
        closeGUI = handles.BioreactorGUI; 
        guiPosition = get(handles.BioreactorGUI,'Position'); 
        guiName = get(handles.BioreactorGUI,'Name'); 
        eval(guiName) 
        close(closeGUI); 
        set(gcf,'Position',guiPosition);   
     end; 
  
%% Close Button 
% --- Executes on button press in btnClose. 
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function btnClose_Callback(hObject, eventdata, handles) 
% hObject    handle to btnClose (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
selection = questdlg('Close Bioreactor Simulator? ', ... 
         'Close Bioreactor Simulator', ... 
         'Yes', 'No', 'Yes'); 
     if strcmp(selection, 'No') 
         return; 
     else 
         close(gcf); 
     end; 
  
%% Run Model Button 
% --- Executes on button press in btnRunModel. 
function btnRunModel_Callback(hObject, eventdata, handles) 
% hObject    handle to btnRunModel (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
guidata(hObject, handles); 
AGACellRecycle(handles.popKineticsEqn, handles.txtCO2SpargeValue, ... 
    handles.txtO2SpargeValue, handles.txtpH, handles.txtRecycleRatio, ... 
    handles.txtCellConcFactor, handles.txtFeedIn, handles.txtFeedOut, ... 
    handles.txtSatConstant, handles.txtMuMax, handles.txtTemp, ... 
    handles.txtTime, handles.txtCellinTank, handles.txtCellinFeed); 
AGACO2Balance(handles.txtTankDiameter, handles.txtLiqHeight, ... 
    handles.txtTankHeight, handles.txtCO2SpargeValue); 
  
% List of Files: 
% AGABioreactorGUI.m and AGABioreactor.fig: GUI program 
% AGACellGrowth.m: Original Master file with all pertinent sections 
% AGACellRecycle.m: Currently takes in variables from AGABioreactorGUI 
% AGAContoisXS.m Contois cell growth equation 
% AGAMonodXS.m: Monod cell growth equation 
% AGATessierXS.m: Tessier cell growth equation 
% AGAIonicStrength.m: Calculates ionic strength in the medium 
% AGAO2Conc.m Calculates oxygen concentration in the medium 
% --- Executes on key press with focus on btnRunModel and no controls selected. 
function btnRunModel_KeyPressFcn(hObject, eventdata, handles) 
% hObject    handle to btnRunModel (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
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%% Help Button 
%--- Executes on button press in btnHelp. 
function btnHelp_Callback(hObject, eventdata, handles) 
% hObject    handle to btnHelp (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
HelpText{1} = 'TYPICAL VALUES TO INPUT FOR INITIAL VALUES'; 
HelpText{2} = ''; 
HelpText{3} = 'Maximum Specific Growth Rate, MuMax (1/hour): 0.4'; 
HelpText{4} = 'Concentration Factor, c (no units): 1'; 
HelpText{5} = 'Recycle Ratio, Alpha (no units): 1'; 
HelpText{6} = 'Saturation Constant Ks (g/L): 200'; 
HelpText{7} = 'Bioreactor Volume, V (L): 3000'; 
HelpText{8} = 'Temperature, T (C): 36.2'; 
HelpText{9} = 'Time, t (hours): 72'; 
helpdlg(HelpText, 'Help'); 
  
% Yield coefficient Y: 0.3 
% Pump flow rate in L/hour: 0.4 
% Concentration of the feed nutrient in mg/L: 20000 
% How many time steps do you want?, >1000 recommended: 2000 
% Total time period you would like to simulate in hours: 30 
% Initial cell conc in the reactor in mg per L: 10000 
% Initial residual substrate conc in the reactor in mg per L: 100 
% Initial specific growth rate, i.e. dilution rate at equilibrium in 1/h: 
% 0.35 
  
%% 
====================================================================
==== 
%GUI Menu Items on GUI 
% 
====================================================================
===== 
%% File 
function mnuFile_Callback(hObject, eventdata, handles) 
% hObject    handle to mnuFile (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
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%% Exit 
function mnuExit_Callback(hObject, eventdata, handles) 
% hObject    handle to mnuExit (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
close(gcf); 
  
% --- Executes during object creation, after setting all properties. 
function BioreactorGUI_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to BioreactorGUI (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 

The GUI calls two files: AGACellRecycle.m and AGACO2Balance.m. Following is the 

code for AGACellRecycle.m: 

function AGACellRecycle(KineticsEqn, CO2SpargeValue, O2SpargeValue,... 
   pH, RecycleRatio, CellConcFactor, FeedIn, FeedOut,... 
    SatConstant, MuMax, Temp, Time, CellinTank, CellinFeed) 
% Calls function file for the user selected kinetics equation 
% to solve the desired equation for Chemostat with Cell Recycle 
  
% Cell Growth Kinetic Equations (From Shuler/Kargi) 
  
switch KineticsEqn 
    case 'Contois' 
        AGAContoisXS(CO2SpargeValue, O2SpargeValue,... 
    pH, RecycleRatio, CellConcFactor, FeedIn, FeedOut,... 
    SatConstant, MuMax, Temp, Time, CellinTank, CellinFeed); 
    case 'Monod' 
        AGAMonodXS(CO2SpargeValue, O2SpargeValue,... 
    pH, RecycleRatio, CellConcFactor, FeedIn, FeedOut,... 
    SatConstant, MuMax, Temp, Time, CellinTank, CellinFeed); 
    case 'Tessier' 
        AGATessierXS(CO2SpargeValue, O2SpargeValue,... 
    pH, RecycleRatio, CellConcFactor, FeedIn, FeedOut,... 
    SatConstant, MuMax, Temp, Time, CellinTank, CellinFeed);         
end 
AGAIonicStrength(pH, Temp); 
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Following is the code for AGACO2Balance.m: 
 
function AGACO2Balance(TankDiameter, LiqHeight, TankHeight, CO2SpargeValue) 
%% Carbon Dioxide Equations 
% Souces of CO2: 
% 1. Cell respiration, CER;  
% 2. CO2 Sparge;  
% 3. Bicarbonate addition 
% Sinks of CO2 
% 1. Reactions in broths 
% 2. Cell Intake 
% 3. CO2 escape from headspace 
%% CPR From Goudar, Piret and Konstantinov 2011 
sCPR      = 6.2037e-17; %[mol/cell-sec] Specific Carbon Dioxide Production Rate 
%% KLaCO2 (From Hill 2006) 
TStar   = (T-27.5)/7.432; % [T in Celcius] Dimensionless Temperature  
QStar   = (Q-1.1)/0.5351; % [Q in L/min] Dimensionless Gas Flow Rate 
RPMStar = (RPM-375)/133.8; % Dimensionless RPM 
KLaCO2  = 33.9 + 7.96 * TStar + 15.7 * QStar + 18.8 * RPMStar +... 
          6.46 *(QStar^2) + 8.25 * TStar * QStar; 
%% CO2 Concentration % From Dixon et al. 
CO2aq = (10^(1.39))*(CO2SpargeValue + CER);  
  
%% HCO3 Concentration % From Dixon et al. 
b = 0.1; 
pK0a1 = 6.305; 
pKa1 = pK0a1 - fI - b*IS; 
HCO3 = 10^(pH -pKa1 + log10(CO2aq)); 
  
H = 10^(-pH); 
K1 = 10^(-6.30); % From Goudar, Piret, Konstantinov 2011 
K2 = 10^(-10.23); % From Goudar, Piret, Konstantinov 2011 
pctH2CO3 = ((H^2)*100)/((H^2)+H*K1+K1*K2); %From Goudar, Piret, Konstantinov 
2011 
pctHCO3 = (H*K1*100)/((H^2)+H*K1+K1*K2); %From Goudar, Piret, Konstantinov 
2011 
pctCO3 = (K1*K2*100)/((H^2)+H*K1+K1*K2); %From Goudar, Piret, Konstantinov 
2011 
%% From Zupke and Green 
kLaCO2 = .89*kLaO2; 
% Headspace volume (L) 
TankVol = ((pi*((TankDiameter/2)^2)*TankHeight)*1000); % [L] 
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LiqVol = ((pi*((TankDiameter/2)^2)*LiqHeight)*1000); % [L] 
HeadSpaceVol = TankVol - LiqVol; % [L] 
% Headspace gas composition 
HeadSpaceCO2In = (1/HeadSpaceVol)*((mfCO2Overlay*GasFlowOverlay)+... 
                  mfCO2Sparge*AvgSpargeFlow); 
HeadSpaceCO2Out = (1/HeadSpaceVol)*(mfCO2 * (GasFlowOverlay + 
AvgSpargeFlow); 
HeadSpaceCO2Surf = ((R*T*LiqVol*KiSurf)/(TopPressure * HeadSpaceVol)) 
 

AGACellRecycle.m calls the following 4 files: 

1. AGAContoisXS.m 

function [D, X, S] = AGAContoisXS(CO2SpargeValue, O2SpargeValue,... 
    pH, RecycleRatio, CellConcFactor, FeedIn, FeedOut,... 
    SatConstant, MuMax, Temp, Time, CellinTank, CellinFeed) 
  
% Cell Growth Kinetic Equations (From Shuler/Kargi) 
% MuMax = 2.3; 
% CellConcFactor = 2; 
% RecycleRatio = .6; 
% SatConstant = .05; 
%N = 61;  
%D = linspace(0, 6, N); % (initial values for) Rate of Dilution 
D = 0:.1:5.9; 
Yxs = 1; % (g/g) Yield Coefficient 
So = 1; % Initial Substrate Concentration 
A = 1 + RecycleRatio - (RecycleRatio * CellConcFactor); 
for k = 1:length(D) 
X(k) = ((Yxs * So) / A)*((MuMax - (D(k) * A))/... 
    (MuMax - (D(k) * A) + Yxs * D(k) * SatConstant)); 
S(k) = (D(k) * SatConstant * X(k)*A) / (MuMax - (D(k) * A)); 
end 
  
z(:,1) = D; 
z(:,2) = X; 
z(:,3) = S; 
disp(z); 
figure; 
plot(D,S,D,X),xlabel('D'), ylabel('S and X'); 
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2. AGAMonodXS.m 

function AGAMonodXS(CO2SpargeValue, O2SpargeValue,... 
    pH, RecycleRatio, CellConcFactor, FeedIn, FeedOut,... 
    SatConstant, MuMax, Temp, Time, CellinTank, CellinFeed) 
MuMax = 2.3; 
CellConcFactor = 2; 
RecycleRatio = .6; 
SatConstant = .05; 
Yxs = 1; 
% MuMax = 1; 
% CellConcFactor = 2; 
% RecycleRatio = .5; 
% SatConstant = .01; 
% Yxs = 0.5; % (g/g) Yield Coefficient 
BrothVolume = (pi*((TankDiameter/2)^2)*LiqHeight)*1000; 
D = FeedIn/BrothVolume; 
% D = 0:.1:5.5; % (hr-1) (initial values for) Rate of Dilution 
So = 1; % Initial Substrate Concentration 
% Cell Growth Kinetic Equations (From Shuler/Kargi) 
A = 1 + RecycleRatio - (RecycleRatio * CellConcFactor); 
for k = 1:length(D) 
    Mu(k) = D(k) * A; % Specific Growth Rate 
    S(k) = (Mu(k) * SatConstant) / (MuMax - Mu(k)); 
    X(k) = (Yxs/A) * (So - S(k)); 
    X2(k) = A*X(k); 
    Xv(k) = 0; 
end 
z(:,1) = D; 
z(:,2) = X; 
z(:,3) = S; 
z(:,4) = X2; 
disp(z); 
figure; 
plot(D,X,'-xr',D,S,'-sg',D,X2,'-*b'),xlabel('D'), ylabel('X, X2 and S'); 
 
3. AGATessierXS.m 

function AGATessierXS(CO2SpargeValue, O2SpargeValue,... 
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    pH, RecycleRatio, CellConcFactor, FeedIn, FeedOut,... 
    SatConstant, MuMax, Temp, Time, CellinTank, CellinFeed) 
  
% MuMax = 2.3; 
% CellConcFactor = 2; 
% RecycleRatio = .6; 
% SatConstant = .05; 
  
% Cell Growth Kinetic Equations (From Shuler/Kargi) 
  
N = 61;  
D = linspace(0, 6, N); % (hr-1) (initial values for) Rate of Dilution 
Yxs = 1; % (g/g) Yield Coefficient 
So = 1; % Initial Substrate Concentration 
A = 1 + RecycleRatio - (RecycleRatio .* CellConcFactor); 
p = 50; 
S = ((A .* D .* SatConstant) .* (MuMax .* ((A .* D) - 1))) .^ (1/p); 
X = (Yxs .* (So - (((A .* D .* SatConstant) .* (MuMax .* ((A .* D) - 1))) .^ (1/p)))) ./ 
A; 
  
z(:,1) = D; 
z(:,2) = X; 
z(:,3) = S; 
disp(z); 
figure; 
plot(D,S,D,X),xlabel('D'), ylabel('S and X'); 

 

4. AGAIonicStrength.m 

function [fI, IS, HiIi] = AGAIonicStrength(pH, Temp) 
  
pH = 7.4; 
Temp = 37; 
%% Inorganic salts concentration in IMDM Fermentation Media (from Burgener 
and Butler) 
%Initial Concentrations 
ionCa     = 1.49e-3; %[M] Calcium ion 
ionK      = 4.44075; %[M] Potassium  ion 
ionMg     = 8.14e-4; %[M] Magnesium ion 
ionNa     = 0.115496; %[M] Sodium ion 
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ionCl     = 8.501e-2; %[M] Chlorine ion 
ionCO3    = 1e-3; %[M] Initial Carbonate in media 
ionHCO3   = 3.6e-2; %[M] Initial Bicarbonate in media 
%ionNO3   = 7.5e-7; Too low -- not considered 
ionH2PO4  = 9.06e-4; %[M] Hydrogen Phosphate ion 
%ionSeO3  = 6.5e-8; Too low -- not considered 
ionSO4    = 8.14e-4; %[M] Sulphate ion 
ionH      = 10^(-pH); % [M] Hydronium ion 
ionOH     = 10^(pH-14); % [M] Hydroxyl ion 
  
%% Amino Acid concentration in IMDM Fermentation Media (from Burgener 
and Butler) 
% ionAla    = 2.81e-4; %[M] L-Alanine 
% ionGly    = 3.99e-4; %[M] L-Glycine 
% ionMet    = 2.01e-4; %[M] L-Methionine 
% ionPro    = 3.48e-4; %[M] L-Proline 
% ionSer    = 4.00e-4; %[M] L-Serine 
% ionVal    = 8.03e-4; %[M] L-Valine 
% ionHEPES  = 2.5e-2; %[M] HEPES Buffer 
% DGlc      = 2.5e-2; %[M] Initial D-Glucose 
%% Activity coefficients (from Murray 2004) 
actCa     = 0.40; 
actK      = 0.76; 
actMg     = 0.45; 
actNa     = 0.77; 
actCl     = 0.76; 
actCO3    = 0.39; 
actHCO3   = 0.77; 
actH2PO4  = 0.77; 
actSO4    = 0.36; 
% 
%% H Parameter for Effect of Salts on Gas Solubility 
% from Nagy and remaining from Blanch and Clark 358 
% hCa         = -0.303; 
% hK          = -0.587; 
% hMg         = -0.314; 
% hNa         = -0.550; 
% hCl         = 0.844; 
% hCO3        = 0.485; 
% %hHCO3        
% hH2PO4      = 0.997; 
% hSO4        = 0.460; 
% hH          = -0.774; 
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% hOH         = 0.941; 
  
%% Calculate Ionic Strength 
ionTotal = [ionCa ionK ionMg ionNa ionCl ionCO3 ionHCO3 ionH2PO4 ionSO4]; 
ionCharge = [2 1 2 1 -1 -2 -1 -1 -2]; 
activity = [actCa actK actMg actNa actCl actCO3 actHCO3 actH2PO4 actSO4]; 
I = 0.5 .* ionTotal .* (ionCharge.^2); 
HiIi = 0; 
fI = 0; 
IS = 0; 
    for k = 1:length(I) 
    HiIi = HiIi + (I(k) .* activity(k)); 
    IS = IS + I(k); 
    end 
fI = (((IS^0.5)/(1+(IS^0.5)))-0.21)*((298/(Temp + 273.16))^(2/3)); 

 

Using stiff solver ODE15s, the following file, AGABioreactorEquations.m, solves 

some of the equations presented in sections 3.3.1.: 

function AGABioreactorEquations 
  
% Bioreactor Constants 
alpha   = 0.6;    % Ratio 
C       = 2;      % Ratio 
F0      = 200;    % [L/hr] 
V       = 3000;   % [L] 
  
% Biomass Constants 
AMM0    = 0;      % [mol/L] 
GLC0    = 25e-3;  % [mol/L] 
GLN0    = 4e-3;   % [mol/L] 
LAC0    = 0;      % [mol/L] 
KexGLC  = 1e-2;   % [mol/L] 
KIAMM   = 15e-3;  % [mol/L] 
KGLC    = 7.5e-4; % [mol/L] 
KGLN    = 7.5e-5; % [mol/L] 
KILAC   = 9e-2;   % [mol/L] 
KdAMM   = 15e-3;  % [mol/L] 
mGLC    = 2e-15;  % [mol/(L.cell.hr)] 
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MuMax   = 0.065;  % [hr-1] 
QexGLC  = 2e-13;  % [mol/(L.cell.hr)] 
YAGLN   = 0.7;    % [mol/mol] 
YLGLC   = 2;      % [mol/mol] 
YXGLC   = 2.37e8; % [cell/mol] 
YXGLN   = 8e8;    % [cells/mol] 
X0      = 300000; % [cells/L] 
  
% Set up Differential Equations 
[T, Y]  = ode15s(@Biomass, [0 300], [AMM0; GLC0; GLN0; LAC0; X0;... 
                           0.05; 0.9e-13; 1.09e-13; 0.93-13; 1.17e-13]); 
plot(T,Y(:,1),'-sr',T,Y(:,2),'+b') 
disp(Y) 
%plot(T,Y(:,1),'-sr') 
  
% y(1)  = AMM Ammonia concentration 
% y(2)  = GLC Glucose concentration 
% y(3)  = GLN Glutamine concentration 
% y(4)  = LAC Lactic Acid concentration 
% y(5)  = Xv Viable cell mass 
% y(6)  = Mu Specific Growth Rate 
% y(7)  = QAMM Specific Ammonia Production Rate 
% y(8)  = QGLC Specific Glucose Consumption Rate 
% y(9)  = QGLN Specific Glutamine Consumption Rate 
% y(10) = QLAC Specific Lactate Production Rate 
% y(11) =  
  
  
% Nested Function 
function dy = Biomass(t,y) 
  
% Algebraic Equations 
D      = F0/V; 
  
% Differential Equations 
dy     = zeros(10,1); 
dy(1)  = (y(7).*y(5)) + (KdAMM.*y(3)) - (D.*y(1)); 
dy(2)  = (D.*GLC0) - (D.*y(2)) - (y(8).*y(5)); 
dy(3)  = (D.*GLN0) - (D.*y(3)) - (y(9).*y(5)); 
dy(4)  = (y(10).*y(5)) - (D.*y(4)); 
dy(5)  = (D.*X0) + (alpha.*C.*D.*y(5)) - ((1+alpha).*D.*y(5))... 
         + (y(6).*y(5)); 
dy(6)  = MuMax.*(y(2)/(KGLC+y(2))).*(y(3)/(KGLN+y(3))).*... 
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         (KIAMM./(KIAMM+y(1))).*(KILAC./(KILAC+y(4))); 
dy(7)  = YAGLN.*y(9); 
dy(8)  = (y(6) ./ YXGLC) + mGLC + (QexGLC .*(y(2) ./ (y(2) + KexGLC))); 
dy(9)  = y(6) ./ YXGLN; 
dy(10) = YLGLC .* y(8); 
end 
end 
 

5. function AGAPerfusion 
  
% Constants 
D        = 0.5;     % Medium exchange rate 
F0       = 5;       % Substrate concentration in feed (L/day) 
GLC0     = 2.7;     % Initial substrate concentration (mol/L) 
kGLC     = 0.05;    % Contois saturation constant 
Mu0      = 0.4;     % Initial specific cell growth rate (per day) 
MuMax    = 1e6;     % Maximum specific cell growth rate (per day) 
P0       = 0;       % Initial product concentration (mol/L) 
Pj       = 1e-7;    % Product conc in feed out of cell seperator (mol/L) 
Sj       = 2.5;     % Substrate conc in feed out of cell separator (mol/L) 
X0       = 1e8;     % Seeding concentration (cells/L) 
  
% ODE Solve Statement 
[T, Y]   = ode15s(@Perfusion, [0 20], [X0; GLC0; Mu0; P0], []); 
  
% Plot X v t 
figure; 
subplot(2,2,1);  
plot(T,Y(:,1),'-sr') 
xlabel('Time, t, (days)') 
ylabel('Cells, X, (Cells/L)') 
legend('dX/dt'); 
  
% Plot [GLC] v t 
subplot(2,2,2);  
plot(T,Y(:,2),'-+b') 
xlabel('Time, t, (days)') 
ylabel('[GLC]') 
legend('d[GLC]/dt'); 
  
% Plot Mu v t 
subplot(2,2,3);  
plot(T,Y(:,3),'-og') 
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xlabel('Time, t, (days)') 
ylabel('\mu') 
legend('d\mu/dt'); 
  
% Plot P v t 
subplot(2,2,4);  
plot(T,Y(:,4),'-or') 
xlabel('Time, t, (days)') 
ylabel('Product') 
legend('Product/dt'); 
  
% y(1)   = dXdt   Rate of Cell Growth 
% y(2)   = dGLCdt Rate of Change in Glucose Concentration 
% y(3)   = dMudt  Rate of Change of Mu 
% y(4)   = dF0dt  Rate of Change in Feed 
  
% Nested Function 
function dy = Perfusion(t,y) 
  
dy       = zeros(3,1); 
dy(1)    = y(3)*y(1); 
dy(2)    = -(3.6e-12*y(1)+D*(F0-Sj)); 
dy(3)    = (MuMax*y(2))/((kGLC*y(1))+y(2)); 
dy(4)    = ((1e-12)*y(1))-D*Pj; 
  
end 
end 
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