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ABSTRACT: 

Solid-state nanopores are nanoscale channels through otherwise impermeable membranes. Single 

molecules or particles can be passed through electrolyte-filled nanopores by, e.g. electrophoresis, 

and then detected through the resulting physical displacement of ions within the nanopore. 

Nanopore size, shape, and surface chemistry must be carefully controlled, and on extremely 

challenging <10 nm-length scales. We previously developed a framework to characterize 

nanopores from the time-dependent changes in their conductance as they are being formed through 

solution-phase nanofabrication processes with the appeal of ease and accessibility. We revisited 

this simulation work, confirmed the suitability of the basic conductance equation using the results 

of a time-dependent experimental conductance measurement during nanopore fabrication by 

Yanagi et al., and then deliberately relaxed the model constraints to allow for (1) the presence of 

defects; and (2) the formation of two small pores instead of one larger one. Our simulations 

demonstrated that the time-dependent conductance formalism supports the detection and 

characterization of defects, as well as the determination of pore number, but with implementation 

performance depending on the measurement context and results. In some cases, the ability to 

discriminate numerically between the correct and incorrect nanopore profiles was slight, but with 

accompanying differences in candidate nanopore dimensions that could yield to post-fabrication 

conductance profiling, or be used as convenient uncertainty bounds. Time-dependent nanopore 

conductance thus offers insight into nanopore structure and function, even in the presence of 

fabrication defects. 

 

  



1 INTRODUCTION: 

Nanopores are a rising tool for single-molecule science, featuring prominently in DNA sequencing 

efforts, but with broader reach into biophysics, and bioanalytical and materials chemistry.[1-12] 

The nanopore heart of these techniques is a nanofluidic channel generally less than 100 nm in all 

dimensions, formed through a membrane or support, with the particular dimensions dictated by 

the analyte and method. The essential determinants of nanopore performance include the elements 

of three general nanopore-specific parameter groupings:  nanopore size, shape, and surface 

chemistry.[13-19] Even the most basic nanopore operating configuration illustrates the importance 

of these parameters, and also provides a means for assaying them. A nanopore is positioned as the 

sole fluid path between two wells of electrolyte solution. Application of suitable voltages, typically 

≤200 mV, across the impermeable support membrane drives ion passage through the nanopore. 

The resulting open-pore ionic conductance, 𝐺, is determined by the bulk solution conductivity, 𝐾, 

by the size and shape of the nanopore (here captured in volume and surface integrals, 𝐴 =

(∫
𝑑𝑧

𝜋(𝑟(𝑧))
2)

−1

 and 𝐵 = (∫
𝑑𝑧

2𝜋𝑟(𝑧)
)

−1

, respectively), and by properties of the nanopore-solution 

interface[13, 16, 18, 20-23] 

𝐺 = 𝐾 ∙ 𝐴(𝑟, 𝐿) + 𝜇|𝜎| ∙ 𝐵(𝑟, 𝐿) = 𝐺bulk + 𝐺surface      (1) 

where 𝜎 is the nanopore surface charge density that attract counterions of mobility, 𝜇. The pore 

has a radius, r(z) , that can vary along length, L, of the pore (aligned with the z-axis as shown in 

Figure S1). More complex theoretical approaches exist—a formulation including the access 

resistance term (neglected here for simplicity) is discussed in the supporting information (see 

Equation S1, Figure S2 and associated discussion)—but this straightforward conductance model 

provides a tractable and useful framework with good agreement with the measured conductance 



of nanopores across a range of experimentally determined sizes and shapes.[13, 16, 18, 20, 21, 24] 

As a species of interest passes through the nanopore, or is entrained therein, it perturbs the open-

pore flow of ions, and frequently generates an analyte-specific current blockage (or 

enhancement)[4, 10, 13, 17, 23]. A simple analytical model for the conductance blockage wrought 

by the extension of an analyte such as DNA, of radius 𝑟analyte, through the length of a uniformly 

cylindrical nanopore of radius 𝑟0, illustrates more directly the importance of nanopore dimensions: 

𝜒𝐵 ≡
(〈𝐺〉−〈𝐺𝑏〉)

〈𝐺〉
≅ (

𝑟analyte

𝑟0
)

2

         (2) 

with 〈𝐺〉 and 〈𝐺𝑏〉 the time-averaged conductances of open, and analyte-filled, nanopore.[25] The 

more complex set of phenomena and parameters underpinning the current blockage explains the 

experimentally demonstrated ability to extract meaningful molecular information, such as 

detecting nucleotide sequence in such a strand of DNA.[2, 4, 8, 10, 17, 19, 26, 27] The details of 

nanopore surface charges are not only important in the context of conductance as in Equation 1, 

but extend to augmenting electrophoretic control over analyte motion through the nanopore with 

electroosmosis, and to allowing nanopores to analyte-select not only based on size, but also by 

charge.[9, 28-31] Conductance-based nanopore characterization is, in fact, uniquely positioned to 

provide geometric and chemical insights into nanopore properties. It is also exceedingly important 

in the context of solution-phase nanopore fabrication methods where post-fabrication microscopic 

characterizations are undesirable. The prevailing approach has been to assume formation of a 

single nanopore when one is intended, and to overlook possible structural defects. Inaccurate 

nanopore models will affect the quality of conductance characterizations, and other work has 

shown (and taken advantage of) the influence of internal nanopore structural irregularities on 

analyte current blockages.[32] While it is essential to control the size of isolated nanopores for 



single-molecule characterization and sensing applications; the use of arrays of nanopores as filters 

for physical and chemical separations multiplies the challenges and underscores the need to detail 

the formation of even single nanochannels.[11] 

 The extreme, ~10 nm feature size has historically been challenging to nanopore fabrication 

(and characterization) efforts. Methods have tended to be instrumentation-intensive, using 

charged-particle microscopes such as scanning and (scanning) transmission electron microscopes 

(SEM and (S)TEM), and helium ion microscopes, or ion accelerator facilities to prepare 

membranes for subsequent chemical etching steps.[33-37] More recently, ~20 V potentials applied 

across thin membranes immersed in electrolytes conventionally used for nanopore experiments 

resulted in (controlled) dielectric breakdown of the films, and could produce size-tuned nanopores 

following voltage-assisted etching.[38] This truly low-overhead approach can yield <10 nm 

diameter nanopores, and produces them reliably wetted for use, without the risks of drying and 

surface contamination from steps such as TEM-based fabrication (or examination). A similarly 

all-solution-based approach uses deposition of largely conformal films to shrink suitable pores to 

the desired final dimension.[9, 39] By deliberately and beneficially removing high-magnification 

charged-particle microscopes from the fabrication workflow, however, the opportunity to 

immediately image the fabricated pores is lost. We therefore explored existing nanopore 

conductance formalisms[13, 18] and developed a framework to use conductance to characterize 

nanopore size, shape, and surface chemistry.[14-16] We most recently showed that the method 

could yield real-time insight into these nanopore properties during solution-phase fabrication 

processes such as those outlined above.[14] In all instances, however, the simulations assumed 

perfectly formed single nanopores. Here we (1) deliberately introduce defects into the pore models, 

and we moreover (2) allow for the possibility that a measured conductance arises from two separate 



nanopores forming in the same membrane (denoted a double pore). The latter allowance arises 

from TEM observations, post-pore fabrication, showing that dielectric breakdown formation of 

nanopores using unoptimized multilevel pulse-voltage injection could yield more than one 

pore.[40] Conductance-based measurements should allow for these realities, at least through the 

setting of reasonable uncertainty levels. We focus here on nanopores formed in thin, free-standing 

silicon nitride membranes, so that our numerical simulations use parameter values from the most 

commonly used nanopore material platform. The films are amorphous and thus not inherently 

prone to anisotropic etching,[41] and silicon nitride is notably resistant to structural and chemical 

modification absent deliberate action. 

2 METHODS 

The form of Equation 1 means that a single measured conductance does not yield a single 

unique solution for the nanopore size and shape.[14-16] One can gain more degrees of freedom by 

measuring the conductances at two different solution conductivities, 𝐾,[15, 16] or after (or during) 

controlled structural modifications.[14, 15] A time-dependent framework was developed and 

examined conventionally in earlier work—without considering either defects or multiple 

pores.[14] During nanopore formation—by dissolution or deposition of material—the nanopore 

conductance is a function of time because the dimensions of the nanopore, {𝑞𝑗(𝑧, 𝑡)}, are changing 

in time, t: 

𝑑𝐺

𝑑𝑡
= 𝐾 ∑ (

𝜕𝐴

𝜕𝑞𝑗
)

𝑑𝑞𝑗

𝑑𝑡𝑗 + 𝜇|𝜎| ∑ (
𝜕𝐵

𝜕𝑞𝑗
)

𝑑𝑞𝑗

𝑑𝑡𝑗 .        (3) 

This particular implementation can determine geometries with two free parameters, and we chose 

the limiting (minimum) radius, 𝑟0(𝑧, 𝑡), and the total nanopore length, 𝐿(𝑡).[14] The presence of 

a defect disrupts the usual cylindrical symmetry. For a membrane with more than one nanopore, 



the nanopores are conductors in parallel (with identical surface chemistries and electrolyte 

contents) so that their conductances would be added directly, 𝐺 = ∑ 𝐺𝑛𝑛 . Using a single 

measurement of the conductance at a single time 𝑡𝑖, it is not possible to distinguish between a 

single large pore and two smaller pores, or between a pore with or without a defect, when 

𝐺(𝑡i, {𝑞𝑗(𝑡i)})= 𝐺(𝑡i, {𝑞𝑗
′ (𝑡i)}).[14] The size- and geometry-dependence of the conductance 

change in time, however, 

𝑑𝐺

𝑑𝑡
= ∑ (𝐾 ∑ (

𝜕𝐴𝑛

𝜕𝑞𝑗
)

𝑑𝑞𝑗

𝑑𝑡𝑗 + 𝜇|𝜎| ∑ (
𝜕𝐵𝑛

𝜕𝑞𝑗
)

𝑑𝑞𝑗

𝑑𝑡𝑗 )𝑛        (4) 

provides a much-needed degree of freedom to possibly differentiate between such configurations. 

The characterization method then has a very simple implementation:  measurements of several 

sequential experimental conductance values at times {𝑡𝑖 , … }, {𝐺(𝑡𝑖, {𝑞𝑗(𝑡𝑖)}), … }, are the inputs to 

the geometry optimization of candidate nanopore profiles. We simulated the experimental 

conductances using the experimentally supported Equation 1 in conjunction with experimentally 

supported nanopore profiles, and then fit the data using candidate nanopore profiles.[16, 18] The 

focus was whether including either defects or double pores would negatively affect the feasibility 

of the approach augured by the formalism. To allow this emphasis, the effect of measurement noise 

on the conductance was neglected. The change in nanopore radius in time, 
𝑑𝑟

𝑑𝑡
= 𝑣mt, occupies a 

privileged role as the material transfer rate (with opposite signs for etching and deposition). We 

used a constant |𝜈mt| = 0.6 nm/h to highlight the nonlinear dependence of conductance on 

geometry in Equations 1, 3, and 4, and in keeping with the linear etch rates common to 

micromachining, but the method does not depend on that particular magnitude or time-

dependence.[14, 41] We chose four nanopore profiles finding widespread use:  cylindrical, double-

conical, conical-cylindrical, and hyperbolic (Figure S1), but the method does not hinge on these 



particular choices.[13, 16, 18, 37, 42] The label 𝑟0 is used here to denote the radius of the 

cylindrical pores, and the minimum radius (at any given time) of the pores with radii varying with 

𝑧; “pinch” and “outline” labels will be introduced for the 𝑟0 of cylindrical nanopores with defects. 

All profiles were conventionally restricted to two free parameters, each, (𝑟0 and 𝐿) with the outer 

radius of the three tapered profiles fixed to be 10 nm greater than their corresponding 𝑟0, and the 

initial length of the inner cylinder of the conical-cylindrical pore restricted to 0.6 times its overall 

length, 𝐿(𝑡0), where 𝑡0 is the starting time. To model the double pore case, the two pores were set 

to be identical. Parameter values and calculations were consistent with previous work:[14-16, 22] 

1 M potassium chloride electrolyte solution in water, K=14.95 S·m-1, pH 7.0, and silicon nitride 

surface pKa=7.9, with 𝜎 calculated in the usual way.[16, 22] The influence of solution pH is 

outlined in Figure S3 and the discussion immediately preceding it. For the defect-free pores, 

surface-deposited films were treated in a piecewise curved manner to maintain a uniform surface 

coating thickness (Figure S1) across the entire nanopore surface.[14] For the case of the pores with 

defects (Figure 1a) the half-cylinder protrusions running along the full length of the pore interior 

were centered on the pore outline, opposite each other. Simulations of 𝐺(𝑡𝑖) were performed using 

0.01 nm step sizes in the nanopore radius (or 1 minute increments given 𝑣mt), and fits to 𝑟0(𝑡0) 

versus t were plotted using 0.05 nm increments. 

3 RESULTS AND DISCUSSION: 

Post-fabrication comparisons of electron microscopic and steady-state conductance 

measurements support the independent use of Equation 1 for nanopore characterization.[13, 16, 

18, 20, 21, 24] Conductance measurements recorded during a fabrication process such as dielectric 

breakdown, however, occur in a different context than post-fabrication measurements.[38, 43] In 

Figure 2, we used experimental multilevel pulse-voltage injection (MPVI) nanopore formation 



measurements—both steady-state and time-dependent—by Yanagi et al.[43] to test whether a 

formalism such as Equation 1 would yield reasonable real-time size determinations using the time-

dependent conductance of a forming nanopore. Yanagi et al.[43] measured the steady-state 

conductances, 𝐺, of post-fabrication pores and then used TEM imaging to determine their mean 

𝑟0. With appropriate consideration of the usual caveats of EM nanopore characterization[14, 16], 

along with possible consequences of nanopore dewetting and handling, post-fabrication electron 

microscopy provides a valuable, albeit instrumentation- and expertise-intensive, measure of 

nanopore size. Unsurprisingly, we obtained good fits to post-fabrication data using Equation 1 

(Figure 2a)—in particular with a conical-cylindrical profile with conventional constraints (see 

above)—and using Equation S1 (Equation 1 with an access resistance term—see discussion below) 

with cylindrical models with effective or adjustable fitting parameters. To correlate Yanagi et 

al.’s[43] measured 𝐺 and mean 𝑟0 without biasing the fit with an explicit choice of nanopore shape, 

we modified the cylindrical model of Equation S1 by replacing 𝐺bulk with 𝛼𝐺bulk, and 𝐺surface with 

𝛽𝐺surface. We optimized the parameters 𝛼 and 𝛽 using the fit to the experimental data (with known 

𝑟0, 𝐿, and 𝐺) in Figure 2a to correlate experimental post-fabrication nanopore conductances and 

mean nanopore radii by TEM, 𝑟0,TEM
𝛼,𝛽 (𝐺). We then used 𝑟0,TEM

𝛼,𝛽 (𝐺) to convert Yanagi et al.’s[43] 

time-dependent measurements of the conductance into nanopore size as a function of time, 

𝑟0,TEM
𝛼,𝛽 (𝑡𝑖) (Figure 2b). In this context, the function 𝑟0,TEM

𝛼,𝛽 (𝐺) is thus better thought of as simply a 

fit function relating nanopore conductance and TEM-based size, rather than representing a 

particular model choice for the nanopore conductance. Finally, for each 𝐺(𝑡𝑖) data point of Figure 

2b, we calculated 𝑟0,candidate(𝑡𝑖), with all other parameters fixed, for each of the candidate nanopore 

profiles, and compared the results with 𝑟0,TEM
𝛼,𝛽 (𝐺) (Figure 2c). The experimental 𝐺(𝑡𝑖) of Yanagi 

et al.[43] was fit best, using Equation 1, by a conical-cylindrical model with overall length equal 



to the nominal membrane thickness. The cylindrical model using Equation S1 and with an effective 

length equal to a fraction of the nominal membrane thickness[43] did not fit as well as the conical-

cylindrical model, but outperformed the remaining candidates. Overall, Equations 1 and S1 

produce reasonable nanopore sizes when applied to conductance data recorded during nanopore 

fabrication. As discussed in earlier work[14], a time-dependent material-transfer rate, 𝜈mt(𝑡), is no 

impediment to the time-dependent conductance profiling framework.[14] 

As the first application of Equation 1 to more complex nanopore configurations, we 

investigated the effect of defects on our ability to extract reasonable geometric descriptions of 

nanopore sizes. Figure 1a shows a top-down view of defects in cylindrical nanopores (𝐿(𝑡0) =

10 nm). Figure 1a also shows one of the key challenges of conductance-based nanopore 

characterizations:  all of the different profiles shown have, by Equation 1, the same 200 nS 

conductance. With larger initial defect size, the initial radius of the cylindrical outline of the 

nanopore (the “outline radius”, 𝑟0
outline(𝑡0)) must also be larger to compensate for the internal 

volume lost for ionic transport. Defects distort the circular symmetry of the nanopore and introduce 

“pinch points” (as illustrated in Figure 3, characterized by the radius of a cylinder just fitting 

between the two protrusions—the “pinch radius”, 𝑟0
pinch(𝑡0)) that could preclude analyte passage 

where a defect-free pore of equivalent conductance could allow passage. Such a failure, of course, 

is diagnostic, but would require the addition of gauging molecules or particles (compatible with 

the fabrication conditions) if it were to be used for real-time monitoring of the fabrication. Such 

adjuncts could naturally be used post-fabrication.[44, 45] Figure 1b shows the evolution of a 

cylindrical nanopore with 1 nm-radius defects:  as more material is added to the surface with time, 

the nanopore interior becomes increasingly anisotropic. Depending on defect size, shape, and 

position, depositing material onto the surface of a pore with defects could readily lead to 



overlapping Debye layers followed by physical scission of a single pore into two distinct pores. 

The comparison of single and double pore systems thus also overlaps with the consideration of 

fabrication defects. Figure 1c illustrates the heart of the method motivated by the form of Equations 

1 and 3:  it shows the time evolution, with identical material transfer rates, of the nanopore profiles 

shown in Figure 1a. For small nanopore sizes where Debye layers overlap, more sophisticated 

treatments than Equation 1 are required, but as a guide to the eye we plotted the conductance until 

𝑟0
pinch

= 0.[15, 46] From their identical initial value, the conductances of the different profiles 

differentiate in time, in spite of the constant material transfer rate changing all outline and pinch 

radii at the same rate. 

When nanopore dimensions are changed during fabrication, the change in conductance 

with time is measured without knowledge of the presence or absence of defects. The question is 

whether the time-trace of the conductance can reveal the presence of defects or not—and if not, 

how serious the error in the resulting nanopore characterizations might be. To explore this, we 

chose to simulate (abbreviated to “sim” in labels) the time-dependent conductances, 𝐺case
sim (𝑡𝑖) (case 

denotes defect size), for two cylindrical nanopores with 𝐺case
sim (𝑡0) = 200 nS and 𝑟0

pinch(𝑡0) =

4 nm:  one with two 0.1 nm-radius defects, and the other with two 1.0 nm-radius defects (and 

lengths 𝐿(𝑡0) ~4.1 and ~5.9 nm, respectively, dictated by the conductance and radii). We attempted 

to fit these data by using the (known) material transfer rate and varying the dimensions of three 

candidate nanopore profiles:  a defect-free cylindrical nanopore, and profiles with 0.1 and 1.0 nm-

radii defects. The question was whether fitting to the 𝐺case
sim (𝑡𝑖) would reveal the existence and size 

of defects. A step-by-step tutorial for this process is provided in earlier work,[14] which we 

abbreviate here to allow a suitable focus on fabrication irregularities. The initial conductance, 

𝐺case
sim (𝑡0), was used to determine the (infinite) set of {(𝑟0,candidate(𝑡0), 𝐿candidate(𝑡0))} for which 



𝐺candidate(𝑡0) = 𝐺case
sim (𝑡0). After the dimension changes from depositing material at the known rate 

(outline and pinch radii diminish at 𝜈mt, whereas the cylinder length increases at 2𝜈mt), only one 

pairing (𝑟0,candidate(𝑡0), 𝐿candidate(𝑡0)) for each candidate also satisfied 𝐺candidate(𝑡1) = 𝐺case
sim (𝑡1). 

This answer gave the unique initial nanopore size for each candidate with its specified defect size, 

but could not be used to identify the simulated defect size. That is, all three candidate profiles 

could exactly reproduce the two simulated conductances. After propagating the deposition one 

more time from the three different (𝑟0,candidate(𝑡0), 𝐿candidate(𝑡0)), only one pair of initial nanopore 

dimensions gave 𝐺candidate(𝑡3) = 𝐺case
sim (𝑡3). Figure 3 summarizes this behavior:  the ordinate is the 

initial nanopore radius, 𝑟0,candidate(𝑡0), that, after deposition until time 𝑡𝑖, would give 

𝐺candidate(𝑡𝑖) = 𝐺case
sim (𝑡𝑖) (the dimensions at time 𝑡𝑖 are readily calculated from the initial 

dimensions and the known material transfer rate). When the candidate profile (here, defect size) 

matches the simulated profile, then all the 𝑟0,candidate(𝑡0) from each 𝑡𝑖 are equal to each other, and 

equal to 𝑟0,case
sim (𝑡0), and the line connecting the data is horizontal. When the candidate profile is 

incorrect, then the plotted data is no longer horizontal. Thus, in Figure 3a, when the simulated data 

is generated using a cylindrical pore with a 0.1 nm-radius defect, only the fit data using the 0.1 nm-

defect candidate pore is perfectly horizontal. The defect-free nanopore fit data is close to horizontal 

and overlaps substantially with the outline radius of the simulated pore, but the 1 nm-defect fit 

data has a larger nonzero slope and is therefore the incorrect candidate. While 𝑟0
outline(𝑡0) of the 

1 nm-defect candidate was not substantially larger than the true 𝑟0
outline(𝑡0), its small 𝑟0

pinch(𝑡𝑖) 

would suggest an incorrect threshold for analyte size-exclusion. Figure 3b shows that a 1 nm-

defect simulated pore is successfully fit only with a 1 nm-defect candidate pore, and that radii for 

the remaining two candidates lie between limits set by the pore with the larger defect. In both 



fitting examples, the slopes of the fit data provide an indication of the correct defect magnitude, 

being positive when the candidate defect is too large, and negative when the candidate defect is 

too small. One might thus imagine a strategy in which a wider range of candidate defect sizes were 

used to more readily indicate the presence and provide bounds for the size of a defect. The 

feasibility of the method thus extends from the formalism to successful numerical examples, but 

these model calculations portend limitations in experimental implementation:  

Δ𝑟0,candidate(𝑡0)~0.1nm for incorrect candidates, compared to the full 2 nm deposition thickness. 

In the presence of measurement noise, or with an unfavorable combination of defect size, 𝜈mt, 

fabrication time, and number of conductance measurements, for example, even detection of defects 

may elude real-time analysis. 

We extended this exploration of the effect of defects by considering the effect of candidate 

nanopore shape on the conductance-based geometry optimization. Figure 4a illustrates the 

underlying premise. At 𝑡0, the six listed nanopore profiles have identical 200 nS conductances and 

𝐿(𝑡0) = 10 nm, generated by different 𝑟0(𝑡0). As material deposition narrows the nanopore 

constrictions at a constant linear rate (inset), all of the conductances diverge from each other in 

time. This occurs in spite of, for example, the 𝑟0
pinch

 of the 1.0 nm-defect cylindrical pore and the 

𝑟0 of the conical-cylindrical pore having essentially identical values over time. Figures 4b and c 

use this behavior quantitatively. The same procedure used for Figure 3 was used to fit the simulated 

conductances of cylindrical nanopores with 𝑟0
𝑝𝑖𝑛𝑐ℎ(𝑡0) = 5.0 nm, and two defects of either 0.1 or 

1.0 nm radius, with defect-free pores representing typical nanopore shapes. Even the smaller, 

0.1 nm defects caused the defect-free cylindrical nanopore to be unable to fit the simulated 

conductance. The correct candidate profile—0.1 nm defects inside a cylindrical profile—gave a 

perfectly horizontal line when fit to the simulated 0.1 nm-defect data. Fitting with the conical-



cylindrical nanopore, however, generated nearly horizontal data, likely because the distinct narrow 

and wide sections of the profile (including constraints) were able to approximate the defect-bearing 

cylinder’s balance of pinch and outline radii. The radius of the opening through the inner cylinder 

(𝑟0,conical-cylindrical(𝑡)), however, was smaller than for the simulated profile. For the simulated 

cylindrical pore with the larger, 1.0 nm defect, the fitting procedure again returned the correct 

profile and defect size. Once again, the conical-cylindrical profile fit data was almost horizontal 

with the wrong radius, although lying between the pinch and outline radii of the defect model. 

Depending on the size, distribution, number of defects, and current noise, it may be difficult to use 

this conductance model to distinguish, in real-time during formation, between an ideal pore of a 

given shape, and a pore of a different shape, but with defects. It may be necessary to then resort to 

more involved post-fabrication approaches.[15, 16, 44, 45] Indeed, one may be forced to adopt a 

strategy of repeated cycles of incomplete fabrication—with real-time profiling—followed by more 

in-depth characterization. In such a case it is important to understand the inherent uncertainties—

such as the error in 𝑟0—of these real-time characterization procedures to ensure that the fabrication 

cycles do not pass by the desired final size. 

A second complication for nanopore formation is the formation of more than one pore 

when only one is intended. Microscopy can be used to directly enumerate the pore number, but at 

the cost of instrumentation and user burdens, and possible nanopore surface contamination, among 

other drawbacks. We wanted to determine if conductance could provide any insight into this 

possible problem of multipore formation. We explored the case of double pores of matching size 

and shape. Figure S4 illustrates that the conductance change in time provides the prospect of 

differentiating between single and double pore systems, just as it did for single pores of different 

shapes.[14] 



To explore whether the conductance time trace could reliably determine the size and 

number of the pores during their fabrication, we simulated conductances for single and double 

pore configurations of the four profiles in Figure S1, choosing 200 nS as a convenient initial 

conductance. Double pores for each shape were identical in size to each other. The conductance 

fitting in Figure 5 mirrors that of Figure 3 and 4b,c. For each column, a given profile with a single 

(a-d) or double (e-h) pore was chosen and used to calculate a minimum of three simulated 

conductance values in time:  𝐺case
sim (𝑡0), 𝐺case

sim (𝑡1), and 𝐺case
sim (𝑡2), with additional 𝐺case

sim (𝑡𝑖) providing 

added robustness (case here denotes profile and pore number). The broad outlines of the results 

detailed in Fig. 5a-d and e-h are that one-pore simulated conductances were fit by the one-pore 

candidate profiles of the correct shape (as revealed by the constancy of the corresponding 𝑟0(𝑡0)), 

and double pore conductances were fit by the matching double pore candidate profiles. 

Interestingly from these examples, double pore cylindrical and conical-cylindrical profiles did a 

reasonable job of fitting single pore hyperbolic and double-conical conductance data, and single 

hyperbolic and double-conical candidates did a reasonable job of fitting double pore cylindrical 

and conical-cylindrical conductance data. Exact agreement still only occurs for correct shape and 

pore number, but the wrong profile doesn’t inherently produce a terribly inaccurate radius. While 

they returned the incorrect shapes, the nevertheless fairly accurate 𝑟0 means the expectations of 

which sizes of molecules would fit through the candidate pores are unlikely to differ appreciably, 

although the double pore case would allow for twice the number of channels and have different 

analyte-induced current blockages. Sufficient attention should therefore be obtained to optimizing 

the nanopore fabrication conditions,[40] and more involved post-fabrication characterizations 

should be considered if analyte-induced blockages do not fall within the range expected for the 

relative sizes of analyte and pore.[15, 16, 44, 45] 



4 CONCLUDING REMARKS: 

The performance of a nanopore used for applications such as single-molecule sensing, separations, 

and manipulations is dictated in large part by its size, shape, and surface chemistry. These three 

parameter groupings underpin the nanopore conductance, and allow a suitable analysis framework 

to use straightforward measurements of the conductance as a means to gain insight into these 

nanopore properties. Nanopore conductance is routinely used to coarsely gauge nanopore size 

during use, typically with at least the assumption of a cylindrical shape, and then often with 

deliberately incorrect parameter constraints to ensure that reasonable numerical estimates of the 

radius are nevertheless produced. More sophisticated conductance formalisms have been 

developed and validated for use with more complicated nanopore shapes and to account for 

additional considerations such as access resistance. Simple, analytical expressions allow for wider 

adoption of a characterization method that can easily accommodate a range of nanopore profiles, 

thereby providing both application flexibility and the possibility for using different model 

assumptions to explore the uncertainties in the extracted nanopore dimensions.[15, 16] New 

solution-based nanopore fabrication techniques have increased the importance of methods to 

characterize nanopores from their conductance. We tested the ability of a recently-developed 

method to characterize nanopores in real-time during fabrication by allowing for the possible 

formation of multiple pores or pores with defects. The simulations determined the correct nanopore 

number, size, and shape alongside the presence and size of any defects, but the numerical examples 

revealed challenges that await experimental applications of the approach. While the basic 

equations showed good agreement with experimental time-dependent conductance measurements, 

example characterizations that explicitly considered the possibility of nanofabrication defects 

yielded only very slight differences in the key metrics designed to identify nanopore profiles and 



determine their dimensions. Inadequate measurement statistics may therefore impede the ability 

to uniquely or correctly determine the correct nanopore shape, number, and size. In challenging 

cases, a selection of analyses using different assumptions could produce a set of parameter values 

whose spread could offer a measure of the uncertainty of the characterization. Such real-time 

estimates could be followed by post-fabrication characterizations where larger conductance 

changes than those accompanying nanoscale changes of nanopore dimension would be wrought 

by changes of solution concentration, thereby easing the conductance analysis.[16] Thus, in spite 

of the limitations discussed here, the time-dependence of the nanopore conductance during 

fabrication remains a useful tool, given sufficient circumspection in application, for gaining insight 

into the evolving nanopore structure and for characterizing nanopores even without the usual 

assumptions of ideal formation. 
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Figure Captions 

Figure 1. a) Top view of 𝐿(𝑡0) = 10 nm cylindrical nanopores that yield a 200 nS conductance 

with the radii of the two inward-pointing defects given in the legend. b) Top view of the initially 

1 nm-radius defect nanopore from (a), closing at 𝑣mt = 0.6 nm/h with deposition time indicated. 

c) Progression of conductance (and 𝑟0
pinch

 in inset ) with time for the cylindrical nanopores from 

(a). 

Figure 2. (a) Experimental post-fabrication measurements of nanopore conductance and their 

corresponding TEM-based mean 𝑟0,TEM
expt

 (green stars)[43] were plotted versus several models:  

Equation 1 (solid markers) – cylindrical (red circles), double-conical (blue triangles), conical-

cylindrical with an inner cylinder length of 0.6𝐿 (black squares), and hyperbolic (magenta 

diamonds); and with an added access resistance term, by Equation S1 (hollow markers) – 

cylindrical with length 𝐿 (small circles) and cylindrical with a 0.37𝐿 effective length [43] (large 

circles). To not bias further analysis with an explicit choice of nanopore profile, the 𝑟0,TEM
expt

 were fit 

to Equation S1 with 𝐺bulk and 𝐺surface from the cylindrical model weighted by fit parameters:  

𝛼𝐺bulk and 𝛽𝐺surface (orange triangles—𝑟0,TEM
𝛼,𝛽 (𝐺)). (b) Time-dependent conductance 

measurements were taken from the experimental work of Yanagi et al.[43] and were used with 

𝑟0,TEM
𝛼,𝛽 (𝐺) to determine 𝑟0,TEM

α,β (𝑡𝑖). (c) Candidate profiles matching those in (a) were used at each 

discrete value of 𝐺(𝑡𝑖) to calculate an 𝑟0,candidate(𝑡𝑖). The figure compares the fit and 

experimentally-derived radii where the correct candidate size should result in a straight line at a 

ratio of 1. Selected data markers are shown for clarity. 

Figure 3. Conductances during simulated material deposition onto nanopores with initial 

conductances of 200 nS, and 𝑟0
pinch(𝑡0) = 4 nm, were fit with candidate cylindrical nanopores:  a 



defect-free pore, and pores with 0.1 and 1.0 nm-radius defects. Dotted and solid lines denote the 

pinch and outline radii, respectively. a) 0.1 nm defect pore and b) 1.0 nm defect pore profiles were 

used to furnish the simulated conductance data. The correct candidate profile in each case was 

indicated by the horizontal slope of the fit data; the defect-free 𝑟0(𝑡0) nearly completely overlaps 

with 𝑟0
pinch(𝑡0) for the 0.1 nm defect pores. Selected data markers are shown for clarity. 

Figure 4. a) Conductances and (inset) radii as a function of profile and time when simulating 

deposition onto surfaces of initially 200 nS, 𝐿(𝑡0) = 10 nm nanopores. Dotted curves in the 

conductance plots belong to the cylindrical pores with defects, and denote the corresponding 𝑟0
pinch

 

in the inset (solid line-𝑟0
outline) and in (b)-(c).Conductance versus time for b) 0.1 nm-defect and c) 

1.0 nm-defect cylindrical pores were fit with each candidate profile in the legend; horizontal fit 

lines for each case indicated the correct simulated profile. Selected data markers are shown for 

clarity. 

Figure 5. Single (solid lines) and double (dotted lines)—left to right matching the half-profile 

sketches—cylindrical (red circles), double-conical (blue triangles), conical-cylindrical (black 

squares), and hyperbolic (magenta diamonds) profiles were used to simulate nanopore 

conductance values versus time. Eight candidate profiles (4 shapes, single and double) were used 

to fit (a-d) single pore simulated data and (e-h) double pore data from the 4 shapes. All 

experimental pores were initially 200 nS conductance. The correct nanopore shape was indicated 

by the constancy of the fit to 𝑟0(𝑡0) in time, and is labelled with the corresponding shape and 

number of pores. Selected data markers are shown for clarity. 
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