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ABSTRACT Surface-enhanced Raman spectroscopy (SERS) is a powerful technique for sensing 

molecules proximal to suitable coinage metal surfaces. The physical structure of the SERS-active 

metal layer and its support is a key design parameter inspiring considerable, and frequently 

specialized, efforts in substrate fabrication. The necessary gold film structure can arise from both 

the metallization process and the underlying support structure, and the structure of the support 

can deliver additional functions including analytical capabilities such as physical filtering. We 

used electroless plating as a general approach to create a library of SERS substrates:  SERS-

active gold films on a range of supports made from a variety of materials, made with a mixture 

of simple and complex fabrication histories, and offering a selection of structurally-derived 

functions. The result was that supports with existing functions had their capabilities enhanced by 

the addition of SERS sensing. Electroless plating thus offers a host of beneficial characteristics 
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for nanofabricating multifunctional SERS substrates, including:  tolerance to substrate 

composition and form factor; low equipment overhead requirements; process chemistry 

flexibility—including compatibility with conventional top-down nanofabrication; and a lengthy 

history of commercial application as a simple metallization technique. We gold-plated standard 

nanofabrication-compatible silicon nitride support surfaces with planar and porous architectures, 

and with native and polymer-grafted surface chemistries. We used the same plating chemistry to 

form SERS-active gold films on cellulose fibers arrayed in commercial filter paper and formed 

into nanocellulose paper. In a functional sense, we used electroless plating to augment 

nanoporous filters, chromatography platforms, and nanofabrication building blocks with SERS 

capability. 

 

Introduction. Surface-enhanced Raman spectroscopy (SERS) is a tool at the forefront of 

chemical analysis for analytes ranging from single molecules to bacterial cells.1-5 Raman 

enhancement is engineered by tuning SERS substrate design parameters such as elemental 

composition; the size and shape of nanoscale elements; close-range interparticle spacing 

responsible for hot spots; and patterning of solid substrates that can include ordered and random 

hierarchies across short, long, and multiple length scales.1, 3, 6-10 Physical structure of the SERS-

active metal layer—either its inherent structure or the structure imposed upon it by an underlying 

support layer—is a critical and performance-determining factor. Considerable effort has been 

devoted to crafting a host of solid-supported SERS substrates, with results that inspire further 

efforts to improve and expand fabrication options, sensing capabilities, and sensing 

performance.1, 3, 7-26 Top-down nanofabrication using conventional and unorthodox approaches 
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can produce exquisitely structured substrates, but can require substantial practitioner expertise 

along with expensive, specialized, and complicated instrumentation, and can moreover 

substantially limit the palette of fabrication materials. SERS substrates developed outside the 

material and processing constraints of conventional micro- and nanofabrication have been 

compelling. Both approaches and material sets hold promise. We sought, therefore, to develop a 

general route for nanofabricating SERS substrates that would bridge both paradigms—to draw 

on the strengths of each, and to be useful for both. Conventional micro- and nanofabrication 

approaches offer well-established, highly optimized, large-scale manufacturing capabilities for 

reproducibly fabricating nanoscale structures. A less conventional fabrication material such as 

paper offers a myriad of advantages that have driven its adoption as a material of choice for low-

cost diagnostics for use in resource-limited settings.23, 27-28 The genesis for the present work was 

the discovery that gold films we had electrolessly plated onto silicon nitride as part of a 

nanofabrication effort were also capable, easily and without optimization, of generating 

reproducible SER spectra.29 We wanted to take a variety of interesting and functional support 

materials and structures, and determine if a simple electroless plating process could make them 

SERS-active—thereby augmenting their core functions by creating multifunctional SERS 

substrates. This goal of multifunction does not exclude the conventional quest for maximum 

signal enhancement, but does require that SERS substrate evaluation be application-context 

dependent. Paper, for example, can support a SERS-active metal component, offers obvious 

advantages such as low-cost and ubiquity, and has a pore structure that could improve sensing 

selectivity through separations by chromatography or by physical filtering.18-21, 23-26, 28, 30-42 

 Electroless plating is a robust technique for surface metallization, well-established in 

commercial manufacturing applications for forming decorative, electrical, and optical elements, 
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and with excellent substrate tolerance.17, 24, 29, 33, 41, 43-52 Objects are immersed in liquid baths, 

with solution access and homogeneity dictating the uniformity of the plating:  rough and large-

area surfaces can be coated without the geometric—including line-of-sight—constraints of 

physical vapor deposition. Equipment overhead is minimal, the surface being plated need not be 

conductive—allowing for support material tolerance—and the plating occurs without the need 

for external electrical power. Electroless plating is inherently different than the capture, by 

nonspecific or specific attachment protocols, of pre-formed, frequently ligand-coated solution-

phase nanoparticles onto a surface:11-12, 15-16, 18, 30-32, 36-38, 40 the electrolessly plated metal film 

structure, properties, and composition can be controlled through surface pretreatment, plating 

bath formulation, and process conditions, and can occur on a timescale that can be measured in 

minutes. Vitally important for our pursuit of a library of multifunctional SERS substrates, 

electroless plating is, in principle, compatible with coating sophisticated top-down 

nanofabricated, and low-cost bottom-up assembled structures and surfaces. 

The term “electroless deposition” is used to describe a number of different plating 

mechanisms, including autocatalytic, substrate-catalyzed, and galvanic-displacement processes.50 

We adopted a single electroless plating process that had been optimized for coating 

nonconductive porous plastic membranes.49 In brief, a Sn (II) solution is used to sensitize the 

surface which, when treated with an ammoniacal silver nitrate solution, undergoes a redox 

reaction to produce a nanoscopic metallic silver layer. Gold plating is then accomplished by 

immersing this surface in a Au (I)-containing plating bath:  the aurous ions galvanically displace 

silver, giving gold particles that catalyze the reduction of aurous ions by formaldehyde also 

present in the bath. Tin-based sensitizers provide fairly indiscriminate surface sensitization, 

which is beneficial since tolerance to surface composition is a desired goal of our SERS substrate 
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fabrication explorations. There is also much flexibility in plating chemistry after sensitization, 

allowing full access to the metals typically used for SERS. While silver coatings can be produced 

through electroless plating, the chemical stability of gold motivates our testing of gold-coated 

substrates for SERS activity. The use of a conventional electroless plating protocol, with only 

minor material-specific modifications in washing steps, allowed us to focus on support material 

composition and physical structure—and thereby, function—in our exploration of whether 

electroless plating could be a general tool for incorporating SERS sensing capabilities into 

already functional and structured materials and platforms. 

We selected a range of support structures and material compositions to explore the generality 

of using electroless plating to form a library of SERS substrates. Silicon-rich LPCVD silicon 

nitride (SiNx) films on silicon were chosen for their ability to support a variety of nanofabricated 

structures and roles.53-55 Polished SiNx films ensured the nanoscale gold grain structure would be 

the dominant substrate structural feature. Silicon nitride films with nanoscale through-channels 

introduced key structural features (the individual nanochannels and the nanochannel array) 

underpinning designer filters and multifunctional chemical analysis platforms using plasmonic 

nanopores.56-57 Surface-grafting of an acrylate-based polymer generated a more subtle structural 

modification of the planar SiNx thin film, and was intended to increase the number of possible 

sensitizer interaction sites on the film. Our next selection was standard filter paper, a frequent 

actor in paper-based low-cost diagnostics.23, 27 We explored the effect of fiber dimensions and 

spacing, by electrolessly plating and attempting to record SER spectra from standard filter paper 

and nanocellulose fiber paper—the fourth and fifth choices of material and structure. We 

characterized a commercial substrate (Silmeco) based on a gold-coated nanopillar array 

architecture9 and etched away its gold coating to expose the sixth surface for examining 



 7 

electroless plating for SERS:  a nanopillar array. Given the vastly different SERS substrate 

configurations, and the often severe approximations necessary to calculate enhancement 

factors,46 we used a comparison framework designed to compare SERS performance across 

disparate substrates. The method yields a SERS enhancement value (SEV), which is defined as 

the ratio of the analyte concentrations that produce the same instrument response by normal 

Raman and SER measurements.58 While spectral acquisition was formalized to allow 

comparisons between substrates, it nevertheless cannot account for the performance benefits of 

matching substrate function to a particular application.  

Experimental. A detailed listing of materials and exposition of methods is provided in the 

Supporting Information. All substrates were electrolessly gold-plated by sequential immersion in 

the same series of tin (II) chloride-, ammoniacal silver nitrate-, and sodium gold sulfite-

containing solutions (Scheme S1), with appropriate rinsing steps in between immersions. The 

solutions were prepared as previously reported.29, 59 Immediately prior to direct plating of bare 

silicon or silicon nitride surfaces, they were oxygen-plasma-treated and then etched with dilute 

hydrofluoric acid. The severe chemical hazards presented by hydrofluoric acid require special 

precautions such as those detailed in the Supporting Information. A subset of cleaned and etched 

planar silicon nitride supports was polymer-coated by formation of a covalently-linked sodium 

polyacrylate film before electroless plating, and once polymer-coated, was treated neither with 

plasma nor hydrofluoric acid. Silmeco gold-coated nanopillar SERS substrates were used, as-

supplied, for comparison measurements. These silicon nanopillar substrates were also immersed 

in iodide-based gold etchant and then, after plasma treatment and HF etching, electrolessly gold-

plated. Whatman 1 filter paper was plated without modification. Nanocellulose fibers were 

formed between two glass slides into a crude paper-like mat ~1 mm thick (referred to as 
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“nanocellulose paper”) before plating. Surface characterization of the plated metal films was 

performed by field emission scanning electron microscopy (FE-SEM), x-ray photoelectron 

spectroscopy (XPS), and surface enhanced Raman spectroscopy (SERS). 

SER spectra were acquired at an excitation wavelength of 785 nm, with a ~100 µm diameter 

(full-width-half-maximum) beam, and at an excitation power of ∽57 mW for cellulose and as-

provided Silmeco, and ∽250 mW for all other substrates. Standard solutions of 4-

nitrobenzenethiol (NBT) in ethanol were prepared, covering a concentration range from 5×10-9 

to 1×10-4 M. All measurements (save for replated Silmeco) were performed with the substrates 

immersed in the standard solutions. Substrates were immersed in standard NBT solutions and 

SERS spectra were recorded every 2 minutes until saturation of the signal level. Following 

piecewise linear background subtraction (details provided in the SI), the data was analyzed 

according to a framework using receiver operating characteristic (ROC) curves and kinetic 

analysis to calculate the SEV.58 

Results and Discussion. Figure 1a shows photographs of the complete set of materials before 

and after electroless gold plating:  we use the term “support” to denote a material prior to gold 

plating, and the term “substrate” to denote a gold-plated support. All supports were successfully 

gold-plated by the series of baths of Scheme S1, as confirmed by visual inspection and XPS 

analysis (Figure S1). All plated substrates could be used to record SER spectra of 4-

nitrobenzenethiol (NBT). The support composition, however, placed restrictions on the 

experimental parameters. Lower excitation power was required to avoid signal saturation using 

the as-supplied Silmeco substrates, and substrate damage using the cellulose-based substrates. 

The higher excitation power left a through-hole in the paper substrate, as shown in Figure 1b, 

and a hollow in the thicker nanocellulose substrate after 10 exposures (~60 s each) when both 



 9 

were irradiated when dry; fume evolution was observed when immersed in ethanol. No damage 

was apparent when unplated paper that had been soaked in NBT was irradiated, so that the 

damage mechanism is reasonably ascribed to photothermal transduction by the gold film. This 

susceptibility of paper to burning is a noted benefit of using paper diagnostics in resource-limited 

settings where safe disposal options for biocontaminated devices may be limited.23, 27 

 

Figure 1. a) Representative substrates before (supports, top row) and after (bottom row) 

electroless gold plating. Left to right: Silicon nitride, polymer-grafted silicon nitride, paper, 

nanocellulose paper, nanopillar silicon (Silmeco etched of its as-supplied gold coating), silicon 

nanoporous substrates. b) Laser-induced damage at 250 mW sets an excitation power limit for 

paper (top, showing a through-hole) and nanocellulose paper (bottom, showing a hollow in the 

thicker substrate). 

 

None of the (gold-free) supports produced detectable Raman spectra of NBT at a drop-cast 

~10-4 M test dose, and the (gold-plated) substrate analyte-free background spectra were, 

excepting a small ~1340 cm-1 peak in paper, flat and featureless in the key spectral regions used 

to benchmark the substrate performance (Figure S2). Figure 2 shows a representative 

background-subtracted SER spectrum from each substrate type using a 10-5 M NBT solution. 
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The principal spectral features are consistent across substrate type, including the most intense 

signal from the NO2 symmetric stretch, centered at ~1330 cm-1 in all spectra. The intensity ratio 

of this peak to the 880 cm-1 ethanol peak, 𝑅NBT EtOH⁄ , was used to construct the response versus 

concentration curve for each substrate type in Figure S3 in the Supporting Information. These 

response curves had profiles typical for this class of experiment.58, 60 The Raman spectral 

intensity at a given analyte concentration was strongly dependent upon the support material and 

preparation, with a substantial penalty in signal strength imposed by the excitation power 

limitations required by the cellulose substrates. The use of polymer-grafted silicon nitride 

substrates resulted in the highest signal at all concentrations compared to all other electrolessly 

plated substrates, most notably when compared at low analyte concentrations. To quantify the 

SERS performance, representative ROC curves were constructed to calculate the SEV for each 

substrate:  0.646×103
 (paper), 0.694×104

 (porous silicon nitride), 2.34×105 (nanocellulose), and 

5.91×105 (silicon nitride), and at least 9.33×105 for both polymer and Silmeco substrates. 

Following low signal intensities in the test measurement for replated Silmeco substrates in 

Figure 2, we pursued structural characterization (vide infra)—instead of further spectral 

characterization—in an effort to understand this lower response compared to as-supplied 

Silmeco substrates. For the Silmeco and polymer substrates, even the measurement at the lowest 

concentration demonstrated a better than 90% probability of detection for a 10% probability of 

false alarm and due to this, we can report only a minimum SEV.58 

These results emerged from proof-of-principle experiments of the general utility of electroless 

plating for SERS substrate creation rather than from longer-term substrate-specific 

optimizations. They are thus useful, when paired with the demands of a particular application, 

for indicating where efforts to gain additional enhancement might be warranted. The polymer-
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grafted silicon nitride is of note not simply for providing the largest SEV of our electrolessly 

plated substrates, but as an example of the benefits of nanoscale tailoring of SERS substrates, 

and for serving as a bridge between substrates based on traditional, silicon-containing 

nanofabrication materials, and those based on larger organic polymer fibers. More broadly, the 

design of a SERS substrate type should balance, in an application-specific way, the SEV and any 

special capabilities, such as filtering, offered by a given substrate. For example, gold films 

electrolessly plated onto and into these membrane filters can be used to physically optimize filter 

performance by tuning pore dimensions; to chemically optimize filter performance by serving as 

a first step in surface functionalization; and to augment filter performance by adding SERS-

sensing capabilities in addition to separation.29, 61 Ultrathin, nanofabricated membrane filters, 

such as nanoporous silicon and silicon nitride, offer significant advantages over conventional 

polymer ultrafiltration membranes.54, 62-70 Mechanically robust, unsupported ultrathin filters 

allow for high hydraulic and diffusive permeabilities. The material properties and ultrathin 

dimensions allow for the straightforward fabrication of smooth pores in controllable, well-

defined sizes with narrow size distributions, and with high areal densities. The short, smooth 

walls do not suffer the drawbacks of flow resistance and sample losses due to the tortuosity and 

large surface area of conventional, thicker (polycarbonate) track-etched membranes. Such high-

throughput, low-loss nanoporous membranes can be custom-fabricated with pore dimensions and 

characteristics optimized to filter micrometer-scale organisms such as bacteria, or even to 

separate macromolecules. Sensitivity might be enhanced by optimizing pore dimensions and 

distributions to form a nanoplasmonic array,56 but at the cost of filtration performance (and 

selectivity).57 A different example of the need to balance SEV and other application demands is 

illustrated in Figure S4:  electrolessly gold-coated paper was used for the SERS readout of a 
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crude paper-based assay that performed physical filtration and chromatographic separation. This 

multifunction capability augments the spectral selectivity of SERS for greater ease of analysis of 

multicomponent samples, but by no means circumscribes the utility of SERS-active paper. 

Indeed, the development of paper-based diagnostics has been characterized by the 

incorporation—by a variety of approaches, sophisticated and simple—of ever-greater function 

into paper-based supports.23, 27-28, 42 

One means to create useful multifunctional SERS substrates—or even highly optimized SERS-

only substrates—is through the deliberate incorporation of carefully selected structural features 

in the supports. The presence of pores, or voids, in a support has a number of consequences for 

SERS substrates:  the available surface area for sensing can be diminished; the likelihood of hot 

spot formation can be affected, depending on the spatial extent and distribution of the voids; 

signal collection can be affected by scattering, line-of-sight access, and focal depth for three-

dimensional and structured substrates; mismatches between the excitation volume and the 

surfaces bearing analyte can limit reproducibility or signal magnitude; plasmonic nanopores, 

especially in arrays, introduce new optical considerations; and if analyte is delivered by drop-

casting, the open area can profoundly affect the spatial distribution of analyte during solvent 

evaporation. For SERS substrates fabricated using an electroless plating step, the pores can affect 

the electroless deposition nucleation and growth (by imposing boundaries, for example). These 

factors include effects that can be much stronger than simple geometric coverage, allowing for 

considerable parameter space for optimizing performance through the support geometry and 

through the electroless plating parameters. We recorded scanning electron micrographs, with 

representative examples shown in Figures 3, 4, and 5, to gain preliminary structural insights, 

particularly with respect to the diversity of support structures that could be electrolessly plated. 
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The set of micrographs showed consistently high coverage across the different replicates and 

substrate types. 

 

Figure 2. Representative baseline-corrected spectra of each substrate at 10-5 M NBT in ethanol 

(~57 mW for cellulose and as-supplied Silmeco; ~250 mW for all others). The dotted spectrum 

in the bottom panel shows the signal (scaled 20 ×) at 250 mW from 5 µL of 1.6×10-5 M NBT in 

acetonitrile drop-cast onto the electrolessly-replated Silmeco. The vertical dotted lines denote the 

integration range for the NBT peak of interest. 

 

Figure 3 provides a set of comparative micrographs of representative gold coatings on the 

silicon nitride-containing substrates. The uniform through-holes in the nanoporous membrane are 

a captivating structural feature compatible with compelling functions,56-57 and the nanoporous 
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membrane was moreover free-standing between support bars (not shown) so that it was 

electrolessly gold-plated within the pores and on both sides of the membrane. We avoided any 

ultrasonic cleaning steps that might cause rupture of this thin porous membrane, and we were 

consistent in this purposeful omission across all substrates. The three substrates were composed 

of nanostructured gold films with low- and high-aspect ratio grains, but the preponderance and 

character of the high-aspect ratio structures differed dramatically between the substrate types. 

The polymer-grafted silicon nitride gold film bore the greatest number of integral high-aspect 

ratio features, and with a unique grain structure characterized by the prevalence of larger, 

sharper, and more finely substructured gold flakes that projected from the surface. These flakes 

provide an increase in surface area for chemisorption of the NBT, and more significantly, are 

nanostructured on a length scale favorable for the existence of hot spots, and with an aspect ratio 

amenable to signal enhancement by the lightning rod effect.4 The nanoporous substrate imposed 

gaps between gold grains, although on length scales optimized, in this substrate, for filtering 

rather than hot spot formation.57 The loss of planar substrate area might be compensated for by 

plating sufficiently long pores, but the nanochannel surface is normal to the conventional 

substrate surface, and longer pores would affect through-pore flow rates. Overall, detrimental 

decreases in sensitivity from surface area losses to pores may be quickly outpaced by beneficial 

gains to analytical performance through the selectivity and throughput that emerges from careful 

tuning of the pore geometry to support rapid and tuned sample filtering. 
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Figure 3. SEM images of, from left-to-right by column, gold-plated silicon nitride, polymer-

grafted silicon nitride, and nanoporous silicon nitride. The top two rows show top-down images 

while the bottom row shows an angled view of gold film cross-sections. The inset in the center 

micrograph more clearly shows a representative highly-structured flake. 

 

Figure 4 shows scanning electron micrographs from electrolessly-plated paper and 

nanocellulose samples. The paper substrate was distinguished by voids between large fibers 

constructed of bundled nanoscale fibers. The presence of void spaces in a given layer of the 

paper is partially compensated by overlap with fibers in underlying layers. The pore, or void 
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space, size distribution in paper can be controlled during its manufacture, and is an important 

metric when selecting commercial filter paper, for example. The hand-fabricated nanocellulose 

substrate was highly textured and convoluted, without the fiber bundling, alignment, and low 

packing density that produced obvious microscale voids in the paper substrate. The ability of 

electroless plating to coat rough, nonplanar surfaces—beyond what was seen in the plating of the 

curved pore walls orthogonal to the planar upper surface of the porous silicon nitride film—is 

dramatically illustrated by the impressive surface coverage. Thick, porous supports such as the 

nanocellulose paper have a large surface area for plating—distributed throughout their interior—

and require a greater minimum plating solution volume than a planar support. Similarly, most of 

the plated gold surfaces will be able to bind analyte but will be optically inaccessible, and must 

be considered when aliquoting samples. Even after addressing these issues, the available signal 

strength using the cellulose-supported substrates was limited by the lower allowable excitation 

intensity. The fiber-based construction of the cellulose substrates, however, is an intriguing 

structural design feature that can provide additional analytical capabilities such as swab sampling 

and chromatographic separation.35, 44, 71 The cellulose substrates are evocative of other fiber-mat 

platforms used for SERS,11-12, 14-22 with paper supports being available at scale and at low cost 

using well-established manufacturing methods. When the ability to filter or chromatographically 

separate a sample using a SERS-active porous substrate is desired in addition to SERS sensing, 

one must consider the effect of the pore size on each capability—and on the interplay between 

each capability. Pore size is tunable through support fabrication or through the plating time-

dependent thickness—within the limits of cost and available gold in the plating bath—of the 

plated gold layer. The flexibility, simplicity, and ease-of-handling of these nanofiber-based 
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substrates stand in stark contrast to the more delicately engineered Silmeco nanopillar arrays, 

particularly for applications in resource-challenged settings. 

 

Figure 4. SEM images of gold-plated paper substrates (top row) and gold-plated nanocellulose 

paper substrates (bottom row). 

 

The superb Raman enhancement that the nanopillar substrates provided when used as-supplied, 

without modification, reinforces the utility of rationally patterning traditional micro- and 

nanofabrication materials to create SERS substrates. One must, however, be careful during 

handling and solution processing to prevent unwanted damage or modification of such high-

aspect ratio features:9  the gold-etched surface shows some broken nanopillars. SEM images in 

Figure 5 show that our general process chemistry was able to successfully electrolessly gold-

plate a nanopillar array. The figure shows a section of electrolessly plated gold film that had 

peeled back from the nanopillar array surface:  the surface of the gold film formerly in contact 

with the nanopillar array clearly shows dark areas that are consistent with electroless gold plating 
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around extant nanopillars of the array. The dominant structural motifs of as-supplied Silmeco 

substrates—recognizable individual gold-encrusted nanopillars with limited numbers of contact 

points between nanopillars to yield likely hot spots—were not conspicuous in our top-down 

micrographs of the electrolessly plated substrates. This absence of a key SERS-associated 

(nano)structure is the most significant contributor to the dramatic loss of spectral intensity when 

using replated Silmeco. While several of the dark areas of the underside of the gold film are 

evocative of plating around nanopillars likely already leaning together9, optimization of the 

electroless plating for this nanopillar support would be necessary to deliver the engineered hot 

spots of the as-supplied substrate. The most reasonable starting point for such an optimization 

would be to plate pristine gold-free nanoarrays so that the distance between the gold regions of 

adjacent nanopillars could be controlled by the plating kinetics and time, and any post-plating 

drying-induced pillar leaning. Producing a nanoarray surface by etching gold from the as-

supplied Silmeco handicaps the subsequent replating with the initial structural modification of 

hot spot formation and the likely damage to the nanoarray of the gold etching step. Nevertheless, 

the robust gold film formed around nanopillars in this particular micrograph is a compelling 

reminder of the ability of electroless plating to plate nanoscale structures, and its ability to create, 

without substantial equipment overhead, SERS substrates from highly engineered supports. 

 

Figure 5. SEM image of a nanopillar substrate after gold etch (left), and with an electrolessly 

plated gold film peeled off of the underlying nanopillar support (right). 
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Conclusions. Electroless plating is a robust method for fashioning a variety of materials, 

exhibiting a range of structural features and capabilities, into SERS-active substrates. The 

general electroless plating procedure we employed was able to successfully plate gold onto 

planar, porous, nanopillar, and fibrous surfaces; into well-defined nanochannels and variably-

sized void volumes; onto traditional nanofabrication-compatible materials; and onto less 

conventional device platform materials such as paper that are important in the domain of low-

cost diagnostics. All resulting substrates in our library were capable of generating SER spectra. 

This electroless plating approach produced nanostructured films where the size, shape, and 

position of the gold grains could be tuned by the particular material and form factor of the 

support material being plated, and this tuneability was evident from both microscopic imaging 

and SERS intensities. The underlying support structure for the gold plating did more than imprint 

structure on the gold film, though. Electroless plating of already functional structured supports 

created multifunctional SERS substrates. The force of the work presented here is thus both 

foundational and prospective:  there is much promise in exploring electroless plating—including 

extensions such as patterned electroless plating51, 55—as a straightforward, robust, and low-

overhead method to create custom SERS-active substrates that augment the compelling material 

properties, structures, and capabilities of their supports. Multifunctional SERS substrates require 

a rich, and application-specific, context and framework for design and performance evaluation. 

The substrate must, of course, generate a useful Raman spectrum, but the particular 

implementation—from design and fabrication to end-use—dictates the balance between Raman 

enhancement and other capabilities such as integral sample processing. This balance dictates 

how to tune the electroless plating process chemistry, and the support structure, to optimize the 
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SERS substrate. We believe that electroless plating has great potential in the creation of 

multifunctional SERS substrates useful for answering a host of design and sensing challenges. 
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