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Abstract: A species’ distribution and abundance are determined by abiotic conditions and biotic 23 

interactions with other species in the community. Most species distribution models correlate the 24 

occurrence of a single species with environmental variables only, and leave out biotic 25 

interactions. To test the importance of biotic interactions on ocurrence and abundance, we 26 

compared a multivariate spatio-temporal model of the joint abundance of two invasive insects 27 

that share a host plant - hemlock woolly adelgid (HWA; Adelges tsugae) and elongate hemlock 28 

scale (EHS; Fiorina externa) - to independent models that do not account for dependence among 29 

co-occurring species. The joint model revealed that HWA responded more strongly to abiotic 30 

conditions than EHS. Additionally, HWA appeared to predispose stands to subsequent increase 31 

of EHS, but HWA abundance was not strongly dependent on EHS abundance. This study 32 

demonstrates how incorporating spatial and temporal dependence into a species distribution 33 

model can reveal the dependence of a species’ abundance on other species in the community. 34 

Accounting for dependence among co-occurring species with a joint distribution model can also 35 

improve estimation of the abiotic niche for species affected by interspecific interactions. 36 

Keywords: Adelges tsugae, Fiorinia externa, invasive species, spatio-temporal species 37 

distribution model, species interactions, Tsuga canadensis 38 

Introduction  39 

Ecologists have long sought to understand how abiotic conditions and biotic interactions 40 

combine to determine a species’ distribution and abundance (Grinnell 1917, Andrewartha and 41 

Birch 1954, MacArthur 1972). The niche concept is often employed to conceptualize this 42 

balance (Chase and Leibold 2003). The effect of the environment on a species, with an emphasis 43 

on broad-scale abiotic conditions, has historically been associated with the Grinnellian niche 44 

(Grinnell 1917), while the impact of a species on the environment and local interactions with 45 
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other species have been associated with the Eltonian niche (Elton 1927). Subsequent ecological 46 

theory has integrated these paradigms to define a species’ niche as the range of biotic 47 

interactions and abiotic conditions under which a species has a positive population growth rate 48 

(Hutchinson 1957, Chase and Leibold 2003). Hutchinson (1957) distinguished the “fundamental 49 

niche” that encompasses the range of conditions under which a species could potentially exist 50 

from the “realized niche” that encompasses the typically smaller range of conditions under which 51 

a species can exist when competing with other species. The current definition additionally 52 

acknowledges predation and mutualism, as well as dispersal limitation (Peterson et al. 2011).  53 

The distribution of a species can be interpreted as a projection of the realized niche onto 54 

geographic space (Pulliam 2000, Peterson et al. 2011). Despite the connection between both the 55 

biotic and abiotic components of a species niche and its geographic distribution, most species 56 

distribution modeling approaches correlate the occurrence of a single species with broad-scale 57 

environmental variables but omit biotic interactions. Because distribution and abundance often 58 

depend on other species in the community, explicitly incorporating biotic interactions into 59 

species distribution models is a research priority (Godsoe et al. 2015). 60 

One way to accommodate biotic interactions is to model the joint distribution or 61 

abundance of species in a community with a multivariate generalized linear model that estimates 62 

the response of each co-occurring species to the abiotic environment. This approach explicitly 63 

accounts for residual dependence among species that can arise from either shared responses to an 64 

unmeasured covariate, or interactions among species (e.g. Ovaskainen et al. 2010, Pollock et al. 65 

2014, Warton et al. 2015). Whereas the vast majority of species distribution models use static 66 

binary occurrence data, a time-series of abundance data provides more information on dynamic 67 

and density-dependent ecological processes (Pagel and Schurr 2012, Ehrlén and Morris 2015). In 68 
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addition, accounting for spatial autocorrelation can reflect underlying interactions among species 69 

and improve the precision of parameter estimates (Dormann et al. 2007, Ovaskainen et al. 2016).   70 

Here, we utilize a dynamic, spatially explicit joint species distribution model and long-71 

term, spatially explicit data on the abundance of two invasive insect herbivores that share a 72 

common host plant – hemlock woolly adelgid (HWA; Adelges tsugae) and elongate hemlock 73 

scale (EHS; Fiorinia externa) – to test the hypotheses that: 1) the abiotic niches of these co-74 

occurring species are different, and 2) the abundance of each of these species is dependent on 75 

biotic interactions with the other. We explicitly compare joint vs. independent models.  76 

Methods 77 

In the eastern USA, eastern hemlock (Tsuga canadensis) is host plant to HWA and EHS.  78 

HWA is a sessile xylem-feeding insect introduced to eastern North America from Japan and first 79 

documented in 1951 that has severely impacted eastern hemlocks and threatens to extirpate the 80 

species across its range (Orwig et al. 2012). EHS is also a sessile xylem-feeding insect 81 

introduced from Japan in 1908 that preferentially feeds on eastern hemlock needles and rarely 82 

kills its host tree (McClure 1980a). Fine-scale experiments have revealed exploitative 83 

competition between HWA and EHS at the scale on individual branches (Preisser and Elkinton 84 

2008) and large-scale observations suggest HWA may facilitate EHS (Preisser et al. 2008). 85 

We assessed the abundance of HWA and EHS on five occasions over 14 years at 142 86 

forest stands across a latitudinal transect encompassing 7,500 km2 in Connecticut (CT)  (Orwig 87 

et al. 2002) and Massachusetts (MA) (Orwig et al. 2012). Stands were initially visited in 1997-88 

1998 (CT) or 2002-2004 (MA), and each one of these stands were subsequently re-visited in 89 

2005, 2007, 2009 and 2011. In the initial year of sampling, each stand was given an ordinal score 90 

representing the average infestation level of the stand (0 = 0 insects per meter of branch; 1 = 1-91 
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10 insects/m; 2 = 11 – 100 insects/m; 3 = >100 insects/m). In subsequent years, 50 trees were 92 

haphazardly selected in each stand for observation. Fewer than 50 trees were sampled per stand 93 

in some highly-damaged stands, and stands impacted by logging or development during the 94 

study period were not sampled post-disturbance, resulting in a total of 27,050 observations. The 95 

median distance between pairs of stands was 56.7 km, and ranged from 0.2 to 165.2 km.  96 

Daily temperature and precipitation data were obtained for each stand from 1996 to 2011 97 

by interpolating 4 km2 resolution climate data at the centroid of each eastern hemlock stand 98 

(PRISM Climate Group). For each stand-year, we calculated three weather variables known to 99 

affect HWA and EHS abundance: minimum temperature during the winter preceding the 100 

growing season, maximum summer temperature during the growing season, and total 101 

precipitation during the interval April 1 – September 30. We expect a positive relationship 102 

between winter temperature and insect abundance due to winter mortality (Cheah 2017) and 103 

between summer temeprature and abundance due to the effects of temperature on development 104 

rate (Salom et al. 2002). Extremely warm summer temperatures, however, cause mortality for 105 

EHS (McClure 1989) and HWA during diapause (Sussky and Elkinton 2015). Heavy rains 106 

dislodge adelgid and scale insects (McClure 1989) and insects also benefit from feeding on 107 

drought-stressed trees (Koricheva et al. 1998), resulting in a negative relationship with summer 108 

precipitation. Minimum winter temperatures ranged from -12.4 to -28.4 oC, and were negatively 109 

correlated with latitude (r = -0.78, Appendix S1: Figure S1). Summer precipitation ranged from 110 

422.7 to 1187.3 mm, and maximum summer temperature ranged from 30.0 to 38.5 oC. Neither 111 

summer precipitation (r = -0.07) nor summer temperature (r = -0.11) was strongly correlated 112 

with latitude, but both showed high inter-annual variation (Appendix S1: Figure S1). The 113 
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greatest correlation between covariates occurred between summer temperature and precipitation 114 

(r = 0.54). Data are archived at the Environmental Data Initiative (Orwig et al. 2017). 115 

We modeled the joint abundance of the two insects with a multivariate generalized linear 116 

model with probit link function following the methods we developed in Schliep et al.  (2018). 117 

We extended the probit link function to accomodate ordinal abundance categories by assuming 118 

that for each species s on tree j in stand i and time t, the observed ordinal abundance Y(s)
i,t,j 119 

resulted from a thresholding process on a latent (or unobserved true) multivariate Gaussian 120 

abundance Z(s)
i,t,j. Here, s = 1 for HWA and s = 2 for EHS. Because the same trees were not 121 

sampled between years, we used a hierarchical structure to infer the stand-level mean (Ki,t) of the 122 

latent bivariate abundance Z 
i,j,t for each insect species in each year, such that Z 

i,j,t ~ Multivariate 123 

Normal (K(s)
i,t, Ωi). Larger values of Ki,t indicate higher abundance of a species in a particular 124 

stand and year, while lower values indicate lower abundance. Tree-level dependence between 125 

species, the scale at which these species interact (Preisser and Elkinton 2008), was modeled with 126 

a 2x2 covariance matrix (Ωi) for each stand. The diagonals Ω1,1 and Ω2,2 describe the variance in 127 

abundance of each species on individual trees within a stand across all years, and the off-128 

diagonal Ω1,2 = Ω2,1 describes the within-stand covariance in abundance between the two species. 129 

We defined the mean latent abundance of each species as 𝑲𝑖,𝑡 = 𝜶𝑡 + 𝜷𝑿𝑖,𝑡 + 𝝆𝑲𝑖,𝑡−1 +130 

𝜼𝑖,𝑡, using the species- and year-specific random intercept αt, to capture variability across years 131 

and account for northward range expansion over the study period (see Schliep et al. 2018 for 132 

discussion of why a temporal random effect is necessary for these data), the term βXi,t to 133 

incorporate abiotic conditions specific to each stand-year, a lag-1 vector auto-regressive process 134 

ρKi,t-1 to capture temporal dependence, and a spatially correlated error term ηi,t to capture spatial 135 

dependence. Xi,t  included weather-related covariates specific to each stand-year as both linear 136 



 7 

and quadratic terms: minimum winter temperature, maximum summer temperature, and summer 137 

precipitation. All covariates were mean centered and standardized. β was the 2 x 7 (linear and 138 

quadratic forms of each of the three predictor variables, plus the intercept) matrix of coefficients 139 

that described the response to abiotic conditions unique to each species and allowed comparison 140 

of the abiotic niche for each species. Inter- and intra-specific temporal dependence was modeled 141 

with the 2x2 lag-1 autoregressive matrix ρ. The off-diagonal elements of the parameter matrix ρ 142 

(ρ1,2 and ρ2,1) described temporal dependence between species. For example, positive estimates 143 

of the off-diagonal parameter ρ1,2 would indicate that average stand-level EHS latent abundance 144 

at time t-1 made a stand more susceptible to infestation by HWA at time t. Importantly, temporal 145 

dependence between species can be directional because the ρ matrix is not necessarily 146 

symmetric. Spatially-correlated dependence within and among species not accounted for by 147 

model terms was captured with a linear model of coregionalization for the error term ηi,t. This 148 

permitted estimation of the effective range (the distance at which residual spatial correlation 149 

dropped below 0.05) for each species (Schliep et al. 2018). A large estimated effective range 150 

would indicate that important predictor variable(s) may be missing from the model.  151 

We obtained inference in a Bayesian framework with non-informative and conjugate 152 

priors, and calculated marginal rank probability scores (RPS) to assess model fit (Schliep et al. 153 

2018). We used the function 'Multivariate.Ordinal.Spatial.ModelX' available in the online 154 

supplement for Schliep et al. (2018). We evaluated evidence for the hypothesis that there is a 155 

difference in the abiotic niches of two species by comparing posterior estimates of the β 156 

coefficients. To evaluate whether biotic interactions between the two insects mediate distribution 157 

and abundance (hypothesis 2), we evaluated the posterior estimates of ρ1,2 and ρ2,1. In addition, 158 

we specified independent models that did not include biotic interactions by setting the 159 



 8 

parameters that describe temporal (ρ1,2 and ρ2,1), spatial (in the error term 𝜼𝑖,𝑡), and tree-level 160 

(Ω1,2 = Ω2,1 for each stand) dependence between species to zero. We compared the effective range 161 

of residual spatial correlation for each species from the joint model that accounts for dependence 162 

among species vs. independent models of the abundance of each species that do not account for 163 

dependence. Narrower credible intervals for the β coefficients and smaller effective ranges in the 164 

dependent vs. independent model would indicate a better-specified, more robust model (Barry 165 

and Elith 2006). Markov chain Monte Carlo was run for 10,000 iterations and the first 2,000 166 

were discarded as burn-in. No issues of convergence were detected in any of the models. An R 167 

script that runs the joint and independent models is provided in Appendix S2. 168 

Results 169 

The posterior mean of latent abundance of each species varied from year-to-year and also 170 

with latitude (Figure 1). In the joint model, HWA abundance was positively associated with 171 

minimum winter temperature as both linear and quadratic terms (Figure 2). HWA abundance was 172 

negatively associated with summer precipitation and positively associated with the square of 173 

summer precipitation (Figure 2). HWA abundance increased linearly according to maximum 174 

summer temperature (Figure 2). EHS abundance was positively and linearly associated with 175 

minimum winter temperature, but none of the other posterior coefficient estimates describing the 176 

abiotic niche for EHS were significantly different than zero according to the 95% credible 177 

intervals (Appendix S1: Table S1).  178 

We found evidence for dependence between HWA and EHS. Both parameters that 179 

describe temporal dependence between the species (ρ1,2 and ρ2,1) had positive posterior means 180 

(Figure 3), indicating that higher EHS abundance at time t-1 was associated with higher HWA 181 

abundance at the subsequent time step, and vice versa. Zero was in the posterior credible interval 182 
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for ρ2,1 (Appendix S1: Table S1), and the probability that ρ2,1 > 0 was 9.966. After accounting for 183 

all other model parameters, tree-level covariance across all years between the latent abundance 184 

of the two species (Ω1,2) was largely not significant from zero for the majority of eastern 185 

hemlock stands (118 of 142, Appendix S1: Figure S2). For the rest of the stands however, we did 186 

detect positive tree-level covariance in 19 stands, while five were negative. There was greater 187 

variability in abundance of both species among trees in southern stands (Ω1,1 and Ω2,2), especially 188 

for HWA (Appendix S1: Figure S2). There was positive spatial dependence between the two 189 

species at the stand level, and the effective range of residual spatial correlation was larger for 190 

EHS than for HWA (29.3 vs. 2.9 km, Figure 3). 191 

Modeling the abundance of the two species jointly had a larger effect on EHS-specific 192 

parameters than on HWA-specific parameters. Posterior estimates for EHS tended to have 193 

narrower credible intervals in the joint distribution model (Figure 2), and the effective range of 194 

EHS residual spatial correlation was smaller in the joint model than in the independent model 195 

(26.7 km vs. 87.6 km, Figure 2). For HWA, however, the posterior coefficient estimates and the 196 

width of the credible intervals (Figure 2), as well as the effective range (Figure 2), were very 197 

similar in the independent vs. joint models. Marginal RPS did not indicate problems with lack of 198 

model fit, and were similar between the joint and independent models (Appendix S1: Figure S3). 199 

Discussion 200 

 This study provides some of the first evidence that simultaneously modeling the 201 

abundance of multiple species in a community with a spatio-temporal joint species distribution 202 

model can indicate the degree to which a species’ distribution and abundance are dependent on 203 

biotic interactions with other species (but see Schliep et al. 2018). Our study also illustrates how 204 

this approach can improve estimation of the abiotic niche of species whose abundance is 205 



 10 

dependent on other species. Analyses revealed differences in the abiotic niches of EHS and 206 

HWA. The positive relationship between minimum winter temperature and abundance was 207 

quadratic for HWA and linear for EHS. Therefore, we expect directional increases in winter 208 

temperature to benefit HWA more than EHS. Recent studies align with this expectation, showing 209 

that colder winter temperatures reduce HWA populations (Cheah 2017). HWA abundance was 210 

sensitive to abiotic conditions during the growing season, but EHS abundance was not. Higher 211 

HWA abundance was associated with extremely dry summers, perhaps because sap-sucking 212 

insects perform well when trees are water-stressed (Koricheva et al. 1998). HWA abundance was 213 

also positively associated with maximum summer temperatures – a pattern consistent with the 214 

ways temperature regulates development rate, an important life history characteristic for HWA 215 

(Salom et al. 2002). Taken together, these findings indicated that HWA was sensitive to 216 

extremes in abiotic conditions that may become more common as climate changes.  217 

Hemlock woolly adelgid appeared to predispose stands to subsequent increase of EHS, 218 

but HWA abundance was not strongly dependent on EHS abundance. Evidence for dependence 219 

of EHS on HWA was found in the positive stand-level temporal dependence between the species 220 

(ρ2,1, although the posterior credible interval for this parameter contained zero), and in the 221 

increased effective range of residual spatial autocorrelation combined with lower precision of 222 

parameter (β) estimates in the independent model, which does not account for dependence 223 

between species. Temporal dependence of HWA on EHS (ρ1,2) was also positive, but the 224 

effective range and precision of the posterior distribution of the β parameters were very similar 225 

in the independent vs. joint models for HWA. This asymmetric interaction is consistent with 226 

patterns observed after a single time step of sampling these eastern hemlock stands (initial year 227 

vs. 2005, Preisser et al. 2008) but differs from a fine-scale experiment in which HWA showed 228 
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reduced colonization on branches that were previously colonized by EHS, while EHS settlement 229 

was unaffected by previous HWA colonization (Miller-Pierce and Preisser 2012). 230 

 One interpretation of the result that HWA appeared to predispose stands to subsequent 231 

increase of EHS is that commensalism expanded the realized niche of EHS. The commensalism 232 

could have resulted from indirect interactions mediated by herbivore-induced changes in eastern 233 

hemlock primary and secondary metabolism. For instance, high HWA abundance could have 234 

facilitated EHS establishment and reproduction, as HWA infestation can increase foliar nitrogen 235 

levels (Soltis et al. 2015), an important factor determining EHS survival and fecundity (McClure 236 

1980b). Another possibility is that HWA herbivory activates the salicylic acid (SA) defense 237 

pathway (Schaeffer et al. In Press), and thus compromises the ability of the host to activate the 238 

jasmonic acid (JA) defense pathway in response to subsequent EHS herbivory. Negative ‘cross 239 

talk’ in plant signaling pathways can inhibit plants from activating the JA pathway following 240 

induction of the SA pathway (Thaler et al. 2012), with downstream changes in metabolites and 241 

within-plant resource allocation that affect herbivores (Schweiger et al. 2014). Further research 242 

by Pezet et al. (2013) supports this interpretation – while HWA feeding (but not EHS) led to 243 

elevated methyl salicylate, EHS feeding more strongly increased green leaf volatiles. Green leaf 244 

volatiles can prime defenses and coordinate with the JA pathway to confer herbivore resistance 245 

(Christensen et al. 2013).  246 

Commensalism could explain the long time period between EHS arrival and range 247 

expansion if EHS was unable to establish in new areas until HWA invasion made stands suitable 248 

for EHS infestation. An additional explanation is that EHS expanded northward more slowly 249 

because Allee effects had a stronger effect on EHS than on HWA (Taylor and Hastings 2005). 250 

The sexual reproduction strategy of EHS likely required a greater number of individuals to 251 
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disperse to a site in order to overcome negative density-dependence at very small population 252 

size, slowing expansion. EHS may also be a poorer disperser than HWA. EHS and HWA have 253 

similar dispersal kernels in the absence of wind, but HWA crawlers are active earlier spring 254 

when winds are strong and frequent (McClure 1989). Also, HWA produces 15 times more eggs 255 

per female than EHS (McClure 1989). These alternative explanations, however, cannot fully 256 

account for higher EHS abundance following a time step in which HWA abundance was higher.  257 

It is important to highlight that although the joint species distribution model better 258 

described the ecology of this system, RPS indicated that the joint and independent models fit the 259 

data equally well. This result was expected because both models split the residual error into 260 

spatial and non-spatial correlation structures. The joint model captured dependence among 261 

species with model parameters, while the independent model captured that dependence as 262 

unexplained error that exhibited spatial correlation structure. The joint model better attributed 263 

variation in the abundance of each species to specific elements that were hypothesized to affect 264 

abundance a priori. Specifying a model that directly mapped to hypotheses about how the 265 

ecological system works was more informative than capturing those ecological processes with 266 

spatially-correlated errors that do not identify a specific process. However, the similarity of RPS 267 

between the two models adds to the evidence that when data are not available to fully specify a 268 

model containing all of the components hypothesized to strongly affect a system (which is often 269 

the case in ecological studies), accounting for spatial correlation of residual error can improve 270 

the robustness, fit, and predictive ability of species distribution models (Record et al. 2013). 271 

 This study demonstrates the benefits of accounting for biotic interactions with spatio-272 

temporal joint species distribution models implemented in a multivariate generalized linear 273 

modeling framework. Accounting for spatial and temporal dependence among species improved 274 
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the precision of parameter estimates describing the abiotic niche for a species whose abundance 275 

was highly dependent on interactions with another species in the community. Correctly 276 

estimating the parameters that describe the abiotic niche of a species, and discovering whether 277 

the distribution and abundance of a species is highly dependent on other species in the 278 

community, are essential for tackling fundamental ecological questions, for making predictions 279 

under climate change scenarios, and for conservation aims. Dynamic joint distribution models 280 

such as the one presented here can help infer the underlying ecological processes that lead to 281 

pattern and guide the design of future research. 282 
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Figure 1. Posterior mean of hemlock woolly adelgid (upper) and elongate hemlock scale (lower) 391 

latent abundance over time at 142 eastern hemlock stands located along a 165 km transect in 392 

Connecticut (CT) and Massachusetts (MA), USA. .  393 

 394 

Figure 2. Posterior distributions of model coefficients from joint vs. independent models of 395 

hemlock woolly adelgid (HWA) and elongate hemlock scale (EHS) abundance in Connecticut 396 

and Massachusetts, USA (1997-2011). Parameters describing the abiotic niche of each species 397 

(β) are shown in A). Although HWA abundance appeared independent of EHS abundance (the 398 

red and blue distributions were similar), including information on HWA abundance improved the 399 

precision of model parameters for EHS (red distributions were wider than blue distributions). 400 

Parameters describing temporal dependence are shown in B). Independent distribution models 401 

were specified by setting all parameters that describe dependence between species to zero. In C), 402 

the spatial extent of EHS effective range (φEHS) shrank considerably in the joint model that 403 

included HWA abundance. However, the effective range of HWA (φHWA) was similar in the 404 

independent vs. joint models. 405 

 406 

.  407 
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