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Coil-helix transition of polypeptide at water-lipid
interface

Ganga P. Sharma1, Yana K. Reshetnyak1, Oleg A.
Andreev1, Michael Karbach2, and Gerhard Müller1

1 Department of Physics, University of Rhode Island, Kingston RI 02881, USA
1 Fachgruppe Physik, Bergische Universität Wuppertal, D-42097 Wuppertal,
Germany

PACS numbers: 61.30.Hn, 87.15.Aa, 87.15.He, 87.15.Cc

Abstract. We present the exact solution of a microscopic statistical mechanical
model for the transformation of a long polypeptide between an unstructured coil
conformation and an α-helix conformation. The polypeptide is assumed to be
adsorbed to the interface between a polar and a non-polar environment such
as realized by water and the lipid bilayer of a membrane. The interfacial coil-
helix transformation is the first stage in the folding process of helical membrane
proteins. Depending on the values of model parameters, the conformation changes
as a crossover, a discontinuous transition, or a continuous transition with helicity
in the role of order parameter. Our model is constructed as a system of statistically
interacting quasiparticles that are activated from the helix pseudo-vacuum. The
particles represent links between adjacent residues in coil conformation that form
a self-avoiding random walk in two dimensions. Explicit results are presented for
helicity, entropy, heat capacity, and the average numbers and sizes of both coil
and helix segments.
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1. Introduction

The folding mechanisms of water-soluble proteins from primary to secondary and
higher-order structures has been thoroughly investigated over many years. In the study
of protein translocation pathways into and across cell membranes, which is a very
important active area of current research, one important problem requiring further
elucidation is the coil-helix transition that accompanies the insertion of a polypeptide
into a lipid bilayer. The theoretical modeling of this ubiquitous process in biological
matter is fairly complex due to the heterogeneous environment in which conformational
changes occur and the simultaneity or rapid succession of conformational change and
translocation. Experimental studies are limited to the small selection of polypeptides
that are water soluble and undergo controllable insertion/folding and exit/unfolding
processes.

The folding of all helical membrane proteins/peptides, independent of the
insertion mechanism, is governed by the formation of helical segments in the lipid
bilayer environment. This process is driven by hydrophobic interactions and hydrogen
bonding [1, 2, 3, 4]. Its two main steps are the transformation from coil to interfacial
helix and the insertion of the helix into the membrane with transmembrane orientation.
Variants of the pH Low Insertion Peptide (pHLIP) family are water soluble and prove
to be well suited for the investigation of membrane-associated folding and unfolding
[5, 6], reversibly driven by changes in pH. A drop in pH leads to the protonation of
negatively charged side chains, which enhances the hydrophobicity of the peptide and
initiates the aforementioned two-step process of folding and insertion. A subsequent
rise in pH reverses the process: the peptide unfolds and exits. Recent experimental
studies have already established important thermodynamic and kinetic parameters of
the peptide-membrane interaction [7, 8, 9].

What has been lacking for these and related experiments is a microscopic
statistical mechanical model with experimentally testable attributes that is amenable
to an exact analysis. Our goal is to construct, solve, develop, and test such a model in
three successive stages. The first stage, which is the theme of this paper, involves the
design and solution of a microscopic model that describes the coil-helix transformation
of a long polypeptide adsorbed to the lipid bilayer of a membrane (see Fig. 1). Such a

Figure 1. (Color online) Long polypeptide at the interface between water and a
flat lipid bilayer undergoing a reversible and pH-driven coil -helix transformation.

model is an indispensable part of a theory of membrane-associated folding and will be
used as the foundation for the next two stages. They include (a) the investigation of
profiles of local attributes for generic polypeptides and landscapes of global attributes
for short peptides such as pHLIP in the heterogeneous water/lipid environment and
(b) the kinetics of insertion and exit as can be inferred from the landscapes of free
energy and conformational attributes.

The pioneering theoretical studies of coil-helix transformations and related
phenomena that appeared throughout 1960s were admirably compiled and reviewed in
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a monograph by Poland and Scheraga [10]. A series of model systems were introduced
at that time. Many of them are still being used today in textbooks and research
papers. This includes the familiar Zimm-Bragg model [11] and generalizations thereof,
all amenable to the transfer matrix method of analysis. Also emerging at that time
was the highly original Lifson method of statistical mechanical analysis [12], the scope
of which includes (smooth) crossovers and (sharp) transitions [13, 14]. The need at
this time for yet another model solved by yet a different method is dictated by the
three stages of our project as will become apparent in what follows.

In Sec. 2 we present the microscopic model of our design as a system of statistically
interacting links and describe the method of its exact analysis. Depending on the
parameter settings the exact solution produces a conformational change in the form
of a crossover or a transition (Sec. 3). The transition may be of first or second order as
we discuss in Sec. 4 with focus on the helicity (order parameter) and entropy (measure
of disorder) and other quantities. In Sec. 5 we summarize the main advances of this
work and point out their role as the foundation for the continuation of this project in
two different directions in the arenas of biological physics and statistical mechanics.
We also discuss how this work connects to recent studies by other researchers and how
the continuation of this project can benefit from those studies.

2. Model system

The microscopic model that we present here is a system of statistically interacting
quasiparticles with shapes. The methodology employed for its exact statistical
mechanical analysis is built on the concept of fractional statistics, invented by Haldane
[15], and developed by Wu [16], Isakov [17], Anghel [18], and others [19] in the
context of quantum many-body systems. The adaptation of this approach to classical
statistical mechanical systems of particles with shapes was developed in a recent series
of studies with applications to Ising spins [20, 21, 22, 23], jammed granular matter
[24, 25], lattice gases with long-range interactions [26], and DNA under tension [27].
The application to the coil-helix transition of a long polypeptide adsorbed to a water-
lipid interface worked out in the following is conceptually simple but surprisingly rich
in scope.

2.1. Coil segments from helix vacuum

The reference state (pseudo-vacuum) of our model system is the ordered helix
conformation of N residues bound by peptide bonds into N−1 links and stabilized by
internal hydrogen bonds along the backbone. Thermal fluctuations or environmental
change cause the nucleation of disordered coil segments, which then grow by
unravelling adjacent helical order.

In our model the coil segments are represented by thermally activated links that
combine to form a self-avoiding random walk between the ends of successive helical
segments. Both coil and helix segments are confined to the water-lipid interface
(Fig. 1). Coil segments carry configurational entropy that grows with their size and
range in the interfacial plane. That range is controllable at a microscopic level by the
integer-valued model parameter µ, henceforth called range parameter.

Each residue can be in µ+ 1 states, of which one (denoted h) represents the helix
conformation and µ (numbered 1, . . . , µ) represent the coil conformation. Access by
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a residue to these states is constrained by the states of its neighboring residues as
illustrated in Fig. 2 for the case µ = 3.

21

hh h1h 11 121 22 232 33

hh

11

22

33

22
232 232

121 121

h1h

hh

22

h1 1h

12

23 32

Figure 2. Segment of coil conformation between two segments of helix
conformation (bottom), generated by the activation of 2µ species of statistically
interacting particles in the form of single links or composed of pairs of links
that are not necessarily adjacent (top). Residues in helix conformation are in a
unique state (h). Residues in coil conformation are in one of µ states (1, 2, ..., µ),
constrained to form a self-avoiding walk in the interfacial plane and here illustrated
for µ = 3.

Helical links (hh) are short and form straight segments (horizontal, in Fig. 2)
in the plane of the water-lipid interface. Coil links are more extended and directed
either horizontally (11, 22, 33) or vertically (h1, 12, 23, 32, 21, 1h). Our model allows
each coil segment to randomly explore the interface on one side of the helical direction
without intersecting itself.‡ That space is discretized and constrained by the length
of the segment and by the number of distinct coil states.

We assign different activation energies to coil links relative to hh links depending
on whether they contribute to nucleation or to growth. To the former we assign
the activation energy εn and to the latter εg (two model parameters). Nucleation of
one coil link requires the simultaneous break-up of several internal hydrogen bonds
whereas growth proceeds by the break-up of one bond per link (two bonds shared by
different pairs of residues). On our way to calculating a partition function we now
face the task of counting microstates of given link content.

2.2. Combinatorics of links

For the combinatorial analysis we introduce a set of statistically interacting
quasiparticles that contain individual links or pairs of links. It turns out that we
need 2µ species of particles. In the case of µ = 3 they are the six species (along with
the element of pseudo-vacuum) shown in the top panel of Fig. 2. The combinatorics
of statistically interacting particles is captured by the energy expression

E({Nm}) = Epv +
2µ∑
m=1

Nmεm, (1)

‡ The one-side restriction has no significant impact on the quantities we are calculating in this work.
Generalizations to coil segments that explore the plane of the interface more freely are planned.
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and the multiplicity expression [15, 16, 17, 18, 19, 20, 21],

W ({Nm}) =
2µ∏
m=1

(
dm +Nm − 1

Nm

)
, (2)

dm = Am −
2µ∑

m′=1

gmm′(Nm′ − δmm′), (3)

inferred from a generalized Pauli principle as will be illustrated below for the
application under consideration. This means that there exist W ({Nm}) microstates
with energy E({Nm}) that all have the same particle content: Nm particles of species
m for m = 1, . . . , 2µ. The εm are particle activation energies relative to the energy
Epv of the pseudo-vacuum, the Am are capacity constants, and the gmm′ are statistical
interaction coefficients. The specifications for the model with µ = 3 distinct coil states
are compiled in Table 1.

Table 1. Specifications of the six species of particles that describe the case µ = 3.

motif cat. m εm Am

h1h host 1 εn N − 2

121 hybrid 2 2εg 0

232 hybrid 3 2εg 0

11 tag 4 εg 0

22 tag 5 εg 0

33 tag 6 εg 0

gmm′ 1 2 3 4 5 6

1 2 2 2 1 1 1

2 −1 0 0 0 0 0

3 0 −1 0 0 0 0

4 −1 −1 0 0 0 0

5 0 −1 −1 0 0 0

6 0 0 −1 0 0 0

The particles form nested structures as indicated in Fig. 2. We have species
from three categories in the taxonomy of Ref. [21]: one species of hosts, two species
of hybrids, and three species of tags. Hosts cannot be hosted, tags cannot host any
particles from a different species, hybrids can do both.

A system of N residues in the helix pseudo-vacuum has the capacity of nucleating
a coil segment at A1 = N − 2 different locations by activating a host particle with
activation energy ε1 = εn. The activation of particles from any species reduces the
capacity d1 of the system for placing further hosts on account of (3) and g1m > 0.
Hosts and hybrids have twice the size of tags. The former thus reduce the capacity at
double the rate of the latter.

For any mix of particles the system has a finite capacity. When that capacity
has been reached, we have d1 = 1, which makes the associated binomial factor in (2)
equal to one. If we attempt to add one more particle from any species, d1 becomes
zero or a negative integer and, in consequence, the associated binomial factor vanishes.
The helix pseudo-vacuum has zero capacity for the placement of hybrids and tags, as
implied by A2 = · · · = A6 = 0. Such capacity of the system is generated dynamically
by the placement of particles with hosting capacity. This generation of capacity is
encoded in the negative interaction coefficients. Hosts 1 generate capacity for placing
hybrids 2 and tags 4. Hybrids 2, in turn, generate capacity for placing hybrids 3 and
tags, 4, 5 etc. Tags do not generate capacity for placing any particles.

The particle content of the coil segment of N = 16 residues shown in Fig. 2 is
N1 = 1, N2 = 2, N3 = 2, N4 = 1, N5 = 3, N6 = 1. Its activation energy (1)
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thus becomes E(1, 2, 2, 1, 3, 1) − Epv = εn + 13εg and the number of coil segments
of equal contour length and with the same particle content is, according to (2),
(3), W (1, 2, 2, 1, 3, 1) = 360. Further microstates with equal activation energy are
generated if we exchange hybrids or tags from one species by hybrids or tags from a
different species or if we replace hybrids by pairs of tags (or vice versa), all within the
constraints imposed by the nesting. The constraints are encoded in the multiplicity
expression. It does not allow spurious particle combinations.

The generalization to any µ is straightforward: the zoo of 2µ particle species
now comprises one host, µ − 1 hybrids, and µ tags, labeled consecutively in this
order. The host has activation energy εn, reflecting the nucleation of coil segments,
whereas hybrids and tags have activation energies 2εg and εg, respectively, reflecting
the growth of coil segments. The capacity constants remain the same for each category:
Am = (N − 2)δm,1.

The nonzero interaction coefficients generalize naturally in accordance with the
sizes and nested structure of the particles: g1m = 2 (1) for m = 1, . . . , µ (µ+1, . . . , 2µ);
gm′m = −1 for three sets of index pairs: (i) m = m′−1, m′ = 2, . . . , µ; (ii) m = m′−µ,
m′ = µ+ 1, . . . , 2µ; (iii) m = m′ − µ+ 1, m′ = µ+ 1, . . . , 2µ− 1. The case µ = 1 has
no hybrids: g11 = 2, g12 = 1, g21 = −1, g22 = 0. It is equivalent to the Zimm-Bragg
model [11]. With the combinatorial analysis completed we turn to the statistical
mechanical analysis.

2.3. Free energy of polypeptide

The partition function for the adsorbed polypeptide, modeled as a system of
statistically interacting and thermally activated particles [15, 16, 17, 18, 19, 20, 21],

Z =
∑
{Nm}

W ({Nm})e−βE({Nm}), (4)

depends on energy (1) and multiplicity (2) with ingredients εm, Am, gmm′ from Sec. 2.2.
The thermal equilibrium macrostate in the thermodynamic limit follows from an
extremum principle. Its implementation yields the partition function for a macroscopic
system in the (generic) form [16, 17, 18, 19, 20, 26],

Z =
M∏
m=1

(
1 + w−1

m

)Am
, (5)

where M = 2µ in our case and the (real, positive) wm are solutions of the coupled
nonlinear equations,

eβεm = (1 + wm)
M∏

m′=1

(
1 + w−1

m′

)−gm′m . (6)

The average number of particles from species m are derived from the coupled linear
equations,

wmNm +
M∑

m′=1

gmm′Nm′ = Am. (7)
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It is useful and economical to express all results as functions of the two control
parameters§

τ
.= eβ(εg−εn) : 0 ≤ τ ≤ 1, (8)

t
.= eβεg : 0 ≤ t <∞, (9)

with an additional dependence on the discrete range parameter µ implied. The
nucleation parameter τ is a measure of cooperativity and controls the average length
of coil and helix segments. High cooperativity (τ � 1) means a high nucleation
threshold. Low cooperativity (τ . 1) means little difference in enthalpic cost of
nucleation and growth. The growth parameter t controls the preference of one or the
other conformation. Coil is preferred at small t and helix at large t.

Equations (6) for w1, . . . , w2µ with parameters t, τ used on the left and the gmm′

from Sec. 2.2 used on the right can be reduced to a single polynomial equation of order
µ+ 1 for wµ+1:

(1 + wµ+1 − t)Sµ(wµ+1) = tτSµ−1(wµ+1), (10)

where the Sm(w) are Chebyshev polynomials of the second kind. Among all the
solutions of Eq. (10) there exists exactly one,

w
.= wµ+1(t, τ), (11)

that satisfies the criterion of physical relevance, requiring that (11) and all the
remaining wm inferred from it via

w1 =
Sµ(w)

τSµ−1(w)
=

t

1 + w − t
,

wm =


Sµ−m+2(w)
Sµ−m(w)

: m = 2, . . . , µ,

w : m = µ+ 1, . . . , 2µ,
(12)

are non-negative. The derivation of this reduction is outlined in Appendix A.
The Gibbs free energy per residue inferred from (5) then depends on that physical

solution as follows:

Ḡ(t, τ) = −kBT ln
(
1 + w−1

1

)
, (13)

from which any thermodynamic quantity of interest can be derived, including the
entropy,

S̄
.= −

(
∂Ḡ

∂T

)
εn,εg

, (14)

the enthalpy,

H̄
.= Ḡ+ T S̄, (15)

the helicity (order parameter),

N̄hl
.= 1−

(
∂Ḡ

∂εn

)
T,εg

−
(
∂Ḡ

∂εg

)
T,εn

, (16)

the density of (helix or coil) segments,

N̄seg
.=
(
∂Ḡ

∂εn

)
T,εg

, (17)

§ The relevant energy scales are the strength of hydrogen bonds (∼ 5 kcal/mol) and kBT at room
temperature (∼ 0.6 kcal/mol).
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and the average sizes of helix segments and coil segments,

Lhs
.=
N̄hl

N̄seg
, Lcs

.=
1− N̄hl

N̄seg
. (18)

The population densities N̄m
.= Nm/N , m = 1, . . . , 2µ, of particles can be extracted

from the solution of the linear Eqs. (7) as shown in Appendix B.

3. Structure of solution

Changing the level of pH primarily affects the growth parameter t. At normal pH
we have t . 1, which favors the random coil conformation. A drop in pH pushes the
growth parameter to higher values, t > 1, which increasingly favors a conformation
with helical ordering.‖ Depending on the value of the nucleation parameter τ and the
discrete parameter µ, which controls the amount of entropy that coil segments can
generate, the growth of helicity takes place in a crossover or in a transition of first or
second order. To illuminate the criteria for these alternatives we investigate the nature
of the physically relevant solution (11) of Eq. (10), in particular the singularities it
acquires in the limits τ → 0 at µ <∞ and µ→∞ at τ > 0.

3.1. Crossover

For τ > 0 and µ <∞ the solution w(t, τ) is bounded from below by

w0
.= 2 cos

(
π

µ+ 1

)
, (19)

which is the location of the last zero of Sµ(w). That value is only realized at t = 0 as
illustrated in Fig. 3(a). For t� 1 the solution converges toward the linear asymptote,

was
.= t+ τ − 1. (20)

Note that w0 depends on µ but not on τ whereas was depends on τ but not on µ. The
smooth dependence on t of w(t, τ) for τ > 0 and µ < ∞ describes a crossover from
low helicity at small t to high helicity at large t.

The Zimm-Bragg model [11] is represented by the case µ = 1, for which (10) is a
quadratic equation with physical solution

w =
1
2

[
t− 1 +

√
(t− 1)2 + 4tτ

]
. (21)

It is mathematically equivalent to an Ising chain.¶
The case µ = 2 is qualitatively different in that each coil segment now carries

entropy. The physical solution of the associated (cubic) Eq. (10) reads

w =
1
3

[
x+ 2

√
x2 + 3y cos

ϕ

3

]
, (22)

tanϕ =

√
27(4y3 + y2x2 + 18yx2 + 4x4 − 27x2)

x(2x2 + 9y − 27)
,

‖ The level of pH effectively controls how easy or hard it is to replace broken internal hydrogen bonds
along the backbone of the polypeptide with external hydrogen bonds involving H2O molecules. Hence
the shift in t.
¶ The Zimm-Bragg parameters commonly used are σ = τ and s = t. The (physically relevant) larger
eigenvalue of the transfer matrix is λ0 = w + 1, taking into account a shift in energy scale by εg per
residue.
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Figure 3. Physical solution (11) of the polynomial equation (10) for τ = 1, 0.3, 0
(left to right in both panels). Panel (a) shows the emergence of a singularity in
the limit τ → 0 for µ = 1, 2, 3 and panel (b) the emergence of a singularity in the
limit µ→∞ at τ ≥ 0.

where x .= t− 1, y .= 1 + tτ , and 0 ≤ ϕ < π.
For 3 ≤ µ < ∞ and τ > 0 the solution (11) must be determined numerically. In

that context it is advisable to rewrite (10) as

(w + 1− t)rµ(w)− tτ = 0, rµ(w) .=
Sµ(w)
Sµ−1(w)

, (23)

using the function

rµ(w) =


1
2

[
w +

√
4− w2

]
cot
(
µ arccos

w

2

)
: w < 2,

µ+ 1
µ

: w = 2,

1
2

[
w +

√
w2 − 4

]
coth

(
µ arcosh

w

2

)
: w > 2

(24)

inferred from trigonometric/hyperbolic representations of Chebyshev polynomials. For
large µ the functions rµ(w) are much smoother than the polynomials Sµ(w). Standard
methods with initial values from the analytic solution for µ → ∞ derived in Sec. 3.3
below work quite well.

3.2. First-order transition

In the limit τ → 0 at µ < ∞, the solution (11) acquires a linear cusp as shown in
Fig. 3(a):

w =
{
t0 − 1 : t ≤ t0
t− 1 : t ≥ t0

(τ = 0), (25)

as the growth parameter t increases across the transition value,

t0
.= 1 + 2 cos

(
π

µ+ 1

)
(τ = 0). (26)

It describes a discontinuous phase transition between a pure coil at t < t0 and a pure
helix at t > t0 in a sense that requires some explanations (Sec. 4). Discontinuities
are manifest in the order parameter and the entropy. The latter is associated with a
latent heat.
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3.3. Second-order transition

In the limit µ→∞ at τ > 0 the solution (11) acquires a quadratic cusp at

tc
.=

3
1 + τ

(µ =∞). (27)

Performing that limit in (24) yields

r∞(w) =
1
2

[
w +

√
w2 − 4

]
, w ≥ 2. (28)

The resulting analytic solution then reads

w =

{
2 : 0 ≤ t ≤ tc
t− 1 +

tτ

λ
: t > tc

(µ =∞), (29)

λ
.=

1
2

[
t− 1 +

√
(t+ 1)(t− 3) + 4tτ

]
, (30)

and is graphically represented in Fig. 3(b). The singularity at t+c ,

w = 2 +
[
t0(t− tc)
tc(t0 − tc)

]2
+O

(
(t− tc)3

)
(31)

with t0 = 3 for µ =∞ represents a continuous transition between a coil phase (t < tc)
and a helix phase (t > tc) with helical ordering subject to thermal fluctuations.
Expression (31) is to be interpreted as an asymptotic expansion with coefficients that
diverge as τ → 0. In that limit the cusp turns linear as in (25).

4. Order and disorder

Helix means order and coil means disorder, clearly. However, both attributes can
be looked at from different angles and a more comprehensive picture emerges. In
the following we investigate several thermodynamic quantities, derived from the free
energy (13) as functions of the experimentally controllable growth parameter t at fixed
values of the other two parameters τ and µ.

Each quantity will illuminate the competition between order and disorder from a
somewhat different vantage point. All are functions of w1(t, τ), which depends on the
solution (11) of (10) via (12). The analytic expression in the limit τ → 0 for µ < ∞
as inferred from (25) reads

w1 =

{ t

t0 − t
: t < t0

∞ : t ≥ t0
(τ = 0), (32)

and the analytic result in the limit µ→∞ at τ > 0 as inferred from (29) becomes

w1 =


t

t0 − t
: t < tc

λ

τ
: t ≥ tc

(µ =∞). (33)
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4.1. Helicity and entropy

We begin by considering the two thermodynamic functions that represent order and
disorder most directly: helicity (16),

N̄hl = 1− t

w1(1 + w1)
∂w1

∂t
, (34)

and entropy (14),

S̄

kB
= ln

(
1 + w−1

1

)
+

1
w1(1 + w1)

[
t ln t

∂w1

∂t
+ τ ln τ

∂w1

∂τ

]
. (35)

In Figs. 4 and 5 we show the dependence of helicity and entropy on the growth
parameter t at fixed nucleation parameter τ (five curves) and range parameter µ
(two panels).

At finite cooperativity (τ > 0) the helicity crosses over from a low to a high value
near t0. The rise in helicity becomes sharper with increasing cooperativity and turns
into a step discontinuity in the limit τ → 0. Analytically, expression (34) with (32)
substituted yields

N̄hl = θ(t− t0) (τ = 0). (36)

While order as reflected in the helicity increases monotonically with t, the disorder
as reflected in the entropy is not monotonically decreasing. It shows a shallow
maximum at t ' 1 separate from the shoulder at t ' t0. The reason for this difference
is that there is only one source of order – helical links – but two sources of disorder:

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

t

N
hl

HaL

Μ = 2

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

t

N
hl

HbL

Μ = 3

Figure 4. (Color online) Helicity N̄hl versus growth parameter t at values
τ = 1, 0.25, 0.05, 0.0025 (thin lines) and τ = 0 (thick line) of the nucleation
parameter for (a) µ = 2 and (b) µ = 3.
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Figure 5. (Color online) Entropy S̄/kB versus t at τ = 1, 0.25, 0.05, 0.0025 (thin
lines) and τ = 0 (thick line) for (a) µ = 2 and (b) µ = 3.
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disorder inside coil segments and disorder in the sequence of helical/coil segments of
diverse lengths. It is the first source of disorder that produces the shoulder and the
second source that produces the shallow maximum. The Zimm-Bragg case µ = 1 is
pathological in this respect. It produces coil segments without internal entropy as
noted and commented on before [28].

As τ → 0, the segments grow larger in size and become fewer in numbers (see
Sec. 4.2 below). This reduces disorder of the second kind. At infinite cooperativity the
entropy turns into a step discontinuity of µ-dependent height and location. Expression
(35) with (32) substituted becomes

S̄

kB
= θ(t0 − t) ln t0 (τ = 0). (37)

This discontinuity signals the presence of a latent heat (see Sec. 4.3 below).
Next we investigate the same measures of order and disorder as functions of t

at fixed τ = 1.0 (low cooperativity) or τ = 0.2 (high cooperativity) for increasing
numbers µ of coil states per residue including the limit µ → ∞. Our results are
shown in Figs. 6 and 7. The crossover behavior for small µ turns into a continuous
order-disorder transition as µ→∞.

With µ increasing, the internal source of disorder in coil segments gains dominance
over the entropy of mixing between coil and helix segments. The shoulder in S̄/kB

becomes flatter, higher, and sharper. In the limit µ → ∞ at t < tc, the helicity
approaches zero identically and the entropy approaches the value S̄/kB = ln 3,
independent of τ . Disorder defeats order hands down.
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Figure 6. (Color online) Helicity N̄hl versus growth parameter t at cooperativity
(a) τ = 1.0 and (b) τ = 0.2 for µ = 2, 3, 4, 9 (thin curves from top down) and
µ =∞ (thick curve). The dot-dashed lines marks tc.
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Figure 7. (Color online) Entropy S̄/kB versus t at (a) τ = 1.0 and (b) τ = 0.2
for µ = 2, 3, 4, 9 (thin curves from bottom up) and µ = ∞ (thick curve). The
dot-dashed line marks tc.
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The helix phase at t > tc, by contrast, remains a battleground between ordering
and disordering tendencies. Both the helicity and the entropy expressions,

N̄hl = 1− tτ

λ(2λ+ 1− t)
, (38)

S̄

kB
= ln

(
1 +

τ

λ

)
+

tτ ln t
λ(2λ+ 1− t)

+
τ ln τ
λ+ τ

[
tτ

λ(2λ+ 1− t)
− 1
]
, (39)

have linear cusps at tc with slopes that diverge in the limit τ → 0. The leading critical
singularities at t+c are

N̄hl =
2t0
tc

t− tc
(t0 − tc)2

+O
(
(t− tc)2

)
, (40)

S̄

kB
= ln t0 − 2

t− tc
t0 − tc

[
ln tc
t0 − tc

+
ln(t0 − tc)

tc

]
+O

(
(t− tc)2

)
. (41)

With the growth parameter increasing from tc the helicity steeply rises from zero and
gradually bends over toward its saturation value whereas the entropy steeply descends
from a high value and gradually approaches zero. The plots suggest that cooperativity
impedes the onset of ordering, yet assists the quick rise of ordering once it has set in.

4.2. Segments of coil and helix

Further insight into how helical ordering grows during the crossover or near the
transition point between conformations can be gained from the two quantities (17)
and (18), representing, respectively, the density and average length of segments in one
or the other conformation. Coil segments alternate with helix segments. Hence they
come in equal numbers. However, their average lengths vary independently with t.
Parametric representations can be constructed as before. We use (34) and

N̄seg = − τ

w1(1 + w1)
∂w1

∂τ
. (42)

We first examine the t-dependence of N̄seg, Lcs, and Lhs near the first-order
transition that takes place at t0 in the limit τ → 0. Our results for µ = 2, 3 are
shown in Figs. 8 and 9. We observe that the density of segments is near zero at
small t. Here the system is strongly coil-like. The segments grow in numbers with
t increasing. They become most numerous at t0, where ordering and disordering
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Figure 8. Density of segments, N̄seg, versus t at τ = 1, 0.25, 0.05, 0.0025 (from
top down) for (a) µ = 2 and (b) µ = 3. The dot-dashed line marks t0.
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Figure 9. Average length of coil segments, Lcs (solid lines), and helix segments,
Lhs (dashed lines), versus t at τ = 1, 0.25, 0.05, 0 (from bottom up) for (a) µ = 2
and (b) µ = 3. The dot-dashed line marks t0.

tendencies compete evenly. The density of segments becomes smaller again as t further
increases into the stability regime of the helix conformation. The maximum of N̄seg

at t0 strongly depends on τ . In the limit τ → 0 we have N̄seg ≡ 0, which means that,
in a macroscopic system, the number of segments grows more slowly (if at all) than
the number of residues.

Unsurprisingly, Lcs decreases and Lhs increases monotonically with t. As
expected, both variations are enhanced by cooperativity. Most interesting is the limit
τ → 0. The exact expressions for the average lengths of helix segments at t < t0 and
coil segments at t > 0 read

Lhs =
t0

t0 − t
, (43)

Lcs =
t

(1 + t)(3− t)

[
2(µ+ 1)
rµ(t− 1)

+ 2µrµ(t− 1)− (2µ+ 1)(t− 1)

]
,(44)

respectively, with rµ(w) from (24). Both expressions diverge ∝ |t − t0|−1 as t
approaches t0 from opposite sides and then stay infinite.

These results tell us that the macrostate with zero helicity and saturated entropy
at t < t0 still contains helix segments albeit only in numbers that do not add up to
a nonzero density but still produce a well-defined average size. They coexist with an
equal number of coil segments of macroscopic lengths. Conversely, the macrostate
of zero entropy (per residue) and saturated helicity at t > t0 is not a single helical
domain. Here helix segments of short average length in numbers that amount to zero
density coexist with an equal number of helix segments of macroscopic lengths.

A different picture emerges near the second-order transition at t = tc in the limit
µ→∞. Results for the density of segments at high and low cooperativity are shown
in Fig. 10 and results for their average lengths in Fig. 11. This includes numerical
results for µ <∞ and analytical results for µ =∞. The density of segments vanishes
identically in the coil phase (t < tc) and then rises in a linear cusp to a smooth
maximum in the helix phase (t > tc) :

N̄seg =
τ

λ+ τ

[
1− tτ

λ(2λ+ 1− t)

]
=

2t0
tc

t− tc
t0 − tc

+O
(
(t− tc)2

)
. (45)

The average length of coil segments in the helix phase,

Lcs =
t(λ+ τ)

λ(2λ+ 1− t)− tτ
=
tc
2
t0 − tc
t− tc

+
2t2c − 9tc + 15

4(t0 − tc)
+O(t− tc), (46)
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Figure 10. (Color online) Density of segments, N̄seg, versus t at (a) τ = 1.0 and
(b) τ = 0.2 for µ = 2, 3, 4, 9 (thin curves lines left to right) and µ = ∞ (thick
curve). The dot-dashed line marks tc.
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Figure 11. (Color online) Average length of coil segments, Lcs (solid lines), and
helix segments, Lhs (dashed lines), for µ = 2 (thin lines) and µ =∞ (thick lines)
versus t at (a) τ = 1.0 and (b) τ = 0.2. The dot-dashed line marks tc.

diverges at t+c and remains infinite in the coil phase. The average length of helix
segments, by contrast, remains finite in both phases,

Lhs =


t0

t0 − t
: t ≤ tc,

1 +
λ

τ
: t ≥ tc,

(47)

where again, t0 = 3 for µ = ∞ in (45)-(47). The graph of Lhs is continuous and
smooth at tc. The singularity is of higher order. Only in the helix phase does the
shape of the curve depend on τ .

The most striking feature in the data shown concerns the helix segments. Unlike
in the case of the first-order transition, the ordered phase near tc supports a significant
density of coil and helix segments of comparable finite size. The average length of helix
segments depends only weakly on µ and only moderately on τ , in strong contrast
to the average length of coil segments, which exhibits strong dependences on both
parameters.

4.3. Heat capacity and latent heat

The heat capacity, C̄ .= T (∂S̄/∂T )εn,εg , illuminates the competition between order
and disorder from yet a different angle. From (35) we derive

C̄

kB
=

2w1 + 1
w2

1(1 + w1)2

[
t ln t

∂w1

∂t
+ τ ln τ

∂w1

∂τ

]2
− 1
w1(1 + w1)

[
t(ln t)2

∂w1

∂t
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+τ(ln τ)2
∂w1

∂τ
+ (t ln t)2

∂2w1

∂t2
+ (τ ln τ)2

∂2w1

∂τ2
+ 2(t ln t)(τ ln τ)

∂2w1

∂t∂τ

]
. (48)

Figure 12 shows the dependence of the heat capacity on the growth parameter for the
case µ = 2 at moderate to high cooperativity and for the case µ = ∞ over a wider
range of cooperativity.
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Figure 12. Heat capacity C̄/kB versus t for (a) µ = 2 at τ = 0.05, 0.025, 0.01,
0.005 (from top down on the right in the main plot and from bottom up in the
inset) and (b) µ = ∞ at τ = 1.0, 0.5, 0.25, 0.2 (from bottom up in main plot)
and τ = 0.2, 0.1, 0.05, 0.01 (from top down in the inset). The dot-dashed lines
mark tc for given τ .

At t < t0 = 2 in panel (a) we observe a weak signal that is associated with the
entropy caused by alternating coil and helix segments as discussed previously. This
contribution fades away at high cooperativity (best seen in the inset) as the density
of segments diminishes. The peak at t & t0, on the other hand, is associated with the
entropy inside coil segments. With increasing cooperativity, this contribution grows in
a more and more narrow range at t0. Similar structures have been obtained in recent
Monte Carlos simulations, albeit upon variation of temperature and in a somewhat
different scenario [29].

In the limit τ → 0 for µ < ∞, where the coil-helix crossover sharpens into
a first-order transition at t0, the heat capacity approaches zero everywhere except
at the transition point, where it diverges and produces, via (37), a latent heat of
magnitude εg. Conversely, in the limit µ→∞ at τ > 0, where the coil-helix crossover
turns into a second-order transition at tc, the heat capacity approaches zero in the
coil conformation and remains nonzero in the helix conformation as shown in panel
(b). When the transition changes from second to first order when τ → 0 for µ = ∞,
implying tc → t0 = 3, the heat capacity throughout the helix conformation approaches
zero as illustrated in the inset.

5. Conclusion and outlook

We have launched this project mainly for the purpose of interpreting (ongoing and
projected) experiments on pHLIP. In this first of three stages of analysis we have
constructed a microscopic model for the pH-driven coil-helix conformational change
of a long polypeptide adsorbed to a water-lipid interface. We have employed a
methodology that facilitates the exact statistical mechanical analysis of our model.
The three model parameters t, τ, µ have settings for which the conformation changes
either in a crossover, a first-order transition, or a second-order transition.
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We have carried out the analysis to the extent needed for a discussion of the
sources and agents of order and disorder. Our results include the t-dependence
of the helicity (order parameter), the average numbers and the average lengths of
helix and coil segments, the entropy, and the heat capacity. The behavior of these
quantities near the continuous or the discontinuous transition has been given special
attention. We have plotted all quantities versus t at constant τ and µ for a reason. The
experimentally relevant processes for which we use our model will primarily involve
variations of the growth parameter t. These variations are caused by changes in pH.
The targeted peptides, adsorbed to the water-lipid interface, include side chains that
are strongly hydrophobic (e.g. Leu) and side chains that are negatively charged (e.g.
Asp, Glu).

A drop in pH leads to the protonation of the negatively charged side chains and,
therefore, enhances the overall hydrophobicity. The backbone of a coil segment thus
pushed past the lipid headgroups is now more likely to satisfy an H-bond internally
than externally. The enthalpic cost for broken internal H-bonds increases. This cost
is encoded in t. Any increase in t favors a growth of helix segments at the expense
of coil segments. A rise in pH has the opposite effect. The value of t decreases. Coil
segments grow at the expense of helix segments.

The cooperativity parameter τ , by contrast, is much less sensitive to a change
in pH. In the nucleation process of coil segments from the helix conformation, for
example, the internal H-bonds are much more isolated from environmental influences
than are those at the border between coil segments and helix segments.

At this point, our project has reached a fork, where natural continuations point
in two different directions and address the interests of somewhat different audiences.
These continuations, already in the works, are outlined as follows.

5.1. Heterogeneous environment and short peptides

In one continuation we begin by considering long polypeptides that are no longer
confined to a plane parallel to a flat water-lipid interface. The growth parameter
t, which drives the conformational change, then becomes a field t(x) and acquires
a profile that depends on the local medium. Here x is a position coordinate in the
direction perpendicular to the plane of the membrane. Such circumstances pose a
serious challenge to any existing model and its method of analysis. However, the
methodology used here is well positioned in that respect. It has already been proven
(in different applications [25, 27, 30]) to be adaptable to heterogeneous environments.

The shape of the parameter field t(x) will be determined by the availability of
polar molecules to satisfy external H-bonds along the backbone of the peptide. The
dominant factor that shapes the field t(x) will be the density profile ρw(x) across the
membrane, for which data from experiments [31] and simulations [32] are available.
Subdominant factors include electrostatic interactions and fluid-mechanical properties
of lipids.

From the analysis of our extended model emerge profiles for the densities of
free energy, enthalpy, entropy, and helicity of long polypeptides that traverse the
heterogeneous environment (ranging from polar to non-polar) along some path that is
subject to conformational constraints [33]. These profiles, in turn, will be interpreted
as propensities for the statistical mechanical behavior of short peptides in the same
environment.

At this stage of the analysis, additional enthalpic and entropic effects involving
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the side chains, the semi-fluid bilayer of lipid amphiphiles, and the hydrogen-bonded
network of H2O molecules can be built into the model. The outcome are landscapes of
free energy, enthalpy, entropy, and helicity for short peptides of specific composition.
The free-energy landscapes in particular then set the stage for (i) a theoretical study
of the kinetics of trans-membrane insertion and exit of pHLIP and other membrane
peptides and (ii) a direct comparison with experiments currently in progress that
investigate the insertion/exit processes of pHLIP via tryptophan fluorescence and the
accompanying conformational changes via circular dichroism spectroscopy.

This first continuation can also benefit from recent studies in the same area
of research. Not yet included in our modeling are effects related to torsion and
tension, which are bound to be present in the heterogeneous membrane environment.
Experimental, computational, and analytic studies of force-extension and torque-twist
characteristics and the associated steric constraints [34, 35, 36, 37] will be of great
value for that purpose. The kinetic modeling of pHLIP insertion while undergoing
a conformational change will find valuable guidance from recent studies that have
investigated the fluctuation properties of helical polymers in confined environments
including narrow channels [38, 39, 40] and studies that have investigated the Brownian
dynamics of polymers in the membrane environment [41].

5.2. Extensions of analysis, model, and scope

A second continuation focuses on the statistical mechanics of phase transitions and
critical singularities in the context of the microscopic model presented in this work and
extensions thereof. It is well known that the presence of a phase transition at nonzero
temperature in a system that is, in some sense, one-dimensional requires interactions
of long-range to stabilize an ordered phase in the face of strong thermal fluctuations.
In our model, which is truly microscopic and analyzed exactly, this stabilizing agent
comes in the form of quasiparticles that extend over entire coil segments (hosts) or
over parts thereof (hybrids).

In the context of the experiments that motivated this work we have examined
conformational changes driven by the control parameter t at fixed τ, µ as reflected in
just a few relevant quantities. The phase transitions that occur in the limits τ → 0
(first-order) or µ→∞ (second order) produce different singularities in other quantities
of no less interest for the statistical mechanical analysis. Such quantities of general
interest include a mechanical response function, a correlation length, and a correlation
function. The further analysis of critical exponents and scaling laws is best presented
in a more general framework and along with model extensions that remain inside the
reach of our method of exact analysis.

In a final note, we should like to draw the reader’s attention to a different
set of applications, for which our statistical mechanical model and its extensions
are likely to produce significant new insights. These applications investigate the
statistical mechanics and the dynamics of DNA melting (thermal denaturation)
[13, 14, 42, 43, 44, 45, 46, 47, 48] or the loop formation in RNA [49]. Of particular
interest is the loop exponent in the configurational entropy of loop formation [14, 49],
which is frequently used as an adjustable parameter. The further development of
our project aims for the analytic calculation of loop exponents pertaining to realistic
scenarios. Discussions of and debates about crossovers, first-order transitions, and
second-order transitions are at the center of most of these studies. The transcription
and adaptation of our methodology to this particular physics context is already in
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progress. The main challenge in the endeavor is the extension of the self-avoiding
random walk to three dimensions.
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Appendix A. Polynomial equations

The 2µ Eqs. (6) with the βεm expressed via parameters (8) and (9) and the gmm′ as
stated in Sec. 2.2 acquire the following form (for µ ≥ 2):

t

τ
=

w2
1

1 + w1

1 + w2

w2

1 + wµ+1

wµ+1
, (A.1)

t2 = (1 + wm)
w2

1

(1 + w1)2
1 + wm+1

wm+1

1 + wµ+m−1

wµ+m−1

1 + wµ+m

wµ+m
, m = 2, ..., µ− 1 (A.2)

t2 = (1 + wµ)
w2

1

(1 + w1)2
1 + w2µ−1

w2µ−1

1 + w2µ

w2µ
, (A.3)

t = (1 + wm)
w1

1 + w1
, m = µ+ 1, ..., 2µ. (A.4)

From (A.4) we infer

wµ+1 = ... = w2µ
.= w, (A.5)

which, upon substitution, simplifies (A.1)-(A.4) into

t

τ
=

w2
1

1 + w1

1 + w2

w2

1 + w

w
, (A.6)

t2 = (1 + wm)
w2

1

(1 + w1)2
1 + wm+1

wm+1

(1 + w)2

w2
, m = 2, ..., µ− 1, (A.7)

t2 = (1 + wµ)
w2

1

(1 + w1)2
(1 + w)2

w2
, (A.8)

t = (1 + w)
w1

1 + w1
. (A.9)

Substitution of (A.9) into (A.6)-(A.8) yields

w1 =
w

τ

w2

1 + w2
, τ 6= 0, (A.10)

wm = w2 wm+1

1 + wm+1
− 1, m = 2, ..., µ− 1, (A.11)

wµ = w2 − 1, (A.12)

which express all wm for m ≤ µ from w recursively.
Next we show that these recursive relations can be satisfied by Chebyshev

polynomials of the second kind, which themselves are generated recursively from
S0(w) = 1 and S1(w) = w via

Sm+2(w) = wSm+1(w)− Sm(w), m = 0, 1, 2, . . . (A.13)

We reason inductively by writing (A.12) in the form

wm =
Sµ−m+2(w)
Sµ−m(w)

, m = µ. (A.14)
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If (A.14) holds for some m then we infer from (A.11) that it also holds for m− 1:

wm−1 = w2 wm
1 + wm

− 1 =
w2Sµ−m+2(w)

Sµ−m+2(w) + Sµ−m(w)
− 1

=
wSµ−m+2(w)− Sµ−m+1(w)

Sµ−m+1(w)
=
Sµ−m+3(w)
Sµ−m+1(w)

. (A.15)

This validates (A.14) for m = 2, . . . , µ. We use (A.10) to obtain

w1 =
Sµ(w)

τSµ−1(w)
. (A.16)

The polynomial equation that determines w,

(1 + w − t)Sµ(w) = tτSµ−1(w), (A.17)

follows from (A.9) substituted in (A.16). This completes the derivation of (10) and
(12). All wm must be non-negative to be physically meaningful. Only one root of
(A.17) satisfies this criterion.

Appendix B. Particle population densities

The solution of the linear Eqs. (7) yields the following explicit expressions for the
population densities of statistically interacting particles:

N̄m =
Sµ−m(w)Sµ−m+1(w)

γµ
,

N̄µ+m =
[Sµ−m(w)]2

γµ
, m = 1, . . . , µ, (B.1)

γµ
.= (1 + w)

[
µ−1∑
m=0

[
Sm(w)

]2 +

[
Sµ(w)

]2
tτ

]
,

= (1 + w)

[
2µ+ 1− S2µ(w)

4− w2
+

[
Sµ(w)

]2
tτ

]
. (B.2)

Entropy (14), enthalpy (15), helicity (16), and density of segments (17) can all be
expressed in terms of the N̄m:

S̄

kB
=

2µ∑
m=1

N̄m

[
(1 + wm) ln(1 + wm)− wm lnwm

]
, (B.3)

H̄ =
2µ∑
m=1

N̄mεm, (B.4)

N̄seg = N̄1 =

[
Sµ(w)

]2
γµ

w + 1− t
tτ

, (B.5)

N̄hl = 1− N̄1 − 2
µ∑

m=2

N̄m −
2µ∑

m=µ+1

N̄m =

[
Sµ(w)

]2
γµ

w + 1
tτ

, (B.6)
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The shortest proof of (B.1) uses its substitution into a scaled version of (7),

wm′N̄m′ =
µ∑

m=1

(
gm′mN̄m + gm′,m+µN̄m+µ

)
= δ1m′ . (B.7)

We perform this substitution in four batches: (i) for m′ = 2µ we use g2µ,m = −δµm;
(ii) for m′ = µ + m′′, m′′ = 1, . . . , µ − 1 we use gµ+m′′,m = −δm′′m − δm′′,m−1; (iii)
for m′ = 2, . . . , µ we use gm′m = −δm′,m+1; and (iv) for m′ = 1 we use g1m = 2,
g1,µ+m = 1, m = 1, . . . , µ.

In the first three batches (B.7) is shown to be satisfied by merely using (12) and
(A.13):

(i) : w[S0(w)]2 − S0(w)S1(w) = 0, (B.8)

(ii) : w[Sµ−m′′(w)]2 − Sµ−m′′(w)Sµ−m′′+1(w)− Sµ−m′′−1(w)Sµ−m′′(w) = 0, (B.9)

(iii) :
Sµ−m′+2(w)
Sµ−m′(w)

Sµ−m′(w)Sµ−m+1(w)− Sµ−m′+1(w)Sµ−m+2(w) = 0. (B.10)

In the fourth batch, (B.7) reduces to the identity,

(iv) :
[Sµ(w)]2

τ
+ 2

µ∑
m=1

Sm−1(w)Sm(w) +
µ∑

m=1

[Sm−1(w)]2 = γµ, (B.11)

which is proven by also using (10).
The two sources of disorder identified in Sec. 4.1, namely the disorder in the

sequence of coil/helix segments of diverse lengths and disorder within individual coil
segments, are related to the population densities N̄m of 2µ species of particles from
three catgories (hosts, hybrids, and tags).

Hosts (m = 1) generate coil segments out of the helix pseudo-vacuum whereas
hybrids (m = 2, . . . , µ) and tags (m = µ + 1, . . . , 2µ) extend coil segments at the
expense of helix segments. Thermally excited hosts at random locations along the
polypeptide helix thus produce one source of disorder and germinate the other source
of disorder via the thermal excitation of hybrids and tags nested inside.

Each coil segment, nucleated by exactly one host particle, forms a self-avoiding
random walk assembled from hybrids and tags. The distribution of hybrids and tags
inside a large coil segment as realized in the limit τ → 0 at t < t0 and inferred from
(B.1), reads

N̄m =
2 sin

(
(m− 1)φ0

)
sin
(
mφ0)

(µ+ 1
)
t0

,

N̄µ+m =
2 sin2

(
mφ0)

(µ+ 1
)
t0

, m = 1, . . . , µ, (B.12)

where φ0 = π/(µ+ 1). In the limit µ→∞, the distributions of both hybrids and tags
acquire identical sin2 x density profiles if we set x = m/µ for hybrids and x = (µ+m)/µ
for tags.
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