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Abstract 

Survival analysis methods such as Cox regression can be used in infectious disease research 

to compare the timing of clinical events between treatment or exposure groups. 

Randomized clinical trials are the gold standard for estimating the effect of a treatment or 

exposure on a survival time endpoint. However, clinical trials are not always ethical or 

feasible. In that case, inference about the effect of interest might be attempted using data 

from observational studies. Unfortunately, observational studies may be riddled with 

confounding which can cast doubt on the validity of the results.  In this tutorial, we 

demonstrate how inverse probability weighted Cox models can be used to account for 

multiple measured confounders, while concentrating inferences on the treatment or 

exposure effects of central interest and providing graphical summaries of these effects. 

This approach is illustrated using an example that estimates the effect of injection drug use 

on AIDS-free survival among HIV-infected women.  

 

Key Words: Bias; Censoring; Cohort studies; Confounding; Cox proportional hazards 

model; Inverse probability weights; Standardization; Survival analysis; Time-to-event 

 

Objective: The primary objective of this paper is to familiarize the reader with inverse 

probability weighted Cox models. 
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Survival analysis can be used in infectious disease research to compare the time to 

occurrence of clinical events between treatment or exposure groups (1). Randomized trials 

are the gold standard to estimate exposure effects on survival time, but are not always 

ethical or feasible. Although observational studies may provide estimates of effects when 

trial data are unavailable, the estimates they yield are often riddled with confounding (2). 

Informally, confounding occurs when the exposure and outcome share a common cause. 

The Cox proportional hazards regression model (3), the standard approach in survival 

analysis, can account for multiple measured confounders. Unfortunately, the Cox model 

provides only a single summary measure (i.e., hazard ratio), which can be difficult to 

interpret (4).  

As an alternative to the standard Cox model, we present a method in this paper that 

uses inverse probability (IP) weights to estimate the effect of an exposure that is fixed at 

study entry. Under certain assumptions, this method can be used to mimic a randomized 

trial when only observational data is available. In particular, unlike the standard Cox 

model, this approach allows for estimation of marginal effects which compare the 

distribution of outcomes when the entire population is exposed versus when the entire 

population is unexposed (5). This IP-weighted approach naturally leads to Kaplan-Meier 

(6) type survival curve estimates that account for confounding by multiple covariates (7, 

8). Herein, we refer to IP weighting as standardization, where the standardization is to the 

entire population under two different exposures (7, 9). We illustrate this standardization 

method through an example that estimates the effect of injection drug use (IDU) on AIDS-

free survival among HIV-infected women.  
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Motivating Example: AIDS-Free Survival Among Injection Drug Users 

The Women’s Interagency HIV Study (WIHS) is a prospective, observational, 

multicenter study of women living with HIV and women at-risk of HIV infection in the US 

(10). A total of 4,129 women (1,065 HIV-uninfected) were enrolled between October 1994 

and December 2012 at six US sites. An institutional review board at each site approved 

study procedures and all study participants provided written informed consent. We were 

interested in determining if AIDS-free survival among HIV-infected women differed by IDU, 

accounting for possible confounding by factors measured at baseline and during study 

follow-up. We estimated the hazard ratio and the absolute risk difference at ten years to 

quantify this effect. 

The study sample consisted of 1,164 women enrolled in WIHS who were alive, HIV-

infected, and free of AIDS on 6 December 1995 (11). The endpoint was either death or a 

diagnosis of AIDS. Women who did not reach this endpoint by 6 December 2005 were 

censored at that time or at their last visit where they were known to be alive and AIDS-free, 

whichever came first. A history of IDU at WIHS enrollment is denoted as 𝑋 = 1 (𝑋 = 0 

otherwise). Denoted as the list (or vector) 𝒁, the baseline covariates are: African American 

race, age, and nadir CD4 count (in cells/uL) measured from WIHS enrollment to baseline 

(i.e., 6 December 1995). Also, let 𝑍(𝑡) denote the time-varying covariate antiretroviral 

(ART) initiation during study follow-up, where 𝑍(𝑡) = 1 if an individual starts ART by time 

t since baseline and 𝑍(𝑡) = 0 otherwise. 

 

Inverse Probability Weighted Cox Models 
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Researchers are often interested in estimating effects of an exposure fixed at study 

entry. IP-weighted Cox models are a method to compare the timing of clinical events under 

two different exposures, mimicking results in randomized trials. An IP-weighted Cox model 

is fit by maximizing a weighted partial likelihood, where participant i who died or was 

diagnosed with AIDS at time t from baseline contributes the term {exp(𝛽𝑋𝑖) /

 ∑ �̂�𝑗(𝑡) exp(𝛽𝑋𝑗)𝑗∈𝑅(𝑡) }
�̂�𝑖(𝑡)

, where 𝑅(𝑡) is the risk set at time t and exp(𝛽) is the hazard 

ratio for a unit difference in exposure X accounting for confounding measured by covariates 

through the estimated IP weight �̂�𝑖(𝑡) (discussed below) (12). Slight modification of the 

likelihood is needed in the presence of tied survival times. The robust variance estimator 

(13) can be employed to account for the fact that the IP weights are estimated (14). See the 

Appendix A for a review of inference for the standard (i.e., unweighted) Cox proportional 

hazards model. 

The estimated IP weight �̂�𝑖(𝑡) is the product of an estimated time-fixed IP exposure 

weight �̂�1𝑖 and an estimated time-varying IP drop out weight �̂�2𝑖(𝑡) for each participant 𝑖 

at each survival time t. The time-fixed IP exposure weights are constructed to account for 

confounding by covariates measured at baseline. Different versions of these weights have 

been proposed. We recommend the stabilized IP exposure weight 𝑤1𝑖  defined as the ratio 

of the marginal probability of having the exposure that participant i had, formally 

𝑃(𝑋𝑖 = 𝑥𝑖), to the covariate-conditional probability of having the exposure that participant 

i had, formally 𝑃(𝑋𝑖 = 𝑥𝑖|𝒁𝑖), where 𝒁𝑖 are the measured covariates for participant i 

assumed sufficient to adjust for confounding. If we do not appropriately adjust for 

confounding, the estimated association between the exposure and study outcome may be 

far from the truth (i.e., biased). Because these IP weights are unknown, the probabilities of 
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exposure are estimated using the observed data. Estimation details are provided in the 

following section tailored to the example. 

The time-varying IP drop out weights are constructed to account for possible 

selection bias due to drop out (12). Participants last observed alive and AIDS-free more 

than one year prior to 6 December 2005 were considered drop outs (i.e., loss to follow-up). 

Participants receive a time-varying weight that corresponds to their probability of 

remaining free from drop out. This stabilized IP weight 𝑤2𝑖(𝑡) is defined as the ratio of the 

marginal probability of remaining free of drop out, formally 𝑃(𝐷𝑖 > 𝑡|𝑋𝑖), where 𝐷𝑖 is the 

time from baseline to drop out for participant i, to the covariate-conditional probability of 

remaining free of drop out, formally 𝑃(𝐷𝑖 > 𝑡|𝒁𝑖 , 𝑍𝑖(𝑡), 𝑋𝑖), where 𝒁𝑖 and 𝑍𝑖(𝑡) are the 

measured common causes of drop out and the study outcome for participant i up to time t. 

(Note the covariates in the drop out model can be different than the covariates in the 

exposure weight model). If we do not appropriately adjust for the common (time-varying) 

causes of drop out and study outcome, the estimated association between the exposure and 

outcome may be biased due to drop out. Again, because these IP drop out weights are 

unknown, the probabilities of remaining free of drop out are estimated using the observed 

data. Estimation details are provided in the following section tailored to the example.   

Standardized survival curve estimates can be obtained by fitting an IP-weighted Cox 

model stratified by exposure with no covariates and then nonparametrically estimating the 

baseline survival functions for the two strata (7). In the absence of weighting, these 

survival curve estimates will be (asymptotically) equivalent to Kaplan-Meier estimates 

obtained separately for each of the exposure strata (15). 
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For all Cox models presented below, we employed Efron’s method to account for 

events that occurred on the same date(16). We obtained confidence intervals for the risk 

difference at 10 years using a nonparametric bootstrap using 200 random samples with 

replacement (17). The data analysis for this paper was conducted using SAS software 

version 9.3 (SAS Institute Inc., Cary, NC). SAS code for analyses in the present paper is 

provided in the Electronic Supplement. 

 

Illustrative Example  

The 1,164 women were 58% African American, median age was 36 years, and 

median nadir CD4 count was 349 cells/uL at baseline (Table 1). At enrollment, 38% of 

women reported a history of IDU. During follow-up, 667 (57%) of women initiated ARTs. 

Women were followed for up to 10 years with a total of 7,090 person-years during which 

579 (50%) developed AIDS or died, and 117 (10%) dropped out of the study.  

In analyses that did not account for covariates, women with a history of IDU had 

notably worse AIDS-free survival than women without a history of IDU (Figure 1). The 

estimated hazard ratio from the unadjusted Cox model was 1.72 (95% confidence interval 

(CI): 1.46, 2.03; Wald P value < 0.001), suggesting that the hazard of AIDS or death for 

those with a history of IDU was almost twice the hazard of those without a history of IDU 

(Table 2). We assessed the proportional hazards assumption graphically by examining 

whether the log cumulative hazard function estimates (Supplemental Figure 1) were 

approximately parallel. We also assessed this assumption statistically by inclusion of a 

product term between history of IDU and time in the Cox model, for which the Wald P value 
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was 0.40. Neither graphical nor statistical assessment suggested a meaningful departure 

from proportional hazards. 

We then obtained a standardized hazard ratio estimate from the IP-weighted Cox 

model, which involved two steps. In the first step, using separate logistic regression 

models, weights were estimated for the probability of exposure (i.e., history of IDU) and for 

the probability of not dropping out. For the exposure weights, we fit logistic regression 

models for both the numerator and denominator. The exposure model for the numerator 

had no covariates, while the exposure model for the denominator included age, race, and 

nadir CD4 count, as well as all pairwise interactions. Age and nadir CD4 were included as 

continuous variables using restricted quadratic splines with four knots placed at 5th, 35th, 

65th, and 95th percentiles (18). For the drop out weights, time was coarsened into months 

since baseline (19). Then, using pooled logistic regression(20), the drop out model for the 

numerator included only exposure (i.e., history of IDU) and time (using restricted quadratic 

splines), while the drop out model for the denominator included exposure, time (spline), 

age (spline), race, nadir CD4 count (spline), and ART initiation (time-varying), as well as all 

pairwise interactions. In the pooled logistic regression model, each person contributed up 

to 120 records and the weights were cumulatively multiplied for each person. The 

estimated weights �̂�𝑖(𝑡) had a mean of 1.00 (with a standard deviation of 0.70), and ranged 

from 0.46 to 10.85 (Supplemental Table 1). In the second step, the IP-weighted Cox model 

was fit by weighting participants by their estimated weights, with outcome time to AIDS or 

death, and history of IDU as the sole covariate.  

We obtained the estimated survival functions from an IP-weighted Cox model with 

no covariates stratified by history of IDU. After standardization for confounding and drop 
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out by IP weighting, survival curves (Figure 2) showed an attenuated difference in AIDS-

free survival compared to the survival curves without accounting for any covariates (Figure 

1). Under certain assumptions discussed below, the dashed curve can be interpreted as an 

estimate of the AIDS-free survival if (contrary to fact) everyone had a history of IDU at 

enrollment, while the solid curve can be interpreted as an estimate of the AIDS-free 

survival if (contrary to fact) no one had a history of IDU at enrollment (7, 8). The 

standardized hazard ratio from the IP-weighted Cox model was 1.53 (95% CI: 1.27, 1.85; 

Wald P value < 0.001) (Table 2). We again assessed the proportional hazards assumption 

graphically by examining whether the IP-weighted log cumulative hazard function 

estimates (Supplemental Figure 2) were approximately parallel. We also assessed this 

assumption statistically by inclusion of a product term between history of IDU and time, for 

which the Wald P value was 0.11. Neither graphical nor statistical assessment suggested a 

meaningful departure from proportional hazards. From the standardized survival curves, 

the ten-year risk of AIDS or death was 0.60 if (contrary to fact) everyone had a history of 

IDU at enrollment and 0.46 if (contrary to fact) no one had a history of IDU at enrollment. 

The 10-year risk difference was 0.14 (bootstrap 95% CI: 0.06, 0.22). For comparison, we 

also estimated a covariate-adjusted hazard ratio by including history of IDU, age (spline), 

race, and nadir CD4 count (spline) directly in an unweighted Cox model. The covariate-

adjusted hazard ratio estimate was 1.62 (95% CI: 1.35, 1.95; Wald P value < 0.001).  

 

Discussion  

IP-weighted Cox models and standardized survival curves were presented as a 

method to compare the timing of clinical events for two different exposure conditions, 
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mimicking results in randomized trials under certain assumptions. We compare this 

method to the traditional covariate-adjusted Cox model and discuss assumptions and 

caveats below. 

Although hazard ratio estimates from the two approaches were comparable in the 

WIHS example above, the standardized (i.e., IP-weighted) method provides several 

potential benefits over the covariate-adjusted method. First, the standardized approach can 

be used to mimic a randomized trial when only observational data is available (under 

certain assumptions discussed below).  In particular, the estimated hazard ratio using the 

standardized approach can be interpreted the same as the (marginal) hazard ratio one 

would obtain in a randomized experiment such as a clinical trial where there is no 

confounding. In contrast, a covariate-adjusted Cox model hazard ratio does not necessarily 

equal the marginal hazard ratio, even in the absence of confounding, because the Cox model 

is not collapsible for the hazard ratio parameter(21). A regression model is said to be 

collapsible for a parameter (in this case, the hazard ratio) if the covariate-adjusted 

parameter is the same as the unadjusted parameter (22).  

Second, the IP weighting approach yields standardized survival curve estimates.  

Although the hazard ratio is a common summary parameter to compare survival 

distributions between exposure groups, there are drawbacks to focusing inference on 

hazard ratios. For instance, the hazard ratio can be difficult to interpret, especially when 

trying to summarize the effect of a treatment or exposure (4). Presenting estimated 

survival curves is an alternative to reporting hazard ratios that may be more interpretable 

because survival curves summarize all information from baseline up to any time t. The IP-

weighted approach leads to Kaplan-Meier type survival curve estimates that are 
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standardized to the entire population under two different exposures at baseline while 

accounting for confounding by multiple covariates. A covariate-adjusted Cox model does 

not afford such survival curve estimates (5, 8).  

Third, the IP-weighted approach with drop out weights requires a weaker 

assumption about censoring than the Cox model. Specifically, if there are measured time-

varying covariates predictive of censoring and survival time, the IP-weighted approach will 

yield consistent estimates of the hazard ratio, while the covariate-adjusted approach will 

not (15, 23). The use of IP drop out weights also yields estimators that are more efficient 

(i.e., less variable) than those from the covariate-adjusted Cox model, even when there is no 

selection bias (23).  

Estimation of the hazard ratio and survival curves using standardization by IP 

weights requires certain assumptions to yield valid inference about the exposure effect. In 

particular, this approach assumes positivity, well-defined exposures, correctly specified 

models, and no unmeasured confounding or selection bias. For each level defined by the 

covariates, positivity means that there is a positive probability of each level of exposure 

(14). Well-defined exposures imply that there are not multiple versions of exposure, or if 

there are, that they are unimportant (14). The standardized hazard ratio estimator and 

survival curves require correctly specified IP weights (i.e., correct covariate functional 

forms). It is also assumed that sufficient sets of covariates have been measured to 

effectively address confounding (i.e., no unmeasured confounding) (7, 12) and selection 

bias due to drop out (23). 

Drop out weights can be included in the IP-weighted Cox model to adjust for 

baseline and time-dependent covariates predictive of both censoring and survival time (24-
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26). In the example, the time-varying covariate ART initiation was not included in the 

covariate-adjusted Cox model. Typically, when assessing the effect of a baseline exposure, 

one would not adjust for post-baseline covariates because such covariates may be on the 

causal pathway from the exposure to the outcome. Thus, adjusting for post-baseline 

covariates may lead to attenuated estimates of the total effect of the exposure (26-28). On 

the other hand, time-varying ART initiation may be predictive of both drop out and the 

survival time, so excluding that variable from the Cox model has the potential to introduce 

selection bias. In contrast, the use of IP drop out weights provides a valid approach to 

adjusting for a time-varying covariate associated with drop out and survival (19). 

We only discussed exposure groups defined at baseline. When interest focuses on 

exposures that change over time, methods must be adapted accordingly. When a time-

varying confounder is a risk factor for the outcome, predicts later exposure, and is affected 

by prior exposure, standard statistical methods (e.g., Cox models with time-varying 

covariates) are biased and fail to provide consistent estimators of effects (29-32). IP 

weighting can be generalized to account for time-varying confounders (12). For example, in 

HIV-infected individuals, CD4 count is a risk factor for death, predicts subsequent 

treatment with antiretroviral therapy, and is affected by prior treatment; thus, the IP-

weighted Cox model is appropriate for studying the effect of time-varying antiretroviral 

therapy on overall survival while adjusting for time-varying CD4 count.  

We suggest using expert knowledge to determine which covariates to adjust for 

prior to model fitting. Many epidemiologists would retain a possible confounder if its 

inclusion changes the estimate of association by more than 10% or 20% and a great deal of 

precision is not sacrificed (33). More principled approaches for determining which 
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covariates to adjust for in a model include conditioning on all causes of the exposure or 

outcome (34) and constructing causal directed acyclic graphs (based on a priori beliefs or 

knowledge) to posit a sufficient set of covariates to block all back door paths (35). For the 

weight models, covariates that are unrelated to the exposure but related to the outcome 

yield effect estimates with smaller variance and no increase in bias, so they should be 

included in the model; however, covariates that are related to the exposure but not to the 

outcome lead to effect estimates with larger variance and no reduction in bias, so they 

should be excluded from the model (36). Machine learning techniques (37, 38) can be used 

as an alternative approach to logistic regression for estimating weights.  

Although the IP-weighted method used to analyze the WIHS data attempts to adjust 

for confounding and selection bias, the conclusions from the analysis are still subject to the 

following considerations. Comparisons of groups from observational studies may be 

subject to unmeasured confounding bias, as the assumption of no unmeasured confounding 

is untestable. Similarly, the IP-weighted method assumes drop out is independent of the 

survival time conditional on observed baseline and time-varying covariates. The absence of 

unmeasured covariates predictive of both the censoring mechanism and survival time is 

also an untestable assumption. Finally, as with all methods, error in the measurement of 

exposure, covariates, or the event status or times could bias the results(39).  

In conclusion, we have presented an example of survival data pertinent to infectious 

disease research and illustrated how to compare groups of study participants using the IP-

weighted Cox proportional hazards model. The methods presented here, and in the prior 

companion review paper (1), have broad applicability in infectious disease research. 

Careful use of this and other methods for survival analysis will continue to enrich the 
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evidence base in the field of infectious diseases by providing answers to questions that are 

difficult or impossible to answer well without explicitly accounting for time. Inverse 

probability weighted Cox models provide a method to estimate covariate-standardized 

hazard ratios and survival curves in observational studies, and obtain information about 

effects of treatments or exposures to prevent infectious diseases or their sequela.   
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Appendix: Review of the Standard (Unweighted) Cox Proportional Hazards Model 

Let uppercase letters denote random variables and lowercase letters possible 

realizations of random variables or constants. Let 𝑖 = 1, … , 𝑛 index the study participants. 

Let 𝑇𝑖 be the time from baseline to AIDS diagnosis or death, 𝐷𝑖 be the time from baseline to 

study drop out, and 𝐶𝑖 be the time from baseline to administrative censoring. In practice, 

only the minimum of 𝑇𝑖, 𝐷𝑖 , and 𝐶𝑖 is observed, denoted by 𝑇𝑖
∗ = min(𝑇𝑖 , 𝐷𝑖 , 𝐶𝑖).  See the first 

paper in this tutorial series for a review of survival, hazard, and log cumulative hazard 

functions (1). 

The Cox proportional hazards regression model (3) is one of the most widely used 

statistical methods in biomedical research. The univariate Cox model is defined as ℎ𝑖(𝑡) =

ℎ0(𝑡)exp (𝛽𝑋𝑖), where ℎ𝑖(𝑡) is the hazard function for individuals with covariate 𝑋𝑖 , ℎ0(𝑡) is 

the reference hazard at time t for those with 𝑋𝑖 = 0, and 𝛽 is the log hazard ratio for a one 

unit change in 𝑋𝑖 .  

Heuristically, Cox regression may be understood as a series of logistic regression 

models, where at each ordered survival time, the log odds of the event are regressed on the 

exposure groups and any covariates (16). The Cox model is a semiparametric model 

because no assumption is placed on the probability distribution for the reference survival 

time distribution. Equivalently, the function ℎ0(𝑡) is left arbitrary. The parameters of a Cox 

model are estimated using maximum partial likelihood (40). Assuming no tied survival 

times, participant i who had the event at time t contributes the term exp(𝛽𝑋𝑖) /

 ∑ exp(𝛽𝑋𝑗)𝑗∈𝑅(𝑡)  to the partial likelihood function, where 𝑅(𝑡) is the set of participants at 

risk at time t. For the case of a single covariate 𝑋𝑖 , the partial likelihood is defined as simply 

a product of these individual contributions for events, or 
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𝐿(𝛽) = ∏ [
exp(𝛽𝑋𝑖)

∑ exp(𝛽𝑋𝑗)𝑗∈𝑅(𝑇𝑖)

]

𝑌𝑖

𝑛
𝑖=1 , where 𝑌𝑖  is an event indicator (i.e., 𝑇𝑖

∗ = 𝑇𝑖). Only events 

contribute to the numerator of the likelihood due to the exponent 𝑌𝑖 . There are several 

ways to handle tied survival times, including methods ascribed to Peto and Breslow (41, 

42), Efron (16) and an exact approach (26), which all return the same results if there are no 

ties. In the presence of moderate ties and if time is truly continuous, Efron’s approximation 

performs well compared to the other approaches (43). 

One of the central assumptions of the Cox model is that the ratios of the hazards 

defined by levels of the covariates are constant over time. This is the proportional hazards 

assumption. The proportional hazards assumption can be assessed by fitting the model 

ℎ(𝑡) = ℎ0(𝑡)exp (𝛽1𝑋𝑖 + 𝛽2𝑋𝑖𝑡) and testing the null hypothesis that 𝛽2 = 0, where 𝑋𝑖𝑡 is a 

product of the covariate and time t, or some monotonic function of time, such as log(t).   

In general, a 1 − 𝛼 Wald confidence interval (CI) for the hazard ratio is defined as 

exp (�̂� ± 𝑧1−𝛼/2√�̂�(�̂�)), where 𝑧1−𝛼/2 is the 1 − 𝛼/2 percentile of a standard normal 

distribution and �̂�(�̂�) is the estimated variance of �̂�. A Wald test statistic is defined as 

(
�̂�

√�̂�(�̂�)

)

2

 and is chi-squared distributed with 1 degree of freedom under the null 

hypothesis 𝛽 = 0. 
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Table 1. Characteristics of 1,164 HIV-infected women in the Women’s Interagency HIV 

Study December 6, 1995 through December 6, 2005 

Characteristics a History of 
Injection Drug 

Use (IDU) 

No History of 
Injection Drug 

Use (IDU)  

Overall 

 𝑛 = 439 𝑛 = 725 𝑛 = 1,164 

Age years 40 (35, 44) 33 (29, 39) 36 (31, 41) 

African American race 273 (62%) 399 (55%) 672 (58%) 

Nadir CD4+ count cells/uL 352 (208, 522) 348 (216, 505) 349 (213, 517) 

Initiated antiretrovirals (ARTs)  208 (47%) 459 (63%) 667 (57%) 

 

a  Median (interquartile range) or number (percent) 
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Table 2. Association of history of injection drug use with time to AIDS or death for 1,164 

HIV-infected women in the Women’s Interagency HIV Study December 6, 1995 through 

December 6, 2005 

 History of 

Injection Drug 

Use (IDU) 

𝑛 = 439 

No History of 

Injection Drug 

Use (IDU) 

𝑛 = 725 

Overall 

 

 

𝑛 = 1,164 

Unadjusted    

AIDS cases and deaths 272 (62%) 307 (42%) 579 (50%) 

Person-years 2,368 4,721 7,090 

Hazard ratio (95% CI) 1.72 (1.46, 2.03) 1 - 

10-year risk (95% CI) 0.64 (0.59, 0.68) 0.46 (0.42, 0.49) 0.53 (0.50, 0.56) 

10-year risk difference (95% CI) 0.19 (0.13, 0.24) 0 - 

    

Standardized a    

AIDS cases and deaths 272 (62%) 307 (42%) 579 (50%) 

Person-years 9,804 20,692 30,496 

Hazard ratio (95% CI) 1.53 (1.27, 1.85) 1 - 

10-year risk (95% CI) 0.60 (0.54, 0.64) 0.46 (0.42, 0.50) 0.51 (0.48, 0.54) 

10-year risk difference (95% CI) 0.14 (0.06, 0.22) 0 - 

 

a IP weighted to account for confounding and selection bias due to age (spline), race, nadir 

CD4 (spline), and ART initiation (time-varying) 
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Figure 1. Kaplan-Meier estimated AIDS-free survival curves without accounting for any 

covariates for 1,164 HIV-infected women with and without a history of injection drug use 

(IDU) in the Women’s Interagency HIV Study December 6, 1995 through December 6, 2005 
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Figure 2. Standardized estimated AIDS-free survival curves (accounting for age, race, nadir 

CD4, and ART initiation) for 1,164 HIV-infected women with and without a history of 

injection drug use (IDU) in the Women’s Interagency HIV Study December 6, 1995 through 

December 6, 2005 
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Supplemental Table 1. Example individual-level estimated exposure weights, drop out 

weights, and combined weights for 1,164 HIV-infected women in the Women’s Interagency 

HIV Study December 6, 1995 through December 6, 2005 

 

  

ID Time in Time out 

History of 
Injection 
Drug Use 

(IDU)  

Event Drop out 
Exposure 

weight 
Drop out 

weight 
Combined 

weight 

34 0.00 0.080 Yes No No 0.515 1.000 0.515 

34 0.08 0.170 Yes No No 0.515 1.000 0.515 

34 0.17 0.208 Yes No Yes 0.515 1.001 0.516 

36 0.00 0.080 No No No 1.191 1.000 1.191 

36 0.08 0.170 No No No 1.191 1.000 1.191 

36 0.17 0.225 No No Yes 1.191 1.001 1.192 

37 0.00 0.080 Yes No No 1.007 1.000 1.007 

37 0.08 0.170 Yes No No 1.007 1.000 1.007 

37 0.17 0.227 Yes Yes No 1.007 1.000 1.007 

38 0.00 0.080 No No No 0.949 1.000 0.949 

38 0.08 0.170 No No No 0.949 1.000 0.949 

38 0.17 0.250 No No No 0.949 0.999 0.948 

38 0.25 0.330 No No No 0.949 0.999 0.948 

38 0.33 0.420 No No No 0.949 0.998 0.947 

38 0.42 0.427 No Yes No 0.949 0.997 0.946 

66 0.00 0.080 Yes No No 0.545 1.000 0.545 

66 0.08 0.170 Yes No No 0.545 1.000 0.545 

66 0.17 0.250 Yes No No 0.545 0.999 0.545 

66 0.25 0.330 Yes No No 0.545 0.999 0.544 

66 0.33 0.378 Yes No Yes 0.545 0.998 0.544 
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Supplemental Figure 1. Estimated log cumulative hazard curves without accounting for 

any covariates calculated for 1,164 HIV-infected women with and without a history of 

injection drug use (IDU) in the Women’s Interagency HIV Study December 6, 1995 through 

December 6, 2005 
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Supplemental Figure 2. Standardized estimates of the log cumulative hazard curves 

(accounting for age, race, nadir CD4, and ART initiation) calculated for 1,164 HIV-infected 

women with and without a history of injection drug use (IDU) in the Women’s Interagency 

HIV Study December 6, 1995 through December 6, 2005 
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