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Nanopore surface coating delivers nanopore size and 

shape through conductance-based sizing. 

Cameron M. Frament, Nuwan Bandara and Jason R. Dwyer* 

Department of Chemistry, University of Rhode Island, 51 Lower College Rd., Kingston, Rhode 

Island, 02881, United States 

KEYWORDS. Electric double layer, nanopore surface charge, nanopore conductance, nanopore 

shape, silicon nitride nanopore, silicon oxide nanopore, biomimetic nanopore, single-molecule 

sensing. 

ABSTRACT. The performance of nanopore single-molecule sensing elements depends 

intimately on their physical dimensions and surface chemical properties. These factors underpin 

the dependence of the nanopore ionic conductance on electrolyte concentration, yet the 

measured, or modeled, dependence only partially illuminates the details of geometry and surface 

chemistry. Using the electrolyte-dependent conductance data before and after selective surface 

functionalization of solid-state nanopores, however, introduces more degrees of freedom and 

improves the performance of conductance-based nanopore characterizations. Sets of 

representative nanopore profiles were used to generate conductance data, and the nanopore shape 

and exact dimensions were identified, through conductance alone, by orders-of-magnitude 
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reductions in the geometry optimization metrics. The optimization framework could similarly be 

used to evaluate the nanopore surface coating thickness. 

Introduction 

Nanopores are the core element of a powerful new class of methods and devices for single-

molecule sensing and manipulation1-9. A nanopore, at its most basic level, is a nanometer-

diameter through-hole in an insulating membrane. When such a membrane is used to divide an 

electrolyte-filled cell, and a transmembrane potential is applied, the flow of electrolyte ions 

through the nanopore can be readily measured. The presence of a single molecule in the 

nanopore can then be detected and identified if it perturbs the electrolyte-only, open pore current 

in a characteristic way. Experimental measurements of nanopore conductance in the absence of 

analyte show a rich behavior dependent upon the intricate interplay between nanopore geometry, 

nanopore surface chemistry, electrolyte composition and potential drop across the nanopore. This 

behavior is captured by theoretical treatments and simulations employing varying levels of 

sophistication10-16. 

There are three broad classes of nanopores in routine use:  proteinaceous pores such as -

hemolysin and MSPA, solid-state pores such as those fabricated in silicon nitride and silicon 

oxide using direct electron- and ion-beam milling, and solid-state pores formed by solution 

processing of ion-tracked polymer and silicon nitride films1-4, 7, 17. These pore classes and 

fabrication conditions present quite different geometries and surface chemistries, and quite 

different challenges and opportunities. Protein pores offer self-assembly of reproducible pore 

structures with rich surface chemistries determined by the functional groups—amino acids in 

native pore structures, modifiable through complex formation and biochemical manipulation—
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lining the nanopore interior. Solid-state nanopores crafted in micro-and nanofabrication-

compatible materials such as silicon nitride and silicon dioxide offer the prospect of streamlined 

fabrication of robust, complex nanopore devices for single molecule measurement and 

manipulation. The ability to create solid-state nanopores with a variety of sizes and shapes to 

accommodate a wide range of target applications is also driving their increasing popularity. The 

surface chemistry of native solid-state nanopores is relatively simple, with silicon oxide 

nanopore surface chemistry, for instance, typically treated as being governed by the single 

chemical equilibrium10-11 

SiOH ⇌ SiO
- + H+ (1) 

Advances in the surface chemical modification of nanopores, however, are dramatically blurring 

the boundaries between the rich surface chemistry of protein pores and the relatively 

straightforward chemistry of native solid-state pores. A variety of methods exists to tune 

nanopore surface chemistry, from direct covalent attachment to the use of physi- and 

chemisorbed layers 18-22. Such surface modifications can be used to alter the nanopore surface 

chemistry and they can also be used to appreciably change the physical dimensions of the 

nanopore. Thus, what emerges is a design framework in which physical and molecular 

approaches can be used to tune the solid-state nanopore size and properties to suit applications as 

diverse as the fundamental investigation of receptor-ligand interactions23 and rapid, low-cost 

DNA sequencing24. The consequent challenge is the characterization of the resulting nanopore 

on a length scale that is challenging to access experimentally. Characterization approaches that 

rely on charged particle imaging place substantial demands on the user, and require access to 

facilities and expertise in methods beyond those required for nanopore use10, 25-26. The 

development of characterization methods requiring routine nanopore operation, alone, thus 
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continues, with the improved accessibility and efficiency of nanopore methods an attractive 

target10, 27. Such methods would additionally promise benefits for advancing the foundations of 

nanopore technology by permitting, for example, nanopore size and shape to be monitored and 

used for feedback during solution-based nanopore fabrication approaches19, 28-30. 

 Given the central role of the nanopore ionic conductance in many nanopore experiments, 

and given that the conductance is determined by factors including the nanopore size and surface 

chemistry, it is common to use the ionic conductance to characterize the nanopore. Using a 

simple but experimentally supported model for nanopore conductance10-11, 19, we have previously 

shown that the electrolyte-dependence of the conductance offers, in general, only a limited view 

of nanopore structure27. In particular, the ability to determine at most two nanopore geometry 

parameters does not necessarily permit unambiguous identification, by conductance, of nanopore 

shape. Independent knowledge of some elements of the size or shape, though, can be used within 

that framework to allow the evaluation of conductance-derived parameters, or to impose 

constraints that allow the partial recovery of more geometric information from nanopores 

described by more than two geometric parameters27. In this work, we show that by using the 

electrolyte-dependence of nanopore conductance before and after surface coating, we can more 

completely characterize nanopore size and shape without the need for independent geometry 

inputs. In particular, for experimentally realistic three-parameter pores, the augmented approach 

allows nanopore size and shape to be completely recovered from the conductance. 

Theory 

We adopt a widely-used theoretical model for the nanopore conductance that has been 

successfully used to model experimental results10-11, 19. We focus on nanopores less than 20nm in 
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diameter, for which the access resistance is a negligible contribution31, leaving two contributions 

to the nanopore conductance, 𝐺10, 27 

𝐺total = 𝐺bulk + 𝐺surface (2) 

The bulk term, 𝐺bulk arises from the flow of ions through the pore, treated here as a uniform 

flow32 

𝐺bulk = 𝐾 (∫
𝑑𝑧

𝜋(𝑟(𝑧))
2)

−1

= 𝐾 ∙ 𝐴 

(3) 

where K is the solution conductivity and r(z) is the radius of the pore as a function of the distance 

into the pore, in a cylindrical coordinate system. The surface term, 𝐺surface, accounts for the flow 

of counterions along the charged surface of the pore, which is especially significant in low bulk 

ionic strength solutions10-11 

𝐺surface = 𝜇|𝜎| (∫
𝑑𝑧

2𝜋𝑟(𝑧)
)

−1

= 𝜇|𝜎| ∙ 𝐵 
(4) 

where σ is the surface charge concentration, and μ is the mobility of the counter ions proximal to 

the surface. This surface term thus augments the conductance with additional information 

involving the geometry and the surface chemistry. For a nanopore with surface chemistry 

governed by the chemical equilibrium in equation 1, the surface charge will arise from the 

charged SiO- groups on the surface, and the mobile counterions will be cations. By solving for 

the equilibrium concentration of H+ ions at the surface, [H+]0, and applying the Nernst 

equation33 

[H+]0 = [H+]bulk exp(−𝑒𝛽𝜓0) (5) 

where [H+]bulk = 10−pH, one can obtain an expression for the diffuse layer potential proximal to 

a negatively charged surface33 
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𝜓𝐷(𝜎) =
1

𝛽e
ln

−σ

eΓ + 𝜎
− (pH − pKa)

ln 10

𝛽e
−

𝜎

𝐶
 

(6) 

where e is the elementary charge, 1/β is the thermal energy (at 298K for all calculations), Γ is the 

total surface density of surface chargeable groups, pKa is the acid dissociation constant for 

equation 1, pH is the bulk solution pH, C is the Stern layer capacitance, and σ is the surface 

charge density. Surface functionalization likely changes the pKa, and if the surface becomes 

cationic, the argument of the first logarithm becomes (𝑒𝛤 − 𝜎) 𝜎⁄ , and the mobile surface 

counterions are anions. Coupling the appropriate expression for the diffuse layer potential with 

the Grahame equation33 

𝜎(𝜓D) =
2𝜖𝜖0𝜅

𝛽𝑒
sinh (

𝛽𝑒 𝜓D

2
) 

(7) 

where 𝜖𝜖0 is the permittivity of the solution and к-1 is the Debye screening length, calculated 

from 𝜅2 = 𝛽𝑒2𝑛KCl 𝜖𝜖0⁄  where nKCl is the numerical concentration of the potassium chloride 

electrolyte, allows one to find a solution for the surface charge concentration of the pore10-11, 33.  

The nanopore conductance in equation 2 can be expressed in a form that clarifies its 

geometrical and surface chemical underpinnings27 

𝐺total = 𝐴 𝐾 + 𝐵 𝜇|𝜎| (8) 

where A and B are the volume and surface integrals, respectively, in equations 3 and 4. When a 

continuous coating of thickness 𝛿 is applied to the nanopore surface, the new conductance of the 

nanopore can be expressed as 

𝐺′total(𝛿) = 𝐴′(𝛿) 𝐾 + 𝐵′(𝛿) 𝜇′|𝜎′| (9) 
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where the prime denotes the parameter value after surface coating. Measurement of the nanopore 

conductance at a minimum of two electrolyte concentrations, each, before and after changing the 

surface coating (a dimension change, 𝛿 ≠ 0, is required, and a surface charge density change 

from 𝜎 to 𝜎′ is likely), formally allows for the unique determination of the geometry parameters 

𝐴, 𝐴′(𝛿), 𝐵 and 𝐵′(𝛿). These parameters can then be used to determine the values of the 

underlying geometric parameters such as the nanopore limiting radius. 

 The implementation of this approach is not restricted to experiments in which only 

changes in the solution electrolyte concentration are used to predictably change the solution 

conductivity, 𝐾, and the surface conductivities 𝜇|𝜎| and 𝜇′|𝜎′|. Chemical and physical 

parameters both implicit and explicit in Equations (6) and (7) can be used instead, including:  a 

direct change of solution pH, a change of solvent to drive changes in ion mobility or surface acid 

dissociation constants, or a change in temperature to affect the surface acid dissociations and ion 

mobilities. The method is quite general and relies only upon the explicit functional dependence 

of the conductance shown in Equations (8) and (9). It does not rely upon the particular chemical 

or physical parameter used experimentally to deliver the underlying functional dependence of 𝐾, 

 𝜇|𝜎| and 𝜇′|𝜎′|. 

Methods 

In all calculations where the parameters appear, the bulk solution pH was fixed at 7.5 and the 

nanopore membrane thickness, L, was held fixed at 30nm. The aqueous electrolyte solution was 

composed of potassium chloride, so that the solution conductivity was calculated from 

𝐾 = e 𝑛KCl(𝜇K + 𝜇Cl) (10) 
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where 𝜇K = 7.6 × 10−8m2/(V ∙ s) and 𝜇Cl = 7.9 × 10−8m2/(V ∙ s) are the mobilities of the 

potassium and chloride ions, respectively11. The solution permittivity was approximated as 

𝜖𝜖0 = 77.75𝜖0 throughout. Native, uncoated nanopores had their surface chemistry described by 

the equilibrium in Equation 1, with a constant pKa=7.934. The surface charge density, 𝜎, of the 

uncoated nanopores was calculated as the simultaneous solution to equations 6 and 7, where Γ 

and C were held constant at 8 × 1018 m−2, and 0.3 F ∙ m−2, respectively, and were not changed 

after surface coating33-34. 

We selected a number of common nanopore radial profiles, listed in Table 1, to describe the 

shape of the nanopores. We chose to model an amine-terminated, covalently modified nanopore 

surface to give a surface coating involving the acid-base equilibrium  

−NH2H+⇌ − NH2 + H+ (11) 

and described by pKa = 10.8. The 1.7nm-thick coating was assumed to smoothly and uniformly 

coat the surface without changing the nanopore shape and with the monolayer chains orthogonal 

to the surface at the point of attachment. The surface coating did, however, change the sign of the 

charge on the nanopore surface and the identity of the mobile surface counterions, from cations 

in the native pore to anions in the coated pore. 

 To investigate the ability of the proposed method to recover the nanopore size and shape 

for nanopores with limiting radii, 𝑟0, between 2.5 and 10nm, we computed the integrals 𝐴, 𝐴′(𝛿), 

𝐵 and 𝐵′(𝛿), using 𝛿 = 1.7nm to account for the length of the silane-coupled monolayer, for 

each nanopore radial profile listed in Table 1. The lower limit was chosen to prevent the 

monolayer from sterically closing the pore, but must in practice be responsive to the onset of 

overlapping Debye layers. To generate the set of reference (ref) values, we varied the limiting 
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radii, 𝑟0,ref, and fixed the inner cylinder lengths, 𝑙ref of the exponential-cylindrical and conical 

cylindrical models at 11nm, the slope parameter 𝑏ref of the exponential-cylindrical model at 

0.19nm-1, and the outer radii, 𝑅ref of the hyperbolic, conical and conical-cylindrical models at 

𝑟0,ref + 10nm10, 27, 31. We then used these reference calculations to geometry-optimize all of the 

radial profiles at each limiting radius. For example, an 𝑟0,ref = 3nm exponential-cylindrical 

nanopore was used to geometry-optimize cylindrical, conical, hyperbolic, conical-cylindrical and 

exponential-cylindrical profiles, and an 𝑟0,ref = 7𝑛𝑚 cylindrical nanopore was used to geometry-

optimize cylindrical, conical, hyperbolic, conical-cylindrical and exponential-cylindrical profiles. 

All native geometry parameters, except for L, were varied during the geometry optimizations. 

The geometry optimizations were first performed with fixed monolayer thickness, 𝛿 = 1.7nm, 

and then repeated in a separate trial with 𝛿 as a free parameter, in an attempt to recover the layer 

thickness. The optimization used the Nelder-Mead minimization algorithm, and involved varying 

the underlying geometry parameters (e.g. 𝑟0, 𝑙, etc.) of the radial profiles to minimize  

RMSEAB = √
1

4
((

𝐴fit − 𝐴ref

𝐴ref
)

2

+ (
𝐵fit − 𝐵ref

𝐵ref
)

2

+ (
𝐴′fit − 𝐴′ref

𝐴′ref
)

2

+ (
𝐵′fit − 𝐵′ref

𝐵′ref
)

2

) (12) 

where the subscript “ref” denotes the known, reference, parameter value, and the subscript “fit” 

denotes the corresponding value calculated using the trial values. Given the form of the 

conductance (equations 8 and 9), minimization of RMSEAB delivers a weighted conductance-

based geometry optimization. An error threshold of 10-12 was used in the optimization runs, and 

the optimized structure was the result of the trial with the lowest RMSEAB. A similar metric 

expressed directly in terms of conductance requires an average across N potassium chloride 

concentrations  
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RMSEG

= √
1

N
∑

1

2
((

Gfit([KCl]) − Gref([KCl])

Gref([KCl])
)

2

+ (
Gfit

′ ([KCl]) − Gref
′ ([KCl])

Gref
′ ([KCl])

)

2

)
[KCl]

 

(13) 

The potassium chloride concentrations used here ranged from 0.01M to 1M, with the i-th 

concentration calculated from 10−2+(𝑖−1)0.01M. 

Results and Discussion 

In the most common implementation of conductance-based nanopore sizing, the nanopore 

conductance at a single electrolyte concentration is used to extract a radius, and nanopore surface 

charges may be either included or neglected in the calculation. We explore this canonical single-

point approach as a prelude to the consideration of the more involved process outlined in the 

Methods section. The use of a single conductance value for geometry optimization permits only 

the use of single-parameter profiles—either those that are inherently single-parameter, such as 

the cylindrical profile, or those in which all parameters but one are fixed to particular values or 

fixed by functional relationships that are either known or are assumed reasonable. In addition to 

this strictly geometric limitation, the use of a single conductance value, 𝐺total, does not allow the 

separation of bulk and surface contributions to the conductance. Measurement in high ionic 

strength solutions, though, can minimize the effect of the surface term, albeit at the cost of 

information about the surface chemistry. Geometry optimization of a particular nanopore profile 

can produce dramatically different nanopore sizes when geometry parameters that satisfy 

Equation 8 are determined by either including or neglecting the surface charge. These single-

point geometry optimizations produce exact agreement with the reference conductance, so that 

no error metrics exist to evaluate the suitability of the assumed nanopore shape. Figure 1 and the 
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discussion that follows put the necessity to consider size, shape, surface chemistry and 

electrolyte composition in concert into relief. 

 

Figure 1. The conductance of an uncoated, surface-charged exponential cylindrical reference 

pore (r0,ref = 4.9 nm, lref=11nm, and bref=0.19nm-1) was calculated at a number of different 

electrolyte concentrations. All of the plotted radii were calculated by using the single reference 

conductance at each electrolyte concentration to geometry optimize either the known reference 

radial profile (with fixed l=11nm, and b=0.19nm-)1, or the canonical cylindrical approximation. 

For each nanopore shape, the radial optimization was performed with the surface charge included 

and then neglected. 

To generate Figure 1, the conductance of the uncoated reference nanopore was calculated using a 

realistic radial profile with three tunable geometric parameters (exponential-cylindrical, see 

Supplemental Table S1)10 and accounting for the surface charge established by the equilibrium 

described in Equation 1. At each electrolyte concentration considered, the single conductance 

value was used to determine the radius of a particular single-free-parameter nanopore profile—

here, either the original reference profile with fixed l=11nm, and b=0.19nm-1, or a cylindrical 

profile—by including or neglecting the surface charge. In solutions with high bulk conductivity 



 13 

and high ionic strength, omission of the surface charge had little effect on the best-fit nanopore 

radii. There was, however, a clear difference in the nanopore radii determined via assumption of 

the nanopore shape—a difference that persisted across solution electrolyte concentrations. At 

lower electrolyte concentrations, the profile-specific errors in best-fit radii were dramatically 

superseded by the errors arising from the neglect of surface charges in the geometry 

optimization. This tremendous sensitivity to the surface chemistry points both to the potential to 

profile the surface chemistry via conductance and to the necessity to consider it10-11, 14, 35. It is 

moreover essential to emphasize that in addition to the visible differences in cylindrical and 

exponential-cylindrical best-fit radii shown in Figure 1, the two optimized versions of the same 

nanopore have dramatically different shapes—one has a cylindrical restriction of 11nm in length 

that then opens towards the membrane surfaces, the other a cylindrical restriction that spans the 

entire 30nm membrane thickness. These observations underscore the importance—and 

difficulty—of using conductance to determine nanopore shape and surface chemistry, together:  

a single conductance value can be exactly satisfied by nanopores of a host of different sizes and 

shapes. Extension of this basic, single-point optimization to use the electrolyte-dependence of the 

conductance—at minimum a two-point optimization, but more practically requiring more than 

two data points to improve the fit statistics—offers the possibility of determining the bulk and 

surface contributions. In addition, the extension delivers an additional degree of freedom for 

nanopore geometry optimizations:  it permits the optimization of radial profiles with up to two 

free geometry parameters27. Given that transmission electron microscope (TEM)-fabricated 

nanopore profiles can require description by no less than three free parameters, such a geometry 

optimization requires parameter constraints or reductions. This has the consequence of 

compromising the nanopore size determination and moreover prevents even the shape of pores 
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from being determined without additional information27. One of the substantial and myriad 

benefits conferred by coating nanopores with overlayers, then, is the additional degrees of 

freedom provided for conductance-based geometry optimizations. 

 Nanopores and nanopore surface functionalization are frequently characterized using a 

conductance-based method that does not involve variation of the electrolyte concentration, 

however. The approach is analogous to the single-point optimization of Figure 1 and uses the 

nanopore conductance at a single electrolyte concentration, before and after surface coating. The 

use of two conductance values provides a much-needed additional degree of freedom compared 

to the single-point measurement, but the available information is still limited. In particular, one 

would perform a single measurement of the conductance before and after (′) coating, 𝐺1 =

𝐴 𝐾1 + 𝐵 𝜇1|𝜎1| and 𝐺′1(𝛿) = A(𝛿) 𝐾1 + B(𝛿) 𝜇1′|𝜎1′|, respectively, where the subscript “1” 

denotes the particular value of the parameter. Rewriting A(𝛿) = α(δ)𝐴 and B(𝛿) = β(δ)𝐵 (with 

different values of α(δ) and β(δ) for each nanopore size and shape), and defining effective (eff) 

values α(𝛿)𝐾1 = K1,eff and β(𝛿)𝜇1′|𝜎1′| = (𝜇1′|𝜎1′|)eff yields two equations 𝐺1 = 𝐴 𝐾1 +

𝐵 𝜇1|𝜎1| and 𝐺′1(𝛿) = A K1,eff + B (𝜇1′|𝜎1′|)eff that makes this approach formally equivalent to 

the two-point nanopore geometry optimization that had previously been explored in detail27. 

While delivering generally superior performance to a single-point optimization, it nevertheless 

has well-characterized performance limitations in comparison to the optimization method 

introduced here. For example, such a two-point approach cannot be used to uniquely geometry 

optimize nanopores requiring more than two free geometry parameters27. 

 We now consider the nanopore optimization method outlined in the Theory and Methods 

sections, a method that requires knowledge of the nanopore conductance at a minimum of two 
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electrolyte concentrations, before and after surface coating. The method therefore requires a 

minimum of four conductance values (a four-point optimization), but in practice more than these 

four conductance values would be used in order to improve the fit statistics, at least the first time 

that a pore was to be characterized. Equation (13) could be used to guide the geometry 

optimization using the conductance directly. In the conductance equations, Equations (8) and (9), 

however, the physical pore dimensions and the surface chemical properties are separable 

contributions to the conductance. To highlight the performance of the optimization method in 

recovering nanopore size and shape, we used Equation (12) to perform the geometry 

optimizations, guided by the known values of 𝐴ref, 𝐴ref
′ (𝛿), 𝐵ref and 𝐵ref

′ (𝛿). The optimization 

results presented here using Equation (12) deal with geometry only, and are completely 

independent of the surface chemistry, which need not be specified. Experimentally, this 

geometry-based approach would have great utility if a two-step optimization were adopted. In 

the first step, the conductance versus electrolyte concentration curves (Equations 8 and 9) would 

be fit to extract best-fit values for 𝐴, 𝐴′(𝛿), 𝐵 and 𝐵′(𝛿)—parameters that would be, at this 

stage, devoid of physical meaning because the core geometry parameters underlying their values 

would not yet be considered. Within the framework of the conductance model described by 

Equations (8) and (9), this first step would thus require no knowledge of nanopore geometry, but 

would require only knowledge of its surface chemistry. Minimization of RMSEG to achievable 

~10-12 levels (cf. Figure 2) may require slight fine-tuning of surface parameters to optimize the fit 

to the conductance. The best-fit 𝐴, 𝐴′(𝛿), 𝐵 and 𝐵′(𝛿) would then serve as the reference values 

to govern the subsequent determination of nanopore size and shape using Equation (12)—a 

geometry-only optimization. 
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 Figure 2 summarizes geometry optimizations, using Equation (12), selected from the full 

set performed. In Figure 2A, exponential-cylindrical nanopores described by three underlying 

geometry parameters (r0,ref, l=11nm, and b=0.19nm-1)10 were used to calculate the reference 𝐴, 

𝐴′(𝛿), 𝐵 and 𝐵′(𝛿). Geometry optimizations of all the radial profiles listed in Table 1 were 

performed, without constraints on the values of the geometry parameters (other than L=30nm and 

𝛿 = 1.7nm, as outlined in Methods). The lowest values of the optimization metric RMSEAB 

were for the exponential-cylindrical profile—the shape matching the reference nanopore shape—

and were orders of magnitude lower, for all nanopore sizes considered, than the RMSEAB for all 

of the other candidate nanopore shapes. The RMSEAB metric was therefore clearly able to 

correctly identify the nanopore shape. The errors in conductance, RMSEG, corresponding to all 

of the RMSEAB-best-fit geometries, were also calculated, although they were not used for the 

optimization. While the RMSEG are scaled by the solution and surface physicochemical 

parameters, they still showed the same relative trends and magnitudes as the RSMEAB and the 

same performance in correctly identifying the nanopore shape from amongst the candidates. An 

examination of the best-fit limiting radii, 𝑟0, for each trial shape further emphasizes the merits of 

this conductance-based characterization approach. The cylindrical, conical and hyperbolic 

profiles rejected by the RMSEAB metric yielded radii whose deviations from the reference radii 

were significant on the length scale of nanopore-based single-molecule sensing and 

manipulation. In spite of broad structural similarities (inner cylinders that widen towards the 

membrane surfaces) and limiting radii in very close agreement, the RMSEAB metric was able to 

clearly differentiate between conical-cylindrical and exponential-cylindrical pore shapes. This 

inability of the conical-cylindrical pore to match the exponential-cylindrical nanopore 

conductance occurred in spite of the variation of 𝑅 − 𝑟0 from ~3.5nm to ~7nm with increasing 



 17 

𝑟0,ref, and 𝑙 varying from 9.8 to 11nm versus the constant 11nm in the reference nanopores (not 

shown). This ability to distinguish between even structurally similar three-parameter (or fewer) 

nanopore shapes using the present four-point method is in marked contrast to earlier reports 

using two-point conductance optimizations27. 

Figure 2B presents the results of the geometry optimizations of conical reference 

nanopores. Comparison of the RMSEAB and RMSEG for all best-fit trial profiles indicated, by 

several orders of magnitude difference in errors, that the reference nanopores were conical, and 

the best-fit radii 𝑟0 and 𝑅 for the conical trial profile matched the known reference values. 

Reassuringly, the greater parameter flexibility of the exponential-cylindrical and conical-

cylindrical profiles (three parameters versus the two parameters of the conical model) could not 

overcome the large gap in RMSEAB. The inability of the conical-cylindrical trial profile to match 

the conical reference conductances arises from its limiting behavior as 𝑙 → 0:  the uncoated pore 

profile reduces to a conical profile, but the coated profile remains conical-cylindrical. 

Nevertheless, the optimized values of the conical-cylindrical profiles indicated strong conical 

character:  limiting radii essentially matching conical reference limiting radii, and values of 𝑙 

nearing zero (not shown).  

Four-point optimizations of hyperbolic and conical-cylindrical reference nanopores 

similarly allowed the correct determination of the reference nanopore shapes and their geometry 

parameters. A particularly interesting case of the ability of the four-point optimization to 

correctly determine the shape of reference nanopores with three free parameters or less occurred 

when using a cylindrical reference nanopore. All of the trial profiles listed in Table 1 and 

Supplemental Table S1 will reduce to a cylinder as a limiting case. It is therefore possible to fit a 
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cylindrical reference pore with a conical-cylindrical profile, for example, by satisfying either 

𝑅 = 𝑟0, and 𝑙 = 𝐿. It is necessary, therefore, to examine not only the RMSEAB or RMSEG for a 

particular trial profile, but also the resulting best-fit geometry parameters that could indicate a 

cylindrical reference nanopore even when using a conical-cylindrical trial, for example. 

 

Figure 2. (A) The electrolyte-dependence of the conductance of uncoated and amine-surface-

decorated exponential-cylindrical nanopores (𝑟0,ref, 𝑙 = 11nm, and 𝑏 = 0.19nm-1
, 𝛿 = 1.7nm) 

was used to geometry optimize, with fixed 𝛿 = 1.7nm, the nanopore profiles in Table 1 using 

Equation 12. Upper panels denote the error in the conductance calculated after optimization 
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using RMSEAB, shown in the middle panel. The lower panels denote the final limiting radius of 

the pore for each trial profile. (B) The reference nanopore was conical with 𝑅ref = 𝑟0,ref + 10nm, 

and also had 𝛿 = 1.7nm. 

The trial nanopore profiles span a range of experimentally representative nanopore shapes and, 

with a maximum of only three free geometry parameters, can nevertheless reproduce 

experimental conductance measurements10, 27. The ease with which RMSEAB and RMSEG, when 

coupled with examination of the resulting best-fit parameters, determined the optimal radial 

profiles with fixed-𝛿 hinged on the number of free parameters in the trial shapes compared to the 

degrees of freedom delivered by the functional form of the conductance. The four-point method 

should also be able to uniquely geometry-optimize four-parameter models, thereby allowing the 

nanopore surface coating thickness, 𝛿, to be an additional free parameter of the optimization. 

Figure 3 shows the outcome of these free-𝛿 geometry optimizations for an exponential-

cylindrical reference nanopore. The RMSE metrics excluded the cylindrical, conical and 

hyperbolic trial profiles, identical to the behavior seen for the fixed-𝛿 exponential-cylindrical 

reference nanopores characterization. The fit quality of exponential-cylindrical and conical-

cylindrical profiles to the reference conductances, however, could not be distinguished on the 

basis of the RMSE metrics. In the four-point framework, the optimization of profiles with four 

free parameters is no longer overdetermined by the available conductance data, and such 

ambiguity can emerge. A conical profile artificially given four free parameters (𝑟0, 𝑅, 𝛿 and the 

membrane thickness, 𝐿), for example, could also fit the conductance data with similarly low 

RMSE values. Compared to prior two-point work in which the conductance could not distinguish 

between a variety of reasonable two-parameter nanopore profiles, however, the current 

uncertainty is rather benign and can be compensated for by judicious choice of trial profiles, 
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careful examination of the optimized parameters or additional information27. Best-fit parameters 

𝑟0, 𝑙, and 𝑏 from optimization of the exponential-cylindrical trial profiles exactly matched the 

reference native pore parameters, and the optimizations also yielded the correct surface coating 

thickness, 𝛿. The radii of the conical-cylindrical pores were an excellent match to the reference 

radii, but the inner cylinder lengths, l, could be as much as 8nm larger than the 11nm reference 

value. The conical-cylindrical best-fit 𝛿 in Figure 3 consistently underestimated the 1.7nm 

reference value, but not unreasonably so. In general, though, the use of well-defined surface 

functionalization moieties allows the optimized values of 𝛿 to be used as an independent check 

on the nanopore conductance characterization. The best-fit 𝛿 values for the hyperbolic profiles, 

for example, exceeded the possible length of the monolayer, and can therefore be ruled out or, 

possibly, could motivate independent additional characterization of the surface decoration. 
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Figure 3. The geometry optimizations of exponential-cylindrical reference nanopores in Figure 2 

were repeated, but with 𝛿 as a free parameter of the optimization. The top three panels show the 

metrics and best-fit radii, while the bottom panel shows the corresponding values of the surface 

coating thickness, 𝛿. 

Conclusions 

Surface-coated nanopores are receiving increasing attention for the ability of surface coatings 

to tune nanopore dimensions and surface chemistry, and to confer powerful performance 

capabilities on a host of nanopore single molecule sensing and manipulation schemes. 

Knowledge of a nanopore’s size, shape and surface chemistry thus bears on nanopore creation, 

modification and application. While nanopore conductance is governed by the nanopore 

geometry and surface chemistry in concert with experimental parameters such as electrolyte 

composition and temperature, careful design is necessary if the measured conductance is to be 

used to reveal the underlying nanopore properties. The use of experimentally realistic trial 

nanopore profiles, coupled with consideration of the resulting best-fit parameters in the context 

of nanopore fabrication and surface functionalization details, is naturally essential to the success 

of this method. This is especially true when optimizing models with the full four degrees of 

freedom permitted by the method. The geometry optimization results were achieved using an 

experimentally-supported nanopore conductance model10-11 that allows the effects of nanopore 

geometry on the conductance to be clearly separated from the effects of surface chemistry. In this 

context, the conclusions drawn regarding the quality of the geometry optimization results 

presented here are general and, so long as the surface modification changes the nanopore 

dimensions, are not restricted to a particular choice of surface chemical modification. 
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The four-point conductance framework introduced here was able to correctly identify nanopore 

shapes and to determine the correct magnitudes of all key geometry descriptors of realistic 

nanopores with greater structural complexity than had previously been possible by conductance, 

alone. This capability included the complete characterization of an elegant, experimentally-

determined nanopore profile representative of TEM-manufactured nanopores10 without requiring 

constraint of its parameters27. The performance capabilities thus dramatically exceed those of the 

more usual single-point conductance approach based on a cylindrical nanopore approximation, 

and of the more sophisticated two-point conductance approaches. Beyond recovering the native 

nanopore structure, the four-point method was able to also probe the thickness of the surface 

coating, 𝛿. With the use of approaches that yield well-defined surface coatings, the best-fit 

values for the coating thickness emerge as an additional metric for evaluating the conductance-

based nanopore characterization. Straightforward measurements of the electrolyte-concentration-

dependent conductance of nanopores can thus serve as a simple yet powerful foothold for 

peering into these bioinspired nanoscale environments. 
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Table 1. Listing of nanopore radial profiles with the corresponding transformation of nanopore 

parameters after coating with a monolayer of thickness 𝛿 

Exponential-

cylindrical 

 
 

Hyperbolic 

 

Exponential-cylindrical 

𝑟0
′ = 𝑟0 − 𝛿 

𝑏′ =  
2 tan 𝜃𝐸

𝐿 − 𝑙 + 2𝛿(1 − cos 𝜃𝐸)
 

𝑙′ = 𝐿 + 2𝛿 − (𝐿 − 𝑙

+ 2𝛿(1 − cos 𝜃𝐸)) exp {
2𝛿 tan 𝜃𝐸 (1 − sin 𝜃𝐸)

𝐿 − 𝑙 + 2𝛿(1 − cos 𝜃𝐸)
} 

tan 𝜃𝐸 =
𝐿 − 𝑙

2
𝑏 

 

Conical 

Cylindrical 

 

Conical 

 

Hyperbolic 

𝑟0
′ = 𝑟0 − 𝛿 

(𝑅′)2 =  (𝑟0 − 𝛿)2

+ (
𝐿 + 2𝛿

𝐿 + 2𝛿 cos 𝜃𝐻
)

2

[(𝑅 − 𝛿 sin 𝜃𝐻)2

− (𝑟0 − 𝛿)2] 

tan 𝜃𝐻 =
𝑅𝐿/2

𝑅2 − 𝑟0
2
 

Cylindrical 

 

All 

𝐿′ = 𝐿 + 2𝛿 

Conical Cylindrical 

𝑟0
′ = 𝑟0 − 𝛿 

𝑅′ =  𝑅 + 𝛿(cot 𝜃𝐶𝐶 − csc 𝜃𝐶𝐶) 

𝑙′ = 𝑙 + 2𝛿(sec 𝜃𝐶𝐶 − tan 𝜃𝐶𝐶) 

tan 𝜃𝐶𝐶 =
(𝐿 − 𝑙)/2

𝑅 − 𝑟0
 

Conical 

𝑟0
′ = 𝑟0 − 𝛿 csc 𝜃𝐶 

𝑅′ =  𝑅 + 𝛿(cot 𝜃𝐶 − csc 𝜃𝐶) 

tan 𝜃𝐶 =
𝐿/2

𝑅 − 𝑟0
 Cylindrical 

𝑟0
′ = 𝑟0 − 𝛿 

 

Supporting Information. Table S1 listing nanopore radial profiles with the corresponding 

volume (A) and surface (B) integrals. This material is available free of charge via the Internet at 

http://pubs.acs.org. 
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