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Abstract 

Great care is generally taken in epidemiologic studies to ensure the internal validity 

of causal effect estimates; however, the external validity of effect estimates, has 

received considerably less attention. The causal effect in a given target population is 

the average of heterogeneous subgroup effects, weighted according to the 

prevalence of the subgroups in the target population. When the study sample is not 

a random sample of the target population, the sample average treatment effect, even 

if internally valid, cannot be expected to equal the average treatment effect in the 

target population. There are several categories of choices for the target population. 

The study sample may be a census of the target population; the population from 

which the study sample is a random sample or from which the study sample is not a 

random sample; or some other population of which, the study sample is not a subset 

of the target population. The identification conditions sufficient for external validity 

closely parallel the identification conditions for internal validity, namely: 

conditional exchangeability; positivity; similar distributions of the versions of; 

similar patterns of interference; no measurement error; and correct model 

specification. The value of an effect estimate for planning purposes and decision 

making will depend on the degree of departure from both internal and external 

validity. If the study sample is not a random sample of the target population, direct 

standardization (the g-formula or transport formula) or inverse probability 

weighting can be used to estimate a causal effect in the target population.  
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Epidemiology as a discipline is distinguished by its efforts to identify causes 

of disease for the purpose of intervening to improve public health. Great care is 

generally taken in epidemiologic studies to ensure the internal validity of causal 

effect estimates,1 including the application of methods to minimize the potential for 

bias due to measurement error, confounding, selection (specifically, due to missing 

data, including censoring and truncation), and model misspecification. However, the 

external validity of effect estimates, has received considerably less attention. For the 

purposes of this discussion, we use the term external validity to refer to the 

potential for an internally valid treatment (or exposure or intervention) effect 

measured in a study sample to differ from the treatment effect that would have been 

estimated in the population of interest2 (henceforth, the target population). External 

validity encompasses generalizability and transportability, which we distinguish 

below. We advance the discussion of external validity herein using a potential 

outcomes framework. We enumerate a set of identification assumptions sufficient to 

estimate an externally valid effect, and note the parallel between these and the 

identification assumptions sufficient to estimate an internally valid effect. Finally, 

we illustrate some issues regarding generalizability with a simple example and 

discuss practical considerations for addressing generalizability in epidemiological 

study design. 

 

Definitions and causal framework 

A well-defined causal question states the outcome(s) of interest, denoted by 

𝑌; the treatments of interest, denoted by 𝐴; and the target population, of size 𝑁 
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described by a set of characteristics denoted by W. Here, we assume variables in W 

are discrete, however, all concepts are easily extended to the case of continuous W. 

The causal effect of interest is a contrast (i.e., a difference or ratio) of the 

distribution of potential outcomes, 𝑌(𝑎), in the target population under two 

different interventions, treatments, or policies of interest, for example:  

𝐸𝑇{𝐸[𝑌(𝑎)|W]𝑃𝑇(W)} − 𝐸𝑇{𝐸[𝑌(𝑎′)|W]𝑃𝑇(W)}                    (1) 

where 𝑌(𝑎) denotes the outcome that a participant would have if he or she received 

treatment 𝑎, and the subscript 𝑇 denotes that the set of characteristics W takes the 

distribution seen in target population. This notation makes it clear that the overall 

causal effect in the target population is the average of effects that are heterogeneous 

according to W, with weights defined by the distribution of W in the target 

population, 𝑃𝑇(W). 𝑃𝑇(W) is often omitted when the causal effect of interest is 

written (i.e. E[𝑌(𝑎)] − E[Y(𝑎′)]) under the implicit assumption that either 1) the 

study sample is a census of the target population; 2) the study sample is a simple 

random sample from the target population, i.e., the distribution of W in the study 

sample, denoted 𝑃𝑠(𝑊), is equal to  𝑃𝑇(W)  in expectation; 3) there is a distinct 

target population, 𝑀, of which the study sample is not a proper subset, for which 

𝑃𝑀(W)  is equal to 𝑃𝑆(W); or 4) the causal effect is homogeneous across all 𝑊 for the 

causal contrast of interest.  

It is helpful to distinguish threats to validity that arise after enumeration of 

the study sample, which we define as threats to internal validity, from threats to 

validity due to eligibility and enrollment of study subjects, which we define as 

threats to external validity. We define an estimator as internally valid when the 
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estimator of association in the study sample is a consistent estimator of the 

treatment effect in the source population from which the study participants are 

randomly sampled (the sample average treatment effect). The distribution of 𝑊 in 

the study sample, 𝑃𝑆(W), may differ from 𝑃𝑇(W) without threatening internal 

validity. We define a causal estimator to be externally valid when the sample 

average treatment effect is a consistent estimator of the average treatment effect in 

the target population (population average treatment effect). An estimate will be 

externally valid under one of the first three scenarios described above, all of which 

result in the distribution of W in the study sample being equal to the distribution of 

W in the target population. 

 

Assumptions 

Given we cannot observe all potential outcomes for subjects in our target 

population or our study sample,3,4 we can rely on a sufficient set of identification 

assumptions under which (with a consistent estimator) an estimate of association 

could be interpreted causally.  

These assumptions are well described in the literature for estimating an 

internally valid causal estimate. They include: 1) the unexposed are a good 

substitute for the experience of the exposed in the absence of exposure and vice 

versa (exchangeability), perhaps conditional on a set of covariates, Z (conditional 

exchangeability); 2) a non-zero probability of exposure within every stratum 

defined by Z (positivity); 3) treatment variation irrelevance or no versions of 

treatment (sometimes referred to as consistency);5-84) no interference or partial 



   

 

6 
Generalizability Definitions 

interference (or some other restriction on the interference structure);9,10  5) no 

measurement error; and 6) if Z is high dimensional and non-parametric inference is 

unfeasible, correct specification of parametric models.  

The identification conditions sufficient for external validity closely parallel 

the identification conditions for internal validity.18,27 First, we assume that the 

participants included in the sample are exchangeable with members of the target 

population who were not sampled, perhaps conditional on W (conditional 

exchangeability):  

𝑆 ⊥ [𝑌(𝑎), 𝑌(𝑎′)]|W  

where 𝑆 is an indicator of enrollment into the study sample. Enrollment into the 

sample is both under the control of the researcher (in designing a recruitment 

strategy) and under the control of the participants (in deciding whether to provide 

consent to participate). For the purposes of identification of the causal contrast in 

the target population, the set of characteristics, 𝑊, is sufficient if it includes all 

causes of (or proxies for causes of) sampling and the outcome. If the researcher is 

willing to specify a single causal contrast of interest, then the set of characteristics 

W may be restricted to a subset of W that are effect measure modifiers of that 

contrast.2 Second, we assume that, within strata of W, all subjects in the target 

population have some probability of being selected into the sample (𝑆 = 1) 

(positivity):  

0 < Pr(S = 1|W) < 1, for all W, such that 𝑃𝑇(W) > 0 

Third, we assume similar distribution of the versions of treatment in the study 

sample and the target population (of which treatment variation irrelevance is a 
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special case). This may be a strong assumption when the delivery mechanism for 

treatment differs dramatically between the study sample and the target population 

(e.g., treatment given to trial participants may have been accompanied by more 

adherence education and supportive services, as well as Hawthorne effects due to 

trial participation).11 Fourth, we assume similar patterns of interference in the 

target population and the study sample (of which no interference is a special 

case).11-13 Finally, we assume no measurement error for exposure, outcome, and all 

variables W, and correct model specification (if we use a parametric model ).  

 

Defining the target population  

Failure to specify the target population explicitly precludes comparisons 

between the target population and the study sample of patient characteristics 

(exchangeability), details of the implementation of the intervention (treatment 

versions), or the comparison of patterns of interference between the target 

population and the study sample. In failing to make these aspects explicit in study 

design and planning, the generalizability of study results to some unspecified target 

population is nebulous.14-18  

There are several categories of choices for the target population.19 First, the 

study sample may be a census of the target population. This is almost never the case, 

because in nearly all instances, we have done research to inform decisions about a 

population at least somewhat different than that under study.  A second choice for 

the target population may be the population from which the study sample was 

sampled. When the sampling is random, 𝑃𝑆(W) is the same as 𝑃𝑇(W) in expectation 



   

 

8 
Generalizability Definitions 

and sample average treatment effect equals the population average treatment effect 

in expectation (Figure 1a). When the study sample is not a random sample from the 

target population and 𝑃𝑆(W) differs from 𝑃𝑇(W), the sample average treatment 

effect can be expected to differ from the population average treatment effect (Figure 

1b). A third choice for the target population is some other population that does not 

include the study sample  (Figure 1c). In both of the latter cases (study sample not a 

random sample of the target; external population), additional information is needed 

to estimate the effect of interest in the target population, namely the distribution of 

𝑃𝑇(W).  

A distinction between generalizing results to a target population that 

includes as members those persons included in the study sample (Figures 1a and 

1b) and transporting results to a target population that is non-overlapping with the 

study sample (Figure 1c) has been made previously, but not discussed in depth.20 In 

the former case, a physical probability of sampling can be envisioned;21 in the latter, 

the probability of sampling is not physical.21,22 This should not alarm us; 

transporting results to a target population that is non-overlapping with the study 

sample is simply direct standardization. Graphical criteria can assist in determining 

whether an estimate of effect is directly transportable and if not, can help identify 

the appropriate “transport formula” for estimating an effect for the target 

population.23,24 Despite these distinctions between target populations are 

overlapping or non-overlapping with the study sample, the same set of 

generalizability assumptions described above holds in both scenarios.  
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Example 

 To demonstrate how the sample average treatment differs from the 

population average treatment effect when the study sample is not a random sample 

of the target population, consider the following example. Imagine the target 

population comprises 𝑁 = 50,000 individuals, in whom the prevalence of two 

dichotomous causes of the outcome, 𝑊1 and 𝑊2, is 0.15 and 0.20, respectively. In the 

study sample (𝑛=1,000), as in many trials, participants at greater risk of the 

outcome (𝑊1 = 1 or 𝑊2 = 1) were oversampled, with 𝑃(𝑊1) = 0.5 and 𝑃(𝑊2) = 0.5. 

In both the study sample and in in the target population, the exposure, 𝐴, is 

randomly assigned with probability 0.5. The 1-year risk for the outcome is defined 

by the function: 𝑃(𝑌 = 1) = 0.1073 − 0.05𝐴 + 0.20𝑊1 + 0.20𝑊2 − 0.15𝐴𝑊1𝑊2. The 

data from one realization of a target population and study sample generated under 

these conditions appears in Table 1. 

Given this realization of the data, the estimate of the risk difference due to 𝐴 

in the target population is -5.3%. The estimate of the risk difference due to 𝐴 in the 

study sample is -9.7%.  

The g-formula or inverse probability (IP) of sampling weights can be used to 

use the study sample data to estimate the population average treatment effect. The 

g-formula (equivalent to Bareinboim & Pearl’s “transport formula”)23 and equation 

(1) above is:  

𝑃[𝑌(𝑎)] = ∑ 𝑃[𝑌(𝑎)|𝑊 = 𝑤]𝑃𝑇(𝑊 = 𝑤)

𝑊
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Which, if we assume consistency and conditional exchangeability given 𝑊, can be 

estimated by:  

𝑃[𝑌 = 1|𝐴 = 𝑎] = ∑ 𝑃[𝑌 = 1|𝐴 = 𝑎, 𝑊 = 𝑤]𝑃𝑇(𝑊 = 𝑤)

𝑊

 

where the quantity 𝑃[𝑌 = 1|𝐴 = 𝑎, 𝑊 = 𝑤] is estimated in the study sample and 

𝑃𝑇(𝑊 = 𝑤) is the probability that 𝑊 = 𝑤 in the target population. The estimate of 

effect in the target population using the non-parametric g-formula was -5.4%.  

Scaled IP of sampling weights were defined:  

𝑃(𝑆 = 1)

𝑃(𝑆 = 1|𝑊1 = 𝑤1 , 𝑊2 = 𝑤2)
 

If the set of covariates, 𝑊, that should be included in calculating IP of sampling 

weights is high dimensional, the denominator of the weights can be modeled 

parametrically. In this example, we used a fully saturated model for the 

denominator of the weights. The IP of sampling weighted estimate of effect in the 

target population based on data from the study sample was -5.4%.  

  

Note that the results from the IP of sampling approach and the g-

formula/transport formula will be equivalent when both are estimated non-

parametrically. In practice, if the dimension of 𝑊 is large and 𝑃(𝑆 = 1) or 𝑃(𝑌 =

1|𝐴 = 𝑎, 𝑊 = 𝑤) is modeled, the two approaches may give different results due to 

different modelling assumptions or model misspecification. Doubly robust 

estimation of the population average treatment effect is also possible.25 

 

Practical considerations for study design 
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The only way to ensure an estimate is directly generalizable (in expectation) 

to a particular target population would be draw the study sample as a random 

sample from that target population as described above.12 However, beyond the 

logistical, financial, and ethical challenges to conducting such a study, in certain 

circumstances, a study sample that is representative of the target population may be 

undesirable.18,26,27 When first exploring the existence of a causal effect, non-random 

sample selection may be purposefully undertaken. For example, an investigator 

might enroll a sample for a trial that has a higher than average risk of disease to 

increase statistical efficiency, or restrict enrollment into an observational study to 

control for an important confounder. Oversampling to avoid sparse numbers of 

patients within subgroups improves precision during confounder control and also 

allows estimation of subgroup effects,18,26 although trials are rarely powered to 

estimate such subgroup effects.   

Epidemiologists are typically primarily concerned with the internal validity 

of effect estimates. However, the value of an effect estimate for planning purposes 

and decision making will depend on the degree of departure from both internal and 

external validity. External validity will be threatened to the degree that 1) the 

prevalence of other causes of the outcome (also versions of treatment, patterns of 

interference) differs in the study sample and the target population, and 2) the 

exposure or intervention causal contrast is modified by those other causes of the 

outcome that differ in the study sample and the target population.2 For example, 

Greenhouse et al., describe a trial of antidepressants in adolescents that pointed to 

an increased risk of suicide, but which excluded participants with the most severe 
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depression who would have experienced the greatest benefits from the therapy.15 In 

this case, while the trial effects were internally valid, the lack of external validity had 

serious implications for policy and removed potentially beneficial treatment options 

from depressed adolescent patients. A second example is, the discrepancies between 

the conclusions about the effects of combined estrogen/progestin menopausal 

hormone replacement therapy (HRT) on coronary heart disease based on the 

Women’s Health Initiative trial and the Nurses’ Health Study can be recast as a 

generalizability problem if we consider that the age- and time-on-exposure stratum 

specific effects of HRT estimated in both studies were similar,28 but the distribution 

of women by age and time-on-exposure in the target population (young women with 

no prior exposure) did not match the distribution of women in the study sample 

from the Nurses’ Health Study (older women with lots of prior exposure). In this 

instance, while internal validity (confounding by some unmeasured factor) was 

initially blamed for the discrepancy, and while generalizability is typically only 

thought of as an issue for clinical trials, the generalizability of this observational 

study undermined policy recommendations based on its results. Such examples 

highlight the importance of balancing study design decisions to maximize both 

internal and external validity.  

If our study sample is not a random sample of the target population, we can 

estimate causal effects in a specified target population using direct standardization 

or inverse probability weighting (a semiparametric extension of direct 

standardization)29 if all predictors of both selection into the study sample and the 

outcome are measured in both the study sample and the target population. This 
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methodological solution would allow us to use a single study sample to calculate 

generalized estimates of effect for multiple different specified target 

populations2,12,13 as long as the distribution of W was available for the target 

population.15,30 

 

Discussion 

Commentaries on the lack of generalizability of randomized trials typically 

implore the reader to evaluate a lengthy check list of potential determinants of 

external validity,16,17,31 or further classify the list into categories to distinguish 

“external validity” from “applicability.”32 We argue that such exercises could be 

more efficient if considered quantitatively, within the potential outcomes 

framework. This approach would quickly narrow the scope of future research 

needed to ascertain the effect estimate of interest because specific threats to the 

external validity of the estimate could be identified and used to guide future study 

design. Furthermore, understanding the mechanism by which differences between 

the sample and the target population influence the generalizability of a sample 

estimate would help identify the most appropriate methods to account for those 

differences. Understanding differences in the distribution of risk factors for the 

outcome has implications for the selection of the study sample for future research.  

Arguments about the generalizability of study results are not well-formed 

until the relevant characteristics of the target population are explicitly stated (i.e., 

patient characteristics are designated or interference patterns are specified or the 

types of therapy defined). This is analogous to the estimation of controlled direct 
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effects; such direct effects are not well-defined until the researcher specifies that the 

estimator is the direct effect not through M, where M is some possible mediator.33  

Finally, distinguishing internal and external threats to validity is useful for 

determining which parameters in the study sample or target population are 

estimable. When collider stratification bias due to selection is present in a study, it 

may threaten causal inference being made for any population,34 even the study 

sample, and preclude attempts to generalize results to either the source population 

or any specified target population (associational estimate is biased for the causal 

effect in the study sample; generalizability is irrelevant). In contrast, if a study can 

be determined to be free of selection bias (and confounding) (associational estimate 

is an unbiased estimate of the causal effect in the study sample) and differences in 

average treatment effects attributed to nonrandom sampling of the study 

population, methods exist to generalize results to a the target population 

(contingent on all assumptions outlined above).2,35 Standardizing effect estimates to 

the appropriate target population will improve their utility to clinicians and public 

health practitioners, and better inform implementation of interventions in target 

populations. 
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Table 1. Data from a hypothetical target population (𝑁=50,000) and nonrandom 

study sample (𝑛=1,000) 

𝑍1 𝑍1 𝐴 𝑌 N (target) n 
(sample) 

Scaled IP 
sampling 
weighta 

Weighted 
sample 

0 0 0 0 15,023 68 4.239 288.2 
0 0 0 1 1807 11 4.239 46.6 
0 0 1 0 16,046 75 4.239 317.9 
0 0 1 1 1,035 6 4.239 25.4 
0 1 0 0 2,954 85 0.712 60.5 
0 1 0 1 1,285 35 0.712 24.9 
0 1 1 0 3,221 91 0.712 64.7 
0 1 1 1 1,078 29 0.712 20.6 
1 0 0 0 2,087 88 0.506 44.5 
1 0 0 1 914 28 0.506 14.2 
1 0 1 0 2,285 88 0.506 44.5 
1 0 1 1 787 36 0.506 18.2 
1 1 0 0 360 84 0.082 6.9 
1 1 0 1 378 97 0.082 8.0 
1 1 1 0 517 125 0.082 10.3 
1 1 1 1 223 54 0.082 4.4 

a Scaled inverse probability of sampling weight 
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Table 2. Summary data from a hypothetical target population (𝑁=50,000) and crude 

and inverse probability of sampling weighted nonrandom study sample (𝑛=1,000) 

Target population  Study sample  Weighted sample 

 Y=0 Y=1 Risk   Y=0 Y=1 Risk   Y=0 Y=1 Risk 

X=0 20,424 4,384 0.177  X=0 325 171 0.345  X=0 400 94 0.190 

X=1 22,069 3,123 0.124  X=1 379 125 0.248  X=1 437 69 0.136 

RD: -0.053    RD: -0.097    RD: -0.054   

RR: 0.702    RR: 0.719    RR: 0.716   
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Figure 1. Possible choices for the target population of interest 

 

 

 

 

 

 

 

The target population (large, light gray square) can relate to the study sample 

(small, dark gray circle) in multiple ways. (a) The study sample is a random sample 

from the target population. (b) The study sample is not a random sample from the 

target population. (c) The target population is external to the study sample. The 

target population can be described by either a census of the target population or a 

random sample of the target population (small, dark gray square). In situation (b) or 

(c), the study sample can be thought of as a random sample from a larger super-

population (larger, light gray circle) that differs from the target population; if the 

analysis does not standardize or transport results to the target population, inference 

is restricted to this super-population.  

1a: 1b: 1c: 
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