
University of Rhode Island University of Rhode Island

DigitalCommons@URI DigitalCommons@URI

Open Access Dissertations

2011

RELAXATIONS OF L(1, 1)-LABELING FOR THE BROADCAST RELAXATIONS OF L(1, 1)-LABELING FOR THE BROADCAST

SCHEDULING PROBLEM SCHEDULING PROBLEM

Shaun N. Joseph
University of Rhode Island, snjoseph@gmail.com

Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss

Terms of Use
All rights reserved under copyright.

Recommended Citation Recommended Citation
Joseph, Shaun N., "RELAXATIONS OF L(1, 1)-LABELING FOR THE BROADCAST SCHEDULING PROBLEM"
(2011). Open Access Dissertations. Paper 72.
https://digitalcommons.uri.edu/oa_diss/72

This Dissertation is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open
Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please
contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/oa_diss
https://digitalcommons.uri.edu/oa_diss?utm_source=digitalcommons.uri.edu%2Foa_diss%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/oa_diss/72?utm_source=digitalcommons.uri.edu%2Foa_diss%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu

RELAXATIONS OF L(1, 1)-LABELING FOR THE BROADCAST

SCHEDULING PROBLEM

BY

SHAUN N. JOSEPH

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

APPLIED MATHEMATICAL SCIENCES

UNIVERSITY OF RHODE ISLAND

2011

DOCTOR OF PHILOSOPHY DISSERTATION

OF

SHAUN N. JOSEPH

APPROVED:

Dissertation Committee:

Major Professor Lisa DiPippo

Edmund Lamagna

Nancy Eaton

Nasser H. Zawia

DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

2011

ABSTRACT

The broadcast scheduling problem asks how an arbitrary network of broad-

cast transceivers operating on a shared medium may share the medium in such

a way that communication over the entire network is possible. In the case where

transmissions are explicitly scheduled, as opposed to be determined by contention,

the problem is naturally modeled as a graph coloring problem. The canonical

model is the L(1, 1)-labeling, also known as the distance-2 coloring, coloring of the

graph square, or strict schedule. This coloring is, however, difficult to obtain even

sub-optimally and typically uses many colors, which corresponds to an undesirable

over-division of the medium.

This work introduces a relaxation of L(1, 1)-labeling called L̃(1, 1)-labeling or

the pseudo-schedule. Whereas strict schedules guarantee that every path in the

graph is a communication path, pseudo-schedules only require the existence of a

communication path between any two vertices. The study shows that pseudo-

schedules have many superior characteristics to the canonical model, provided the

relaxation is acceptable. In particular, the worst case number of colors used is

linear in the degree of the graph, as opposed to quadratic for strict schedules.

The formal properties of the L̃(1, 1)-labeling are comprehensively treated, in-

cluding investigations of its “chromatic number,” rigorous analysis of several algo-

rithms, and proofs of hardness of optimization and approximation. Basic results

on a generalization of the coloring are obtained, and nine open problems are posed

for future research.

ACKNOWLEDGMENTS

I would like to thank my advisor, Professor Lisa DiPippo, as well as the faculty,

staff, and students of the Department of Computer Science and Statistics.

iii

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGMENTS . iii

TABLE OF CONTENTS . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER

1 The Broadcast Scheduling Problem 1

1.1 Explicit scheduling and graph coloring 3

1.2 Prerequisites . 5

List of References . 5

2 Pseudo-Schedules . 7

2.1 Definition . 7

2.1.1 Comparison to other labelings 9

2.2 Relations between the chromatic numbers 11

2.3 Bounds on χ̃1,1 . 12

2.3.1 Graphs for which χ̃1,1 is known 13

2.4 Bounds on χ̃1,1 for almost every graph 16

List of References . 21

3 Algorithms . 23

3.1 Spanning tree pseudo-schedules 23

iv

Page

v

3.2 The greedy algorithm . 25

3.2.1 Proof of correctness . 25

3.2.2 Analysis . 26

3.2.3 Implementation issues 28

3.3 The 2∆ algorithm . 29

3.3.1 Proof of correctness . 30

3.3.2 Analysis . 31

3.3.3 Implementation issues 33

3.4 The d-band algorithm . 33

3.4.1 Proof of correctness . 36

3.4.2 Analysis . 42

3.4.3 Implementation issues 43

3.5 Dismantleable (cop-win) graphs 44

3.5.1 Proof of correctness . 45

3.5.2 Analysis . 46

List of References . 47

4 Hardness . 52

4.1 Hardness of optimization . 53

4.2 Hardness of approximation . 60

List of References . 61

5 Pseudo-(h, k)-Labelings . 62

5.1 Bounds on χ̃h,k . 63

5.2 Hardness . 64

Page

vi

5.2.1 Hardness of PLABELh,1 65

List of References . 73

6 Conclusion . 74

6.1 Open problems . 74

List of References . 78

BIBLIOGRAPHY . 79

LIST OF TABLES

Table Page

1 Summary comparison of the main algorithms 23

2 Empirical performance of the greedy algorithm on random graphs 29

vii

LIST OF FIGURES

Figure Page

1 The hidden and exposed terminal problems 1

2 The RTS/CTS scheme . 2

3 A pseudo-schedule on C4 . 9

4 A graph with χ̃1,1 = 3 < χ = 4 12

5 A pseudo-schedule that is not spanning tree 24

6 Degree-2 degenerate case for the greedy algorithm 27

7 A graph for which the 2∆ algorithm hits the upper bound . . . 32

8 The 3-band algorithm on the 3-cube Q3 36

9 Resolving of a dependency cycle of mixed type 39

10 Structure of G(F) . 56

viii

CHAPTER 1

The Broadcast Scheduling Problem

The broadcast scheduling problem asks how an arbitrary network of broadcast

transceivers operating on a shared medium may share the medium in such a way

that communication over the entire network is possible. In particular, two or more

transmissions made simultaneously on the same medium should be expected to

fail; ie, the transmissions conflict. The classic obstacles raised by the broadcast

scheduling problem are the hidden terminal problem and the exposed terminal

problem.

The hidden terminal problem posits that a node may seize the medium too

aggressively, as it is generally not able to sense every other node with which it

may conflict. Contrarily, the exposed terminal problem shows that a node may be

too conservative in taking the medium, since not every node it senses necessarily

engenders a conflict. Figure 1 illustrates the problems.

A medium access control (MAC) protocol is a practical solution to the broad-

cast scheduling problem. The predominant approach to MAC protocol design

is contention, the outstanding example of which is carrier sense multiple access

A B C D

(a) A and C sense transmissions from B, but
not each other, so A and C may transmit
simultaneously to B without effect

A B C D

(b) C senses transmissions from B

but only wants to transmit to D, so
simultaneous transmission should
be permitted

Figure 1: The hidden and exposed terminal problems, respectively.

1

A B C

RTS(B)

(a) A requests per-
mission to send to B

A B C

CTS(A) CTS(A)

(b) B broadcasts
clearance for A

to send; C defers
transmission

A B C

DATA

(c) A transmits data
to B

Figure 2: The RTS/CTS scheme; in the event of simultaneous RTSs to the same
node, no CTS will be issued, and the requesters will enter a probabilistic “back-off”
routine.

(CSMA); examples include the wireless Ethernet standard 802.11 [1] and the pro-

tocol B-MAC [2] for wireless sensor networks. The hidden and exposed termi-

nal problems are avoided through the use of a “request to send/clear to send”

(RTS/CTS) scheme, as illustrated in Figure 2.

The performance of contention-based protocols is known to degrade seriously

under high-traffic conditions, especially in the common case of sink-oriented net-

works, as demonstrated by Ahn et al. [3]. Furthermore, real-time applications may

require predictability that the contention paradigm is unable to provide, since con-

tention is inherently non-deterministic. Finally, contention imposes a high duty-

cycle on the transceiver, since it must be ready to hear and respond to messages

more or less uninterruptedly. This is a particularly undesirable property in wireless

sensor networks, where transceivers are typically powered by battery.

The alternative to contention is explicit scheduling, the outstanding example

of which is time division multiple access (TDMA). MAC protocols that (at least

partially) integrate TDMA include (D)RAND [4], Z-MAC [5], Funneling-MAC [3],

and DCQS [6]. In explicit scheduling, the hidden and exposed terminal problems

can be avoided by construction of the schedule.

Explicit scheduling overcomes the aforementioned disadvantages of contention

but introduces its own. First, determining a nontrivial explicit schedule is a difficult

problem, especially in ad-hoc networks. Second, and relatedly, a schedule may

2

be too “large” in the sense that it demands too much division of the medium;

for example, a TDMA schedule may have an excessive number of timeslots per

frame, imposing a long pause between subsequent transmissions from the same

node. Finally, the transceivers must be synchronized in the sense of adhering to

the schedule; thus a node under TDMA must only transmit during its assigned

timeslot, and nodes must have synchronized clocks.

This study will address the first two issues by offering a new formal framework,

the L̃(1, 1)-labeling or pseudo-schedule, in which to consider the construction of

explicit schedules for broadcast networks. (The synchronization problem is ex-

tremely interesting, but several solutions exist; see the survey [7].) Our treatment

will be almost entirely mathematical, albeit motivated by the practical concerns

just discussed, and with practical applications that are easy to discern.

The remainder of this chapter briefly introduces the concept of modeling ex-

plicit scheduling as a graph coloring problem, the canonical L(1, 1)-labeling model,

and why one would want to relax this model. These points are pursued rigorously

in §2, wherein is defined the pseudo-schedule, and its fundamental properties ana-

lyzed. In §3 we encounter and analyze several pseudo-scheduling algorithms, and

in §4 we prove that no efficient optimal algorithms, nor in fact a certain class

of approximation algorithms, exist, unless P = NP. A natural generalization of

pseudo-schedules, primarily of theoretical interest, is treated in §5, and we conclude

the study in §6.

1.1 Explicit scheduling and graph coloring

Any network is easily modeled as a mathematical graph, with the network

nodes as vertices and communication links as edges. The explicit scheduling of a

network can then be seen as a kind of graph coloring, where each vertex is “colored”

with the segment of the medium assigned to it by the schedule.

3

Assuming communication links are symmetric—as we will throughout the

study—the broadcast scheduling problem is solved via an explicit schedule arising

from a coloring of the corresponding graph such that any vertex is colored differ-

ently than any other vertex at distance one or two. Such a coloring is called an

L(1, 1)-labeling, or alternately a distance-2 coloring, coloring of the graph square,

or strict schedule. This is, in fact, the canonical model for explicit scheduling, and

is implemented as a MAC protocol by (D)RAND.

Unfortunately L(1, 1)-labeling leads to “large” schedules: the division of the

medium grows as the square of the maximum number of communication links at

any node in the network. This is essentially because L(1, 1)-labeling completely

bars transmission conflicts, even if such conflicts would not disconnect the net-

work. A network with a routing tree, for example, only needs to guarantee lack

of transmission conflicts on the tree—it is a matter of indifference whether off-

tree links are valid transmission vectors, since they are never used. In this sense,

L(1, 1)-labeling “over-solves” the broadcast scheduling problem.

It is natural, then, to ask how one might solve the broadcast scheduling prob-

lem while permitting certain “harmless” conflicts. This is not a completely novel

idea. Z-MAC and Funneling-MAC mix TDMA and CSMA with the notion that a

network may benefit from opportunistically choosing between them. In a related

but distinct vein, TSMA [8] and RIMAC [9] allow conflicts in explicit schedules

while attempting to make some probabilistic guarantees about data delivery.

All the aforementioned protocols, however, abandon the determinism that

constitutes one of the benefits of explicit scheduling. The pseudo-schedule, by

contrast, is defined as a graph coloring, with deterministic and provable character-

istics. For instance, it can be proved that no conflicts present in a pseudo-schedule

actually disconnect the network.

4

Ren’s RAC-CT [10] implements what we recognize as the greedy algorithm for

pseudo-scheduling, although the analysis is only completed here (in §3.2). With a

firmer formal foundation, we are also able to present and analyze two alternative

algorithms with some superior characteristics.

1.2 Prerequisites

The thesis assumes familiarity with the conventional terms and notation of

graph theory. Except where otherwise stated, we implicitly assume that graphs

are simple, that is: unweighted, undirected, and without loops or multiple edges.

Recall that for any graph G, we typically let V (G) denote the set of vertices of G,

and E(G) the set of edges. There appears to be no universally-accepted notation

for the neighborhood, so let the (closed) neighborhood of a vertex v in graph G,

defined as the set comprised of v and all vertices adjacent to v in G, be denoted

NG[v]. Recall that degG(v) = |NG[v]| − 1 denotes the degree of v in G and that

∆G = maxv∈V (G) degG(v) denotes the degree of G itself. Finally, recall that the

distance between vertices u, v in G, denoted distG(u, v), is the number of edges in

the shortest path between u and v (with distG(u, v) =∞ for u, v disconnected).

For §2.4 the reader ought to have a basic grasp of the so-called “probabilistic

method,” particularly as it relates to random graphs. The textbooks of Alon and

Spencer [11] and Bollobás [12] are the definitive references, respectively.

Finally, §4–5 assume that the reader is fully conversant in the theory of NP-

Completeness. Any modern text in the theory of computation will suffice as a

reference.

All other terms and notation are introduced and defined as needed.

List of References

[1] IEEE 802.11 Working Group, ANSI/IEEE Std 802.11, 1999th ed., IEEE.

5

[2] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access for
wireless sensor networks,” in Second ACM Conference on Embedded Network
Sensor Systems (SenSys 2004), November 2004, pp. 95–107.

[3] G. Ahn, E. Miluzzo, A. T. Campbell, S. Hong, and F. Curomo, “Funneling-
MAC: A localized, sink-oriented MAC for boosting fidelity in sensor net-
works,” in Fourth ACM Conference on Embedded Network Sensor Systems
(SenSys 2006), November 2006, pp. 293–306.

[4] I. Rhee, A. Warrier, J. Min, and L. Xu, “DRAND: distributed randomized
TDMA scheduling for wireless ad-hoc networks,” in Seventh ACM Interna-
tional Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc
2006), May 2006, pp. 190–201.

[5] I. Rhee, A. Warrier, M. Aia, and J. Min, “Z-MAC: a hybrid MAC for wireless
sensor networks,” in Third ACM Conference on Embedded Network Sensor
Systems (SenSys 2005), November 2005, pp. 90–101.

[6] O. Chipara, C. Lu, and J. Stankovic, “Dynamic conflict-free query scheduling
for wireless sensor networks,” in Fourteenth IEEE International Conference
on Network Protocols (ICNP ’06), November 2006, pp. 321–331.

[7] B. Sundararaman, U. Buy, and A. D. Kshemkalyani, “Clock synchronization
for wireless sensor networks: a survey,” Ad Hoc Networks, vol. 3, no. 3, pp.
281–323, 2005.

[8] I. Chlamtac, A. Faragó, and H. Zhang, “Time-spread multiple access protocols
for multihop mobile radio networks,” IEEE/ACM Transactions on Network-
ing, vol. 5, no. 6, pp. 804–812, 1997.

[9] L. DiPippo, D. Tucker, V. Fay-Wolfe, K. L. Bryan, T. Ren, W. Day, M. Mur-
phy, T. Henry, and S. Joseph, “Energy-efficient MAC for broadcast problems
in wireless sensor networks,” in Third International Conference on Networked
Sensing Systems, June 2006.

[10] T. Ren, “Graph coloring algorithms for TDMA scheduling in wireless sensor
networks,” Ph.D. dissertation, University of Rhode Island, 2007.

[11] N. Alon and J. H. Spencer, The Probabilistic Method, 3rd ed., ser. Wiley-
Interscience Series in Discrete Mathematics and Optimization. John H. Wiley
& Sons, 2008.

[12] B. Bollobás, Random Graphs, 2nd ed., ser. Cambridge Studies in Advanced
Mathematics. Cambridge University Press, 2001.

6

CHAPTER 2

Pseudo-Schedules

Having motivated the study from practical considerations in the previous

chapter, we are now ready to engage in formal work. In this fundamental chapter,

we define the pseudo-schedule and examine its basic properties, in particular the

bounds on its “chromatic” number χ̃1,1. We obtain many minor or specialized

results, but the main one is given below.

Theorem 2.1. Given a graph G with degree ∆ ≥ 1,

∆∗ + 1 ≤ χ̃1,1(G) ≤ 2∆

where ∆∗ is the smallest possible degree of a spanning tree of G.

Before continuing, let us note that we will often implicitly assume in our proofs

that we work with connected graphs. There is no danger in this, since a discon-

nected graph may be taken component-by-component without loss of generality;

the basic definitions have been written carefully to ensure this is so.

2.1 Definition

Let us first introduce in a very general way the “strict” structure that we wish

to relax, with notation adapted from Calamoneri [1]. An L(h1, . . . , hk)-labeling of

graph G, where h1 ≥ h2 ≥ · · · ≥ hk ≥ 1, is a function l : V (G) → Z such that

|l(u) − l(v)| ≥ hi if distG(u, v) = i. If l has image K ⊂ Z, the (h1, h2, . . . , hk)-

number of G, denoted χh1,h2,...,hk
(G), is the smallest possible value of (maxK −

min K + 1). (Observe that when h1 = h2 = · · · = hk = 1, we can simply minimize

|K|.) Clearly an L(1)-labeling of G is identical to a proper coloring of G, and the

(1)-number χ1(G) (or just χ(G)) is the well-known chromatic number. For this

7

reason the range set of the labeling function is also known as the set of “colors,”

and we indifferently use the name “coloring” for labeling, even outside the case of

L(1). We also say that the (h1, h2, . . . , hk)-number is the chromatic number of the

L(h1, . . . , hk)-labeling.

An L(1, 1)-labeling assigns colors to vertices such that no vertex has the same

color as any other vertex within a radius of distance two. In §1 we discussed how

this labeling, which is also called distance-2 coloring, coloring the graph square, or

strict scheduling, is related to the broadcast scheduling problem.

We now shift perspective. Relative to some labeling function l as above, we

say that the ordered pair (u, v) ∈ V (G)2 is nonconflicting iff uv is an edge in G and

for every x ∈ NG[v] distinct from u, l(x) 6= l(u). (In a broadcast network, this is

analogous to a node u transmitting to v without interference.) A directed path from

u to v is likewise nonconflicting iff the pairs that comprise it are nonconflicting.

An L(1, 1)-labeling can be alternately defined as a labeling such that every

path in the graph in nonconflicting. Immediately we conceive of a natural relax-

ation: instead of requiring that every path be nonconflicting, we demand only the

existence of at least one nonconflicting path from u to v for every ordered pair

(u, v) ∈ V (G)2 such that u, v are connected. Such a labeling we call a L̃(1, 1)-

labeling, or pseudo-schedule. The corresponding chromatic number is called the

pseudo-(1,1)-number, denoted χ̃1,1.

Finally, we will often find it convenient to work with edges uv such that both

(u, v) and (v, u) are nonconflicting (under some labeling); such an edge is said to

be bidirectional. A subgraph—such as a path or spanning tree—is bidirectional iff

all its edges are bidirectional.

Figure 3 gives an example of a pseudo-schedule.

8

1

2 3

1

Figure 3: A pseudo-schedule on C4.

2.1.1 Comparison to other labelings

For the remainder of this section, let G be a graph of order n and degree ∆.

McCormick’s seminal 1983 paper [2] proved that

∆ + 1 ≤ χ1,1(G) ≤ ∆2 + 1.

McCormick also establishes an approximation ratio of O(
√

n) for the greedy algo-

rithm and proves that computing the (1,1)-number is NP-hard. The only alterna-

tive to the greedy algorithm in the literature is due to Ramanathan and Lloyd [3],

who prove an approximation ratio with order of the graph thickness (ie, the mini-

mum number of planar subgraphs into which a graph can be decomposed).

Because L(1, 1)-labeling is the most common approach to broadcast schedul-

ing, it will be the typical “foil” of the thesis, the standard against which the

pseudo-schedule is compared. This chapter will demonstrate that the bounds can

be lowered substantially if the pseudo-schedule is an acceptable alternative to strict

scheduling, including an O(∆) improvement in the upper bound. In §3 we present

several pseudo-scheduling algorithms, each with different implementation charac-

teristics, but all sharing an approximation ratio of O(∆).

The study of various relaxations and restrictions on colorings is actively pur-

sued by mathematicians and considered interesting in its own right. L(1)-labeling

(proper coloring) may be relaxed by allowing “defects,” in the sense that a col-

oring is d-defective iff every vertex has at most d adjacent vertices of the same

color. Cowen, Goddard, and Jesurum make a review of this line of research in [4].

9

Pseudo-schedules are in fact defective colorings, as one can see in Figure 3, but

not vice-versa; the former have additional structure.

Broersma et al. [5] have introduced the notion of backbone coloring, which

is an L(1)-labeling with the additional condition that in some specified spanning

subgraph, the (integer) colors differ by at least two. By operating with the square

of the graph, backbone colorings can be used to generate relaxations of L(2, 1)-

labelings (see [1]) that resemble how pseudo-schedules relax L(1, 1)-labelings. That

said, any backbone coloring of G2 is an L(1, 1)-labeling of G, so backbone colorings

do not achieve the same level of relaxation as pseudo-schedules.

Suppose that instead of one color, each vertex in G is colored with a set of b

colors, with the condition that adjacent vertices must have disjoint color sets. If

such a “fractional” coloring can be accomplished using a colors, G is said to be

(a : b)-colorable. If fb(G) denotes the smallest a such that G is (a : b)-colorable,

then since fa+b(G) ≤ fa(G) + fb(G),

χf (G) = lim
b→∞

fb(G)

b
= inf

b→∞

fb(G)

b

is well-defined; it is called the fractional chromatic number. (This definition is due

to Scheinerman and Ullman [6].) Every coloring is a fractional coloring, so χf ≤ χ.

That the inequality may be strict is shown by C5: this graph is (5 : 2)-colorable, so

χf(C5) ≤ 5
2
. (In fact, χf(C5) = 5

2
.) Computing the fractional chromatic number

is NP-Hard [7].

Fractional coloring on the graph square is a natural alternative to L(1, 1)-

labeling for broadcast scheduling, although it is only relevant when the medium

can be divided into arbitrarily (or at least “very”) small segments. Molloy and

Reed [8] give an upper bound

χf(G) ≤ ω + ∆ + 1

2

10

where ω is the size of the largest clique in G. Operating on G2, this bound is still

O(∆2).

2.2 Relations between the chromatic numbers

Every L(1, 1)-labeling is a pseudo-schedule, so clearly χ̃1,1 ≤ χ1,1. It is also ob-

vious that χ ≤ χ1,1. Intuitively one might expect that the pseudo-(1,1)-number lies

between the chromatic numbers for L(1)- and L(1, 1)-labeling—but this intuition

is badly wrong.

Theorem 2.2. For any integer k, there exists a graph G such that χ̃1,1(G) =

χ(G) + k.

Proof. If k ≥ 0, let G = Kk+1,1 (the star graph with k + 2 vertices). χ(G) = 2,

but it is easy to see that χ̃1,1(G) = k + 2.

If, on the other hand, k < 0, set G = K3−k to begin, and label the vertices

x1, x2, . . . , x3−k. Now to every xi attach a new vertex yi, and to yi attach a new

vertex zi. Finally, introduce an edge zivi+1 for all 1 ≤ i ≤ 2 − k. Figure 4 shows

the resulting graph for k = −1.

χ(G) = 3 − k due to the (3 − k)-clique. On the other hand, G admits a

pseudo-schedule in three colors: assign all xi the first color, all yi the second color,

and all zi the third color. Since two colors is obviously too few, χ̃1,1(G) = 3.

Our intuition misled us because, unlike both L(1)- and L(1, 1)-labeling, or in-

deed any of the colorings discussed in §2.1.1, the pseudo-schedule is non-monotonic

with respect to edge insertion; that is, χ̃1,1 may either increase or decrease as edges

are inserted into a graph. This is due to the fact that the pseudo-schedule relies

definitionally on an existence condition, not a universal condition. Thus, for in-

stance, a new edge may permit more color-efficient nonconflicting paths through

the graph. For a dramatic example of this, see §2.3.1, particularly Theorem 2.7.

11

x4
y4 z4

x3
y3 z3

x2
y2 z2

x1
y1 z1

Figure 4: A graph with χ̃1,1 = 3 < χ = 4.

2.3 Bounds on χ̃1,1

The proof of the bounds is in two parts, corresponding to the lower and upper

bound. The lower bound we establish in this section, but the upper bound is a

consequence of the analysis of Algorithm 3.3.1 in §3.3.

Lemma 2.3. Let G be a graph with a pseudo-schedule in k colors; there exists a

spanning tree of G with degree less than k.

Proof. Let s be the pseudo-schedule guaranteed by the hypothesis, and let r be

any vertex in G. By definition, s must exhibit some nonconflicting path from any

other vertex v to r; by taking the collection of these paths, sans any edges that

produce cycles, we obtain a directed spanning tree T of G.

Suppose, for the sake of argument, that T has a vertex z such that degT (z) ≥

k. It follows that at least two vertices of NT [z] are monochromatic. Let x be

one of these vertices. If s(x) = s(z), neither (x, z) nor (z, x) is nonconflicting;

otherwise let y 6= z denote the vertex colored like x in NT [z]. At least one of (x, z)

or (y, z) must be an edge in T , but neither is nonconflicting. This contradicts the

construction of T , so we conclude that ∆T < k.

12

Corollary 2.4. Any graph that admits a pseudo-schedule in three colors contains

a Hamiltonian path.

We can now prove the main result of this chapter.

Proof of Theorem 2.1. The lower bound follows from Lemma 2.3, for if there were

a pseudo-schedule in ∆∗ colors, we could obtain a spanning tree of degree less than

∆∗, which is impossible. The upper bound is established by Theorem 3.5.

Observe that the upper bound on χ̃1,1 is linear in the degree of the graph,

whereas it is quadratic for χ1,1. Therefore if the pseudo-schedule constitutes a

valid alternative to the L(1, 1)-labeling, the savings in the number of colors are, in

principle, substantial. How this plays out in practice is examined in §3.

The lower bound given in the preceding theorem is tight, as evidenced by any

tree. Besides the vacuous example K2, the only graphs that I know achieve the

upper bound are C3k+2 (k ≥ 1), as we will see in §2.3.1. Hence the upper bound

may not in fact be tight; and even if it is, we will see in §2.4 that almost no graph

actually hits the bound.

2.3.1 Graphs for which χ̃1,1 is known

A pseudo-schedule on any tree T must render every edge of T bidirectional,

so χ̃1,1(T) = χ1,1(T) = ∆T + 1 [1]. It is also easy to see that for the complete

graph Kn, χ̃1,1(Kn) = n. We also know the pseudo-(1,1)-numbers for the complete

bipartite graphs Km,n.

Theorem 2.5. Let m, n be nonnegative integers such that m ≥ n. The following

statements characterize the pseudo-(1,1)-number of G = Km,n:

• If n = 1 then χ̃1,1(G) = m + 1.

• If m = n = 2 then χ̃1,1(G) = 3.

13

• If m ≥ 3 and n ≥ 2 then χ̃1,1(G) = m.

Proof. If n = 1 then G is a tree. If m = n = 2 then G = C4, and we refer

to Theorem 2.6 below. For the remaining case, let the vertices of G be labeled

a1, a2, . . . , am and b1, b2, . . . , bn as per the partite sets. By definition of pseudo-

schedules, for each 1 ≤ i ≤ m there must be some 1 ≤ j ≤ n such that (ai, bj)

is nonconflicting, which implies that no two ai may have the same color; hence

χ̃1,1(G) ≥ m.

Now let ai take color i and bj take color j; we will prove that this coloring is

a pseudo-schedule. Clearly the edge aibj is bidirectional when i 6= j. To proceed

from ai to bi without conflict, we may use any path ai, bj , ak, bi where i, j, k are

distinct. If m = n, the same pattern works from bi to ai; otherwise simply use

bi, am, bj , ai with i, j, m distinct. Thus there is a nonconflicting path from any

vertex in one partite set to any vertex in the other partite set.

To proceed from ai to am (i 6= m) without conflict, any path ai, bj, am suffices,

provided i, j, m are distinct. From ai to al (i 6= l) where l < m, we may use

ai, bj , am, bk, al where i, j, k, l, m are distinct. If m = n, the same pattern works

from bi to bj (i 6= j); otherwise simply use bi, am, bj with i, j, m distinct. We

conclude that there is a nonconflicting path between any two vertices in the same

partite set.

We are also able to characterize the pseudo-(1,1)-number for cycles.

Theorem 2.6. Let n ≥ 3.

χ̃1,1(Cn) =

{
3, if n mod 3 ≤ 1
4, otherwise

.

Proof. Label the vertices v1, v2, . . . , vn along the cycle. From Theorem 2.1 we know

that a cycle’s pseudo-schedule requires at least three colors. If n mod 3 ≤ 1, let vi

take color i mod 3; then the path v1, v2, . . . , vn is bidirectional.

14

In the remaining case n mod 3 = 2, suppose Cn admits a pseudo-schedule

s in three colors. Consider the vertices v1, v2, v3, v4: at least two must share a

color. These cannot be vi and vi+2, for then there would be no nonconflicting path

into vi+1. Suppose, then, that s(v2) = s(v3). Relabel the vertices by decrementing

every index, but with v1 relabeled as vn, and consider afresh the vertices v1, . . . , v4.

If s(v2) = s(v3) again, there is no nonconflicting path from v2 to v3 since s(v1) =

s(vn)—we are “blocked” on both sides. Hence it must be that s(v1) = s(v4).

Now consider v4, v5, v6, v7. By similar arguments as above, we find s(v4) =

s(v7). Continuing in this fashion, we have s(v1) = s(v4) = · · · = s(vn−1). But then

there is no nonconflicting path into vn, so we conclude that χ̃1,1(Cn) ≥ 4.

We can readily construct a pseudo-schedule on Cn in four colors: for 1 ≤ i ≤

n− 2, assign vi the color i mod 3; assign vn−1 the color 3; and assign vn the color

1. It is easy to confirm that the path v1, v2, . . . , vn is bidirectional.

We conclude this section with an exploration of the wheel graph Wn, which is

Cn−1 plus an additional vertex adjacent to all others.

Theorem 2.7. Let n ≥ 4.

χ̃1,1(Wn) =

{
4, if n ≤ 5
5, otherwise

.

Proof. Label the vertices along the circumference v1, v2, . . . , vn−1 and let vn be the

dominating vertex. Under any pseudo-schedule s, there must exist some 1 ≤ i ≤

n− 1 such that (vi, vn) is nonconflicting. Hence s(vi) is unique in s, which forces s

to use at least four colors. This obviously suffices for W4; for W5, color the major

cycle as in the proof of Theorem 2.6 and assign vn the fourth color.

It remains to treat Wn for n ≥ 6. Consider the dominating vertex vn: if

s(vn) = s(vi) for any 1 ≤ i ≤ n− 1, note that there is no nonconflicting path out

of vi. We conclude that s(vn) is unique in s, which forces s to use at least five

15

colors. Color, preliminarily, the major cycle as in the proof of Theorem 2.6, and

give the fifth color to vn. If (n−1) mod 3 = 2, there is a bidirectional spanning tree

of Wn comprised of the path v1, v2, . . . , vn−1 plus the edge vn−2vn. If, alternately,

(n−1) mod 3 6= 2, recolor vn−1 with the fourth color; the path v1, v2, . . . , vn−1 and

the edge vn−1vn are bidirectional.

Wn provides a dramatic example of the non-monotonicity of the pseudo-

schedule. Note that Kn−1,1 requires n colors, yet it is a subgraph of Wn, which

requires at most five colors, regardless of how large n may be.

2.4 Bounds on χ̃1,1 for almost every graph

A random graph model G(n, p) is the probability space of graphs with n ver-

tices such that each of the
(

n

2

)
possible edges is chosen independently with prob-

ability 0 ≤ p ≤ 1, where p may be an arbitrary function, although typically

p = p(n). A random graph is a graph selected from G(n, p); as shorthand we say

“a (random) graph G = G(n, p).” Finally, a statement Pn is said to hold almost

always iff Pr[Pn]→ 1 as n→∞; if the statement Pn concerns the random graphs

G = G(n, p), we say it holds for almost every (random) graph.

Our task in this section will be to improve the upper bound on χ̃1,1 by restrict-

ing our attention to “common” graphs, thereby avoiding the structural “oddities”

that force up the universal upper bound. The definitive modern treatise on ran-

dom graphs is due to Bollobás [9], and the results of this section rely critically on

theorems presented in that work.

Theorem 2.1 shows that χ̃1,1(G) ≤ 2∆G. As it turns out, the inequality is

almost always strict under very broad conditions.

Theorem 2.8. Let p = p(n) satisfy pn/ log n → ∞; then almost every random

graph G = G(n, p) has χ̃1,1(G) < 2∆G.

16

Proof. Suppose p ≤ 1
2
. Theorem 3.9 of [9] states that almost every G has a unique

vertex r of maximum degree. It suffices to consider only the component containing

r, so assume without loss of generality that G is connected. Now consider the

operation of Algorithm 3.3.1 (p. 30) when r is specified as the root. The algorithm

will create a spanning tree T of G and examine, for each vertex v, the neighborhood

of the T -parent of v as well as the T -parents of (some) vertices adjacent to v.

Including v, the number of vertices examined is no more than 2∆G−1, so it is not

possible for the algorithm to use more than this number of colors.

Suppose p > 1
2
. Riordan and Selby [10] show that almost every G has ∆G >

n/2, in which case we obviously require fewer than 2∆G colors.

The preceding theorem is somewhat interesting, but what one really wants

is (at least) a reduction of the multiplicative factor of ∆. The following theorem

shows this is possible if p is held constant. We will utilize some standard asymptotic

notation: for any function g(n), let o(g) denote the class of functions f(n) such

that f/g → 0 as n → ∞; we also use o(g) to denote an arbitrary member of the

class. Related to this, we say f ∼ g ⇐⇒ f(n) = (1 + o(1))g.

Theorem 2.9. Let 0 < p < 1 be fixed. If p ≤ 1
2

then

χ̃1,1(G)

∆G

< 1 + 2(
√

2− 1)(1− p) + o(1)

for almost every random graph G = G(n, p). If p > 1
2

then

χ̃1,1(G)

∆G

< 2− p + o(1)

for almost every random graph G = G(n, p).

Proof. Corollary 10.11 of [9] tells us that almost every G has diameter two. Let

∆ = ∆G and r be a vertex of maximum degree; once again we invoke Algo-

rithm 3.3.1 with root r, and let T be the spanning tree constructed by the algo-

rithm. Obviously T has height (at most) two, and for this reason, the number

17

of colors required beyond ∆ + 1 is determined entirely by the vertices at distance

two from r. (If there are none, clearly χ̃1,1(G) ≤ ∆ + 1.) In particular, if such a

vertex v has T -parent u, we need examine at most deg(u)+deg(v) different vertices

(including v). However, a vertex adjacent to v need only be counted if it is also

at distance two from r, since the T -parent of a vertex at distance one is r itself,

which is already examined in the neighborhood of u. Hence

χ̃1,1(G) ≤ deg(u) + α + 1 ≤ ∆ + α + 1

where α is the maximum number of vertices at distance two from r adjacent to

any single vertex also at distance two from r.

Observe that if ∆ is large, α should be small since “lots” of vertices will be

adjacent to r. Alternately, if ∆ is small, this implies p is small, and α should be

small because high-degree vertices are unlikely. Intuitively, then, we hope that α

should be substantially smaller than ∆ almost always.

Instead of attempting to calculate α directly, let us examine the simpler ran-

dom variable Xv that counts the number of r-distance-two neighbors of a given

r-distance-two vertex v. There are ∆ vertices adjacent to r, one of which is the

T -parent of v, leaving ∆− 1 that may be selected at random. There are n−∆− 1

vertices at distance two from r, one of which is v itself, so Xv ≤ n − ∆ − 2. We

can imagine that v selects neighbors by the following process: first ∆−1 potential

neighbors are chosen from between the two groups, and each potential neighbor is

connected with probability p. Xv then counts the actual number of r-distance-two

neighbors.

The probability distribution Pr[Xv = k] is known as Fisher’s noncentral hy-

pergeometric distribution. Let µ be the expectation of Xv; an asymptotic approx-

18

imation for µ is given by Levin [11]. In particular,

µ→ 2(n−∆− 2)(∆− 1)p

(n− 3)p +
√

(n− 3)2p2 + 4(1− p)(n−∆− 2)(∆− 1)p

→ 2(n−∆)∆p

np +
√

n2p2 + 4(1− p)(n−∆)∆p

<
2(n−∆)∆p

np +
√

n2p2

= ∆− ∆2

n

where elimination of additive constants is justified by the fact that both n, ∆→∞,

the latter being a consequence of ∆ ∼ np almost always (Corollary 3.14 of [9]). To

continue:

lim
n→∞

µ <

(
1− ∆

n

)
∆→ (1− p)∆.

The variance σ2 of Xv has

σ2 →
(

2

µ
+

1

n−∆− µ− 2
+

1

∆− µ− 1

)−1

according to [11]. So in fact

σ2

µ2
→

(
2µ +

µ2

n−∆− µ− 2
+

µ2

∆− µ− 1

)−1

→ 0

and thus per Chebyshev’s inequality, Xv ∼ µ almost always.

The random variable α is the maximum of the set of random variables

{Xv; distG(r, v) = 2}. The random variables in this set are not independent, but

they are “almost independent” in the sense of Dysktra et al. [12], so we can treat

them as if they were independent for large n. But since any Xv is almost always

close to µ, so must be α; that is to say, α ∼ µ almost always. Thus

χ̃1,1(G) ≤ ∆ + (1 + o(1))µ + 1 < ∆ + (1 + o(1))(1− p)∆ + 1

almost always. Dividing through by ∆ yields the desired result.

19

This result is fine for p > 1
2
, but it fails to capture our previous intuition that

α ought to be small when p is small. Assuming p ≤ 1
2
, let us reexamine the square

root term:

√
n2p2 + 4(1− p)(n−∆)∆p >

√
n2p2 + 4(1− p)(1−∆/n)n2p2

= np
√

1 + 4(1− p)(1−∆/n)

→ np
√

1 + 4(1− p)2

≥
√

2np.

Here we have used the fact that ∆ > np almost always [10] and that ∆ ∼ np

almost always. Finally we obtain

lim
n→∞

µ <
2(n−∆)∆p

(1 +
√

2)np

→ 2(
√

2− 1)(1− p)∆

from which derives the desired result for p < 1
2
.

The theorem yields some nice corollaries.

Corollary 2.10. Almost every graph G = G(n, 1
2
) has

χ̃1,1(G)

∆G

<
√

2 + o(1).

Interestingly, we are able to say something meaningful about almost every

random graph G = G(n, p) with constant p, even when we do not know the value

of p.

Corollary 2.11. Let 0 < p < 1 be fixed. Almost every graph G = G(n, p) has

χ̃1,1(G)

∆G

< (2
√

2− 1) + o(1).

We note that the proof of the p > 1
2

case actually goes through for a rather

wide range of p.

20

Theorem 2.12. Let p = p(n) satisfy p2n− 2 log n→∞ and n2(1− p)→∞. For

almost every random graph G = G(n, p),

χ̃1,1(G)

∆G

< 2− p + o(1).

Before leaving this section, let us note that the methods used in the preceding

proofs are relatively crude, and the results are quite unlikely to be sharp; indeed,

I suspect that the “true” multiplicative factor of ∆ in the upper bound for almost

all graphs is unity. It is even possible that the upper bound for almost all graphs is

properly seen as a function of ∆∗. We will return to these issues when we conclude

the thesis in §6.

List of References

[1] T. Calamoneri, “The L(h, k)-labelling problem: A survey and annotated bib-
liography,” The Computer Journal, vol. 49, no. 5, pp. 585–606, 2006.

[2] S. T. McCormick, “Optimal approximation of sparse Hessians and its equiv-
alence to a graph coloring problem,” Mathematical Programming, vol. 26, pp.
153–171, 1983.

[3] S. Ramanathan and E. L. Lloyd, “Scheduling algorithms for multihop radio
networks,” IEEE/ACM Transactions on Networking, vol. 1, no. 2, pp. 166–
177, 1993.

[4] L. Cowen, W. Goddard, and C. E. Jesurum, “Defective coloring revisited,”
Journal of Graph Theory, vol. 24, no. 3, pp. 205–219, 1997.

[5] H. Broersma, F. V. Fomin, P. A. Golovach, and G. J. Woeginger, “Backbone
colorings for graphs: tree and path backbones,” Journal of Graph Theory,
vol. 55, no. 2, pp. 137–152, 2007.

[6] E. R. Scheinerman and D. H. Ullman, Fractional Graph Theory.
Self-published, 2008. [Online]. Available: http://www.ams.jhu.edu/∼ers/fgt

[7] M. Grötschel, L. Lovász, and A. Schrijver, “The ellipsoid method and its
consequences in combinatorial optimization,” Combinatorica, vol. 1, no. 2,
pp. 169–197, 1980.

[8] M. Molloy and B. Reed, Graph Colouring and the Probabilistic Method, ser.
Algorithms and Combinatorics. Springer, 2002.

21

[9] B. Bollobás, Random Graphs, 2nd ed., ser. Cambridge Studies in Advanced
Mathematics. Cambridge University Press, 2001.

[10] O. Riordan and A. Selby, “The maximum degree of a random graph,” Com-
binatorics, Probability and Computing, vol. 9, pp. 549–572, 2000.

[11] B. Levin, “Simple improvements on Cornfield’s approximation to the mean
of a noncentral hypergeometric random variable,” Biometrika, vol. 71, no. 3,
pp. 630–632, 1984.

[12] R. L. Dysktra, J. E. Hewett, and W. A. Thompson, Jr., “Events which are
almost independent,” The Annals of Statistics, vol. 1, no. 3, pp. 674–681,
1973.

22

CHAPTER 3

Algorithms

In the previous chapter we investigated the fundamental nature of the pseudo-

schedule and its associated chromatic number, but even there we found it useful to

invoke algorithmic arguments, or even particular algorithms. The current chapter

adopts the algorithmic point of view entirely, offering several alternative pseudo-

scheduling procedures and evaluating their trade-offs. The fundamental perfor-

mance metric will be the number of colors used, although we will permit worse

performance on this axis in exchange for other desirable properties. Our findings

are summed up broadly in Table 1.

Before the discussing the algorithms in earnest, we will describe a special type

of pseudo-schedule that, in some sense, embeds a strictly-scheduled spanning tree;

all the algorithms discussed in this section will use this special pseudo-schedule.

Finally, before concluding, we will examine a customized algorithm for pseudo-

scheduling dismantleable graphs.

3.1 Spanning tree pseudo-schedules

Given a graph G with spanning subgraph H , we say that a pseudo-schedule

s is an H-pseudo-schedule iff every edge of H is bidirectional in G relative to s.

Algorithm Worst Case Colors Avg Case Colors As Protocol
(Dominant Term) (Rule of Thumb) Candidate

Greedy (§3.2) ∆2 near ∆ Poor
2∆ (§3.3) 2∆ ∆ to 2∆ Mediocre

d-band (§3.4) 2d∆ near d∆ Good
3-band 6∆ near 3∆ Very Good

Table 1: Summary comparison of the main algorithms of this chapter. We list the
d = 3 instantiation of d-band separately because of its particular usefulness.

23

1

2 3 4

4 2

Figure 5: A pseudo-schedule that is not spanning tree; arrows indicate nonconflict.

We are particularly interested in the case where H is a spanning tree, as this

corresponds to the concept of a routing tree in a network. Thus we say that a

pseudo-schedule s of G is a spanning tree pseudo-schedule or st-pseudo-schedule iff

there exists some spanning tree T of G such that s is a T -pseudo-schedule. Not

every pseudo-schedule is spanning tree, as Figure 5 demonstrates.

The chromatic number associated with the st-pseudo-schedule is the st-pseudo-

(1,1)-number, denoted χ̂1,1. Clearly χ̃1,1 ≤ χ̂1,1, but I do not know if the inequality

is ever strict. (The reader can confirm that χ̃1,1 = χ̂1,1 = 4 in the graph of Figure 5.)

Indeed, we can replace χ̃1,1 with χ̂1,1 in all of the results of the previous chapter,

which notably implies that all the graphs in §2.3.1 have χ̃1,1 = χ̂1,1.

As a step towards resolving the question of the equality, let us observe that it

holds in the smallest nontrivial case.

Theorem 3.1. A pseudo-schedule in three colors is spanning tree.

Proof. Let s be a pseudo-schedule on G in three colors. Suppose, for the sake of

argument, that s is not spanning tree; then there must be a cyclic nonconflict-

ing path P = x, y, . . . , z, x containing at least one edge that is not bidirectional.

Without loss of generality, let xz be this edge, with (z, x) nonconflicting but not

(x, z).

Now because (x, z) is conflicting, there is some vertex w adjacent to z such

24

that s(x) = s(w). There must be some nonconflicting path P ′ from w to x. Let

(p′, p) be the first nonconflicting pair from P ′ such that p ∈ P ; in other words, p′

is the vertex immediately before P ′ “hits” P for the first time (possibly p′ = w or

p = x). Let p be preceded in P by o and followed by q; without loss of generality,

assume s(o) = 1, s(p) = 2, s(q) = 3. Hence s(p′) /∈ {1, 2, 3}—a contradiction. We

conclude that s is spanning tree.

Corollary 3.2. For any graph G, χ̃1,1(G) = 3 ⇐⇒ χ̂1,1(G) = 3.

3.2 The greedy algorithm

Let G be a graph with spanning tree T and vertices v1, v2, . . . , vn. We can

produce a pseudo-schedule on G as follows:

1. Set i = 1.

2. Color vi with the lowest positive integer k such that for all x ∈ NT [vi], k does

not appear in NG[x], and for all y ∈ NG[vi] − NT [vi], k does not appear in

NT [y]−{y}. (In other words, k does not appear on any T -neighbor of v, any

G-neighbor of any T -neighbor of v, or any T -neighbor of any G-neighbor of

v.)

3. Increment i and go to step 2.

This algorithm was first presented by Ren in §2.4.2 of his doctoral thesis [1], but

we are able to take the analysis of the algorithm much further here.

3.2.1 Proof of correctness

We shall prove that the coloring s produced by the greedy algorithm is a T -

pseudo-schedule. Let uv ∈ E(T). Clearly s(u) 6= s(v). Let w be a G-neighbor of v,

and observe that w is thereby a G-neighbor of a T -neighbor of u; or equivalently,

u is a T -neighbor of a G-neighbor of w. Thus s(u) 6= s(w) regardless of whether u

25

or w is colored first, so (u, v) is a nonconflicting pair. By an identical argument,

(v, u) is nonconflicting; hence uv is bidirectional.

3.2.2 Analysis

Theorem 3.3. Let h be the number of colors used by the greedy algorithm on graph

G with spanning tree T . Then

∆T + 1 ≤ h ≤ 2∆G∆T − (∆T)2 + 1.

Furthermore, these bounds are tight.

Proof. The lower bound is simply the (1, 1)-number of T [2]. To obtain the upper

bound, we count the number of vertices examined by the algorithm before coloring

a vertex v. Every T -neighbor of v must be colored differently than v, as must

their neighborhoods: at most ∆G∆T distinct vertices. For the remaining ∆G−∆T

neighbors of v, v need only differ from their T -neighbors, giving at most (∆G −

∆T)∆T distinct vertices. Adding the totals plus one (for v itself) gives the upper

bound.

The tightness of the lower bound is obvious. The tightness of the upper bound

is established by degenerate case. Fix some positive integer m ≥ 2 and let Ri be

a full (m − 1)-ary tree with height 2i − 1 where 1 ≤ i ≤ m − 1. Consider any

Ri with the natural root ri: we claim that ri and its neighbors can be colored by

the algorithm in such a way that colors (i − 1)m + 1, . . . , im appear on them, in

whatever way we like. This is easy to see for R1 = Km,1, and it follows for the

remaining Ri by induction.

By Rm−1 alone we can induce m2 −m colors, but the final m + 1 additional

colors require more subtlety. Let Q be a tree with root q connected to vertices

x1, . . . , xm−1. For each xj , let Rj,k be a copy of Rk (1 ≤ k ≤ m−1) with its natural

root connected to xj . Finally, construct G by introducing a vertex v connected to

26

1 2
r1

5
v

4
q

3
x1

1 2

Figure 6: Degree-2 degenerate case for the greedy algorithm.

the roots r1, . . . , rm−1 and q. Note that G is a tree with degree m.

G can now be colored by the greedy algorithm such that Ri exhibits colors

(i−1)m+1, . . . , im in the (closed) neighborhood of its root ri, with ri itself receiving

color im. In Q, we arrange for the root of Rj,k to take the color (k − 1)m + j,

with the remaining colors appearing in the neighborhood of the root. After this,

x1 receives color m2 −m + 1, as it is within distance two of all preceding colors.

Similarly, x2 gets color m2 −m + 2, as it is within distance two of all preceding

colors as well as x1. Running through the xj gets the number of colors to m2 − 1.

We now come to q and note that it is, via Q, within distance two of all colors

up to m2 − 1 except im for 1 ≤ i ≤ m − 1. But these are precisely the colors

appearing at the ri, so q is colored m2. Finally, v is colored m2 + 1.

The degenerate case for m = 2 is given in Figure 6.

Note that the worst-case performance of the greedy algorithm is no worse than

the worst-case performance of the greedy algorithm for strict scheduling, which is

∆2
G + 1 colors [3]; indeed, the worst case is strictly superior if ∆T < ∆G.

The approximation ratio of an algorithm is the ratio of its cost to the opti-

mal cost. We are able to demonstrate that the performance ratio of the greedy

algorithm is O(∆G) if one uses the spanning tree of Fürer and Raghavachari [4],

which is guaranteed to have degree at most one more than the smallest possible,

and which can be determined in polynomial time.

Theorem 3.4. Given a graph with degree ∆, the approximation ratio of the greedy

algorithm is less than 2∆, provided the Fürer-Raghavachari spanning tree is used.

Proof. Let h denote the number of colors used by the algorithm on G, and k denote

27

the optimal number. If we let ∆∗ denote the minimum degree of a spanning tree,

we have

h

k
≤ h

∆∗ + 1

by Theorem 2.1.

Fürer and Raghavachari [4] give a polynomial-time algorithm for finding a

spanning tree with degree at most ∆∗ + 1; using this tree yields

h

k
≤ 2∆(∆∗ + 1)− (∆∗ + 1)2 + 1

∆∗ + 1

= 2∆− (∆∗ + 1) +
1

∆∗ + 1

< 2∆.

If we are unable to say anything about the ratio of ∆T to ∆∗, the approxima-

tion ratio blows up to O(∆G∆T) = O(∆2
G).

3.2.3 Implementation issues

Under the name RAC-CT, Ren [1] implemented the greedy algorithm as a

MAC protocol for broadcast networks. The greedy algorithm has some qualities to

recommend it as a protocol candidate, first and foremost its conceptual simplicity.

Empirically it also seems to do much better than the worst case: Ren reports

performance close to ∆ for random grids, and Table 2 suggests that the algorithm

performs well below ∆ on G(n, p) with constant p. The user is also granted a great

degree of freedom since he chooses both the spanning tree and the coloring order;

the choice of the spanning tree is particularly important in network applications,

since this corresponds to the choice of routing tree.

On the other hand, several factors militate against the greedy algorithm as

a protocol candidate. However uncommon the worst case might be in practice,

28

n p = 0.1 p = 0.25 p = 0.5
10 1.024 0.916 0.498
20 0.946 0.324 -0.8
30 0.796 -0.588 -1.694
40 0.632 -1.292 -3.012
50 0.46 -1.674 -3.562
60 0.064 -2.83 -4.146
70 -0.41 -2.978 -5.698
80 -0.528 -4.002 -6.144
90 -0.616 -4.82 -5.912
100 -1.08 -5.224 -7.608

Table 2: Empirical performance of the greedy algorithm on random graphs. Rows
give the number of vertices and columns the probability of edge existence. For each
graph instance we take the average number of colors used in five runs with different
coloring orders on an arbitrary BFS spanning tree; then subtract the graph degree
to obtain the instance performance. A hundred instances were generated for each
configuration; the table reports the average of the performances.

it still has to be accommodated, increasing message size and/or complexity. In a

similar vein, observe that the algorithm extensively uses information at distance

two from the vertex it is currently coloring. In networks it is generally not possible

to obtain such information except by way of an adjacent node.

Perhaps most damagingly, because a vertex cannot be colored while another

vertex it must check is being colored, the greedy algorithm requires either central

control, token-passing, or mutual exclusion on the two-hop neighborhood. Al-

though Rhee et al. provide a distributed implementation of mutual exclusion in

their work on DRAND [5], which Ren used as a basis for RAC-CT, this is expensive

in time and bandwidth and scales poorly.

3.3 The 2∆ algorithm

The high upper bound for the greedy algorithm is due to the freedom afforded

the user in specifying how the algorithm operates. If we restrict—or indeed, al-

most eliminate—this freedom, the upper bound can be dramatically improved.

29

This is the idea behind the 2∆ algorithm for pseudo-scheduling, presented as Al-

gorithm 3.3.1.

Some notation: for any tree T rooted at r, we say that u is the parent of v

iff uv ∈ E(T) and distT (u, r) < distT (v, r); we write u = parT,r(v). (It will be

convenient to let parT,r(r) = r.) Naturally we say that v is a child of u. We

also henceforth permit ourselves the following natural abuse of notation: given a

coloring s, which may be only partially defined, for any set U of vertices let s(U)

denote the set {s(u); u ∈ U, s(u) is defined}.

Algorithm 3.3.1: The 2∆ algorithm for pseudo-scheduling

Input: G, a graph; and r, a distinguished vertex of G.
Output: An st-pseudo-schedule on G.
VT ← {r}, ET ← ∅1

T ← (VT , ET)2

Q← {r}, Q′ ← ∅ // Q, Q′ are queues3

s← ∅4

repeat5

foreach v ∈ Q (in order) do6

N ← NG[v]− VT7

append N to Q′ (in any order)8

VT ← VT ∪N9

ET ← ET ∪ {vx; x ∈ N}10

K ← s(NG[parT,r(v)])11

foreach x ∈ NG[v] do12

if x 6= v and vx /∈ ET then add s(parT,r(x)) to K13

k ← min(Z+ −K)14

add v 7→ k to s15

Q← Q′, Q′ ← ∅16

until Q = ∅17

return s18

3.3.1 Proof of correctness

Let us prove that the coloring s produced by the algorithm given graph G

and distinguished vertex r is a T -pseudo-schedule, where T is the tree generated

internally by the algorithm. Observe that T is produced by a breadth-first search

30

process and that every vertex at r-distance i is colored before any vertex at r-

distance i + 1. We can also see that if vertices u, v have distinct parents pu, pv

respectively, then if pu was colored before pv, u was colored before v.

Take uv ∈ E(T) such that u = parT,r(v). First we show that (u, v) is noncon-

flicting. s(u) 6= s(v) clearly. Consider next any child x of v; since u is adjacent to

v = parT,r(x), we have s(u) 6= s(x). The only vertices left to check are those in

NG[v]−NT [v]; let y be such a vertex. Now if distG(r, u) < distG(r, y), then y was

colored after u, so s(u) 6= s(y). If, on the other hand, distG(r, u) = distG(r, y), then

u “adopted” v before y could (line 10), which implies that u was colored before y,

hence s(y) 6= s(x).

Let us now establish that (v, u) is nonconflicting. Obviously s(v) 6= s(x) for

any x ∈ NG[u] with distG(r, x) < distG(r, v) since in this case x must have been

colored before v. Turning to x ∈ NG[u] with distG(r, x) = distG(r, v), clearly

s(v) 6= s(x) if x is a child of u, since v will be checked before coloring x and vice-

versa. If, on the other hand, parT,r(x) = w 6= u, it must be that w was colored

before u since the former adopted x, thus s(x) was defined when the algorithm

computed s(NG[u]) (line 11) before coloring v, and s(v) 6= s(x).

3.3.2 Analysis

The next theorem indicates that the algorithm was not named capriciously.

Theorem 3.5. Let h be the number of colors used by Algorithm 3.3.1 on a non-

trivial graph G with distinguished vertex r. Then

degG(r) + 1 ≤ h ≤ 2∆G.

Furthermore, these bounds are tight.

Proof. The lower bound and its tightness are obvious. To establish the upper

bound, note that in order to color a vertex v, the algorithm must check the parent

31

· · ·

· · ·

· · ·

Kd−1,d−1

x

y1 y2 yd−1

a1 a2 ad−1

b1 b2 bd−1

z

Figure 7: A graph for which the 2∆ algorithm hits the upper bound: Jd,described
in the proof of Theorem 3.5, with x as the distinguished vertex.

u of v, every vertex adjacent to u, and additionally the parents of any vertex

adjacent to v in G but not T , for a total of at most 2∆G vertices (including v).

To establish that the upper bound is tight, we introduce the graph Jd where

d ≥ 2. To construct Jd, begin with the complete bipartite graph Kd−1,d−1 with

partite sets A, B. For each vertex ai of A, introduce a new vertex yi adjacent to ai,

and then introduce a vertex x adjacent to all yi (1 ≤ i ≤ d−1). Finally, introduce

a vertex z adjacent to every vertex in B, and set x, z adjacent. Figure 7 shows the

structure of Jd. Letting r = x, it is not difficult to see that the algorithm hits the

upper bound. (Note that J2 = C5.)

Finally, the approximation ratio is

2∆

∆∗ + 1
≤ 2

3
∆

for any graph with degree ∆ and a minimum degree spanning tree of degree ∆∗.

32

3.3.3 Implementation issues

The 2∆ algorithm is primarily distinguished by its excellent worst-case perfor-

mance, but it sacrifices much in order to achieve it, in particular the user’s freedom

to choose the spanning tree, although it should be noted that the ability to select

the distinguished vertex is modestly helpful, since this vertex can be chosen to cor-

respond to a source/sink/central node in a network. Conceptually the algorithm

is more complex than the greedy algorithm, but not by much.

Reliance on information at distance two is reduced significantly relative to

the greedy algorithm, but remains substantial. The 2∆ algorithm also requires

either central control, token-passing, or mutual exclusion in the two-hop neighbor-

hood. In general, this algorithm is a weak protocol candidate, but very useful for

mathematical investigations, as we saw in §2.

3.4 The d-band algorithm

Let G be a graph with a spanning tree T rooted at r. The d-band algorithm

on this input produces a T -pseudo-schedule on G, provided that d is sufficiently

large (see §3.4.1). Intuitively, the algorithm divides the graph into d bands based

on vertices’ T -distance from r modulo d, with each band being colored from its

own palette, disjoint from every other. The idea is that we can thereby rule out

many conflicts a priori, greatly reducing the number of vertices that have to be

checked.

For the remainder of this section, we implicitly take all terms with respect to

G, T, r unless otherwise noted.

The d-band algorithm is distributed and decentralized, with each vertex acting

as an autonomous agent passing the following messages:

• REQ-COL(L), where L is a set of excluded colors;

33

• PUT-COL(x,k), where x is a vertex being assigned color k;

• RPT-COL(k,w), where k is the sender’s color (if known) and w is a vertex

that must be colored before the sender is colored; or, in a “reverse report,”

where k is a color excluded for the sender;

• RPT-PAR(k,w), where k is the color of the sender’s parent (if known) and

w is a vertex that must be colored before the sender’s parent is colored; or,

in a “reverse report,” where k is the color of w, a stepparent of the sender;

• DEP-REQ(w), where w is a vertex whose color must be assigned before the

sender can issue REQ-COL; and

• DEP-PUT(w), where w is a vertex whose color must be assigned before the

sender can issue PUT-COL.

The sending vertex is implicitly included in any message, along with information

about the intended receiver. We let ∞ denote an unknown color and let

Palette(v) = {distT (r, v) mod d + id; i ≥ 0}.

Along with the definitions of parent and child as in §3.3, we say also that u is a

stepparent of v iff distT (u, r) = distT (v, r)−1 and uv ∈ E(G)−E(T); and that x is a

stepchild of y iff distT (x, r) = distT (y, r)+1 and xy ∈ E(G)−E(T). Each vertex is

assumed to know its parent, children, stepparents, and stepchildren. Additionally,

each vertex knows its T -distance from r. Finally, we assume that V (G) admits a

strict total order ≺ that can be efficiently computed at any vertex.1

The root vertex r assigns itself the color 0, making this known by sending

RPT-COL(0,r) to its children. Any vertex besides r must acquire its color as per

1The order ≺ does not in fact need to be total, but to state the “tight” requirement would
contribute more to verbiage than understanding.

34

AcquireColor (Algorithm 3.5.2, p. 49). Any vertex with children must assign colors

to its children as per AssignColors (Algorithm 3.5.3, p. 50). Finally, any non-root

vertex must receive and relay reports as per ReportColors (Algorithm 3.5.4, p. 51).

The ensemble of these procedures, running independently and in parallel on every

vertex simultaneously, constitutes the d-band algorithm.

We assume fully reliable transmission with synchronous communication prim-

itives send and listen. AssignColors uses the primitive “ack-sendM to x” by which

is meant: send M to x and wait until M is sent back as confirmation, queuing

any messages that arrive in the meanwhile for retrieval by the next call to listen.

The ensemble action of the algorithm about a vertex v can be sketched roughly

as follows:

1. v listens for RPT-PARs from all of its stepchildren, building a list of excluded

colors L.

2. v sends REQ-COL(L) to its parent u.

3. u listens for RPT-COLs from all of its stepchildren, building a list of forbid-

den colors K.

4. u sends PUT-COL(v,kv) to v (and all stepchildren of u), where kv is the

smallest color in the palette of v not in K ∪ L.

5. v broadcasts RPT-COL(kv,v).

6. Each child of v sends RPT-PAR(kv,v) to all its stepparents.

In this sketch, for the sake of simplicity we have ignored the DEP facility and the

problem of dependency cycles in general.

Observe that the set of messages consumed by any of the three proce-

dures is disjoint from the other two: AcquireColor listens for RPT-PAR from

35

r : 0

a : 1 b c

d e : 2 f

g : 0

(a) a, e, g request and
receive colors

r : 0

a : 1 b c : 4

d : 5 e : 2 f : 5

g : 0

(b) c, d, f request and re-
ceive colors

r : 0

a : 1 b : 7 c : 4

d : 5 e : 2 f : 5

g : 0

(c) b requests and receives
a color

Figure 8: The 3-band algorithm on the 3-cube Q3; the spanning tree is indicated
by thick edges.

(step)children, DEP-REQ from children, and PUT-COL from the parent; Assign-

Colors listens for REQ-COL from children, RPT-COL from (step)children, and

DEP-PUT from children; and ReportColors listens for DEP-REQ from parents,

RPT-PAR/DEP-PUT from (step)parents, and PUT-COL from (some) steppar-

ents. Therefore each procedure may be assumed to operate on its own received

message queue independently from the others.

In general, the d-band algorithm colors the leaves of T first and proceeds

towards the root, although significant parallelism is possible. Refer to Figure 8 for

an example.

3.4.1 Proof of correctness

We say that the d-band algorithm terminates on graph G with r-rooted span-

ning tree T iff AcquireColor returns on every vertex of G, a condition equivalent

to the coloring being a total function. Unlike our previous algorithms, it is not at

all obvious that the d-band algorithm terminates, so we must prove it explicitly.

AcquireColor on vertex v does its main work in the loop beginning at line 6.

As this loop is bypassed when v has no stepchildren, assume that it does. We

say that v has a request dependence on u when u is the parent of a stepchild of

36

v; and just as v depends on u, u may depend on t, and so on. If we can follow

the dependency chain to some terminal a that has no stepchildren, there is no

problem, since we can inductively work back to v. However, the dependency chain

may in fact be a cycle, in the sense that v has request dependence on u, u has

request dependence on t, and so on up to a, but then a has request dependence on

v. This we call a dependency cycle of type I.

Given C, a dependency cycle of type I, let v = min≺ C. Assume, for the time

being, that C is the only dependency cycle in the graph. v issues DEP-REQ(v) to

its children, and via ReportColors one of the children sends RPT-PAR(∞,v) to x,

which depends on v. But since v ≺ x, x issues DEP-REQ(v) to its children, one

of which then sends RPT-PAR(∞,v) to y, which depends on x, and so on.

Let u be the vertex in C on which v depends, creating the cycle. u issues

DEP-REQ(v) to its children, and one of them transmits RPT-PAR(∞,v) to v. At

this point v can detect the dependency cycle, and v breaks the cycle by ignoring

its dependence on u (see line 12 of AcquireColor). As per our assumptions, v is

now free of request dependencies, or at worst sits in linear depedence chains that

are naturally resolved; that is, v (eventually) acts as if it has no stepchildren, and

proceeds to issue REQ-COL to its parent p.

Let us assume that p eventually assigns a color to v via PUT-COL. v then

broadcasts RPT-COL, resolving the now-linear dependency chain. (The resolution

is a little unusual at u, where we have registered a “reverse dependence” on v—but

this will be cleared by the RPT-COL broadcast from v, which causes a “reverse

report” RPT-PAR to be sent to u from one of its children.) Hence every vertex

in C gradually becomes free to issue REQ-COL, and if we assume that every one

of their parents replies with PUT-COL, then AcquireColor terminates on every

vertex in C.

37

We now shift our attention to AssignColors. A vertex v with parent pv is

said to have a put dependence on any stepchild of pv. (It is convenient for the

dependence to be registered at pv.) Just like request dependencies, put depen-

dencies can be chained and may form a cycle; this we call a dependency cycle of

type II. It is not hard to see that a type II cycle is broken by essentially the same

method used for the type I cycle, with DEP-PUT and RPT-COL standing in for

DEP-REQ and RPT-PAR, respectively. (Once again, there is a special “reverse

dependence” facility. Let pv have stepchild u with parent pu. If a type II cycle is

broken at pv, then pu will register the reverse dependence of u on the children of

pv. Resolution comes when pu finishes coloring its children, with “reverse report”

RPT-COLs being sent to pu via u.) Hence the d-band algorithm terminates in the

presence of a dependency cycle of type II, provided that REQ-COL is issued.

Finally, a dependency cycle of mixed type is possible. AcquireColor handles

the transition from request to put dependency by repackaging RPT-PAR as RPT-

COL (line 20), while ReportColors handles the reverse transition by first repack-

aging DEP-PUT as RPT-COL (line 17) and then relaying the latter as RPT-PAR

(line 11). But observe that a cycle of mixed type can be broken by the methods

previously described; it is treated exactly as if it were a cycle of type I or type II if

it is broken by AcquireColor or AssignColors, respectively. The same mechanisms

then assure that the resolution proceeds across the cycle. See Figure 9 for a simple

example. We conclude that the d-band algorithm terminates if there is no more

than one dependency cycle in the graph (of whatever type).

Given a dependency cycle C (of any type), observe that there exists some l

such that distT (v, r) = l for all v ∈ C; call l the level of C. Clearly cycles with

different levels cannot affect each other; additionally, disjoint cycles do not interact.

Thus the d-band algorithm terminates given any number of disjoint dependency

38

c

a b

p q

↓RPT-COL

↑REQ-COL

(a) a sends RPT-
COL(∞,a) to a and
REQ-COL(∅) to c

c

a b

p q

↓DEP-PUT

↑RPT-PAR

(b) p sends DEP-
PUT(b) to a; c sends
RPT-PAR(∞,a) to b

c

a b

p q

↑RPT-COL

(c) b sends RPT-
COL(∞,a) to p

c

a b

p q

lDEP-PUT

↑DEP-PUT

(d) p detects and breaks
the dependency cycle: p

ack-sends DEP-PUT(p)
to b; b forwards DEP-
PUT(p) to q

c

a b

p q

↓PUT-COL

↓PUT-COL

(e) p sends PUT-
COL(a,α) to a, b

c

a b

p q

↓PUT-COL

↓RPT-COL

↑RPT-COL

(f) p sends PUT-COL(p,∞) to
b; a sends RPT-COL(α,a) to
c; b sends RPT-COL(α,p) to q

c

a b

p q

↑RPT-COL

↑RPT-PAR

(g) b sends RPT-
COL(∞,p) to q; c sends
RPT-PAR(α,a) to b;
all dependencies are
resolved

Figure 9: Resolving of a dependency cycle of mixed type; the spanning tree is
indicated by thick edges. Assume a is the ≺-smallest vertex.

39

cycles per level of T .

Unfortunately a graph may contain many overlapping dependency cycles—yet

we claim the algorithm terminates regardless. Let C be a family of intersecting

dependency cycles. As there is a strict total order ≺ on vertices, there exists some

v = min
≺

⋃

C∈C

C.

Observe that AcquireColor must terminate on v, since all dependency cycles in C

containing v will be broken at v, if not elsewhere. After breaking all such cycles

and resolving all newly-linear chains, let C′ be the remaining cycles. Obviously

|C′| < |C|, and we can apply the same argument to C′ inductively. We conclude

that the d-band algorithm terminates.

At this point we have shown that the coloring function produced by the d-band

algorithm is total. We now prove that it is a T -pseudo-schedule.

Theorem 3.6. Let G be a graph with spanning tree T rooted at r. The d-band

algorithm produces a T -pseudo-schedule provided that

d ≥ min

(
height(T) + 1, max

uv∈E(G)
| distT (u, r)− distT (v, r)|+ 2

)
.

Proof. Let s be the coloring produced by the algorithm. Consider uv ∈ E(T) such

that u is the parent of v; first we establish that (u, v) is nonconflicting. Observe

that we only need consider the stepparents of v, for any other vertices in NG[v]

are colored from a different palette than u, given our choice of d. In general a

stepparent t of v waits until u is colored before requesting a color from its parent

pt, precisely in order to exclude s(u). This will not obtain if a dependency cycle is

broken by AcquireColor at t; but in this case, v issues DEP-REQ to u, causing u

to register a “reverse dependence” on t. The RPT-COL of t announcing its color

is forwarded by v to u as a “reverse report” RPT-PAR, and u will add s(t) to its

40

set of excluded colors when it requests a color from its parent. So even in this case,

s(u) 6= s(t).

Now consider (v, u). Observe that we only need consider the children and

stepchildren of u, for any other vertices in NG[u] are colored from a different

palette than v per our choice of d. Now any child x 6= v of u must have s(x) 6= s(v)

since u assigns the colors of its children. In general u also waits for its stepchildren

to be colored before assigning colors to its children, but this would not have been

the case if a dependency cycle was broken by AssignColors at u. However, when

breaking the dependency cycle, u issues DEP-PUT to its stepchildren, and any

such stepchild y forwards DEP-PUT to its parent py, which registers a “reverse

dependence” of y on the children of u. Every PUT-COL issued by u is subsequently

copied to y, which sends a “reverse report” RPT-COL to py. In this way py comes

to know the colors of the children of u, and will subsequently assign a color to y

distinct from those. This implies s(v) 6= s(y).

It is clear from the preceding theorem that d ≥ 3. Requiring d = 3 is useful

and not, in practice, very restrictive, since the 3-band algorithm works on trees

that minimize distance to the root.

Corollary 3.7. If T is an r-rooted spanning tree of G such that distT (v, r) =

distG(v, r) for any v ∈ V (G), then the 3-band algorithm produces a T -pseudo-

schedule.

Finally, suppose G is such that for any uv ∈ E(G) − E(T), | distT (u, r) −

distT (v, r)| 6= 1. In this case dependency cycles cannot occur at all, and the

algorithm becomes almost trivial!

41

3.4.2 Analysis

The analysis of the d-band algorithm is blessedly simpler than the proof of

correctness. For this section, we say that a d-band coloring s uses (max Image(s))+

1 colors; this forces us to account for “gaps” in the set of colors actually appearing

in s.

Theorem 3.8. Let h denote the number of colors used by the d-band algorithm

on graph G with spanning tree T rooted at r, where d meets the conditions of

Theorem 3.6. If d ≤ height(T) + 1 and ∆G ≥ 2, then

d(∆T − 1) + 1 ≤ h ≤ 2d(∆G − 1)

except possibly when ∆T = 2, in which case the lower bound falls to d. These

bounds are tight.

Proof. The lower bound for ∆T = 2 is established by any path graph. For ∆T ≥ 3,

let v be the vertex on which T achieves its maximum degree. Then any child of

v uses a palette containing at least the colors a, a + d, . . . , a + d(∆T − 1). With

a = 0, we obtain the lower bound. To see tightness, consider a path graph of

order d with r at one end; to the other end, attach m vertices, where m ≥ 2. The

pseudo-schedule on this tree uses dm + 1 colors and has degree m + 1.

For the upper bound, consider a vertex v with distT (v, r) = d− 1. Its parent

pv has at most ∆G − 2 neighbors distinct from v but at the same T -level as v.

Additionally, v has at most ∆G − 1 stepchildren, each of which could have a

distinct parent. This is a total of 2∆G − 2 vertices (including v), so

Palette(v) ⊆ {d− 1, 2d− 1, . . . , d− 1 + d(2∆G − 3)}

which yields the upper bound.

To establish tightness, first construct T as follows: fix some m ≥ 2, introduce

vertex r, and attach to it two paths of length d−2 each. Let the endpoints be called

42

px and py, and attach to each the vertices x1, x2, . . . , xm−1 and y1, y2, . . . , ym−1

respectively. Finally, to each yi attach a vertex zi (1 ≤ i ≤ m− 1).

To build G, take T and introduce the edges xizj for every 1 ≤ i, j ≤ m− 1. T

is a spanning tree of G and ∆G = ∆T = m. Furthermore, it is easy to confirm that

every vertex in {x1, y1, x2, y2, . . . , xm−1, ym−1} must be colored differently under

any T -pseudo-schedule. Since these vertices are all at T -level d − 1, we hit the

upper bound.

In general we obtain an approximation ratio of 2
3
d∆.

3.4.3 Implementation issues

The worst-case number of colors used by the d-band algorithm is, importantly,

linear in the degree of the graph, but typically one should expect performance worse

than either the greedy or 2∆ algorithms due to the potentially large gaps in the

image of the coloring function. We do recover complete freedom in the choice of

spanning tree, but with potentially explosive consequences for d; in practice one

must use spanning trees that (nearly) minimize distance to root. Conceptually the

algorithm is qualitatively more complex than the alternatives due to the problems

of resolving dependencies.

That said, the d-band algorithm is almost surely the best protocol candidate of

the three algorithms we have encountered. Reliance on information at distance two

is quite modest thanks to the division of the graph into bands that operate virtually

independently. Most importantly, the algorithm is distributed and decentralized,

requiring no mutual exclusion mechanisms: determining when to “wait” flows

naturally out of the algorithm’s state semantics. Very aggressive parallelism is

also possible, although this is spoiled by the presence of dependency chains and

cycles. As a rule of thumb, spanning trees should be constructed (more or less)

greedily to avoid such cycles—but of course this tends to boost ∆T , which in turn

43

tends to increase color consumption.
Finally, the d-band algorithm is an example of self-organization as defined by

Dressler [6]:

Self-organization is a process in which structure and functionality (pat-
tern) at the global level of a system emerge solely from numerous in-
teractions among the lower-level components of a system without any
external or centralized control. The systems components interact in a
local context either by means of direct communication or environmental
observations without reference to the global pattern.

Indeed, the d-band algorithm is arguably a very strong example of a self-organizing

system, since its global structure is provably, not just heuristically or empirically,

guaranteed.2 The ideas realized in the design of the algorithm may be useful in

the general study of self-organization.

3.5 Dismantleable (cop-win) graphs

Recall that a vertex u dominates a vertex v in G iff NG[v] ⊆ NG[u]. A graph

is dismantleable iff it is trivial or there exists a dominated vertex v such that G−v

is dismantleable. Dismantleable graphs are also called cop-win because they are

precisely the graphs on which the following vertex pursuit game, played by a “cop”

and a “robber,” can always be won by the cop: the cop chooses a starting vertex,

followed by the robber; the players move alternately, starting with the cop, with

each move consisting of staying put or going to an adjacent vertex. The game is

played with complete information, and the cop wins iff he moves into the vertex

occupied by the robber. The equivalence of the two classes was discovered by

Nowakowski and Winkler [7].

A third characterization of dismantleable graphs is due to Prisner [8]. For any

graph G, let the pared graph P (G) be defined as follows: first, identify all vertices

2One might object that the parameter d relies on global information, which is true in principle.
However, with d = 3 the user need only provide a spanning tree minimizing distance to the root,
which can itself be constructed in a self-organized way. The order ≺ on vertices is also global,
but it is almost always provided “for free” in practice; eg, by serial numbers or MAC addresses.

44

with the same closed neighborhood with a single representative; then remove all

dominated vertices. We can pare the graph as many times as we like, so let the

kth pared graph P k(G) be defined as P (P k−1(G)) where P 0(G) = G. A graph is

dismantleable iff there exists some nonnegative integer k such that the kth pared

graph is trivial; the smallest such k is called the pare-index of G.

Via the pared graphs, any dismantleable graph has a natural spanning tree:

for any vertex v in P k(G) but not P k+1(G), let the parent of v be a vertex that

dominates it in P k(G). Observe that the height of the resulting spanning tree is

equal to the pare-index of G.

Let a dismantleable graph G have r-rooted spanning tree T as just described,

and let dom(v) denote the parent of v in T . Algorithm 3.5.1 produces a T -pseudo-

schedule on G. We require some notation: a vertex u is prior to v iff u is adjacent

to dom(v). We write u � v iff u is prior to v, or u is prior to some x such that

x � v; observe that � is a preorder (a reflexive, transitive binary relation). Finally,

u ∼ v iff u � v and v � u. If we let Vk = {v ∈ V (G) : distT (r, v) = k}, observe

that ∼ partitions Vk and that the blocks of Vk/ ∼ have a natural total strict order

(possibly by linear extension).

3.5.1 Proof of correctness

We show that the coloring s produced by Algorithm 3.5.1 on a dismantleable

graph G, given a dom spanning tree T rooted at r, is a T -pseudo-schedule. Note

that Vk is colored before Vk+1 for all k ≥ 0. Let uv ∈ E(T) such that u = dom(v).

First we show that (u, v) is nonconflicting. Clearly s(u) 6= s(v). Now for any

x ∈ NG[v] distinct from u, v, we have distT (r, x) within one of distT (r, v). Suppose

distT (r, x) < distT (r, v); since u dominates v, x is adjacent to u. But then dom(u)

is adjacent to x and dom(x) is adjacent to u, so s(u) 6= s(x), regardless of which is

colored first. If, alternately, the distances are equal, then x is adjacent to u, thus

45

Algorithm 3.5.1: Pseudo-scheduling the dismantleable graph

Input: G, a dismantleable graph with dom spanning tree T rooted at r.
Output: A T -pseudo-schedule on G.
s← {r 7→ 1}1

for k ← 1 . . .pare-index of G do2

foreach B ∈ Vk/ ∼ (in natural order) do3

foreach v ∈ B do4

if s(v) undefined then5

Pv ← {x ∈ B; x prior to v} // Note v ∈ Pv6

foreach p ∈ Pv do7

K ← s(NG[dom(p)]) ∪ s(NT [dom(v)] ∩B)8

k ← min(Z+ −K)9

add p 7→ k to s10

return s11

dom(x) is adjacent to u, and s(u) 6= s(x). In the final case, dom(x) is adjacent to

v, hence u is adjacent to dom(x), and s(u) 6= s(x).

Now consider (v, u). For any w ∈ NG[u] distinct from u, v, we have distT (r, w)

within one of distT (r, u). If the former is no more than the latter, s(v) 6= s(w) is

obvious, since w was colored first. In the remaining case, note that w is prior to

v. If w was colored first, s(v) 6= s(w); if, however, v was colored first, it must be

that v, w are in the same block B ∈ VdistT (r,v)/ ∼. But then w could not have been

given the same color as any T -child of u in B. We conclude that s(v) 6= s(w).

3.5.2 Analysis

Theorem 3.9. Let h denote the number of colors used by Algorithm 3.5.1 on a

nontrivial dismantleable graph G with dom spanning tree T rooted at r. Then

∆T + 1 ≤ h ≤ ∆G + ∆T .

Furthermore, these bounds are tight.

Proof. The lower bound and its tightness are obvious. The upper bound comes

immediately from counting the number of examined vertices (see line 8 of the

46

algorithm).

To see that the upper bound is tight, begin with K4: let one vertex be r, and

call the other vertices px, py, pz. Fix m ≥ 2. Attach to px the vertices x1, x2, . . . , xm,

to py the vertices y1, y2, . . . , ym, and to pz the vertices z1, z2, . . . , zm. Finally, intro-

duce the edges xipy, yipz, zipx for all 1 ≤ i ≤ m. This graph has a dom spanning

tree as such: dom(px) = dom(py) = dom(pz) = r, dom(xi) = px, dom(yi) = py,

and dom(zi) = pz. There are 3m + 4 vertices, and it is not hard to see that each

one receives a unique color. The degree of the graph is 2m + 3, and the degree of

the spanning tree is m + 1, so the upper bound is achieved.

The improvement in colors over the 2∆ algorithm is only marginal, but here

we have the advantage of a spanning tree with rich semantic content, as opposed

to one selected for the algorithm’s peculiar advantage. We could, for example,

set up a detection network modeled on a dismantleable graph to direct an au-

tomaton intercepting an intruder: the “cop-win” structure guarantees interception

eventually—in number of turns not exceeding the pare-index, in fact—while net-

work communications are organized by means of the st-pseudo-schedule.

List of References

[1] T. Ren, “Graph coloring algorithms for TDMA scheduling in wireless sensor
networks,” Ph.D. dissertation, University of Rhode Island, 2007.

[2] T. Calamoneri, “The L(h, k)-labelling problem: A survey and annotated bibli-
ography,” The Computer Journal, vol. 49, no. 5, pp. 585–606, 2006.

[3] S. T. McCormick, “Optimal approximation of sparse Hessians and its equiv-
alence to a graph coloring problem,” Mathematical Programming, vol. 26, pp.
153–171, 1983.

[4] M. Fürer and B. Raghavachari, “Approximating the minimum-degree Steiner
tree within one of optimal,” Journal of Algorithms, vol. 17, no. 3, pp. 409–423,
1994.

[5] I. Rhee, A. Warrier, J. Min, and L. Xu, “DRAND: distributed randomized
TDMA scheduling for wireless ad-hoc networks,” in Seventh ACM International

47

Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc 2006),
May 2006, pp. 190–201.

[6] F. Dressler, “A study of self-organization mechanisms in ad hoc and sensor
networks,” Computer Communications, vol. 31, no. 13, pp. 3018–3029, 2008.

[7] R. Nowakowski and P. Winkler, “Vertex-to-vertex pursuit in a graph,” Discrete
Mathematics, vol. 43, pp. 235–239, 1983.

[8] E. Prisner, “Convergence of iterated clique graphs,” Discrete Mathematics, vol.
103, pp. 199–207, 1992.

48

Algorithm 3.5.2: AcquireColor

Input: v, “this” vertex.
Output: A color.
L← ∅1

fW ← {x 7→ v; x is a stepchild of v}2

W ← Image(fW)3

w≺ ← v4

send RPT-COL(∞,v) to children of v5

while W 6= ∅ do6

listen for message M7

if M = RPT-PAR(k,w) from (step)child x of v then8

if k 6=∞ then9

remove x 7→ fW (x) from fW10

add k to L11

else if w = v then remove x 7→ fW (x) from fW12

else add/replace x 7→ w in fW13

W ← Image(fW)14

else if M = DEP-REQ(w) from a child of v then15

// Reverse dependence

add/replace w 7→ w in fW16

if w≺ 6= min≺(W ∪ {v}) then17

w≺ ← min≺(W ∪ {v})18

send DEP-REQ(w≺) to children of v19

send RPT-COL(∞,w≺) to stepparents of v20

send RPT-COL(∞,v) to children of v21

send REQ-COL(L) to the parent of v22

listen for PUT-COL(v,kv) from the parent of v23

send RPT-COL(kv,v) to children, stepchildren, and stepparents of v24

return kv25

49

Algorithm 3.5.3: AssignColors

Input: v, “this” vertex.
K, fL, fW , W ← ∅1

X ← stepchildren of v, Z ← children of v2

fR ← {z 7→ ∅; z ∈ Z}3

w≺ ← v4

while Z 6= ∅ do5

if X = ∅ then6

foreach z 7→ L ∈ fL such that fR(z) = ∅ do7

kz ← min(Palette(z)−K − L)8

send PUT-COL(z,kz) to z and stepchildren of v9

remove z from Z10

add kz to K11

else if W 6= ∅ and w≺ 6= min≺ W then12

w≺ ← min≺ W13

send DEP-PUT(w≺) to children of v14

listen for message M15

if M = REQ-COL(L) from child z of v then16

if fL(z) defined then L← L ∪ fL(z)17

add/replace z 7→ L in fL18

else if M = RPT-COL(k,w) from (step)child x then19

if x ∈ X then20

if k 6=∞ or w is a child of v then21

remove x from X22

remove x 7→ fW (x) from fW23

add k to K24

if w is a child of v then ack-send DEP-PUT(v) to x25

else add/replace x 7→ w to fW26

W ← Image(fW)27

else if x is a child of v then28

if k 6=∞ then29

L← (fL(x) defined ? fL(x) : ∅)30

add k to L31

add/replace x 7→ L in fL32

else remove w from fR(z)33

else if M = DEP-PUT(w) from child z of v then34

// Reverse dependence

add w to fR(z)35

send PUT-COL(∞,v) to stepchildren of v36

50

Algorithm 3.5.4: ReportColors

Input: v, “this” vertex.
p← parent of v1

WI , WII ← ∅2

listen for message M from (step)parents3

if M = DEP-REQ(w) from p then4

if w is a stepparent of v then5

// Type I cycle breaking: reverse dependence

add w to WI6

send DEP-REQ(w) back to p7

send RPT-PAR(∞,w) to stepparents of v8

else if M = RPT-COL(k,w) from x then9

if x = p then10

send RPT-PAR(k,w) to stepparents of v11

else if x ∈WI and k 6=∞ then12

// Type I cycle breaking: reverse report

remove x from WI13

send RPT-PAR(k,x) to p14

else if M = DEP-PUT(w) from x then15

if x = p then16

send RPT-COL(∞,w) to children and stepparents of v17

else18

// Type II cycle breaking: reverse dependence

add x to WII19

send DEP-PUT(x) to p and x20

else if M = PUT-COL(u,k) from x ∈WII then21

// Type II cycle breaking: reverse report

if k =∞ then remove x from WII22

send RPT-COL(k,x) to p23

51

CHAPTER 4

Hardness

In this chapter we consider the hardness of optimization (more precisely, the

hardness of the related decision problem) and the hardness of approximation of

pseudo-scheduling algorithms.

Let PSCHED be the set of ordered pairs (G, d) such that

(G, d) ∈ PSCHED ⇐⇒ χ̃1,1(G) ≤ d.

The set can be described as a language of strings by canonical encoding methods.

We can also define the analogous set/language STPSCHED where

(G, d) ∈ STPSCHED ⇐⇒ χ̂1,1(G) ≤ d.

It is easy to prove that both sets are in NP.

Lemma 4.1. PSCHED and STPSCHED are in the complexity class NP.

Proof. Given a pair (G, d), let s : V (G) → K be an alleged pseudo-schedule on

G acting as witness. It is easy to confirm in polynomial time that s is a coloring

function and that |K| ≤ d. Now given any vertex v in G, one can determine by

a BFS-like algorithm the set of vertices reachable from v by a nonconflicting path

and check that this includes all other vertices. We do this for every vertex, with

the entire process being completed in polynomial time. If all checks are passed,

then s certifies that χ̃1,1(G) ≤ d.

For STPSCHED, we require as witness, in addition to s, a spanning tree T .

We confirm that T is a spanning tree and that for each e ∈ E(T), e is bidirectional

under s—all of which can be done in polynomial time. If the checks are passed,

then s is a T -pseudo-schedule, thus an st-pseudo-schedule.

52

The main results of this chapter are presented below.

Theorem 4.2. PSCHED and STPSCHED are NP-Complete.

An algorithm A is a fully polynomial-time approximation scheme (FPTAS) for

PSCHED (STPSCHED) iff for any graph G and ǫ > 0, A can produce a (spanning

tree) pseudo-schedule on G using no more than (1 + ǫ)χ̃1,1(G) ((1 + ǫ)χ̂1,1(G))

colors in time polynomial in the size of G and 1/ǫ.

Theorem 4.3. Neither PSCHED nor STPSCHED admit an FPTAS, unless P =

NP.

4.1 Hardness of optimization

Our method of proving that PSCHED is NP-Hard will be analogous to Karp’s

proof of the hardness of L(1)-labeling [1] and McCormick’s proof of the hardness

of L(1, 1)-labeling [2]; that is, reduction from 3SAT, the language of satisfiable

Boolean formulas in conjunctive normal form with exactly three literals per clause.

It is convenient to describe 3SAT in set-theoretic terms. Given a set of n

variables {x1, . . . , xn}, we can give a set of 2n literals {x1, x1, . . . xn, xn}. A clause is

a three-element subset of the literals. A formula is a set of m clauses {C1, . . . , Cm}.

Then a formula F on variables X is in 3SAT iff there exists some truth assignment

φ : X → {⊤,⊥} such that

∀C ∈ F , ∃x ∈ X : (x ∈ C ∧ φ(x) = ⊤) ∨ (x ∈ C ∧ φ(x) = ⊥).

We make the following assumptions about F :

1. No clause of F contains both x and x for any variable x.

2. For every variable x, both x and x appear in different clauses of F .

These assumptions hold without loss of generality, as any well-formed formula can

be converted into the desired form in polynomial time.

53

Our aim is to exhibit, for any formula F with n variables and m clauses, a

graph G(F) that admits an (st-)pseudo-schedule in m+n+5 colors iff F ∈ 3SAT.

The first element of G(F) is the color gadget Km,n where

V (Km,n) = {ki; 0 ≤ i ≤ m + n + 4}

∪ {ki,j; 0 ≤ i < j ≤ m + n + 4},

E(Km,n) = {{ki, ki,j}, {ki,j, kj}; 0 ≤ i < j ≤ m + n + 4}.

Note that Km+n+5 is a graph minor of Km,n by contraction of the edges {ki, ki,j}.

Also comprising G(F) are the variable gadgets Xi where

V (Xi) = {xi, xi, zi}

∪ {xi,j ; 1 ≤ j ≤ m + n + 4, j 6= i + 2}

∪ {xi,j ; 1 ≤ j ≤ m + n + 4, j 6= i + 2},

E(Xi) = {{xi, zi}, {xi, zi}}

∪ {{xi, xi,j}; xi,j ∈ V (Xi)}

∪ {{xi, xi,j}; xi,j ∈ V (Xi)}

for 1 ≤ i ≤ n.

The final component of G(F) are the vertices {C1, . . . , Cm}, which represent

the clauses.

We can now completely define the graph G(F). The vertex set is given by

V (G(F)) = V (Km,n)

∪ V (X1) ∪ · · · ∪ V (Xn)

∪ {C1, . . . , Cm}.

54

The edge set is given by

E(G(F)) = E(Km,n)

∪ E(X1) ∪ · · · ∪E(Xn)

∪ {{kj, xi,j}; 1 ≤ i ≤ n, 1 ≤ j ≤ m + n + 4, j 6= i + 2}

∪ {{kj, xi,j}; 1 ≤ i ≤ n, 1 ≤ j ≤ m + n + 4, j 6= i + 2}

∪ {{xi, Cj}; 1 ≤ i ≤ n, 1 ≤ j ≤ m, xi ∈ Cj}

∪ {{xi, Cj}; 1 ≤ i ≤ n, 1 ≤ j ≤ m, xi ∈ Cj}.

Figure 10 gives an example of the global structure of G(F) about a single variable

gadget.

The first step in exhibiting a reduction from 3SAT is showing that some sat-

isfying assignment of a formula can be translated into a (st-)pseudo schedule on

the corresponding graph.

Lemma 4.4. If F ∈ 3SAT, then there exists an (spanning tree) pseudo-schedule

of G(F) in m + n + 5 colors.

Proof. Let K consist of one “false color” ⊥; n “true colors” ⊤1, . . . ,⊤n; m “clause

colors” α1, . . . , αm; and four “separator colors” ω1, . . . , ω4. We shall show that

there exists an st-pseudo-schedule s : V (G(F))→ K provided there exists a truth

assignment φ satisfying F .

We start by defining s over the color gadget, beginning with the following

55

k0 : ⊥

k1 : ω1

k2 : ω2

k3 : ⊤1

k4 : ⊤2

k5 : ⊤3

k6 : ω3

k7 : ω4

k8 : α1

k9 : α2

x1,1 : ω1

x1,2 : ω2

x1,4 : ⊥

x1,5 : ⊤3

x1,6 : ω3

x1,7 : ω4

x1,8 : ⊤1

x1,9 : α2

x1,1 : ω1

x1,2 : ω2

x1,4 : ⊤1

x1,5 : ⊤3

x1,6 : ω3

x1,7 : ω4

x1,8 : α1

x1,9 : ⊤1

x1 : ⊤1

x1 : ⊥

z1 : ⊤2

C1 : α1

C2 : α2

Figure 10: Structure of G(F) for the formula F = {{x1, x2, x3}, {x1, x2, x3}} about
the variable gadget X1. Colors are assigned as per the proof of Lemma 4.4, assum-
ing a truth assignment where x1 7→ ⊤.

56

assignments:

k0 7→ ⊥

k1 7→ ω1

k2 7→ ω2

ki+2 7→ ⊤i (1 ≤ i ≤ n)

kn+3 7→ ω3

kn+4 7→ ω4

kj+n+4 7→ αj (1 ≤ j ≤ m).

For the next set of assignments, we will find it convenient to let kb,a be an alias

for ka,b when a < b; we also consider all subscripts to be modulo m + n + 5.

Furthermore, we allow ourselves to refer to the color s(v) whenever s is already

defined on the vertex v. Let us continue, then, with the vertices on the major

cycle:

ki,i+1 7→ s(ki+2) (0 ≤ i ≤ m + n + 4)

and then the cycle in steps of two:

ki,i+2 7→ s(ki) (0 ≤ i ≤ m + n + 4).

To complete the color gadget, we introduce the mappings

ki,j 7→
{

s(kj) = αj−n−4, if n + 5 ≤ j ≤ m + n + 4
s(ki), otherwise

for all 0 ≤ i < j ≤ m + n + 4 where ki,j has not yet been colored.

We now turn to the variable gadgets. For all 1 ≤ i ≤ n, color Xi as follows:

xi 7→
{
⊤i, if φ(xi) = ⊤
⊥, otherwise

xi,1 7→ ω1

57

xi,2 7→ ω2

xi,j 7→ s(kj) (3 ≤ j < i + 2)

xi,i+3 7→
{
⊤i, if φ(xi) = ⊤
⊥, otherwise

xi,j 7→ s(kj) (i + 4 ≤ j ≤ n + 2)

xi,n+3 7→ ω3

xi,n+4 7→ ω4

xi,j+n+4 7→
{
⊤i, if xi ∈ Cj

αj , otherwise
(1 ≤ j ≤ m)

xi 7→
{
⊤i, if φ(xi) = ⊥
⊥, otherwise

xi,1 7→ ω1

xi,2 7→ ω2

xi,j 7→ s(kj) (3 ≤ j < i + 2)

xi,i+3 7→
{
⊤i, if φ(xi) = ⊥
⊥, otherwise

xi,j 7→ s(kj) (i + 4 ≤ j ≤ n + 2)

xi,n+3 7→ ω3

xi,n+4 7→ ω4

xi,j+n+4 7→
{
⊤i, if xi ∈ Cj

αj , otherwise
(1 ≤ j ≤ m)

zi 7→ s(ki+3).

To complete the definition of s, we need only add the mappings

Cj 7→ αj

for all i ≤ j ≤ m. Figure 10 shows a portion of s for a particularly simple formula.

Having defined s, let us now show that it is an st-pseudo-schedule. We note

58

first that the cycle

L0 = k0, k0,1, k1, . . . , km+n+4, km+n+4,0, k0

is bidirectional. Every vertex ki,j not on L0 has a bidirectional edge to either ki or

kj; and whichever vertex cannot be reached directly from ki,j is reachable via L0.

Therefore s is an st-pseudo-schedule over the color gadget.

For each variable gadget Xi, either the path ki+3, xi,i+3, xi or ki+3, xi,i+3, xi is

bidirectional in s, depending on whether φ(xi) is true or false, respectively; let

us denote the bidirectional path by Li. Furthermore, for any xi,j (xi,j) not in Li,

there is bidirectional edge with kj when it is colored differently than ki; otherwise

it has a bidirectional edge with xi (xi). As xi, zi, xi is also bidirectional, this and

Li provides a means for every vertex in Xi to reach any other vertex in the same

variable gadget, or via L0 any vertex in the color gadget and all other variable

gadgets.

Finally, the edge between a clause vertex Cj and a literal vertex is bidirectional

if the literal is true-colored—but every clause vertex is adjacent to a true-colored

literal since φ satisfies F .

It is worth noting in the proof above that how we color G(F) is, in some sense,

tightly constrained by the very structure of the graph. This turns out to be an

essential factor in proving the converse lemma (and makes the proof less intricate).

Lemma 4.5. Given some formula F , if there exists a (spanning tree) pseudo-

schedule of G(F) in m + n + 5 colors, then F ∈ 3SAT.

Proof. Observe that if a vertex v is adjacent only to the two distinct vertices x

and y, then any (spanning tree) pseudo-schedule of the graph must assign x and y

to different colors—for if not, neither (x, v) nor (y, v) are nonconflicting, and there

is no nonconflicting path to v. It follows immediately that the color gadget Kn,m

59

requires m + n + 5 colors, and thus so does G(F). Let s be a (st-)pseudo-schedule

of G(F) in m + n + 5 colors; without loss of generality we may assume that the

colors of k0, . . . , km+n+4 are named as in the proof of Lemma 4.4.

Reasoning as above, it must be that s(xi), s(xi) ∈ {⊥,⊤i}, and further that

s(xi) 6= s(xi), for all 1 ≤ i ≤ n. Therefore a truth assignment φ can be defined by

the natural interpretation of the color of each positive literal vertex.

Each clause vertex is reachable by a nonconflicting path only if there is at least

one true-colored vertex adjacent to it, which corresponds exactly to the condition

of φ being a satisfying assignment for F .

We can now proceed to the completeness proof.

Proof of Theorem 4.2. Given some formula F with n vertices and m clauses, we

can generate G(F) in time polynomial to the length of F , as there are O((m+n)2)

vertices. By combining Lemma 4.4 and Lemma 4.5 we see that F ∈ 3SAT iff

(G(F), m + n + 5) ∈ PSCHED. Thus there is a polynomial-time reduction from

3SAT to PSCHED. As 3SAT is NP-Complete [1], PSCHED is NP-Hard. By

Lemma 4.1 the language PSCHED is in NP, so we conclude that PSCHED is

NP-Complete.

The proof for STPSCHED is identical in form.

4.2 Hardness of approximation

Theorem 4.2 suggests that the search for optimal polynomial-time algorithms

is unlikely to be fruitful, or more precisely, success is too fruitful to be likely. We

therefore resort to approximate algorithms, as in §3, but we would like to under-

stand if our algorithms are tight. Unfortunately we are far from understanding

this for the pseudo-scheduling problem, but the reduction presented in the previ-

ous section immediately rules out the existence of an FPTAS, assuming P 6= NP.

60

The presentation in this section follows Vazirani’s textbook [3].

A problem Π is strongly NP-Hard iff every problem in NP can be polynomially

reduced to Π in such a way that numbers in the reduced instance are written in

unary; in other words, numbers are polynomially bounded by the length of the

original instance. 3SAT is vacuously strongly NP-Hard since its natural instance

form, the formula, contains no numbers.

PSCHED and STPSCHED do contain numbers, but the reduction from 3SAT

described in the previous section produces the number m + n + 5, where m

is the number of clauses and n the number of variables in the 3SAT instance.

This is clearly polynomially (actually linearly) bounded by the 3SAT instance, so

PSCHED and STPSCHED are strongly NP-Hard.

Proof of Theorem 4.3. Observe that k = χ̃1,1 (k = χ̂1,1) is bounded by the length

of any instance of PSCHED (STPSCHED) written in unary, since the instance

describes the graph, and k is trivially no greater than the number of vertices.

Garey and Johnson [4] showed that a strongly NP-Hard problem satisfying this

condition refuses an FPTAS, unless P = NP.

List of References

[1] R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of
Computer Computations, R. E. Miller and J. W. Thatcher, Eds. Plenum Press,
1972.

[2] S. T. McCormick, “Optimal approximation of sparse Hessians and its equiv-
alence to a graph coloring problem,” Mathematical Programming, vol. 26, pp.
153–171, 1983.

[3] V. V. Vazirani, Approximation Algorithms. Springer, 2003.

[4] M. R. Garey and D. S. Johnson, “Strong NP-completeness results: motivation,
examples, and implications,” Journal of the ACM, vol. 25, no. 3, pp. 499–508,
1978.

61

CHAPTER 5

Pseudo-(h, k)-Labelings

Recall from §2.1 that we defined L(τ)-labelings in a very general way, allowing

τ to be a tuple with any number of nonincreasing positive integer parameters. Yet

we quickly abandoned this generality and considered only the case τ = (1, 1).

Let us now permit τ = (h, k); we quickly perceive that the L(h, k)-labeling can be

relaxed in exactly the same sense as L(1, 1)-labeling was relaxed to L̃(1, 1)-labeling.

Given integers h, k such that h ≥ k ≥ 1 and some labeling function l : V (G)→

Z, an ordered pair (u, v) ∈ V (G)2 is nonconflicting under l iff

• {u, v} ∈ E(G);

• |l(u)− l(v)| ≥ h; and

• ∀x ∈ NG[v] : x /∈ {u, v} =⇒ |l(u)− l(x)| ≥ k.

A directed path from u to v is nonconflicting relative to l iff the pairs that comprise

it are nonconflicting in l. Finally, a L̃(h, k)-labeling, or pseudo-(h, k)-labeling, of

G is a labeling l such that there exists a nonconflicting path in l from u to v, and

vice-versa, for any connected u, v ∈ V (G); the associated chromatic number is the

pseudo-(h, k)-number, denoted χ̃h,k. (Recall that for a labeling l with image K, in

general we say that l uses (max K −min K + 1) colors.)

An edge uv is bidirectional if (u, v) and (v, u) are nonconflicting, of course.

Definitions for the spanning tree pseudo-(h, k)-labeling and its associated chromatic

number χ̂h,k are obtained just as in §3.1.

The L(2, 1)-labeling is considered a viable model for the radio channel assign-

ment problem [1, 2], so L̃(2, 1)-labelings have relevance for the broadcast scheduling

62

problem in radio networks. L(h, k)-labelings with h ≥ 3 or k ≥ 1 appear to be of

purely theoretical interest; Calamoneri [3] surveys known results.

In this chapter we will establish bounds and hardness results on χ̃h,k.

Theorem 5.1. Fix h ≥ k ≥ 1. Given a graph G with degree ∆ ≥ 1,

h + k(∆∗ − 1) + 1 ≤ χ̃h,k(G) ≤ χ̂h,k(G) ≤ 2∆(2k − 1) + 2(h− 2k + 1)

where ∆∗ is the smallest possible degree of a spanning tree of G.

Fiala et al. [4] proved that the decision problem version of L(h, k)-labeling

is NP-Complete. This is also the case for L̃(h, k)-labeling. (Formal definitions of

PLABEL and STPLABEL are given in §5.2 below.)

Theorem 5.2. Fix h ≥ k ≥ 1. PLABELh,k and STPLABELh,k are NP-Complete.

We can also rule out the existence of an FPTAS; since the proof is basically

identical to the proof of Theorem 4.3, we present the result without further com-

ment.

Theorem 5.3. Fix h ≥ k ≥ 1. Neither PLABELh,k nor STPSCHEDh,k admit an

FPTAS, unless P = NP.

5.1 Bounds on χ̃h,k

Proof of Theorem 5.1. By the same argument used in the proof of Lemma 2.3,

from a pseudo-(h, k)-labeling s we can obtain a directed spanning tree T of G

expressing nonconflicting paths. Let v be a vertex such that degT (v) = ∆T . The

smallest number of colors used in NT [v] occurs when v has the smallest color α

in the neighborhood, for any neighbor u of v we have (u, v) nonconflicting, and

s(u) = α + h + ki where 0 ≤ i ≤ ∆T − 1. The lower bound follows from this.

To obtain the upper bound, we need only modify the proof of Theorem 3.5,

which calculated the upper bound of the 2∆ algorithm. Observe that a vertex

63

needs to have color h away from its parent, excluding at most 2h − 1 colors; and

furthermore the color must be k away from the as many as 2(∆G − 1) vertices

at distance two that are checked, excluding at most 2(∆G − 1)(2k − 1) colors.

Summing the number of excluded colors and adding one for the vertex itself yields

the upper bound.

The lower bound is tight: for any m ≥ 1, take Km,1, color the dominant vertex

with 0, and color the remaining vertices h, h + k, . . . , h + k(m− 1). I do not know

if the upper bound is tight—recall that this is unresolved even for h = k = 1.

On a related note, let us observe that all the algorithms presented in §3 will

work for L̃(h, k)-labeling after making the obvious modifications, with the excep-

tion of the d-band algorithm. Even there, however, we can simply multiply every

palette by h, although this seems wasteful when h > k. A more sophisticated

choice of palette may be possible in this case.

5.2 Hardness

For fixed integer parameters h ≥ k ≥ 1, let PLABELh,k be the set of ordered

pairs (G, d) such that

(G, d) ∈ PLABELh,k ⇐⇒ χ̃h,k(G) ≤ d.

The set can be described as a language of strings by canonical encoding methods.

We also define STPSCHEDh,k where

(G, d) ∈ STPSCHED ⇐⇒ χ̂h,k(G) ≤ d.

To establish Theorem 5.2, we will proceed somewhat differently than in §4. In

that chapter we reduced from 3SAT; here we reduce from NAE3SAT, the language

of Boolean formulas in conjunctive normal form with exactly three literals per

clause that are satisfiable with a truth assignment that exhibits at least one false

64

literal per clause. NAE3SAT can be described as a set:

{
F ; ∃φ∀C ∈ F∃l1, l2 ∈ C : l1 =

{
x, if φ(x) = ⊥
x, otherwise

, l2 =

{
y, if φ(y) = ⊥
y, otherwise

}

where the formula F is a set of clauses C, each clause being a three-element subset

of the literals L over variables X such that L = {x, x; x ∈ X}. The function

φ : X → {⊥,⊤} is a truth assignment.

NAE3SAT was shown to be NP-Complete by Garey and Johnson [5]. With-

out loss of generality, we may assume that no clause contains both x and x for

any variable x; and that for any variable x, both x and x appear in (different)

clauses of F . (Observe that a formula not conforming to these assumptions can be

transformed into an equivalent conforming formula in polynomial time.)

Schematically, our proof method will be to show that for every (possibly

empty) well-formed formula F , one can efficiently construct a graph GF such that

F admits a satisfying assignment iff GF has a L̃(h, k)-labeling in some efficiently-

computable number of colors.

5.2.1 Hardness of PLABELh,1

It is not difficult to show the hardness of PLABEL(h, k) by our constructions if

the hardness of PLABEL(h, 1) is already established, so we take the latter problem

first. From this point forward, we consider a formula F with m clauses C1, . . . , Cm

and n variables x1, . . . , xn, conforming to the assumptions mentioned above.

The formula graph GF is comprised of a color gadget Kh,m,n; n variable gadgets

X1, · · · , Xn; and vertices C1, . . . , Cm coinciding with the clauses of F . Intuitively,

the color gadget forces to minimum number of colors to a certain “useful” level.

The variable gadgets connect to the color gadget in such a way that particular

colors can be identified with the Boolean values ⊤ and ⊥, certain vertices can be

identified with the literals, and these “literal” vertices are labeled with “Boolean”

65

colors in a meaningful manner. Finally, each clause vertex is set adjacent to the

literals it contains.

Let us first consider the color gadget Kh,m,n. Its vertex set is comprised of

N = 2h2 + 2h + m + n main vertices and
(

N

2

)
intermediate vertices.

V (Kh,m,n) = {ki; 0 ≤ i < N}

∪ {ki,j; 0 ≤ i < j < N}.

The intermediate vertices can be seen as “straddling” the edges in what would

otherwise be a clique over the main vertices.

E(Kh,m,n) = {{ki, ki,j}, {ki,j, kj}; 0 ≤ i < j < N}.

The critical thing to note is that no two main vertices can be assigned the same

color in any pseudo-labeling; for if this were the case for two main vertices ka, kb

(a < b), then there could be no nonconflicting pair terminating at the intermediate

vertex ka,b.

Now consider the variable gadget Xi where 1 ≤ i ≤ n. There are two literal

vertices, with one intermediate vertex between them, and N − 2 intermediate

vertices per literal. These last will provide the bridge to the color gadget.

V (Xi) = {xi, xi, zi}

∪ {xi,j , xi,j; 1 ≤ j < N, j 6= N −m− 1}.

The edges of the vertex gadget are also constructed according to the principle of

“straddling” edges in order to force color difference.

E(Xi) = {{xi, zi}, {xi, zi}}

∪ {{xi,j, xi}, {xi,j, xi}; xi,j, xi,j ∈ V (Xi)}.

66

At this point we are ready to assemble the formula graph itself. The vertices

are simply the vertices of the assorted gadgets, plus the clause vertices.

V (GF) = V (Kh,m,n) ∪
n⋃

i=1

V (Xi) ∪ {C1, . . . , Cm}.

Finally we connect the color gadget to the variable gadgets, and the variable gad-

gets to the clauses (while, of course, retaining all the edges previously introduced).

E(GF) = E(Kh,m,n) ∪
n⋃

i=1

E(Xi)

∪
n⋃

i=1

{{xi,j, kj}, {xi,j, kj}; xi,j, xi,j ∈ V (Xi)}

∪
m⋃

i=1

{{l, Ci}; l ∈ Ci}.

The global structure of GF induces a sufficient condition on the existence of

a satisfying assignment.

Lemma 5.4. Fix h ≥ 1 and let F be some formula of m clauses over n variables.

If there exists a (spanning tree) pseudo-(h, 1)-labeling of the formula graph GF in

2h2 + 2h + m + n colors, then F ∈ NAE3SAT.

Proof. If m = n = 0, the result is vacuously true, so assume not. The color gadget

ensures that no L̃(h, 1)-labeling occurs in fewer than N = 2h2 +2h+m+n colors.

Let s be a (spanning tree) pseudo-(h, 1)-labeling of GF in N colors. Since we can

name colors anything we want, let s(k0) be the “false color” ⊥, and s(kN−m−1) be

the “true color” ⊤.

There is an intermediate vertex in the variable gadget Xi between either literal

vertex and every main vertex of the color gadget, save k0 and kN−m−1, so xi and

xi must be colored either ⊥ or ⊤. Furthermore, the intermediate vertex between

these literals compels them to be colored differently from one another. Therefore

we can define a Boolean function φ over the variables based on whether each xi is

colored “true” or “false.”

67

Now consider any clause vertex Cj where 1 ≤ j ≤ m. In order for a non-

conflicting pair terminating at Cj to exist, at least one of the three literal vertices

adjacent to Cj must be colored uniquely relative to the other two. Thus φ is a

not-all-equal satisfying assignment of F .

Next we establish the converse, at least for nearly every case.

Lemma 5.5. Fix h ≥ 2 and let F be some formula of m clauses over n variables.

If F ∈ NAE3SAT, then GF admits a spanning tree pseudo-(h, 1)-labeling in 2h2 +

2h + m + n colors.

Proof. Let N = 2h2+2h+m+n; we will construct a spanning tree L̃(h, 1)-labeling

s : V (GF)→ {0, . . . , N −1} based on a not-all-equal satisfying assignment φ of F .

We begin with the color gadget Kh,m,n. The main vertices are simple enough:

ki 7→ i

for all 0 ≤ i < N .

From this point forward, we implicitly take colors and subscripts modulo N

and let kb,a be an alias for ka,b where a < b. (Thus, for instance, kN−1,N = kN−1,0 =

k0,N−1.) For all 0 ≤ i < N and 1 ≤ j ≤ h2:

ki,i+j 7→
{

i + h(h− j + 1), if 1 ≤ j < h
i, otherwise

.

Finally, for all 0 ≤ i < j < N such that ki,j remains uncolored:

ki,j 7→






j, if i = 0
i, if 1 ≤ i < h
j, if N − h−m ≤ j < N −m− 1
i, if j = N −m− 1
j, otherwise

where the mapping is defined by the first listed condition that is true. (For example,

k0,N−m−1 7→ N −m− 1 because the condition i = 0 comes before j = N −m− 1.)

We say that a color α is “free” on vertex v when α /∈ s(NGF
[v]). Note that

68

• the colors 0 and N −m− 1 are free on all ki where h2 + h ≤ i < h2 + h + n;

• the color h2+h+j is free on ki and kN−m−i−1 for all 1 ≤ i < h and 0 ≤ j < n;

and

• the color h2 + h + j is free on ki for all N −m ≤ i < N and 0 ≤ j < n.

This will come in handy when we color the vertex gadgets.

Claim. The function s is a spanning tree L̃(h, 1)-labeling of Kh,m,n.

Proof. The following set T of edges, which contains a spanning tree of Kh,m,n, are

all bidirectional:

T = {{ki, ki,i+1}; 0 ≤ i < N}

∪ {{ki, ki,j}; 0 ≤ i < j < N, |s(ki)− s(ki,j)| ≥ h}

∪ {{ki,j, kj}; 0 ≤ i < j < N, |s(kj)− s(ki,j)| ≥ h}.

It is not hard to see that pairs terminating in an intermediate vertex are noncon-

flicting, but this is not at all obvious for pairs terminating in a main vertex, as

a main vertex has very many neighbors, all of which must be colored differently

than the originating element of the pair.

Fix some main vertex ki. ki has, in a manner of speaking, h2 intermediate

vertices ki−h2,i, . . . , ki−1,i “to the left” and h2 intermediate vertices ki,i+1, . . . , ki,i+h2

“to the right.” The remaining intermediate vertices ki,j adjacent to ki present no

potential conflicts at ki, since they will either be colored i or j.

We partition the intermediate vertices to the left and right as follows:

L2 = {ki−h2,i, . . . , ki−h,i}

L1 = {ki−h+1,i, . . . , ki−1,i}

R1 = {ki,i+1, . . . , ki,i+h−1}

R2 = {ki,i+h, . . . , ki,i+h2}

69

and note that these vertices take colors in the intervals

[i− h2, i− h], [i + 1, i + h2 − 1], [i + 2h, i + h2], [i, i]

respectively. N is large enough to ensure that disjoint intervals remain disjoint

even modulo N , so we conclude that the only vertices potentially conflicting at ki

are in L1 ∪ R1; ie, they lie within “radius” h− 1 of ki.

Let 0 < a, b < h and consider the vertices ki−a,i and ki,i+b with colors i− a +

h(h− a + 1) and i + h(h− b + 1), respectively. If these colors were equal (modulo

N) then

a + h(h− a + 1)− h(h− b + 1) ≡ 0 =⇒ h(b− a) ≡ a

which is impossible: if b− a < 0, then N is too large for the congruence, as −h2 <

h(b− a) ≤ −h; if a = b, we have a = h; and if b− a > 0, then h ≤ h(b− a) < h2,

and once again N is too large for the congruence. We conclude that vertices in

L1 ∪R1 do not cause conflicts at ki, and since ki was chosen arbitrarily, the claim

is proved.

An immediate consequence of the claim is the truth of the lemma for the

empty formula.

We are now ready to complete the construction of s. The clauses are easy to

color:

Ci 7→ N −m + i− 1

for all 1 ≤ i ≤ m.

For the variable gadget Xi where 1 ≤ i ≤ n:

xi 7→
{

0, if φ(xi) = ⊥
N −m− 1, otherwise

xi 7→
{

N −m− 1, if φ(xi) = ⊥
0, otherwise

zi 7→ h2 + i− 1.

70

Here, clearly, we are designating 0 as the “false color” and N −m− 1 as the “true

color.” As φ is a not-all-equal satisfying assignment, we are guaranteed that for

every clause vertex Cq (1 ≤ q ≤ m) there exists some literal l ∈ Cq such that

(l, Cq) is nonconflicting.

Let α = h2 + h + i− 1. For all 1 ≤ j < N such that j 6= N −m− 1:

xi,j 7→




{
α, if φ(xi) = ⊥
j, otherwise

, if 1 ≤ j < h

j, if h ≤ j < h2 + i− 1
α, if j = h2 + i− 1
j, if h2 + i ≤ j < h2 + h + i− 1{

N −m− 1, if φ(xi) = ⊥
0, otherwise

, if j = h2 + h + i− 1

j, if h2 + h + i ≤ j < N − h−m{
j, if φ(xi) = ⊥
α, otherwise

, if N − h−m ≤ j < N −m− 1
{

α, if xi ∈ Cj−N+m+1

j, otherwise
, otherwise

.

Note that if the vertex xi,j is colored j, the edge {xi, xi,j} is bidirectional; if it is

colored α, then {xi,j, kj} is bidirectional since α is free on kj ; and for xi,h2+h+i−1,

both incident edges are bidirectional. Furthermore, the edge {xi, zi} is bidirec-

tional, and (C, xi) is a nonconflicting pair for all clauses C such that xi ∈ C.

We now color the intermediate vertices adjacent to negative literals. We can

use essentially the same approach, with all appropriate “switching” for the nega-

tion. Also, we no longer need a special case for j = h2 + h + i− 1, for reasons we

71

will discuss shortly. So with i, j, α as in the preceding paragraph:

xi,j 7→




{
j, if φ(xi) = ⊥
α, otherwise

, if 1 ≤ j < h

j, if h ≤ j < h2 + h + i− 1{
0, if φ(xi) = ⊥
N −m− 1, otherwise

, if j = h2 + h + i− 1

j, if h2 + h + i ≤ j < N − h−m{
α, if φ(xi) = ⊥
j, otherwise

, if N − h−m ≤ j < N −m− 1
{

α, if xi ∈ Cj−N+m+1

j, otherwise
, otherwise

.

Observe that the edge {xi, zi} is bidirectional. The pair (C, xi) is nonconflicting

for all clauses C such that xi ∈ C.

Let Bi denote the bidirectional edges in Xi. If e ∈ Bi is incident on the color

gadget, we attach it to the bidirectional spanning tree already described on the

color gadget; otherwise add it to a set Ti. Now observe that the bidirectional path

xi, xi,h2+h+i−1, kh2+h+i−1 “bridges” the spanning tree on the color gadget and Ti;

hence we conclude that s is a spanning tree pseudo-(h, k)-labeling over the color

and variable gadgets.

To complete the proof, it suffices to show just one bidirectional edge incident

on each clause vertex—but this is precisely what the assignment φ allows us to

claim.

At this point we have enough to show hardness in the case h > k = 1, but in

fact we are already so close to the general case that we can proceed directly to the

proof.

Proof of Theorem 5.2. The proof of Lemma 4.1 establishes that the problems are

in NP for the case h = k = 1, and the algorithm given there is easily adapted for

the general case.

72

NP-Hardness of the case h = k = 1 was established in §4.1, so consider every

other case. Given formula F in m clauses and n variables, consider GF as defined

above. Due to the structure of the color gadget, the only way to color it is to assign

a unique color to every vertex, and then multiply each color by k. The number of

colors is then

k(2h2 + 2h + m + n)− k + 1 = k(2h2 + 2h + m + n− 1) + 1.

We claim that GF admits a (spanning tree) pseudo-(h, k)-labeling in k(2h2 +

2h + m + n − 1) + 1 colors iff F ∈ NAE3SAT. For the forward implication, we

argue precisely as in the proof of Lemma 5.4, modifying only the number of colors

as per the preceding considerations. For the reverse implication, we simply color

GF as in the proof of Lemma 5.5, then multiply each color by k.

Our claim shows that there is a reduction from NAE3SAT to PLABELh,k

(STPLABELh,k). Furthermore, this reduction is polynomial-time, since GF has

only O((m + n)2) vertices. (Remember that h, k are treated as fixed constants.)

We conclude that PLABELh,k (STPLABELh,k) is NP-Hard.

List of References

[1] J. R. Griggs and R. K. Yeh, “Labeling graphs with a condition at distance 2,”
SIAM Journal on Discrete Mathematics, vol. 5, pp. 586–595, 1992.

[2] C. McDiarmid, “Discrete mathematics and radio channel assignment,” in Re-
cent Advances in Algorithms and Combinatorics, ser. CMS Books in Mathe-
matics, B. A. Reed and C. L. Sales, Eds. Springer-Verlag, 2003, vol. 11, pp.
27–63.

[3] T. Calamoneri, “The L(h, k)-labelling problem: A survey and annotated bibli-
ography,” The Computer Journal, vol. 49, no. 5, pp. 585–606, 2006.

[4] J. Fiala, T. Kloks, and J. Kratochv́ıl, “Fixed-parameter complexity of λ-
labelings,” Discrete Applied Mathematics, vol. 113, pp. 59–72, 2001.

[5] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. New York, NY, USA: W. H. Freeman & Co.,
1979.

73

CHAPTER 6

Conclusion

Recall from §1 that the study offered to present a new formal framework

for explicit scheduling solutions to the broadcast scheduling problem that would

both be algorithmically tractable and reduce schedule size. Our investigation has

surely demonstrated that the L̃(1, 1)-labeling is such a framework, and we have

made substantial progress in the formal analysis of this new type of graph coloring

problem. While we can be satisfied that the study is complete in that sense, by

no means have we exhausted the subject.

In this, the concluding chapter, we will consider a series of questions that we

have either had to leave unresolved or were not able to raise until now.

6.1 Open problems

Problems are presented in the order in which the relevant topics were encoun-

tered.

Open Problem 1. Establish whether the upper bound 2∆ on χ̃1,1 is tight. If

not, find a tight upper bound; if so, characterize the graphs that achieve the upper

bound.

As mentioned in §2.3, the only graphs I know that achieve the 2∆ upper bound

are K2—for which the upper bound equals the lower bound—and C3k+2 (k ≥ 1),

although in this case ∆+2 may be what is “really” happening. On the other hand,

2∆ is an intuitively appealing upper bound. I consider this the top open problem,

since it represents a chink in the armor of fundamental results.

If 2∆ is a tight bound, we would like to establish a kind of “Brooks’ Theorem”

for it by characterizing the graphs that hit the bound. Theorem 2.8 demonstrates

74

that such a class, if it exists, is “small.”

Open Problem 2. Characterize the graphs G such that χ̃1,1 > ∆G + 1.

Refer to Table 2 on p. 29: the empirical data suggests that graphs with pseudo-

(1, 1)-number above ∆ + 1 are “rare.” I even find them hard to construct deliber-

ately. A characterization of such graphs would be immensely useful; merely having

meaningful necessary or sufficient conditions would also be desirable, particularly

if they related to graph classes frequently studied as network models (scale-free,

unit disk, etc).

Open Problem 3. Let p = p(n) be “sufficiently far” from zero or one (eg, 0 <

p < 1 is a constant). Establish whether

χ̃1,1(G) < ∆G

for almost every random graph G = G(n, p).

Referring again to Table 2, the empirical data suggests that the expectation µ

of (χ̃1,1−∆) goes to −∞ as n→∞. If this is true, and furthermore the variation

can be shown to be o(µ2), by Chebyshev’s inequality we can establish the desired

result. Indeed, we would have χ̃1,1−∆ ∼ µ almost always, a very powerful result,

provided we can say anything specific about µ.

Open Problem 4. Establish whether χ̃1,1(G) = χ̂1,1(G) for all graphs G. If

not, characterize the graphs for which this holds and investigate the preceding open

problems relative to χ̂1,1.

In Figure 5 on p. 24 we saw that not every pseudo-schedule is spanning tree,

but I do not know any graph for which χ̃1,1 6= χ̂1,1. If indeed χ̃1,1 = χ̂1,1, we would

gain a powerful proof tool, since the additional structure of st-pseudo-schedules

makes them easier to investigate. We would also be spared a lot of work, since a

75

possibly strict inequality would compel us to “re-ask” every question about χ̃1,1 in

terms of χ̂1,1.

Open Problem 5. Given a graph G, establish which classes of spanning subgraphs

H admit H-pseudo-schedules in O(∆G) colors, and find efficient (approximate)

algorithms for H-pseudo-schedules. Furthermore, investigate the same problem

where G and/or H are directed graphs.

With T a spanning tree of G, a T -pseudo-schedule is “fragile” in the sense that

the removal of any edge in T may disconnect G relative to the set of nonconflicting

paths, even though G is not actually disconnected. This is, of course, an inherent

trade-off in the move from strict scheduling to pseudo-scheduling, but nevertheless

we may wish to specify spanning subgraphs H that are more resilient (eg, k-

connected), particularly for applications in unreliable networks.

Observe that the greedy algorithm (§3.2) works without modification on any

spanning subgraph H and even retains the same bounds (with ∆H in place of ∆T).

The upper bound O(∆G∆H) = O(∆2
G) is undesirable, though, albeit for some H

unavoidable in principle (eg, trivially, H = G). We would therefore like to iden-

tify for which classes of spanning subgraphs we can obtain results asymptotically

similar to those for spanning trees.

Finally, we would like to generalize to directed graphs.

Open Problem 6. Refactor the d-band algorithm for the interference graph.

Given a graph G = (V, E), we can form an interference graph GI = (V, E ∪ I)

given a set of directed interference edges I; (x, y) ∈ I is interpreted to mean that

x can induce a transmission conflict at y (but not vice-versa, unless (y, x) ∈ I

as well). We then say that (u, v) is nonconflicting under coloring s iff uv ∈ E,

s(u) 6= s(v), and u is colored differently from every in-neighbor of v in GI distinct

76

from u. A pseudo-schedule is then defined in the normal way, but note that we

have effectively required nonconflicting paths to proceed over E, while additionally

having to avoid conflicts induced by I.

The interference graph is a more realistic model for broadcast networks, al-

though the fact that one cannot normally assume that communication is possible

over interference edges means that the discovery of the interference graph is itself a

difficult problem. The protocol RID of Zhou et al. [1] solves the problem by vary-

ing transmit power and letting I be more or less synonymous with links realized

in a high-power mode but not under normal power.

Assuming the interference graph is discoverable, we would like to refac-

tor the d-band algorithm (§3.4) for such graphs, since we assessed this algo-

rithm to be a strong protocol candidate. Supposing G has an r-rooted tree

T , note that the d-band algorithm already works without modification when

| distT (x, r) − distT (y, r)| 6= 1 for all (x, y) ∈ I, provided d is sufficiently large,

since the algorithm ignores all such edges anyway. Thus the easiest modifications

would involve choosing r and/or T such that this condition is realized, although I

do not know that this is always possible. If indeed not, changes to the algorithm

proper are probably unavoidable.

Open Problem 7. Establish fixed-parameter hardness results for PSCHED and

STPSCHED, and hardness results for particular graph classes.

For any (cubic) graph G, it is NP-Complete to determine χ1,1(G) ≤ 4 [2].

Similarly, we would like to show that there exists some constant c such that it

is NP-Complete to determine if the (st-)pseudo-(1, 1)-number of a graph is more

than c. It is reasonable to suspect that c = 3, 4.

It is also hard to determine the (1, 1)-number of many graph classes, including

unit disk graphs and planar graphs [2]. We would like to resolve similar questions

77

for PSCHED (STPSCHED), particularly relative to classes that model networks.

Open Problem 8. Establish tighter inapproximability results for χ̃1,1 and χ̂1,1.

The discovery the PCP Theorem, which characterizes NP in terms of the class

of decision problems with probabilistically checkable proofs, known as PCP, marked

a revolutionary advance in the study of inapproximability; see §29 of [3]. Our

inapproximability result, Theorem 4.3, is a very weak finding based on techniques

that predate the PCP Theorem. Using a modern approach, we would like to derive

tighter inapproximability results; I suspect that a proof that χ̃1,1 (χ̂1,1) cannot be

approximated within any constant factor may not be too difficult.

Open Problem 9. Investigate the preceding open problems relative to pseudo-

(h, k)-labeling.

The most important case is h = 2, k = 1 due to the practical implications for

radio channel assignment.

List of References

[1] G. Zhou, T. He, J. A. Stankovic, and R. Abdelzaher, “RID: radio interference
detection in wireless sensor networks,” in 24th Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM 2005), March
2005, pp. 891–901.

[2] T. Calamoneri, “The L(h, k)-labelling problem: A survey and annotated bibli-
ography,” The Computer Journal, vol. 49, no. 5, pp. 585–606, 2006.

[3] V. V. Vazirani, Approximation Algorithms. Springer, 2003.

78

BIBLIOGRAPHY

Ahn, G., Miluzzo, E., Campbell, A. T., Hong, S., and Curomo, F., “Funneling-
MAC: A localized, sink-oriented MAC for boosting fidelity in sensor net-
works,” in Fourth ACM Conference on Embedded Network Sensor Systems
(SenSys 2006), November 2006, pp. 293–306.

Alon, N. and Spencer, J. H., The Probabilistic Method, 3rd ed., ser. Wiley-
Interscience Series in Discrete Mathematics and Optimization. John H. Wiley
& Sons, 2008.

Bollobás, B., Random Graphs, 2nd ed., ser. Cambridge Studies in Advanced Math-
ematics. Cambridge University Press, 2001.

Broersma, H., Fomin, F. V., Golovach, P. A., and Woeginger, G. J., “Backbone
colorings for graphs: tree and path backbones,” Journal of Graph Theory,
vol. 55, no. 2, pp. 137–152, 2007.

Calamoneri, T., “The L(h, k)-labelling problem: A survey and annotated bibliog-
raphy,” The Computer Journal, vol. 49, no. 5, pp. 585–606, 2006.

Chipara, O., Lu, C., and Stankovic, J., “Dynamic conflict-free query scheduling
for wireless sensor networks,” in Fourteenth IEEE International Conference
on Network Protocols (ICNP ’06), November 2006, pp. 321–331.

Chlamtac, I., Faragó, A., and Zhang, H., “Time-spread multiple access protocols
for multihop mobile radio networks,” IEEE/ACM Transactions on Network-
ing, vol. 5, no. 6, pp. 804–812, 1997.

Cowen, L., Goddard, W., and Jesurum, C. E., “Defective coloring revisited,” Jour-
nal of Graph Theory, vol. 24, no. 3, pp. 205–219, 1997.

DiPippo, L., Tucker, D., Fay-Wolfe, V., Bryan, K. L., Ren, T., Day, W., Murphy,
M., Henry, T., and Joseph, S., “Energy-efficient MAC for broadcast problems
in wireless sensor networks,” in Third International Conference on Networked
Sensing Systems, June 2006.

Dressler, F., “A study of self-organization mechanisms in ad hoc and sensor net-
works,” Computer Communications, vol. 31, no. 13, pp. 3018–3029, 2008.

Dysktra, R. L., Hewett, J. E., and Thompson, Jr., W. A., “Events which are almost
independent,” The Annals of Statistics, vol. 1, no. 3, pp. 674–681, 1973.

Fiala, J., Kloks, T., and Kratochv́ıl, J., “Fixed-parameter complexity of λ-
labelings,” Discrete Applied Mathematics, vol. 113, pp. 59–72, 2001.

79

Fürer, M. and Raghavachari, B., “Approximating the minimum-degree Steiner tree
within one of optimal,” Journal of Algorithms, vol. 17, no. 3, pp. 409–423,
1994.

Garey, M. R. and Johnson, D. S., “Strong NP-completeness results: motivation,
examples, and implications,” Journal of the ACM, vol. 25, no. 3, pp. 499–508,
1978.

Garey, M. R. and Johnson, D. S., Computers and Intractability: A Guide to the
Theory of NP-Completeness. New York, NY, USA: W. H. Freeman & Co.,
1979.

Griggs, J. R. and Yeh, R. K., “Labeling graphs with a condition at distance 2,”
SIAM Journal on Discrete Mathematics, vol. 5, pp. 586–595, 1992.

Grötschel, M., Lovász, L., and Schrijver, A., “The ellipsoid method and its con-
sequences in combinatorial optimization,” Combinatorica, vol. 1, no. 2, pp.
169–197, 1980.

IEEE 802.11 Working Group, ANSI/IEEE Std 802.11, 1999th ed., IEEE.

Karp, R. M., “Reducibility among combinatorial problems,” in Complexity of Com-
puter Computations, Miller, R. E. and Thatcher, J. W., Eds. Plenum Press,
1972.

Levin, B., “Simple improvements on Cornfield’s approximation to the mean of a
noncentral hypergeometric random variable,” Biometrika, vol. 71, no. 3, pp.
630–632, 1984.

McCormick, S. T., “Optimal approximation of sparse Hessians and its equivalence
to a graph coloring problem,” Mathematical Programming, vol. 26, pp. 153–
171, 1983.

McDiarmid, C., “Discrete mathematics and radio channel assignment,” in Recent
Advances in Algorithms and Combinatorics, ser. CMS Books in Mathematics,
Reed, B. A. and Sales, C. L., Eds. Springer-Verlag, 2003, vol. 11, pp. 27–63.

Molloy, M. and Reed, B., Graph Colouring and the Probabilistic Method, ser. Al-
gorithms and Combinatorics. Springer, 2002.

Nowakowski, R. and Winkler, P., “Vertex-to-vertex pursuit in a graph,” Discrete
Mathematics, vol. 43, pp. 235–239, 1983.

Polastre, J., Hill, J., and Culler, D., “Versatile low power media access for wireless
sensor networks,” in Second ACM Conference on Embedded Network Sensor
Systems (SenSys 2004), November 2004, pp. 95–107.

80

Prisner, E., “Convergence of iterated clique graphs,” Discrete Mathematics, vol.
103, pp. 199–207, 1992.

Ramanathan, S. and Lloyd, E. L., “Scheduling algorithms for multihop radio net-
works,” IEEE/ACM Transactions on Networking, vol. 1, no. 2, pp. 166–177,
1993.

Ren, T., “Graph coloring algorithms for TDMA scheduling in wireless sensor net-
works,” Ph.D. dissertation, University of Rhode Island, 2007.

Rhee, I., Warrier, A., Aia, M., and Min, J., “Z-MAC: a hybrid MAC for wireless
sensor networks,” in Third ACM Conference on Embedded Network Sensor
Systems (SenSys 2005), November 2005, pp. 90–101.

Rhee, I., Warrier, A., Min, J., and Xu, L., “DRAND: distributed randomized
TDMA scheduling for wireless ad-hoc networks,” in Seventh ACM Interna-
tional Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc
2006), May 2006, pp. 190–201.

Riordan, O. and Selby, A., “The maximum degree of a random graph,” Combina-
torics, Probability and Computing, vol. 9, pp. 549–572, 2000.

Scheinerman, E. R. and Ullman, D. H., Fractional Graph Theory. Self-published,
2008. [Online]. Available: http://www.ams.jhu.edu/∼ers/fgt

Sundararaman, B., Buy, U., and Kshemkalyani, A. D., “Clock synchronization
for wireless sensor networks: a survey,” Ad Hoc Networks, vol. 3, no. 3, pp.
281–323, 2005.

Vazirani, V. V., Approximation Algorithms. Springer, 2003.

Zhou, G., He, T., Stankovic, J. A., and Abdelzaher, R., “RID: radio interference
detection in wireless sensor networks,” in 24th Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM 2005), March
2005, pp. 891–901.

81

	RELAXATIONS OF L(1, 1)-LABELING FOR THE BROADCAST SCHEDULING PROBLEM
	Terms of Use
	Recommended Citation

	dissertation.dvi

