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ABSTRACT

All animals route assimilated nutrients to their tissues where
they are used to support growth or are oxidized for energy.
These nutrients are probably not allocated homogeneously
among the various tissue and are more likely to be preferentially
routed toward some tissues and away from others. Here we
introduce an approach that allows researchers to identify and
compare nutrient routing among different organs and tissues.
We tested this approach by examining nutrient routing in birds.
House sparrows Passer domesticus were fed a meal supple-
mented with one of seven 13C-labeled metabolic tracers rep-
resenting three major classes of macronutrients, namely, car-
bohydrates, amino acids, and fatty acids. While these birds
became postabsorptive (2 h after feeding), we quantified the
isotopic enrichment of the lean and lipid fractions of several
organs and tissues. We then compared the actual 13C enrich-
ment of various tissue fractions with the predictions of our

model to identify instances where nutrients were differentially
routed and found that different classes of macronutrients are
uniquely routed throughout the body. Recently ingested amino
acids were preferentially routed to the lean fraction of the liver,
whereas exogenous carbohydrates were routed to the brain and
the lipid fraction of the liver. Fatty acids were definitively routed
to the heart and the liver, although high levels of palmitic acid
were also recovered in the adipose tissue. Tracers belonging to
the same class of molecules were not always routed identically,
illustrating how this technique is also suited to examine dif-
ferences in nonoxidative fates of closely related molecules.
Overall, this general approach allows researchers to test here-
tofore unexamined predictions about how animals allocate the
nutrients they ingest.

Introduction

Assimilated nutrients, such as carbohydrates, lipids, and amino
acids, undergo one of three general fates: (1) they can be used
as fuel to meet an animal’s immediate energy requirements; (2)
they can be incorporated into tissues, where they serve struc-
tural or energy storage functions to be oxidized later; or (3)
they can bypass catabolic processes altogether and be routed
to sites where their use is irreversible, for example, in con-
spicuous fur and feathers or in less conspicuous oily secretions
and sloughed skin cells. Assignation of nutrients to different
tissues and fates is thought to be proximately influenced by an
animal’s nutritional, developmental, and reproductive status
and ultimately by its life history (Martin 1987; Dunham et al.
1989; Ricklefs and Wikelski 2002).

For nearly 2 decades researchers have measured the 13CO2

enrichment in exhaled breath of animals fed a diet enriched in
13C to determine the rates at which particular exogenous nu-
trients are oxidized. These studies typically provided semi-
quantitative information about the oxidation of one nutrient,
but occasionally two closely related molecules were compared.
Building on this background, we recently formalized an ap-
proach that allows quantification of the oxidative kinetics of a
wide range of 13C nutrients in virtually any air-breathing animal
(McCue et al. 2010a) and have since shown that several factors
influence the oxidative fates of exogenous nutrients (McCue
2011). Here we outline an approach that uses the mass balance
of stable isotope–labeled nutrients to determine their nonox-
idative fate and hence how specific nutrients are preferentially
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Table 1: Mean isotope signatures (�1 SD) of house
sparrow tissues from control birds ( ) orallyn p 4
gavaged with 200 mL of sunflower seed oil alone

d13C Signature in Tissue (fraction)

Tissue Whole Tissue Lean Lipid

Adipose �17.20 (.07) NA NA
Blood �12.24 (.07) NA NA
Brain �13.60 (.85) �11.17 (.41) �16.53 (.61)
Heart �12.80 (.58) �11.26 (.27) NA
Intestine �11.36 (.12) �12.03 (.31) NA
Liver �14.42 (.47) �11.92 (.12) �18.03 (.03)
Pectoral �12.15 (.30) �11.14 (.38) NA

Note. Some tissues were further separated into lean and lipid fractions

in a heated 2 : 1 solution of chloroform : methanol. NA, not available.

routed in living animals. We developed a null model that pre-
dicts nutrient routing, assuming that unoxidized tracer mole-
cules are homogeneously distributed among the exchangeable
pool of atoms in the body (Pauli et al. 2009; McCue 2011).
Measured deviations from these predictions indicate nutrient
routing toward (positive routing) a particular tissue, thereby
allowing researchers to (1) identify the specific organs, tissues,
or tissue fractions to which specific nutrients are preferentially
routed and (2) compare the nutrient-routing vectors among
different tissues at different points in time. We use this approach
to characterize the nutrient routing of various amino acids,
fatty acids, and carbohydrates among the tissues of an omniv-
orous bird, the house sparrow Passer domesticus.

Methods

Animals

In 2008 and 2009, 32 house sparrows Passer domesticus L. were
captured with mist nets at Midreshet Ben-Gurion, Israel
(30�51′8.27′′N, 34�47′0.24′′E). The birds were banded with
uniquely numbered leg bands and quarantined in a large, per-
manent outdoor aviary (4 m [ ]),m # 3 m # 2 L # W # H
where they were fed a diet of mixed millet seeds (approximately
12% protein and 5% lipid as dry mass; Williams and Ternan
1999) and provided with tap water, both ad lib., for a minimum
of 45 d. Crushed chicken eggshells, vitamin-supplemented wa-
ter, and fresh lettuce were also provided once a week. Males
and females were housed together, but reproductive activity
was not observed.

At least 1 mo before experiments, the birds were adminis-
tered two deworming treatments, 1 wk apart, to eliminate in-
testinal parasites that might influence oxidative dynamics of
tracers. Birds were orally gavaged with a dose of Ivermectin
(220 mg kg�1 in 0.5 mL water), using a 15-g silicon-tipped
polyethylene feeding tube (FTP-15-78; Instech Solomon, Plym-
outh Meeting, PA) attached to a 1.0-mL syringe. This was fol-
lowed a week later by a dose of Fenbendazole (30 mg kg�1 in
0.5 mL water). After deworming, the sparrows were transferred
to neighboring outdoor aviaries (1.5 m), withm # 1.5 m # 2.5
eight to 12 individuals in each.

Nutrient Tracers and Animal Tissues

Sparrows with full crops were selected from the aviary at be-
tween 1000 and 1400 hours and were orally gavaged with 20
mg of one of seven isotopically labeled molecules (i.e., 1-13C
D-glucose, 98–99%; 1-13C D-fructose, 99%; 1-13C L-leucine,
99%; 1-13C glycine, 99%; 1-13C palmitic acid, 99%; 1-13C stearic
acid, 99%; 1-13C oleic acid, 99%; Cambridge Isotope Labora-
tories, Andover, MA) suspended in 200 mL of sunflower seed
oil. A control treatment consisted of 200 mL of sunflower seed
oil alone. Treatments were administered in a random order,
and four birds were used for each treatment group. Admin-
istering the labeled nutrients directly into the gastrointestinal
tract by gavage ensured that the tracer kinetics included key
natural metabolic processes such as intestinal absorption, cir-

culatory transport, perhaps liver metabolism, and finally in-
corporation into tissue (McCue 2011).

Two hours after isotope administration, birds were killed by
decapitation, and trunk blood was collected. Tissues including
heart, liver, pectoral muscle, brain, intestine, and adipose tissue
were harvested within 5 min of death. All tissues were frozen
and then lyophilized for 72 h. Dried tissues were homogenized
using a mortar and pestle and stored at �20�C. Whole heart,
liver, pectoral muscle, and brain were used to assess routing of
the three fatty acid tracers. To assess the routing of the two
carbohydrate and two amino acid tracers, we examined the
isotopic enrichment of lean and lipid fractions of the liver and
brain, as well as lean fractions of the pectoral muscle and heart.
Isotope analyses were done on whole blood and adipose tissue.

The separation of lipid fractions from lipid-rich tissue sam-
ples is recommended for standardizing comparisons at natural
abundances of 13C (Petelle et al. 1979; Kelly 2000; Harvey et
al. 2002; Post et al. 2007; Vollaire et al. 2007; Logan et al. 2008);
however, this step is less critical for artificial enrichments
(McCue 2011). Nevertheless, we did separate some tissues into
lean and lipid fractions to identify postabsorptive modification
of the tracers (e.g., through gluconeogenesis, lipogenesis, etc.).
We placed approximately 100 mg of whole-tissue homogenate
into Teflon-coated vials containing 8 mL of a 2 : 1 solution of
chloroform : methanol, heated to 60�–70�C, and agitated sam-
ples for 1 h with a magnetic stirrer. Vials were then centrifuged
at 3,000 rpm for 5 min, and the lipid-containing supernatant
was removed. Tissue pellets were dried in a convection oven
at 60�C for 24–36 h, and the lipid fraction from each liver and
brain was recovered by drying the supernatant to constant mass
under a stream of N2 (Table 1). Homogenized tissue samples
and lipid fractions were weighed to �0.0001 g and loaded into
tin cups for isotope analysis.

Carbon isotope analysis was done at the U.S. Environmental
Protection Agency Atlantic Ecology Division laboratory, using
a Carlo-Erba NA 1500 series II elemental analyzer interfaced
with an Elementar Optima isotope ratio mass spectrometer.
Samples were burned at 1,020�C in the presence of a chromic
oxide catalyst. Evolved CO2 was sent to the mass spectrometer
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Figure 1. Enrichment of 13C in the tissues of house sparrows fed amino acid tracers. The dashed and solid lines represent the calculated
enrichment, namely, 23 and 19‰ for glycine and leucine, respectively, assuming that the tracers were homogeneously distributed among all
tissues. Asterisks indicate values that are statistically above these lines and evidence for preferential routing of a nutrient to that tissue. Error
bars indicate 1 SD.

for the measurement of carbon isotope ratios. We used two
internal laboratory standards for every 10 unknown samples
in a sequence. Stable-carbon isotope ratios are expressed in
delta notation as parts per thousand (‰) and compared with
Vienna Pee Dee Belemnite (Craig 1957). The internal standard
used has a long-term average d13C measurement precision of
�0.17‰. Combined with an internal evaluation of the repro-
ducibility of tissue and isotope tracer d13C measurements, d13C
measurements in this study are accurate to �0.40‰.

Calculating Nutrient Routing

Patterns of nutrient routing were determined by comparing
measured d13C values after dosing (i.e., d13Cpostdose) with expected
d13C (i.e., d13Cnull model), assuming that tracers were homoge-
neously distributed among tissues. Each tissue had a unique
d13C value, so we added the estimated increase in d13C (i.e.,
d13Cenrichment) to the measured background d13C values (i.e.,
d13Ccontrol) for each tissue to calculate d13Cnull model.

Since we used artificially enriched tracers, it is proper to
calculate the expected incremental increase in 13C (i.e.,
AP13Cenrichment) in atom percent (Slater et al. 2001):

13Cexogenous13AP C p 7 100, (1)enrichment 13[ ]C � Cexchangeable exogenous

where Cexchangeable represents the size of the exchangeable carbon
pool (see Eq. [2]) and 13Cexogenous represents the amount of 13C
added to the exchangeable carbon pool (see Eq. [3]). Because

AP13Cenrichment was so small, we converted AP13Cenrichment into delta
notation to calculate d13Cenrichment (Slater et al. 2001).

The size of the exchangeable carbon atom pool (i.e.,
Cexchangeable) was defined as

C p (m � m � m ) 7 F , (2)exchangeable live water feather body C

where mlive, mwater, and mfeather are the live mass (immediately
after dosing), water mass, and feather mass of the animal in
milligrams, respectively. Water mass was assumed to account
for 53% of mlive (Mahoney and Jehl 1984; Yokota et al. 1992;
Karasov and Pinshow 1998; Amat et al. 2007), and feathers
were assumed to account for 7% of mlive (Karasov and Pinshow
1998; Koutsos et al. 2001); Fbody C is the mass fraction of carbon
in the dried body and was assumed to be 0.45 (a value typical
for temperate and tropical vertebrates; T. Millican, personal
communication).

The amount of administered, assimilated, and retained 13C
atoms (i.e., 13Cexogenous) was defined as

13C p m 7 F 7 F 7 (1 � F ), (3)13exogenous dose Cdose assimilated oxidized

where mdose is the mass of the tracer dose in milligrams;
is the mass fraction of 13C in each tracer molecule;F13Cdose

Fassimilated is the fraction of the assimilated tracer dose, estimated
to be 0.90 (Renner and Hill 1961; Hurwitz et al. 1973; Chung
and Baker 1992; Bairlein and Simons 1995; Caviedes-Vidal and
Karasov 1996; Chediack et al. 2006); and Foxidized is the fraction
of the tracer dose that was oxidized, as determined by breath
testing (glycine, 0.452; leucine, 0.128; glucose, 0.059; fructose,
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Figure 2. Enrichment of 13C in the tissues of house sparrows fed carbohydrate tracers. The solid line represents the calculated enrichment, that
is, 12‰ for both, assuming tracers were homogeneously distributed among all tissues. Asterisks indicate values that are statistically above these
lines and evidence for preferential routing of a nutrient to that tissue. Error bars indicate 1 SD.

0.059; palmitic acid, 0.007; oleic acid, 0.006; and stearic acid,
0.002; McCue et al. 2010b).

Measured values were compared with the null model for
each tracer by using one-sample t-tests with a critical a p

. When d13Cpostdose was significantly higher than d13Cnull model0.05
for a tissue sample, we concluded that nutrients were routed
preferentially to that tissue.

Results

The d13Ccontrol (i.e., background values) of whole tissues ranged
from �17.20‰ in adipose tissue to �11.36‰ in intestine
(Table 1). Lean-tissue fractions of lipid-rich tissue, such as brain
and liver, averaged 2.47‰ more enriched than whole tissues,
but the lean fractions of both striated and smooth muscle tis-
sues (e.g., heart, pectoral muscle, intestine) differed by an av-
erage of only 0.63‰ from whole tissues. The lipid fractions of
brain and liver averaged 3.27‰ more depleted than the re-
spective whole organs and resembled values for whole adipose
tissue.

By 2 h after administration, d13Cpostdose ranged from �0.25‰
in whole brain tissue of birds dosed with stearic acid to 49.90‰
in the lipid fraction of the livers of birds dosed with 13C-fruc-
tose. On average, the tissues of birds dosed with tracers had a
d13C of 13.22‰, a value 125‰ higher than the d13Ccontrol, sug-
gesting that the isotopic enrichments that we used were suf-
ficient to be used as isotopic markers (Pauli et al. 2009).

The d13Cenrichment ranged from 3 to 23‰ for stearic acid and
glycine, respectively. The incremental d13Cenrichment was added to

the d13Ccontrol values to establish the d13Cnull model, assuming ho-
mogeneous routing. Isotopic enrichments above background
values were detected in all tissues after label administration.
The d13Cnull model was an effective indicator of preferential nu-
trient routing; on average, about one-third of the tissues had
mean values above the d13Cnull model. Similar to other breath-
testing studies examining the oxidative fates of nutrients
(McCue et al. 2010b, 2011), our study found general similarities
in the nonoxidative fates of molecules belonging to the same
class. For example, breath testing revealed that amino acids
were oxidized far more rapidly than the other tracers, and they
were found at the highest concentrations in the liver. Carbo-
hydrates were oxidized less extensively than amino acids but
more than fatty acids and were found in the highest concen-
trations in the liver and brain. Fatty acids were oxidized less
than the other two classes of tracer molecules and were found
at the highest concentrations in the heart and liver.

The 13C from the glycine tracer was preferentially routed to
the lean fraction of the liver ( , , ;t p 4.385 df p 3 P p 0.022
Fig. 1). The d13Cpostdose enrichment of the leucine tracer in the
lipid fraction of the liver did not exceed values indicative of
preferential routing; however, these values were an average of
16.6‰ above d13Ccontrol, suggesting the possibility that a signif-
icant amount of glycine was used for lipogenesis. The 13C from
amino acid tracers was found in the lowest concentrations in
the brain and adipose tissue.

The 13C from fructose was preferentially routed to the lipid
fractions of the brain ( , , ) and livert p 3.585 df p 3 P p 0.037
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Figure 3. Enrichment of 13C in the tissues of house sparrows fed fatty acid tracers. The dashed, dotted, and solid lines represent the calculated
enrichment, namely, 3, 4, and 5‰ for stearic acid, palmitic acid, and oleic acid, respectively, assuming that the tracers were homogeneously
distributed among all tissues. Asterisks indicate values that are statistically above these lines and evidence for preferential routing of a nutrient
to that tissue. Error bars indicate 1 SD.

( , , ), but preferential routing of 13Ct p 3.351 df p 3 P p 0.044
from glucose was not detected in any of the examined tissues
(Fig. 2). Carbohydrates were found in the lowest concentrations
in the cardiac and pectoral muscles.

Preferential routing of fatty acids was detected in two tissues
(Fig. 3) and was dependent on the specific fatty acid examined.
For example, 13C from palmitic acid was preferentially routed
to the liver ( , , ), but oleic and stearict p 20.910 df p 3 P ! 0.001
acid were preferentially routed to the heart ( ,t p 14.528 df p

, and , , , respectively).3 P ! 0.001 t p 41.875 df p 3 P ! 0.001
The highest measured d13C value following dosing with fatty
acid tracers (i.e., 21.79‰) was found in the adipose tissue of
an individual administered 13C-palmitic acid, but because of
the high interindividual variability, we were unable to confirm
positive routing to that tissue. The lowest concentrations of
fatty acid tracers were recovered in the blood and brain.

Discussion

In light of current knowledge about nutrient allocation in birds
(Klasing 1998; McWilliams et al. 2004), we expected that amino
acids would be preferentially routed to the liver and pectoral
muscle and routed away from the brain and adipose tissue.
Our data generally support this expectation; amino acids were
positively routed to the lean fraction of liver within 2 h of
ingestion, presumably because they were being incorporated
into peptides and proteins. Relative to leucine, however, the
comparatively high levels of glycine in the lean and lipid liver
fractions suggest that this nonessential nutrient was also being

extensively deaminated for oxidation and lipogenesis. Simul-
taneous monitoring of quantitative and qualitative differences
in amino acid transporters in tissues might offer mechanistic
insight into the observed allocation patterns (Humphrey et al.
2004).

We expected that monosaccharides would be preferentially
routed to hepatic glycogen and adipose tissue and routed away
from muscle tissue. Our results showed that fructose was pos-
itively routed to the liver and brain within 2 h of ingestion; in
the lean and lipid fractions of the liver, this outcome was likely
the result of glycogenesis and lipogenesis, respectively. Given
that similar amounts of exogenous glucose and fructose were
oxidized by sparrows (McCue et al. 2011), the fact that all of
the analyzed tissue fractions had higher concentrations of 13C-
fructose in the treated birds was somewhat surprising. If 13CO2

breath testing is not done in parallel with this approach, it
would be useful to verify the calculated AP13Cenrichment on a subset
of animals immediately after dosing. Moreover, examination
of additional organs and tissues at different times after tracer
administration could be useful to determine the routing pat-
terns for this “missing” glucose. The lowest levels of 13C en-
richment in carbohydrate-dosed birds were found in the skeletal
muscle, suggesting that the birds were not using exogenous
sugars to replenish muscle glycogen stores. Because the birds
in this study were well nourished before being dosed with the
tracer, additional studies are required to determine whether
undernourished animals route nutrients in the same way (Pod-
lesak and McWilliams 2006, 2007; McCue et al. 2010a).
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We expected that fatty acids would be preferentially directed
toward adipose and hepatic tissue and away from muscles. We
found preferential allocation of two fatty acids to the heart and
another fatty acid to the liver. However, while we expected that
all three of the fatty acids would be positively routed to adipose
tissue, palmitic acid had the greatest propensity to be routed
to adipose tissue. The high levels of palmitic acid in adipose
tissue apparently make this molecule less available as a fuel for
cardiac tissue (Fig. 3). Fatty acid allocation to muscles depended
on muscle type. Fatty acids were routed away from skeletal
muscle and preferentially routed to the heart within 2 h of
ingestion. This pattern bolsters the well-documented preference
for fatty acids as a metabolic fuel by cardiac tissue (Ballard et
al. 1960; Eser et al. 1967; Crass et al. 1970; Evans et al. 2000).

As a starting point of our mass balance approach, outlined
above, we assumed a constant across-the-board assimilation
efficiency of 0.90 for all nutrients and a fractional carbon con-
tent in the dry body of 0.45. These assumptions may be ap-
propriate for individuals feeding on well-balanced diets and in
good body condition, as in this experiment; however, under
less favorable conditions, both assimilation efficiency (Karasov
and McWilliams 2005) and body carbon (McCue 2010) may
vary. Fortunately, the same labeled tracers can be used to es-
timate assimilation efficiency (Afik and Karasov 1995; Caviedes-
Vidal and Karasov 1996) and fractional carbon content of tis-
sue, as long as tissues are sampled frequently over time
(McClelland and Montoya 2002; Chamberlain et al. 2006; Mc-
Carthy et al. 2007).

Analysis of particular compounds in tissues (e.g., specific
amino acids, fatty acids, carbohydrates) would further elucidate
how ingested compounds are metabolically routed and bio-
chemically transformed (McClelland and Montoya 2002;
Chamberlain et al. 2006; McCarthy et al. 2007). Our tissue
fraction–specific analyses distinguished between lean and lipid
tissue fractions. We were therefore able to distinguish between
13C atoms initially attached to glucose that remained in a lean-
carbohydrate fraction and those that were converted into fatty
acid or glycerol and were subsequently incorporated into the
lipid fraction (Obeid and Emery 1997; Obeid et al. 2000; Gaye-
Siessegger et al. 2004). Additional tissue separation approaches
might include extraction of lean fractions with trichloroacetic
acid or separation of the lipid fraction into polar and neutral
components (Guglielmo et al. 2002; McCue et al. 2009; Ben-
Hamo et al. 2011). Despite repeated calls in the literature, we
are unaware of any attempts to combine mass balance and
compound specific approaches of artificially enriched nutrients
(Bos et al. 2003; Wolfe and Chinkes 2005; Conceicao et al.
2007; Martinez del Rio et al. 2009). Such compound-specific
analyses could validate some of the mechanisms we propose
here (e.g., gluconeogenesis and lipogenesis of amino acid
substrates).

We have shown that small amounts of purified 13C-labeled
tracers can be used to identify the preferential routing of ex-
ogenous nutrients into tissues. By mathematically defining
“preferential routing,” this approach opens the door to future
comparative investigations into how animals allocate the nu-

trients they ingest and can be used to test specific predictions
about how endogenous and exogenous factors shape these de-
cisions (McCue 2011). For example, how does nutrient routing
differ between species when animals are growing normally com-
pared with their growing after a bout of reduced food intake
and during the subsequent compensatory growth? Why do
trophic fractionation rates differ between species when animals
are fed different diets with the same isotope values? What
changes in nutrient routing precede seasonal hibernation? What
changes in nutrient routing accompany ontogenetic diet shifts
or metamorphosis? Which dietary nutrients are primarily used
to build muscle and fat tissues, how does this differ between
tissues within the same animal, and how does this routing of
nutrients change with environmental conditions (e.g., food
availability, warmer or colder temperatures)? These same mod-
els can be modified to test other null hypotheses other than
an entirely homogeneous distribution of exogenous nutrients
to tissues, such as the “scrambled egg premise” eschewed by
Van Der Merwe (1982). For example, tissues differ in overall
size of their carbon pools and in their turnover rates (Bau-
chinger and McWilliams 2010), which could affect the rate of
metabolic routing. Since animals are rarely, if ever, in a phys-
iological steady state (Steendam et al. 2004; Wolfe and Chinkes
2005; Conceicao et al. 2007; McCue 2011), future attempts to
characterize exogenous nutrient routing should include tem-
poral as well as spatial tissue–specific components.
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