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PHYSICAL REVIEW B

VOLUME 29, NUMBER 1

Dynamic correlation functions for one-dimensional quantum-spin systems:
New results based on a rigorous approach

Gerhard Miiller and Robert E. Shrock
Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, New York, 11794
(Received 28 July 1983)

We present new results on the time-dependent correlation functions Z,( 1)=4(S§(1)SE), E=x,y,
at zero temperature of the one-dimensional S =% isotropic XY model (A =y =0) and of the trans-
verse Ising (TI) model at the critical magnetic field (A =y =1). Both models are characterized by
special cases of the Hamiltonian H =—J 3, [(14+9)S7S[ 1 +(1—7)SIS11 +AhSf]. We have de-
rived exact results on the long-time asymptotic expansions of the autocorrelation functions Z(z)
and on the singularities of their frequency-dependent Fourier transforms ®§(w). We have also
determined the latter functions by high-precision numerical calculations. The functions (),
£=x,y, have singularities at the infinite sequence of frequencies w =maw,, m=0,1,2,3, ..., where
wo=J for the XY model and wy=2J for the TI model. In the TI case, the leading singularities in
5" (w) are alternately one-sided and two-sided power-law singularities, the first two of which (at
w=0, 2J) are divergent. The dominant singularities in the XY case are alternate one-sided power
laws and two-sided power laws with logarithmic corrections, the first two of which (at =0, J) are
divergent. The singularities at higher frequencies in both models are finite and become increasingly
weaker. We point out that the nonanalyticities at w5~0 are intrinsic features of the discrete quan-
tum chain and have therefore not been found in the context of a continuum analysis (Luttinger
model). At least the most prominent features of our new results should be observable in low-
temperature dynamical experiments on quasi-one-dimensional compounds such as the XY-like sub-
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stances Cs,CoCl, and PrCl; and the S = —;— Ising-like substance CsCoCl;-2H,0.

I. INTRODUCTION

Exact results are available for the thermodynamic prop-
erties of many one-dimensional (1D) classical- and
quantum-spin systems. For most of these “exactly solv-
able” model systems, however, no rigorous results are
known for dynamic correlation functions. This is the
case, for example, for the classical Heisenberg model,
whose partition function has been calculated in closed
form,! and for the S =+ Heisenberg-Ising model, whose
free energy is amenable to exact Bethe-Ansatz calcula-
tions.>~% Even the 1D, S =5 XY model, whose thermo-
dynamic properties are those of a system of noninteracting
fermions,”® has highly nontrivial dynamical properties.

The zero-temperature properties of quantum-spin
chains are of particular interest, because, at T'=0, phase
transitions occur as a function of various parameters such
as an external magnetic field and exchange anisotropies,
which are related by rigorous mappings to phase transi-
tions of certain classical models (e.g., Ising and vertex
models) as a function of temperature.”'°

For a number of 1D quantum-spin models such as the
S =+ XYZ model, the energies of the ground state and of
some classes of low-lying excited states are explicitly
known.!%!! In general, these exact excitation spectra have
been found to differ considerably from the “quasiparticle”
spectra obtained by many-body perturbation techniques
which are standard in 2D and 3D magnetism,'? thus pro-
viding an indication about the limitations of those approx-
imation techniques for 1D systems.!> Note that these 1D
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excitation spectra consist of exact eigenstates of the full
Hamiltonian, which therefore have infinite lifetimes, as
opposed to the finite lifetimes of quasiparticles. Conse-
quently, they manifest themselves as real (i.e., undamped)
singularities in frequency-dependent correlation functions.

In this paper, we shall study the dynamics at 7 =0 of
the 1D, S =5 transverse Ising (TI) model at the critical
external magnetic field and of the 1D, S = 5 isotropic XY
model in zero field, specified, respectively, by the Hamil-
tonians

N
Hp=— 3 (2JSFSF +heSH) , ho=J (1.1)

I=1

and

N

Hyy=—J 3 (S{SF 1 +SIST41) (12)
=1

in the limit N— o, with periodic boundary conditions

imposed. We are interested in the two-spin correlation

functions,
Tr(e —BHe iIIts,(L)Le _thS#)

Tr(e —BH)

(S‘(;(I)S#>= y H=X,)0,2
(1.3)
where B=(kpT)~!. We use the short-hand notation
E,(0)=4(S§(1)SE) , E=x,p,z .

Valuable information on the excitation spectrum relevant

(1.4)
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for the T'=0 dynamics is contained in the frequency-
dependent Fourier transforms,

+ .
D)= [ dre(SE(nSE) (1.5)
and in the dynamic structure factor,
Suu(g,0)= Ze“i""Q‘,f“(w) . (1.6)
n

The time-dependent correlation functions (1.4) have the
following well-known general properties:

(1.7a)
(1.7b)

E_,@)=E,@1),
E(—)=E5()=E,(t —iB) .

Thus, in general, Z,(¢) is a complex function, except at in-
finite temperature (8=0), where it is real.'* The Fourier-
transformed functions (1.5) and (1.6), on the other hand,
are real functions at any temperature. In fact, both quan-
tities (1.5) and (1.6) are important in the context of
dynamical experiments on magnetic compounds exhibit-
ing quasi-1D properties.' Suu(g,@) is directly measured
by inelastic neutron scattering, whereas ®4*(w) at small w,
in particular the autocorrelation function (ACF) ®§*(w),
is related to the spin-lattice relaxation rate measured by
NMR experiments in situations where the relaxation of
the NMR probe is dominated by the local fluctuations of
the spin chain.!®

In Fourier space, the symmetry property (1.7b) mani-
fests itself as the well-known detailed balance condition,

P —w)=e " PPDh(w) , S,,(q,—w)=e"P*S,,(q0).

(1.8)

Hence, at T =0, both quantities (1.5) and (1.6) vanish
identically at negative frequencies. A further useful prop-
erty of S,,,(g,®) is that it is a non-negative function. This
property is most easily verified if S,,(g,0) is expressed in
the spectral representation,

2

e PP (A S | A0) |2
Z o

Sup(g0)=

X8w—Ej+E;)>0, (1.9)

where the sums run over all eigenstates | A) of H with en-
ergies E); Z = zhe_BE" is the partition function. The
same property holds for the ACF (Ref. 17): ®4*(w)>0.

The two Hamiltonians (1.1) and (1.2) are special cases
of the more general model,

N
H=—J 3 [(1+y)SFSF 1 +(1—y)SIST 1 +hST]
=1

(1.10)

the static properties of which have been studied extensive-
ly.7—%18-20 A general formula for the time-dependent
correlation function Z,(¢) for this model was first derived
by Niemeijer.?! Various authors have evaluated closed-
form expressions for Z,(¢) and its Fourier transforms for
special cases of (1.10).!*?2=2 [In contrast, a complete

solution of X, (¢) or Y,(¢) for (1.10) at arbitrary T has nev-
er been found. This can be understood as a result of the
fact that, after a Jordan-Wigner transformation from spin
operators to fermion operators, Z,(t) involves only a
product of four fermion operators, whereas X,(¢) and
Y,(t) involve an infinite number of such operators. The
latter are thus much more complicated objects and
represent (in the fermion language) not just two-particle
excitations, as is the case for Z,(z), but rather the excita-
tion of arbitrarily many particles. This fact was establish-
ed by McCoy, Barouch, and Abraham,?’ who found that
X,(t) and Y,(¢) for (1.10) can be expressed as infinite
block Toeplitz determinants. A complete analysis of these
determinants has been given only for infinite tempera-
ture.?*?° We quote the well-known results?®—3° for the
two models (1.1) and (1.2) at T = oo,

[X,(Dmr=e~""%8,0, [Xa(Dlxy=e~""8,0,  (L1D)

where here and henceforth, the units are chosen such that
J=1. At T =0, the analysis of the Toeplitz determinants
was restricted?”3132 to the leading term in the long-time
asymptotic expansion (LTAE) of X,(¢) and Y,(¢#) until
very recently, when substantial progress was made.’>3*
The work of Ref. 34 forms the starting point for our
present analysis.

A brief report of some of our results was given in Ref.
35. In Sec. II we present a new, extended calculation of
the LTAE of the time-dependent ACF’s X,(¢) and Y,(¢)
for the TI and XY models, together with an analysis of
their general structural features and a comparison with
the ACF’s Zy(t). Section III contains a high-precision nu-
merical calculation of the frequency-dependent ACF’s
P (w) and ®F(w) for the TI and XY models. The singu-
larities of these functions are determined analytically from
Fourier transforms of the corresponding LTAE’s. These
results are discussed in conjunction with similar ones for
the frequency-dependent ACF’s ®5(w). We define a set
of “singularity indices” and comment on the connection
between the relative strengths of the singularities and the
extent of spin fluctuations in the two models (at 7 =0).
An appendix contains some details of the calculations of
the singularities in the frequency-dependent ACF’s.

II. TIME-DEPENDENT CORRELATION FUNCTIONS

The time-dependent correlation function [X,(2)]p; at
T =0, can be expressed in terms of a related function
on(z) as™

o,(it’)
t’

2,
(X, (0]t =X, (0)Imeexp | — 3>+ [ ar

b

(2.1a)

where the static correlation function is given by!>?°

Inl o, I—|n|

L ) (2.1b)

[X(0) 1= E

2
T

I=1
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and o,(z) satisfies the nonlinear ordinary differential
equation (ODE),

(zop )P +4Mzo, —0, —n?)[z0),—0,+(0},)*]1=0, (2.2)
with the initial condition that for z—0, the solution can
be represented by the series

0,2)= 3 a 2% 42+ S b, 2% 2.3
k=1 k=0

Here, all coefficients a, ; and b, ; can be calculated recur-

sively in terms of b, o, where
|

{[X,,2(t/2)]11}%, n even

[Xn (0 Ly =[¥a(t)]xy = [Xn—1)2/2) 0l X(n +1)2(¢/2) )11, 7 odd .

Both (2.5) and (2.6) are valid for arbitrary temperature.
For Ref. 34, the ODE (2.2) was solved numerically for
n =0. From this numerical solution an analytic ansatz
for the LTAE of oy(it) was inferred and then verified
analytically. This LTAE was calculated for general b
to O(t~') and, with some further terms for the physical
value bgo=1/m, was used to construct the resultant

LTAE of [X,(2)]1 to O (¢ ~1174),

l, n=0
T

(-1

T =1

bpo= , (2.4)

2021 —1)X21 +1)

y N2>

Once [X,(¢)]1; is known, one can calculate [Y,(¢)] by
means of the relation®®

2
[Y, ()= — %[1{,,(:)]TI . (2.5)

Further, one can compute the correlation functions
[X,(6)lxy=[Y,(t)1xy of the isotropic XY model (1.2) via
the relation?®

(2.6)

For Ref. 35 the LTAE of [X,(¢)]1; was extended to the
level at which the e~ term (see below) first enters, viz.,
O(t~ "%, The corresponding LTAE of [Y,(?)]r; was
also calculated. From an analysis of the general structure
of these LTAE’s, it was anticipated that terms with the
next-higher frequency of oscillation, e ~%", would first
enter at a much more highly suppressed level, namely
O(t=3/%). For the present work we have succeeded in

TABLE 1. Values for the exponents ol and the coefficients a\*™ of the LTAE equation (2.7) of

[Xo(2)]1; which have been calculated.

m 0 1 2 3 4
(x) 1 9
'm 0 — Z
“ 2 2 2 8
(x,m) 1 1 3
o : : 2 > 20
(x,m) 9 15 75
a 0 z 2 2
agEm 1 297 489 8881
23 2’ 2’ 212
aEm 0 7587 9387 516 609
210 29 215
aEm 81 1027035 851427
27 215 213
aem 0 43594 695 22520925
218 215
am 11259 4418168 445 1368 815 805
210 222 18
amm 0 260700 29570 635
2
a(sx,m) M

2!5
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TABLE II. Values for the exponents o and the coefficients a*™ of the LTAE Eq. (2.7) of

[ Yo(2)]1; which have been calculated.

m 0 1 2 3 4
am(y) 2 % 2 % 8

(y,m) S 9 3
ad > 4 4 > o

3
“ ° 2 ‘ 5
aypm™ 117 _ 39 315 42025
23 25 94 210

(y,m) 63 5463 2144 637
= ° > ES T

(y,m) 28917 9765 59373
af 29 - 13 27

(y,m) 136755 6163425
a! " 0 216 211

(y,m) 8162775 12741075 742488 885
ad _— —

212 220 215
117223335
a%”"') Y 223
16504 104 375

a?’"‘) 217

calculating the LTAE’s to this level, and, in accord with
our expectations, have obtained the leading e ~%* terms.

We find that the LTAE’s of [X,(¢)]t and [Yo(8)]m
have the following structure, as far as we have determined
it:

[EoO)In~A(i)~1* 3 T,

m=0

(2.7a)

. _alé) &®
T(g_'}"a):(zv)«m/le—hmt(___2l-t) an 2 a'('f,m)(__zl-t)——n ,

n=0
(2.7b)
for £=x,y, where

A=2""2exp[3£'(—1)]=0.64500248. .., (2.8)

and ~ denotes an asymptotic expansion in standard nota-
tion. We have written the LTAE in a form which renders
the symmetry property Zo(—t)=ZE(¢)* manifest. The
coefficients a\5™ are rational numbers with a(zf,’oﬁl =0 for
£=x,y, and all n in (2.7). (Our present notation for these
coefficients differs slightly from that used in Ref. 35.%7)
The exponents a's’ are positive integers or half-integers.
The values of a\*™ and a\f’ which have been calculated
so far are listed in Tables I and II for £=x and y, respec-
tively. The maximum order in ¢! is taken to be ¢t ~33/4
for all a,(,é'"'), m =0, ...4, in accord with the fact that the
known term with the highest oscillation frequency enters
first at this level, and hence the expansion was calculated

to this order of accuracy. It is feasible to calculate the
terms with lower oscillation frequencies to higher order;
as an example, the a\®* are listed up to order =2 in
Table III.

Some general features of the LTAE (2.7) are as follows.

(i) It consists of an infinite sum of terms Tg‘,ﬂ,
m =0,1,2, ..., each with a specific oscillatory ¢ depen-
dence given by the phase factor e ~2™. The fact that all

of the terms have frequencies of only one sign is a conse-

TABLE III. Values for the a{*® for even n from n =10 to
20. (a®®=0 for odd n.)

(x,0) 7093767 375
aio ————218
(x,0) 11538377839125
ai? ——————222
(x,0) 13449427715059 875
@i 925
(x,0) 170204 949 942 527 437 875
ais 21
(x,0) 350982 198204 787 691 206 875
aig 234
ax0 1829524473982512079025439 375
20 8
2
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quence of the condition of detailed balance [Eq. (1.8)],
which implies that at T 0, $§5(w)=0 for  <O0.

(ii) Each term Tg,,, is, 1tse1f an infinite sum of terms
with ascending powers of t~'. We thus denote it as a
“tower.” Each successive tower enters first at a progres-
sively higher level in the expansion; that is, the higher the
oscillation frequency, the more highly suppressed the
tower is in 2. Our results in Table I strongly suggest that
the exponent al¥ governing the degree of this suppression,
is given by a,”’=m?/2. From (2.5), it follows that

a? )—m2/2 also, except for the nonoscﬂlatory tower,
whlch is suppressed by two units®® : af’=2. This is re-
flected in Table II.

(jii) The dominant term in [X,(¢)]r; for large ¢ is
A(it)~ /4 which is nonoscillatory and reflects Lorentz in-
variance in the scaling limit* given the result®® that
[X, (O)]TI~An —174 for large n. In contrast, the dominant
term in [Yy(¢)]p for large ¢ is 20it) 14 —it) =172 —2it
which is oscillatory in character and does not connect v1a
Wick rotation with the leading term of the static correla-
tion function?® for large n, [¥,(0)]r~(54/16)n /4
Note, however, that the term (54 /16)(it)~°/* does appear
in the LTAE of [Y,(#)]1 and is the leading term of the
nonoscillatory tower, but is not the overall leading term in
this function.

By using (2.6), we have also calculated the LTAE of
[Xo(8)1xy=[Yo(2)]xy from (2.7) and have found the fol-
lowing result (1L denotes x or y):

TABLE 1V. Values for the exponents 8’ and the coefficients b\"™ of the LTAE equation (2.9) of [X,(

have been calculated.

GERHARD MULLER AND ROBERT E. SHROCK 29

[Xo(t)]xy ~(A)22V/%(it) 1/ 2 Ty (2.9a)
=0

_Q[l) o
1) P 3 b (—in)n

n=0

T(XY)__(ZTI.)—m/Ze —imt( i

(2.9b)

The coefficients b\"™ are positive rational numbers, with
b‘zf,gﬂl =0 for all 7 in (2.9), and the exponents 85’ are pos-
itive integers or half-integers.’’” Table IV lists the values
which have been calculated. Evidently, the structure of
(2.9) is very similar to that of (2.7). In contrast to the TI
case, however, all non-negative integral frequencies, not
only the even ones, occur in the LTAE of [X(¢)]xy. The
leading term in (2.9), (4)?2!/2(it)~!/2, can again be under-
stood as reflecting Lorentz invariance in a scaling limit,
given the result'® that [X,(0)]xy ~n~1/2 for large n. As
before, the higher-frequency towers enter at more highly
suppressed levels in ¢ in this case our results suggest that
the ex onent m the prefactor for the mth tower is given
by BY= [(m +1)/2], where [v] denotes the integer
part of v.

It is interesting to compare these new results for X ()
and Y,(¢#) with the known results for Zy(¢). In fact,
Niemeijer’s expression?! for Z,(t) in the general model
(1.10) can be evaluated for the special cases (1.1) and (1.2)
at T =0, in terms of Bessel functions J, and Weber func-

tions E,. The results are

t)lxy=[Yo(2)]xy which

m 0 1 2 3 4
) 1

B 0 5 1 % 4
b(i,m) 1 2 1 1 1

0 2 —27

(1,m) 9 11 39 17
b 0 > > 2 F
piLm 1 313 249 2809 441

2 2 26 25 28 27
piLm 0 7731 3551 110397 10993

3 29 27 o1l 29
piLm 41 1057275 249123 19710331 285033

4 25 14 o1l 216 T
B 0 44024103 5297313 1008 538 089

217 213 219

pibm 2835 4486876461 266 181453

¢ 27 921 216
pibm 0 261970861 563 7765967691

224 218

Bibm 1696 059

211
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[Za(Dty= 5+ [J0(20)+iEay(20)
T
— [Jan —1Q20)+iE,, _1(21)]

X [Jan +1(20)+iE,, 1(21)] (2.10)

and

[Z,()]xy=[Js(O)+iE, (D], (2.11)

respectively.* By using standard mathematical refer-
ences,*! one can calculate the LTAE’s of Z,(¢) to all or-
ders. We find that they have a structure which is similar
to (2.7) and (2.9) but contains only three towers. The re-
sults for n =0 are

2
[ZoOlr— =~ 3 T, (2.12a)
m m=0

; e & -
T§2’=w(m/2)‘2e“2’m‘(—2zt) m 2 a,‘,”’")(—Ztt) "
n=0

(2.12b)

with a?=2, a‘{”:%, a¥’'=2, and rational coefficients

(z,m),

a,”"’; and
Z (XY
[ZoDxy~ 3 Tom s (2.13a)
m =0
. —_fglz) x®
Tz(,’}'"Y):ﬂ(m/Z)-Ze—xmt(_l—t) ﬁ(m E b'(lz,m)(___it)—n ,
n=0
(2.13b)

with B¥=2, B(Z)z%, B¥'=1, and rational coefficients
by®™. The leading term of (2.12a) comes from the second
tower (m =1) and is

25/2,”,—3/2e —2it( _Zit)—3/2 ,

whereas the leading term of (2.13a) comes from the third
tower (m =2) and is

2 le =4 —jp)~1,

The fact that [X,(¢)]y; falls off less rapidly than both
[Yo(t)]r1 and [Z(2) ]y at large ¢ reflects the property that
the x axis is the “easy” spin-fluctuation direction. More
specifically, for h <h.=1, there is a net magnetization
M,=3[lim,_, _ X,(0)]"? in the TI model. As h in-
creases through A, this long-range order disappears. At
the critical value A, =1, there are thus large fluctuations
in the order parameter M,. By the Lorentz invariance
correspondence noted above in the scaling limit, these
strong fluctuations in the static correlation function
[X,(0)] for large n are equivalent to strong fluctuations
governing [X(?)]q; at large . By analogy, the fact that
[Zo()]xy falls off more rapidly than
[Xo(O)]xy=[Yo(t)]xy reflects the property that the xy

plane is the easy plane for spin fluctuations in the XY
model.'®#?

The time-dependent correlation functions [X,(¢)]xy and
[Z,()]xy were studied®***® in the framework of the Lut-
tinger model, an exactly solvable Fermi-field theory in
1+1 dimensions.** The Luttinger model is understood to
represent a continuum version of the 1D, S =%, XXz
model which contains the XY model (1.2) as a special case,
namely that of free fermions. The following results have
been found for the ACF’s of the Luttinger model in the
free-fermion limit3%*3;

[Xo(D)]pu~Cit V24 Cpt =572, (2.14a)

and

[Zo(8)]Lue~C5t 2, (2.14b)
where the C; depend on the cutoff parameters and scaling
variables. Comparison with the exact LTAE’s (2.9) and
(2.13) of the XY model makes it clear that a great deal of
information on the dynamics of the quantum-spin model
(1.2) is lost if the calculation is done in the continuum
limit. The Luttinger-model calculation reproduces the
correct exponents in the first two terms of the nonoscilla-
tory tower of [X(¢)]yy and in the first term of the nonos-
cillatory tower of [Z,(¢)]xy, but gives no further nonoscil-
latory terms. It fails to produce any of the oscillatory
terms. This is particularly serious in the case of
[Zy(2)]xy, where the oscillatory towers include the leading
and the next-leading term of the LTAE.

A final general feature of all of these correlation func-
tions concerns the effect of the spin-spin interaction
strength. The basic observation is that the correlation
functions are (for #i=1) dimensionless functions of J and
t, and therefore can only depend on these variables in the
single combination Jt. (This is implicit in our notation,
where J =1.) Hence, it follows, in agreement with one’s
intuition, that the larger J is, the more rapidly the spin-
spin correlations approach their asymptotic values.

In addition to determining the analytic long-time
asymptotic expansions of [Xo(®)]r, [Yo()lr, and
[Xo()lxy=[Yo(8)1xy, it is quite useful to calculate these
functions numerically for general ¢. For this purpose we
have solved the ODE (2.2) numerically and have deter-
mined [X,()]q1 according to (2.1).* [Y,(#)]yy is then cal-
culated by numerical differentiation according to (2.5),
and [Xo(#)]xy=[Yo(¢)]xy is obtained from (2.6). The re-
sults are displayed in Figs. 1 and 2. For comparison, we
also show Z,(t) as given for the two models by (2.10) and
(2.11). The property (1.7b) implies that

Im[Ey(t =0)]=0, E=X,Y,Z (2.15)
(at arbitrary T), and this is evident in all of the plots. This
condition (1.7b), in conjunction with the fact that the
correlation functions are entire functions of #,2® implies
that

%Re[Eo(t)] li{=o=0, E=X,Y,Z (2.16)
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1.0 1.0
L (a) (b)
i Re{[Xo(t)],} A
L ——= Im{[Xo (1)), } " Re {[Yo(1)]y, }
B i -===1m {[Yo(”]n}
0.5 0.5+
N,
I i /j\/\ /-7\
\ \
/ \ /
0.0 0.0 AN Sy A i wr \
i VoV X \\’
s~ -~ T St S \ -
\ I e PR g (el =4 L ~
_\‘ gt N |
\ / L
Y // |
\\/ -ll
B |
-0.5 1 1 1 1 11 1 1 1 { 1 1 1 -0.5 _{
o 5 10 !
1
! 1
o
\
\
-
L 1 1 1 1 i 1
[¢] 10
t
1.0

(c)

I Re{[ ZO(')]Tl}
S AT

FIG. 1. Short-time behavior of time-dependent ACF’s: (a) [Xo(#)]r1, () [ Yo(#)]r1, and (¢) [Z(2)]11. Solid and dashed lines denote,
respectively, the real and imaginary part of the ACF’s. Dotted lines in (a) represent real and imaginary parts of the leading, nonoscil-
latory term of the LTAE of [X,(2)]r;. The real part of [ Zy(¢)]r; approaches the value 4 /77 asymptotically in the limit t— oo.

and again, this is clear in all of the graphs. We also note = where M, is the magnetization of the TI model. At T =0,
that3* this is® M, =1/7. Similar comments apply for the time
d _ derivatives of the other ACF’s at ¢ =0.

dt Im{[Xo(O)]n} =—2M; , 2.17) The most prominent features of the long-time asymp-
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FIG. 2. Short-time behavior of time-dependent ACF’s: (a) [Xo(#)]xy=[Yo(?)]xy and (b) [Zo(#)]xy. Solid and dashed lines denote,
respectively, the real and imaginary part of the ACF’s. Dotted lines in (a) represent real and imaginary parts of the leading, nonoscil-

latory term of the LTAE of [Xy(#)]xy.

totic behavior discussed above can already be discerned
for short times. As is evident in Fig. 1(a), the graphs of
Re{[Xo()]11}] and Im{[X,(#)]1;] execute oscillations
around the uniform curves A cos(w/8)t~1/* and
—A sin(7/8)t /%, which approach zero monotonically as
t— . The behavior of [Xy(#)]xy=[Yo(t)]xy is similar,
but the real and imaginary parts oscillate around the more
rapidly dying curves +(A4)%~!/2, respectively. In con-
trast, [Yo(#)l11 and [Zy(#)]yy fall off as t— o0 via
damped oscillations around zero. In the same limit,
[Zo(t)]11 approaches a nonzero asymptotic value,
[Zo(0)lri=4M?=4/7%. Both Re{[Zy(t)]1;} —4/7* and
Im{[Zy(#)]11} die off with damped oscillations about zero
ast— co.

III. FREQUENCY-DEPENDENT CORRELATION
FUNCTIONS

We have generated the function [®§*(e)]; numerically
by a fast-Fourier-transform program using the precise nu-
merical results for [ X(¢)] for ¢ <40 and the LTAE (2.7)
for ¢t >40. At t =40, our numerical solution matches the
known LTAE to within an error of 10~%. The resulting
[®5%(@)]ry is plotted in Fig. 3. The accuracy of the curve
is estimated to be better than one part in 10° over the
range of o shown. Figure 3 also shows [®¥(w)]r, which
is, according to (2.5), given by

[P¥(0) =0 [PF (@) 11y - 3.1)
These frequency-dependent ACF’s have quite striking

behavior. The results shown in Fig. 3 exhibit singularities
at =0, 2, and 4. [®F*(w)]y has divergences at =0 and
2 and infinite curvature at ®=4. It is a rigorous property
that the singularities in the frequency-dependent correla-
tion functions are determined by the long-time asymptotic
behavior of the corresponding time-dependent correlation
functions. By using our result (2.7) on the LTAE of
[Xo(8)]1, we find that [®F(w)]r; has further (finite)
singularities at =6,8,..., dominated by the leading
term in each successive tower of the LTAE. Specifically,
the dominant singularity of [®F%(w)]y; at frequency

FIG. 3. Frequency-dependent ACF’s [®§*(w)]y; (solid line),
[®¥(@)]11 (dashed line), and [ D§(w)]r (dotted-dashed line).
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a)(,,TI):Zm, m =0,1,2, ..., has the following form:
TD

m

P
[P~ +4F T3 —3m?) |o—2m | ™

X { +[1—(=1)"1602m —o)

+2-120(0—2m)} , (3.2a)
where
AP = (2m) = 2o (3.2b)
and
ATID ,__2_ _ 3 (3.2¢)
wme) 4’

From Table I we can determine the amplitudes 4 ) expli-
citly up to m =4. Our calculational method is described
in the Appendix. Note that the power-type singularities in
[®F(w)]1r at o =w " are one sided for even m and two
sided for odd m. Two of the singularities are divergent,
viz, ~07¥*0(w) at ©~0 and ~ [0—2| "0(2—w)
+27120(w—2)], at o~2. The “singularity exponents”
v&T,f,’ measure the strength of the singularities. Since v
is a monotonically increasing function of m, the singulari-
ties become progressively weaker for larger m. The max-
imum allowed strength of a singularity in a frequency-
dependent correlation function, i.e., the lower bound on a
general singularity exponent v is v> —1. This follows
from the physical requirement that the integral

* 40 )= (S1)?) (3.3)
2T

0
be finite. Parenthetically, the value v= —1 is approached

in the limit of infinite spin dimensionality S in the 1D,
isotropic Heisenberg (HB) model at T =0, where*¢—48

W= _142/(7$)+0(S72), E=xy,z. (3.4
The dominant singularities in [ ®¥(w)]y are
0* P (w)y), m=0
[T ~ 2m)?* O ()T, m+£0 (3.5)
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FIG. 4. Frequency-dependent ACF’s [ D5 () ]xy

=[®¥(w)]xy (solid line) and [ DF(w)]xy (dashed line).

whence
2
(tn_m 3
Vy,m = 2 4 +28,0 - (3.6)

Thus, [®¥(w)]r; vanishes like ~w>/*6(w) as w—0,
whereas [®F(w)]ry is divergent there. Physically, the
difference in the singularity at @ =0 can be attributed to
the fact that x is the “easy” axis and y the “hard” axis for
spin fluctuations. It is interesting, however, that for
wﬁ}”#O, the singularity exponents are the same for both
[©F()]1; and [P ()] 1y, Vi =0 form > 1.

By the same method as for the TI model and with
equally high precision, we have numerically determined

[957(0) Ixy =[PF(0) Lxy =[P (@)]xy -

Our result, which is plotted in Fig. 4, exhibits divergences
at =0 and 1 and a cusp at w=2. The exact nature of
these singularities is again analyzed by use of the LTAE
of [Xo(t)]xy, which also indicates that [®iY(w)]yy has
further nonanalyticities at all positive integer frequencies.
We find that the dominant singularities of [®§'(w)]xy at
frequencies XV =m, m =0,1,2, ..., have the following

m
form:

1pWpl 12 o
L o 3B ' T(5s—7m Nwo—m) """ 0w—m), even m (3.7a)
[®5 (0)]xy ~ ! (L) 1 SXD
— 5B, —[—Tz—l)]l lo—m | *"In|wo—m | , odd m (3.7b)
z\im-— :
where
B'('f.)__-(2)221/2(2#)—m/2b61,m) , (3.7¢)
and
2
mT__% , m even (3.7d)
(XY)_
Vim = m? 1
a0 m odd . (3.7¢)
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The B.} can be determined explicitly up to m =4 from the values of b§™ given in Table IV. The singularities in
[D5Hw)]xy at coﬁ,’,w) are alternatingly one-sided power type (m even) and two-sided power type with logarithmic correc-
tions (m odd). In particular, the singularities shown in Fig. 4 are the two divergences ~»~!/?6(w) at w~0 and
~In|w—1| at @~1, and the cusp ~(w—2)""?0(w—2) at w~2. Note that each of the two divergent singularities in
[®§'(w)]xy is weaker by + of a unit in v than the respective singularity in [®§%(@)]y.

Our numerical results show that in both the TI and XY models ®§*(w), £=x,y, approach zero very rapidly as o in-
creases beyond 2. Actually, the large-o behavior of these frequency-dependent ACF’s is strongly constrained by the

property that the time-dependent ACF’s are entire functions of
vanish at least as rapidly as ~exp(—aw?) where a >0, as ®—> co.

‘1;.28 As a result of this property, ®§(w), £=x,y, must
9,50

For a physical interpretation of [®F(w)]1, [P¥(@)]1, and [®§(@)]xy, it is instructive to compare these functions
with [®Z(w)]1; and [®ZF(w)]xy, both of which can be evaluated exactly in terms of elliptic integrals:*!

[®F (@)= %[K(k)—E(k)]O(m)0(4—w)+ V(0)0(0)0(2—w) ,

with

(3.8a)

V(cu)=:27—{F(yl,k)—F(yg,k)—E(yl,k)+E(y2,k)+tan(u)[coszu — (/41" —cot(u) [sin*u —(w/4)*]'?} , (3.8b)

y1=arcsin[sin(u)/k] , y,=arcsin[cos(u)/k],
k=[1—(0/4)]"?, sinQu)=0/2,

and

(3.8¢)
(3.8d)

[0F () ]y = %F[arcsin({%[1~(1—w2)1/2]}1/2/k) , [1—(0/2)21'7216(0)8(1 — o)

+ 2K {[1—(0/212}6(0—1)0(2—0) .

T

These functions are also plotted in Figs. 3 and 4. In
contrast to the behavior of ®§*(w) and ®¥(w), which have
an infinite number of singularities, the functions ®%(w)
have only three singularities corresponding to the presence
of only three towers in the LTAE’s (2.12) and (2.13) of
Zy(t). Specifically, the dominant singularities of
[®F(w)]r at @=2m, m =0,1,2, are, respectively,

(0/2m)0()
—2/m)(2—0)"?02—w),
+(4—0)0(4—0w)

where [®F (@)l =[PF(@)]ln —M?8(w), and the dom-

inant singularities or [®f(w)]yy at o=m, m =0,1,2,
have, respectively, the following forms:

[®F ()T, ~ (3.10)

(2/mewb(w)
()P~ { =257 (1 —0)?0(1 —w) .
02—w)

Thus, the singularity exponents are v(z,T,f,’z 1,%, 1; and
vij‘,’,,m——- 1,%,0 for m =0,1,2, respectively. Note that none
of the singularities in ¢F(w) is divergent.’! A closely re-
lated difference in behavior is that the functions [¢5 (@) ]y
and [¢5(w)]xy are nonzero only for O<w<4 and
0<w <2, respectively, whereas ¢35 (w) and ¢¥(w) have
spectral weight at arbitrarily high frequencies. This
difference in behavior can be understood in the framework
of the fermion representation of the models (1.1) and (1.2)
or the more general model (1.10); the ground state is
characterized by a half-filled band of noninteracting, spin-
less fermions with one-particle energies,

(3.11)

(3.9)

[el(q)]n=2cosg— , [e1(@)lxy=cosq . (3.12)

2
Now, the spin operator S7, if applied to the ground state,
couples to the two-particle excitations only, whereas the
operators S and S} couple to m-particle excitations with
m arbitrarily large.’’ Consequently, the two-particle spec-
trum exhausts all spectral weight in ®F(w), whereas
P (w) and ®F(w) include also contributions from m-
particle excitations with m > 2.

L 4[2] 4 g,(a)

€,(a) ,/W

:2[|]_-

" n

2 1'r [0} o} T 2m
[ar]  [zv]  [0] [o] (/2] (]
Dy (w) q

FIG. 5. Two-particle spectrum of TI model and XY model
consisting of two partly overlapping continua with upper boun-
daries €y(q) and €y(q), respectively, and the common lower
boundary €;(q). Also shown is the density of two-particle states
D,(w). Labels in square brackets are for the XY model, those

without brackets are for the TI model.
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The two-particle excitations of both models (1.1) and
(1.2) form a two-parameter continuum consisting of two
partly overlapping sheets, as shown in Fig. 5. The ener-
gies of the two-particle excitations as a function of wave
number g and a parameter k (0<k <) are

k k
[ex(k,q)]r1=2 |cos (—2*—% +2|cos [—2—-4-% ,
(3.13)
[ex(k,q)]xy = |cos [k —%J + |cos [k+%J .
(3.14)

The two continua have upper boundaries given by
J
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[ev(@) =4 sin% , [ev(@)]xy=2 sin—g— (3.15)

and

, (3.16)

[-E_U(q)]TI=4 COS% ’ [Eu(q)]xy—fz COS‘%

respectively, and a common lower boundary given by

inL
sin-y

[eL(@)]m=2 , ler(@lyy=|sing| . (3.17)

Thus, the functions ®F(w) can be expressed in integrals
over g of functions S,(g,®), which are nonzero only
within the boundaries of the two-particle spectra’;

2 221172
_ [16cos*(g/4)—w?] 6(4 | cos(qg/4) | —w)0(w—2 |sin(g/2)]|)

Sz(q, =
[Sz(g.0) ] 8 cos*(q /4)
2 212
+ L6sinlg =] 7 5| Ginig /8) | — )80 —2 | sin(g/2) | )+ 472ME8(Q)5(w) (3.18)
8sin“(q /4)
2 . .
[Sz(g,0)]xy= [45in%(q/2) ]2 O0(w— |sing | )6[2 |sin(g/2) | —w] . (3.19)
The (normalized) density of two-particle excitations, defined by
27 T
Dy(w)= fo dgq f0 dk 8o —e,(k,q)) , (3.20)
can also be expressed in terms of elliptic integrals,*!
[Dy(0)]11= 8F{arcsin[ (5 {1—[1—(0/2)*]"2})12/k], [1—(0/4)*]'*}6()0(2—0)
+4K {[1—(0/4)*]'?}60(0 —2)0(4—0) , (3.21)
(3.22)

[Dz((l))]xy=2[D2(2(0)]TI .

This function, which is plotted in Fig. 5, has pronounced
van Hove singularities at ®=0,2,4 for the TI model and
at =0, 1,2 for the XY model. This is precisely where the
ACF’s ®4*(w), p=x,y,z, also have singularities. Hence,
the singularities in [®F(w)]r; at ©=0,2,4 given in (3.8)
are the combined effect of the van Hove singularities in
[Dy(@)]r1 and the singular behavior of the matrix ele-
ments (G |S%gq)|A) at the boundaries of the continuum
of two-particle excitations. Here | G) is the ground state
[see Eq. (1.9)]. ’

In the XY case, the matrix elements (G | S%q) | A) are
constant, and therefore [®j(w)]yy is proportional to the
two-particle density of states

O (w)yy=(47)"[Dy(w)]xy .

The singularities in [ 95 (w)]r; and [DF(w)]1y at ©=0,2,4
and the singularities in [®§(w)]yy at ©=0,1,2 are likely
to be at least partly due to the two-particle excitations. By
analogy, our results strongly suggest that the nonanalytici-
ties at higher integer frequencies can be attributed to con-
tinua of m-particle excitations> with energies,

m m
enlky, .. kn)=3 |ek)] , g= Sk, (324
I1=1

(3.23)

I=1

I
where the one-particle excitation energies €,(k;) are given
in (3.12).

An interesting property which holds for all of the
Pp¥(w), p=x,y,z in both the TI and the XY models at
T =0 is that

g

——5 P6*(w)>0 (3.25)

dow
on the intervals between the singularities of these func-
tions. Thus the ACF’s are, a fortiori, convex functions on
these intervals of analyticity. A further consequence is
that the ACF’s have no smooth maxima, i.e., all maxima
occur at points of nonanalyticity.

Finally, it is instructive to discuss available approxi-
mate results for [®F(w)]yy in view of the new exact re-
sults reported in this paper. The time-dependent ACF’s
obtained by calculations in the continuum approxima-
tion®** (Luttinger model) have already been discussed in
Sec. IL. In frequency space, the Luttinger model yields the
correct exponents for the leading and next-leading singu-
larities of [®5(w)]yy at @=0, but it fails to reproduce
any of the nonanalyticities at @ >0. This demonstrates
that the divergences and finite nonanalyticities of the
ACF’s at nonzero frequencies are intrinsic features of the
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2.04

—— EXACT RESULT
——— RESULT OF REF. 47

()]y

T
_

0 T T T
(¢} 0.5 1.0 1.5 2.0

FIG. 6. Comparison of approximate result for frequency-
dependent ACF [®5(w)]xy from Ref. 47 (dashed line) with new
exact result (solid line).

discrete quantum-spin model which cannot be accounted
for by a continuum analysis.

In Ref. 47 an analytic expression for [S,,(g,@)]yy was
conjectured on the basis of finite-chain calculations and
sum-rule arguments. By construction, that approach
neglects all spectral weight due to excitations lying outside
the continuum of two-particle excitations. The ACF
[®5*(w)]xy obtained from the results of Ref. 47 is plotted
in Fig. 6, together with the new exact result. We note that
the overall qualitative agreement is fair for w <2. The ap-
proximate result yields the leading singularity with the
amplitude correct within a relative error of 1073, It
correctly predicts another divergence at =1, but an over-
ly strong one, ~ |w—1| ~!/4 instead of logarithmic. At
w=2 it predicts a further weak divergence followed by a
cutoff instead of a square-root cusp.

In summary, we have analyzed the structure of the
zero-temperature ACF’s (S§(¢)S¥), u=x,y for the 1D
S =1, TI model at the critical field and the 1D S =1,
isotropic XY model at zero field. We have combined these
new analytic results governing the time dependence of the
ACF’s to calculate by Fourier transform the frequency-
dependent ACF’s. We have found-that the latter func-
tions have singularities at an infinite set of frequencies,
and we have determined the exact form of these singulari-
ties. Finally, the predictions of approximate calculations
are reappraised in the light of the new exact results. Our
new results bear strong relevance for low-temperature
dynamical experiments on quasi-1D compounds such as
the XY-like substances Cs,CoCl, and PrCl; and the S =+
Ising-like substance CsCoCl;*3H,0.

|

[ng(w;tmin)]i’lgz)\E: -1_ 2 2

m=0 n=0

(D)oo —2mym* 2+ =32 _ L2 g i (0 —2m)+u)tmin)]

where I'(a,z) is the incomplete I' function,*' and

—_ 2
A'(’x.m)___A(z,n,)—m/ZZ—m /2——na'(lxym) .
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APPENDIX

Here we shall prove that the singularities in the fre-
quency dependent ACF’s <I>§§(w) are determined by the
long-time asymptotic behavior of the corresponding time-
dependent correlation functions Zy(z), and we shall
present the detailed calculations of these singularities. We
first recall that, by the definition of an asymptotic expan-
sion of a bounded function [Ey(¢)]irag, for any >0
there exists a ¢,,;, such that

| Eo(t) —[Eo(t)ILTaE| <8 (A1)

for t > tmn. It is useful to define an auxiliary function,

~min .
V(03 tmin) =T [f_w dt Eo(t)e’”

+ [7 drE(ne (A2)
As will be shown, the singularities of this function do not
depend on tp;,. Furthermore, for values of w where
W8S (@;t i) is finite, a controllably small error is made in
approximating Ey(z) by [E¢(#)] 1aE; that is, for any €>0
with

| WE(@, tmin) — [ W6 (@, tin) ILTAE | <€

where [\Ilgg(a),tmin)]LTAE is obtained from (A2) by replac-
ing Ey(¢) by [E¢(#)] AR, there exists a § and a t,;, such
that

(A3)

| Eo(t) —[Eo(D)]LraE| <8 (A4)

for t>tm,. Hence it is evident that the singularities of
[WE(®, 2 min) ILTAE, to be determined below, can be identi-
fied as the singularities of the frequency-dependent ACF

D5 () =Y (0, min=0) . (A5)

Let us then approximate Zy(¢) by [Eq(¢)]LTaE, and ac-
cordingly delete the interval ( —¢pn,¢min) from the Fourier
transform (1.5). We consider first the calculation of
W@, min) V. With the LTAE of (2.7), Eq. (A2) yields

A im [ (427N 2m — @)™ AT AT G — sm?—n, [1(2m =)+ Jmin)
u—

(A6)

(A7)

As w—2m, m =0,1,2, ..., the function (A6) has singularities. Furthermore, the singular part of (A6) becomes in-
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dependent of t,;,. Therefore, the singularities of [ ®3*(w)]y; depend only on the LTAE of [X,(¢)]1, because £, can be
chosen arbitrarily large so that the LTAE is arbitrarily accurate. For the dominant singularity of (A6) we thus obtain
the form of (3.2a). It is straightforward to prove that this property holds for [ ®§5(w)]y; with €=y and z as well as £=x.

The same method can be used to calculate the singularities of [P )] yy at o=m, m =0,2,4,.... As before, they
depend only on the LTAE of (2.9) of [X(#)]xy=[Yo(#)]xy- The result for the dominant singularity at each frequency is

given in (3.7a).
For the singularities of [®§(w)]xy at o=m, m =1,3,5, . .., the integral of (A2) with the LTAE of (2.9) leads to a

different expression.

(L,m) B,(1,m)
) 1 & &= B, (i)
[W(l)l(w;tmin)](lj?l};Ez- E z
(1,m)
4 m=0 n=0 [Bn ]'
ﬂ(_L,m)
. o—m+iu)t_; X
X lim |e min
u—0 kgl

1,m)
—ile—m 4] " Bili (0 —m +iw)ty ] +e

Bill,m)

X ¥ (k—=D[i(m —o+iu)]

k=1

1,m)
—[i(m —w—l—iu)]ﬁ" Ei[i(m —o+iu)tya] |,

where Ei(z) is the exponential integral*' and
Br(ll,m)z(z)221/2(27)—m/2b’(ll,m) , (A9)

Bm =L(m2—1)+n . (A10)

As o—m, m =1,3,5, ..., the Ei function diverges log-

ﬁ(l,m
(k—ilw—m +iu)]™

—k

(tmin)_k

ilm—o+iu)t

B(ni,m)_k

(tmin)—-k

(A8)

arithmically. Except for the cast m =1,n =0, this loga-
rithmic singularity is multiplied by power of w—m. All
other terms in (A8) are nonsingular. Again, the singulari-
ties depend only on the LTAE (as do those of [®F(w)]xy)-
The dominant singularity thus obtained for each frequen-
cy is given in (3.7b).
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