
University of Rhode Island University of Rhode Island

DigitalCommons@URI DigitalCommons@URI

Open Access Dissertations

2013

Analyzing and Quantifying Dynamc Program Behavior in Terms of Analyzing and Quantifying Dynamc Program Behavior in Terms of

Regularities and Patterns Regularities and Patterns

Celal Ozturk
University of Rhode Island, celalozturk@my.uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss

Terms of Use
All rights reserved under copyright.

Recommended Citation Recommended Citation
Ozturk, Celal, "Analyzing and Quantifying Dynamc Program Behavior in Terms of Regularities and
Patterns" (2013). Open Access Dissertations. Paper 63.
https://digitalcommons.uri.edu/oa_diss/63

This Dissertation is brought to you for free and open access by DigitalCommons@URI. It has been accepted for
inclusion in Open Access Dissertations by an authorized administrator of DigitalCommons@URI. For more
information, please contact digitalcommons-group@uri.edu.

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/oa_diss
https://digitalcommons.uri.edu/oa_diss?utm_source=digitalcommons.uri.edu%2Foa_diss%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/oa_diss/63?utm_source=digitalcommons.uri.edu%2Foa_diss%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu

ANALYZING AND QUANTIFYING DYNAMIC PROGRAM BEHAVIOR IN

TERMS OF REGULARITIES AND PATTERNS

BY

CELAL OZTURK

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

COMPUTER ENGINEERING

UNIVERSITY OF RHODE ISLAND

2013

DOCTOR OF PHILOSOPHY DISSERTATION

OF

CELAL OZTURK

APPROVED:

Dissertation Committee:

Major Professor Resit Sendag

 Gerard Baudet

 Yan L. Sun

 Nasser H. Zawia
 DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND
2013

ABSTRACT

 Current processors employ aggressive prediction mechanisms to improve

performance and reduce power. Most optimizations, however, are as a result of fairly

ad-hoc observations or they primarily rely on heuristic. It is increasingly important to

understand and quantify a program’s dynamic behavior to effectively design next-

generation prediction mechanisms. Although quantifying frequent behavior in an

application’s dynamic execution behavior is trivial in cases such as observing the

frequency of each type of instruction, it is very challenging to summarize dynamic

data reference behavior. As a result, most prediction mechanisms (data prefetchers,

branch predictors, and other) employed in current processors today rely on heuristic-

based analysis or ad-hoc observations. After some patterns are observed, a hardware

decision is made and the design space of the predictor or multiple predictors is

explored through simulation to determine the best performing predictor and its

configuration. However, because the design is targeted for observed and/or anticipated

patterns, some dynamic behavior is not captured and remains undetected.

 In this study, Idesigned and implemented two comprehensive analysis tools to

quantify dynamic program behavior in terms of regularities and exact patterns. My

specific emphasis in developing these tools has been on processor design and

computer architecture although the tools are sufficiently general to also be used by

others in software development and security.

My PatternFinder tool integrates algorithms and mechanisms inspired by DNA

discovery tools. I developed three flavors of this tool that required different

implementations due to specific optimizations for faster speed and smaller space. The

first implementation targets the analysis of branch outcome patterns, which are

sequences of 1s (ones) and 0s (zeros). The second implementation is a generalized

version that allows 64-bit integers instead of 1-bit values as in the first implementation

and thereby can be used to evaluate address and instruction patterns. Finally, the third

implementation extends the second implementation to find patterns common to

different input sequences.

My automatic source code analysis tool maps instructions to their corresponding

data structuresat run-time without the need to analyze the program source code by

hand. This tool is linked to the PatternFinder in that when specific instruction or data

structure access patterns are targeted, automatic source-code analysis tool generates

necessary input trace for the PatternFinder tool. Together the two tools that I develop

can quantify pattern behavior in programs’ dynamic execution.

Finally, I have demonstrated the use of the abovementioned two tools in

summarizing branch and address patterns, and to identify the data structures that

causes branch mispredictions for a set of program traces and SPEC CPU 2006

benchmarks.

iv

ACKNOWLEDGMENTS

During the 5 years of my graduate work, I have received support from a great

number of people. Dr. Sendag has not only been a great advisor to me, but also has

been a good friend and has been supportive in my personal life as well. I would like to

thank my brothers, Erdinc & Sinan Ozturk and my parents Gonul & Dursun Ozturk for

their infinite support and encouragement which motivated me significantly towards

getting my graduate degrees. I would like to thank my dear friends and long time

roommates Danielle Dragon and Matthew Scarcella for their personal support and

helping me get through tough times.

I would like to thank my best friends, Nevzat Atakli and Ozlem Kocabas, for

being able to support me even from 5000 miles away and providing me the best

vacation I could ask for when I needed time off from work.

I also would like to thank my landlord, Amy Higbie, for not not kicking me out

of my house when she put the house on sale, just because she didn't want me to

struggle with housing when I was about to finish my degree.

v

TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOWLEDGMENTS .. iv

TABLE OF CONTENTS ... v

LIST OF TABLES .. vi

LIST OF FIGURES ... vii

CHAPTER 1 ... 1

INTRODUCTION .. 1

CHAPTER 2 ... 4

REVIEW OF LITERATURE ... 4

CHAPTER 3 ... 10

METHODOLOGY .. 10

CHAPTER 4 ... 31

FINDINGS .. 31

CHAPTER 5 ... 65

CONCLUSION ... 65

REFERENCES ... 67

BIBLIOGRAPHY .. 71

vi

LIST OF TABLES

TABLE PAGE

Table 1. Maximum non-overlapping patterns length and its coverage. 32

Table 2. Weighted average pattern lengths and weighted average repetition intervals

 ... 36

Table 3. Classification of benchmarks based on their spatial and temporal branch

outcome regularities .. 40

Table 4. Maximum non-overlapping pattern length and its coverage 45

Table 5. Weighted average pattern lengths and weighted average repetition intervals

 ... 48

Table 6. Average percentage of mispredictions for each class 55

Table 7. Sample output showing top 10 most mispredicted branches 55

vii

LIST OF FIGURES

FIGURE PAGE

Figure 1. Discovering the subsequences of sequence S→caabaaabacd having at least 2

occurrences in S.. .. 12

Figure 2. The block diagram of PatternFinder. ... 13

Figure 3. Misprediction contribution of Top 5, 10 and 15 most mispredicted branches

in SPEC2000 ... 18

Figure 4. Dynamic branch misprediction classification mechanism 20

Figure 5. Methodology Methodology for identifying changing function input type

mispredictions ... 21

Figure 6. Methodology for identifying loop type mispredictions 24

Figure 7. Methodology for identifying array access and linked list type mispredictions

 ... 27

Figure 8. PatternFinder input/output size comparison .. 31

Figure 9. Cumulative distribution of hot pattern sizes (spatial regularity) for Spec CPU

2006 benchmarks .. 34

Figure 10. Cumulative distribution of hot pattern sizes (spatial regularity) for CBP

traces ... 35

Figure 11. Coverage and confidence values for overlapping patterns in CLIENT02

 ... 39

Figure 12. Coverage and confidence values for non-overlapping patterns in

CLIENT02 .. 39

viii

FIGURE PAGE

Figure 13. Coverage and confidence values for overlapping patterns in INT03 41

Figure 14. Coverage and confidence values for non-overlapping patterns in INT03

 ... 41

Figure 15. Coverage and confidence values for overlapping patterns in MM05 42

Figure 16. Coverage and confidence values for non-overlapping patterns in MM06

 ... 42

Figure 17. Coverage and confidence values for non-overlapping patterns in

SERVER01 ... 43

Figure 18. Coverage and confidence values for non-overlapping patterns in

SERVER01 ... 44

Figure 19. Cumulative distribution of hot pattern sizes for SPEC2006 47

Figure 20. Code snippet for hot load PCs in mcf .. 51

Figure 21. Longest common patterns changing over stream number threshold. 52

Figure 22. Breakdown of misprediction types for 4kB gshare predictor for SPECint,

SPECfp benchmarks ... 54

Figure 23. Breakdown of the other category ... 55

Figure 24. Code snippet for a hot PC in gap, (a) assembly, (b) C code 56

Figure 25. Code snippet for top hot PC in gap, (a) assembly, (b) C code 58

Figure 26. Code snippet for top second hot PC in parser (a) assembly, (b) C code ... 60

Figure 27. Code snippet for one of the hot PCs in gcc, (a) assembly, (b) C code 62

1

CHAPTER 1

INTRODUCTION

Making the common case fast is a design principle that has been used in

microprocessor design for decades. This principle applies when determining how to

spend resources, since the performance impact on making some occurrence faster is

higher if the occurrence is frequent. Although quantifying frequent behavior in an

application’s dynamic execution behavior is trivial in cases such as observing the

frequency of each type of instruction, it is very challenging to summarize dynamic

data reference behavior [1]. As a result, most prediction mechanisms (data prefetchers,

branch predictors, and other) employed in current processors today rely on heuristic-

based analysis or ad-hoc observations. After some patterns are observed, a hardware

decision is made and the design space of the predictor or multiple predictors is

explored through simulation to determine the best performing predictor and its

configuration. However, because the design is targeted for observed and/or anticipated

patterns, some dynamic behavior is not captured and remains undetected.

It is increasingly important to have a complete understanding of dynamic program

behavior in order to make more informed decisions early in the design process. An

attempt to quantify regularities in a memory address trace was made by Chilimbi in

[1]. This was the first study to quantify the observation that extended memory access

sequences recur using a hierarchical compression algorithm, called SEQUITUR [2].

Several researchers then proposed ways to exploit this behavior [3-5]. Surprisingly,

2

after a decade, their analysis has remained one of the most detailed for quantifying hot

memory streams. Unfortunately, frequent pattern analysis for hot streams with

SEQUITUR is very limited and can be misleading. SEQUITUR forms a grammar to

summarize an input sequence in compressed form; however, there is no guarantee in

finding most important or relevant non-overlapping patterns. It is also not suited for

finding overlapping or approximate patterns. In this study, inspired by DNA discovery

tools [6-8], I adapt and revise the methods motivated by suffix trees [6] in order to

develop comprehensive pattern discovery tools targeted for computer architecture.

Suffix trees have several advantages over SEQUITUR in designing such a tool, which

I discuss in Section 3.

In this study, I present a pattern analysis tool ,PatternFinder, and the results

produced by the tool that quantify exact overlapping and non-overlapping patterns in

dynamic program behavior. Exact patterns are most relevant to analyze branch

outcome behavior, and provide insights into the predictability and relative importance

of patterns. PatternFinder can also quantify exact patterns in dynamic data reference

behavior (and do so more rigorously than SEQUITUR-based analysis shown in [1]).

However, a true insight can only be gained by discovering approximate patterns

because a few changes in a particular data reference pattern must not nullify

importance of that pattern. My observations with memory access patterns suggest that

one must target a different set of pattern language. Unlike branch prediction in which

the next outcome must be predicted correctly, prefetching system predictions are

assumed successful if prefetched data is accessed by the processor in near future and

thus predictions must not need to be correct for the next consecutive access to be

3

useful. Since my current version of the PatternFinder is not capable of analyzing

approximate patterns, in this study, I focus on exact overlapping and non-overlapping

branch outcome patterns and left approximate pattern analysis as a future work .

This thesis makes the following contributions:

1) It presents design and implementation of a novel pattern analysis tool for

computer architecture research.

2) It explores and quantifies non-overlapping patterns in dynamic branch

outcomes for spatial and temporal branch stream behavior.

3) It explores and quantifies non-overlapping patterns in address request patterns

for spatial and temporal address stream behavior.

4) It quantifies overlapping branch outcome patterns that have implications on

predictability.

5) It presents a methodology for dynamic source code analysis

6) It explores and quantifies non-overlapping patterns commonly seen in multiple

streams.

4

CHAPTER 2

REVIEW OF LITERATURE

 I first motivate my effort by examining the state-of-the-art in data prefetching

and branch prediction. Although many prediction mechanisms’ success depends on

frequent patterns, there are no comprehensive studies for finding and summarizing

patterns for dynamic execution behavior of programs.

 Much processor design research is based on observing regularities in

benchmark applications and design mechanisms to exploit this behavior. There are

many examples. Caches are based on temporal (code and data reuse) and spatial

(arrays, etc.) locality of instruction and data reference accesses. Branch prediction is

based on regularities in branch outcomes and targets (e.g. loops, local and global

correlations). Prefetching is based on data reference regularities (stride patterns, etc.).

2.1 Branch Prediction

 Modern microprocessors use aggressive branch predictors to minimize the

performance impact of control-flow changes. Two-level branch predictors, explicitly

track global or local branch history patterns, and for each branch, make different

predictions depending on the recent history [5-7]. Within most programs, some

branches are best predicted using global history, while others are best predicted using

local history. A processor that only implements one or the other type of predictor

therefore penalizes some branches. A hybrid predictor includes multiple predictors

5

[11-13], with some way to choose which predictor to use at any given time. Recent

works, such as O-GEHL [14] and LTAGE [15] exploit much longer histories than

prior predictors. These predictors employ multiple prediction tables indexed with

different length folded histories. Several others [16-20] target longer histories based

on neural networks.

 Although there is extensive work in branch prediction, most analysis done has

been heuristic-based. After observing some patterns in benchmark programs, a

hardware design decision is made and design space of the predictor is extensively

explored through simulation to determine usefulness. However, because design is

targeted for observed and/or anticipated patterns, some dynamic behavior is not

captured and remain undetected. In this study, I present a framework for pattern

discovery in branch outcomes (or different events in the dynamic execution behavior

of benchmarks) to guide in making more informed decisions early in the design

process.

2.2 Data Prefetching and Memory Access Patterns

 Hardware data prefetching is a well-known technique to help alleviate the

memory wall problem [22]. Many general purpose microprocessors rely on data

prefetching to improve performance for memory-intensive workloads. Most of the

early prefetchers [23, 24] were based on sequential prefetchers, which prefetch

sequential memory blocks relying on the fact that many applications exhibit spatial

locality. Although sequential prefetchers work effectively in many cases, applications

with non-sequential data access patterns do not benefit from sequential prefetching.

6

That motivated the research on more complex prefetchers that try to capture the non-

sequential nature of these applications. Prefetching techniques targeting pointer-based

applications have been studied in [25, 26]. Joseph and Grunwald [27] study Markov-

based prefetchers. In recent years, [4, 5, 28] advocate memory streaming for arbitrarily

irregular yet repetitive address patterns. These papers provide a way to exploit the fact

that there are hot data streams (observed by SEQUITUR), which arise as applications

iterate over data structures, even arbitrarily irregular ones. The success of these

methods depends on understanding complete access pattern behavior of applications.

A preliminary version of a memory trace analysis was done by Chilimbi in [1]. This

was the first study to quantify the observation that extended memory access sequences

recur using a hierarchical compression algorithm (SEQUITUR), developed by Nevill-

Manning and Witten [2]. Larus [29] used SEQUITUR in his earlier work to construct

Whole Program Paths (WPP), which are a compact, yet analyzable representation of a

program’s dynamic control flow. However, analysis in [1] and [29] is limited in that

only exact patterns are investigated. As mentioned in Section 1, approximate patterns

provide better insight into memory access behavior. Unfortunately, myPatternFinder

tool can also not discover approximate patterns at this time. Therefore, in this study, I

focus on analyzing dynamic branch behavior and left exploration of approximate

patterns as future work. PatternFinder explores overlapping patterns for predictability

as well as non-overlapping patterns for stream behavior. SEQUITUR is not suited for

finding overlapping patterns. As a result, instead of using Sequitur algorithm as in [29]

and [1], for reasons described above, I adapt and revise suffix tree [6] algorithms,

which have been successfully used in text processing and bioinformatics.

7

2.3 Pattern Discovery Algorithms

 Sequence pattern discovery is a research area aiming at developing tools and

methods for finding a priori unknown patterns in a given set of sequences, patterns

that are frequent, unexpected, or interesting according to some formal criteria. Brazma

et al. [31] describes the overall pattern discovery with three sub-problems.

1) Choosing the appropriate language to describe patterns.

2) Choosing the scoring function for comparing patterns.

3) Designing an efficient algorithm.

4) Customizing the pattern finding process

 Choosing the appropriate language to describe patters is very important

because it has direct impact on the formation of the output. In many cases, the results

of the pattern tool must be post-processed in order to extract the desired information.

If the language is not carefully chosen, the program output may not be as useful.

 Choosing the scoring function is very crucial for the pattern tool. In a long

stream there can be thousands of patterns overlapping with each other and for a non-

overlapping pattern analysis, only one can be chosen to be included in the output.

Thus, a decent scoring function must be implemented in order to choose the best

pattern possible among the overlapping ones.

 Due to the nature of benchmarks, the input streams can be very long. Because

of that, the efficiency of the pattern finding algorithms is really important. An

inefficient algorithm would not be able to process long streams in a reasonable amount

of time.

8

 And finally, for the pattern finding process, it is very useful to have a

customizable one for the tools which are meant to be available open source. This type

of tool can easily modified per users' needs and target more user specific information.

Tools like SEQUITOR really suffer in this case because they use a Context Free

Grammar in order to find patterns, which is a fixed algorithm and does not allow the

user to modify the algorithm easily.

I followed Brazma’s methodology for developing the PatternFinder.

 IBM Bioinformatics Research Group developed the TEIRESIAS algorithm for

discovery of patterns in biological sequences that operate in two phases: scanning and

convolution [32]. During the scanning phase, elementary patterns with sufficient

occurrence frequency are identified. These elementary patterns constitute the building

blocks for the convolution phase and are combined into progressively larger patterns

until all the existing, maximal patterns have been generated.

 Some of the most efficient algorithms capable of discovering discrete patterns

such as substrings of any length, are based on the suffix tree data structure [6, 33].

Suffix trees are used to accelerate many string operations [34] by indexing texts

(sequences) in a way so that query times would not depend on the size of the indexed

text. In the suffix tree all possible sub-words can be read from the top of the tree-

structured index regardless of original text size. There are many bioinformatics

applications of suffix trees [78, 80-81]. The direct link to pattern discovery methods is

given by the fact that all possible substrings (patterns) are presented in this tree

9

structure. Suffix tree based approaches and extensions have been used for approximate

string matching, finding the longest common substring of two strings and finding all

common substrings in a database of strings. Such queries are essential for many

applications such as bioinformatics [6], time series analysis [35], document clustering

[36] and compression [37].

 In this study, I apply the methods motivated by the suffix trees for pattern

discovery from dynamic program execution traces. For the discovery of the most

frequent patterns I adapt the write-only top-down algorithm for constructing the suffix

trees [38]. This approach is simple and easily modifiable, as different branches of the

suffix tree can be constructed independently from each other. In its implementation,

only those branches of the suffix tree need to be constructed which are actually

accessed by search procedures. Traditional linear-time algorithms [33, 39] maintain

complex data structures and they all construct the tree in a very specific order, thus

making modifications into the search order hard or impossible.

10

CHAPTER 3

METHODOLOGY

 PatternFinder generalizes the WOTD algorithm for constructing and reporting

all the patterns from the defined pattern language. Efficient pruning of the search

space guarantees that only these patterns that are frequently present in input data, are

constructed and evaluated.

 PatternFinder takes as input a sequence of numbers and reports all patterns that

occur in this input sequence, their pattern lengths, where they occur, their input

coverage, their user-defined importance, and some other user-specific metrics. On

average, 99.9% of the input sequence is covered with a minimum pattern length of 2

because subsequences that occur only once and single data points are not considered

patterns. Therefore, in terms of compression, unlike SEQUITUR, PatternFindercan

only provide lossy compression and therefore one cannot use PatternFinder output to

fully reconstruct the input sequence.

 PatternFinder can perform customized queries for finding patterns of interest

based on pattern lengths, coverage and randomness. The run-time is dependent on this

customization. On average, it is fast and provides results within minutes for 100M-

long input traces that have been analyzed for this study.The tool is carefully designed

for speed and minimal memory space requirements. Although faster implementations

are possible, they require vast memory space for keeping the whole suffix tree in

11

memory. My implementation allows us evaluate the 100M-long traces with a

workstation using 8GB of memory.

 In this study, the focus patterns are the ones that occur at least k times in a

sequence,S. I aim at a solution that is faster for larger values of k, keeps the space

requirement relatively low, and at the sametime is simple to understand and

implement. The solution is motivated by the WOTD algorithm for suffix tree

construction. I represent the algorithm for constructing the�(��)timeand space, suffix

trie instead of the compact suffix tree. The trie variant is easierto describe and

implement, as well as it allows us to generalize this algorithm fordiscovering patterns

from more complex pattern classes.

 My algorithm builds the suffix trie for the input sequence S in a systematic

order, e.g., in the breadth-first order, level by level. An advantage in constructing the

tree in this way is that all children of a node are inserted in one step. There is no need

for multiple visits to nodes in differentparts of the trie and the physical implementation

of tree nodes can be optimizedby knowing exactly how many children the node will

have. Example of such atrie construction is in Figure 1 for an input sequence

S→caabaaabacd.

12

Figure 1: Discovering the subsequences of sequence S→caabaaabacd having at least 2 occurrences in S.

3.1 Summarizing the Input Sequence with Non-Overlapping Subsequence Patterns

 I used the suffix tree described in Figure 1 as the main data structure to also

find the non-overlapping patterns. The overall process of finding non-overlapping

patterns is shown in Figure 2. To summarize the input sequence with non-overlapping

subsequence patterns, PatternFinder first finds the longest pattern/s according to some

user-defined criteria (e.g., occur at least k times or maximum pattern length of L that

occur at least k times, etc.). Occurrences of this pattern cover parts of the input

sequence. This step is repeated, each time in the remaining parts of the input, until no

patterns longer than some user-defined length are found (e.g., minimum pattern length

of 2) or some input coverage criteria is met (e.g., 90% input coverage). Each of these

steps are called an iteration. PatternFinder increases its coverage of the input sequence

by running iterations until no patterns are left or a predetermined stopping condition is

reached. Each of the iterations covers some parts of the remaining input, which is

13

shown as pattern placement and input reduction in Figure 2. First iterations are slower

since they go deeper in the tree finding longer patterns.

Eliminating infrequent patterns and overlapping occurrences of pattern within a node:

 As shown in Figure 2, during the construction of the suffix tree for a particular

iteration,at each level, nodes for patterns that occur less than k times are deleted and

are not evaluated further. In addition, at each level, the algorithm detects and

eliminatesoverlapping occurrences of patternswithin each node. This can be done in

linear time because position lists for each node is kept in order.This eliminates

significant number of patterns from the suffix tree, which in turn improves processing

times, without significantly changing the pattern behavior observed in the program

trace.

Figure 2: The block diagram of PatternFinder

14

Eliminating overlaps between nodes:

 Although the overlapping patterns are eliminated, as described above, for each

node’s patterns, different patterns in different nodes at each level of the tree may

haveoverlaps with each other. These overlaps are not eliminated at every level because

it is not possible to determine which patterns are more valuable without going deeper

in the suffix tree. However, for reasonable processing times, there is not much need to

eliminate these overlapping patterns. For these reasons, a hybrid solution is chosen:an

input parameter, interval, specifies the elimination interval for overlapping patterns at

different nodes of the suffix tree. By doing this at every such interval, patterns are

given more chance to grow and to stay in the tree longer until it is more clear to

observe if they are valuable. My experiments show that doing this every 20 levels

produced the best results. To lower chances of eliminating important patterns, my

algorithm also computes the earliest level this overlap eliminationcan be started.

Hence, often elimination starts after the program reaches level 100(pattern length of

100), at which point,overlap elimination is applied every 20 levels. Finally, my

algorithm also uses an input parameterthat specifies the minimum number of elements

required in the suffix tree to enable eliminationof the overlaps. Because if the suffix

tree is not very large, there is no need for elimination – this process can hurt the

performance instead.

 The overlap elimination operation needs to decide which patternsat the

particular level of the suffix tree under investigation are more valuable. Different

scoring functions (e.g., pattern with highest occurrence frequency) can be applied to

15

determine the hot patterns. Starting with the hottest pattern in the list of patterns at the

tree level, the algorithm reserves the space (that corresponds to the locations in the

input sequence) covered by this pattern’s occurrences. Other patterns which partially

or fully reside in that space(i.e., overlapping occurrences of other patterns with the

hottest pattern’s occurrences) need to be eliminated. After this elimination, new hottest

pattern in the remaining list is found and the procedure is repeated until there are no

more frequently occurring patternsremain in the list.

Early termination of an iteration:

 An iteration terminates at the longest pattern (that is, next level does not have

any frequently occurring patterns) if there are no conditions to terminate it earlier.

This gives priority to longer patterns even if their coverage might be too small. It also

increases the processing time. I introduced three conditions where iterations must be

terminated early.

1) The first stopping condition for an iterations to reach the user-given maximum

pattern length.

2) Another parameter allows the program to stop the iteration when the level’s

non-overlapping coveragefallsunder a certain threshold. I define non-

overlapping coverage as the minimum area of the input that is covered with the

current patterns without any overlaps. Non-overlapping coverage is computed

at each iterationrelative to the remaining input which has not been covered by

the previous iterations.

16

3) In either case when there are no early termination conditions or with conditions

mentioned in 1 and 2 above, there isno guarantee to cover the best area with

the best combination of patterns at each iteration. In order to automatically find

a good spot to stop the iteration, after observing fluctuations in coverage

between levels, I define another parameter; average percent drop in coverage

per eliminated pattern. If this drop is over a certain threshold, it suggests that

significant patterns have been deleted from the tree at this level, so placement

must be done for the previous level and therefore iteration terminates at the

previous level.

Early termination of PatternFinder:

 The final parameter for early termination is for the whole process. Because

90/10 locality rule states that a program spends 90% of its execution time in only 10%

of the code, a user may want coverage for only 90% of the input, which greatly

improves the processing time. Therefore, I introduced a new parameter for minimum

overall input coverage. According to this parameter, the program stops looking for

patterns when the desired coverage, usually chose as 90%, has been reached. Which

saves a lot from execution time and also prevents very small patterns from being

included in the output.

3.2 Targeting Specific Instructions by Dynamic Source Code Analysis

17

 The input streams for pattern analysis tools can come from many different

sources. They could be branch outcome patterns of whole programs, branch outcome

patterns for a single branch, address request patterns, address request patterns for a

single load instruction, function call chains, etc. A user might even be interested in just

using patterns for instructions doing linked list traversals. If the source code and debug

symbols for the benchmark/program is available, one can easily extract this

information and collect the specific trace needed. But if the source code and debug

symbols are not available, it would be extremely difficult to gather this information. In

order to solve this problem, I've implemented an extension to the tool, which identifies

branches which are dependent on array accesses, pointer references, linked lists,

constant loops, varying count loops and function calls. Using this extension, one can

easily generate a trace for specific targets like; function call chain in a

program,address tracefor the linked list traversals, branch outcome trace for branches

dependent on array accesses, etc. It is also possible to detect most mispredicted

branches and generate a trace for each one of them. This is very useful because few

most predicted branches cover most of the branch misprediction in the whole

benchmark for almost all benchmarks.

Figure 2 shows how hot branch PCs contribute to the overall mispredictions for

SPECint, SPECfp, and Mibench benchmarks, respectively, when a 4kB gshare branch

predictor is used. On average, for SPECint, top 5, top 10, top 20 static branches cause

39%, 53%, 65% of all mispredictions, respectively. For SPECfp, top 5, top 10, top 20

static branches cause 71%, 83%, 92% of all mispredictions, respectively. Finally, for

Mibench, top 5, top 10, top 20 static branches cause 67%, 79%, 87% of all

18

mispredictions, respectively. Majority of mispredictions are caused by few hot

branches.

19

Figure 3.Misprediction contribution of Top 5, 10 and 15 most mispredicted branches in SPEC2000

 For the branch misprediction classification, I repeat Skadron’s run-time branch

misprediction classification for SPEC CPU 2000 and Mibench benchmarks with a 4kB

(i.e., 16K entries) gshare [6] predictor. Mispredictions are classified into five groups:

conflict, training, wrong-history, needs both history, and other. To classify a branch’s

misprediction type, the program performs a sequence of tests as described in [3]. Each

branch flows down this sequence of tests until it is categorized or falls through as a

misprediction that could not be categorized. The classification progress is goes with

this flow:

1. The prediction starts with a gshare predictor. If the prediction is incorrect,

misprediction classification starts.

2. The first step is to test if a gshare predictor with no aliasing could predict the

branch. When the gshare predictor that is free of aliasing is implemented, the

number of table entries is kept the same (i.e., same history size is used).

However, each table entry remembers all branch references to that entry by

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

g
zi
p

w
u
p
w
is
e

sw
im

m
g
ri
d

a
p
p
lu

v
p
r

g
c
c

m
e
sa

g
a
lg
e
l

a
rt

m
c
f

e
q
u
a
k
e

c
ra
ft
y

fa
c
e
re

c

a
m
m
p

lu
c
a
s

fm
a
3
d

p
a
rs
e
r

si
x
tr
a
c
k

e
o
n

p
e
rl
b
m
k

g
a
p

v
o
rt
e
x

b
zi
p
2

tw
o
lf

a
p
si

Miss Contribution Top15 Top10

Top5

20

updating their corresponding 2-bit counters. Therefore, the predictor is free of

destructive interference. If this predictor was able to provide correct prediction,

the misprediction falls into the conflict category. That is, the predictor under

test would predict the branch correctly, but a destructive interference prevented

the predictor from doing so, and as a result, a conflict misprediction has

occurred.

3. The second step uses a 2-bit predictor to predict the branch. If this prediction is

correct, it suggests that the branch has not been predicted correctly before

because the branch predictor under test has long training time. This is a

misprediction due to training (as mentioned in [3], this is an approximation.)

4. If the branch misprediction has not been classified in the previous steps, it may

have happened because the branch needs local history. If a local predictor of

the same size, but free of interference (logically infinite sized predictor),

predicts this branch correctly, it suggests that global history is not appropriate

for this branch because it needs local history, i.e., it is a wrong type history

misprediction.

5. If still not classified, an interference-free predictor that uses both global and

local histories is tested if it can provide correct prediction for this branch. A

correct prediction in this case suggests the branch needs both types of history,

and the misprediction is classified as “needs both types of history”. However,

if the branch mispredicts with this predictor also, it falls into the group of other

mispredictions as it cannot be classified by this taxonomy.

21

Figure 4. Dynamic branch misprediction classification mechanism

By running several predictor organizations of increasing sophistication

simultaneously, the simulator performs the abovementioned cascade of tests until the

branch either predicts correctly, or the misprediction fails all tests. Remaining

branches are either inherently difficult to predict, or fall into a category not included in

this scheme (e.g., need longer history). This process categorizes each dynamic

branch’s behavior for gshare branch predictor.

 In addition to Skadron's classification, I add 5 new categories; changing

function inputs, varying loop counts, constant loop exits, array accesses and linked list

traversals. In this section I describe how I define these classes and how branches are

classified using these new classes.

3.2.1 Changing Function Inputs

 Many branches are dependent on the values of parameters that are passed to

the function which they belong to. Due to optimizations done by compilers, it's not a

22

straight-forward task to know if a register is a function input, in some cases it's not

even possible. Due to this problem, I simplify what should be considere a function

input. I define a function input as a register which is read but has never been written

within that function before. Then, for every instruction that uses this register as a

source register, the algorithm mark the destination register as being dependent on the

function input. The algorithm keep following this chain until the function returns. By

doing this the algorithm is able to check if a register is dependent on a function input

immediately. Let's say a program executes a branch that uses R3as a source register.

The algorithm checks the data structure to find out if the R3 has its "Function Input"

flag set. If it's set, branch gets identified as a candidate for being classified as

"Changing Function Inputs". The algorithm has to update these values for every

instruction and it has to create new data structures for each function call, and not

destroythese data structure until that function returns. Every function has its own data

structures preserved even if they make calls to other functions.

Figure 5. Methodology for identifying changing function input type mispredictions

 The algorithm stores the data for each function instance separately. Let's say

function A calls function B. Right before the call we have the data specifically for the

Function A. The algorithm keeps them stored because B will eventually return and A

23

will continue executin. After B is called, new data structures are created for the

function B, and those data structures will be used until B calls another function or B

returns. When the execution comes back to A, we continue with A's data structures

from where we left. We use a stack for the function call chain. Every time a function is

called, we insert a function node on top of the stack. Every time a function returns, we

remove the top function node from the stack. For every instruction other than CALL

or RETURN, we do the computations on the top element of the stack, because we

know it's the function being executed currently. These are the data structures we use to

follow the function dependency chain:

• Array of 32 for integer register writes

• Array of 32 for floating register writes

• Array that has a flag called "Function Input"

This is the flow of the algorithm:

Fetch the instruction and figure out what registers are written and what registers are

read.If a register is read, check the "register writes" array for that specific register. If

the "register writes" array says it's not written in the function: It's considered as a

function input because the function uses it without initializing. We should visit the

"register data structure array" and set this register's "Function Input" flag. Since the

destination register's new value is also dependent on this register, we should set the

destination register's "Function Input" flag as well.

If the "register writes" array says it's written in the function: We should check the

"register data structure array". If this source register's "Function Input" flag has been

24

set, then we should set the "Function Input" flag of the destination register, because it's

new value depends on a register that has been marked as a "Function Input" before.

If a register is written: We should check if any of the source registers has the

"Function Input" flag set. If so, we should set the "Function Input" flag of this

destination register. Otherwise we should clear the "Function Input" flag of this

register since it's now written with registers that are not dependent on the function

input.

3.2.2 Constant Loop Exits and Varying Loop Counts

 Many of the branch mispredictions are caused by loop branches. Especially

loops with small iteration counts counts have significant branch misprediction counts.

Many predictor designs have targeted loop branches to predict loop exits to eliminate

these mispredictions. It's not a straightforward task to identify loop branches because

of compiler optimizations and varying iteration counts of loops. In order to identify a

loop branch , we cumulatively store counters for taken and not taken information. If

the branch is taken and the previous branch outcome was taken as well, we increment

the last counter by one, which is the last taken counter. If the branch is taken and the

previous branch outcome was not taken, we add a new counter to the branch and give1

as the value, which is the new not taken counter for the branch. If the branch is not

taken and the previous branch outcome was not taken, we increment the last counter

by 1, which is the last not taken counter. If the branch is not taken and the previous

branch outcome was taken, we create a new counter which is the new taken counter

for the branch. After enough data is collected, we look at these counters to see if we

25

can identify a loop. If the branch outcome counters follow a pattern as taken counters

are always more than 1 and not taken counters are always 1, we identify the branch as

a loop. Also if the branch outcome counters follow a pattern as taken counters are

always 1 and not taken counters are always more than 1, we identify the branch as a

loop. After identifying the branch as a loop, we investigate the counters to see if the

loop has a constant iteration count or a varying iteration count. If the branch is

following a pattern of taken-nottaken count pairs, we mark the branch as a constant

loop exit branch. If the branch is following varying iteration counts, we mark the

branch as varying loop counts. It's important to note that some none-loop branches

may also be identified as loop branches because of their outcome.

Figure 6. Methodology for identifying loop type mispredictions

3.2.3 Linked List Traversals and Array Access/Pointer Reference

 Many branches depend on the values loaded from the memory. Whether the

value comes from a pointer or an array a linked list, these branches are correlated with

a load instruction. Therefore the main idea behind identifying array access/pointer

reference and linked list traversal is detecting load-branch correlations. We define a

26

load branch correlation when a branch's source registers depend on the value loaded

by a load instruction, directly or indirectly. The first step to identifying a load branch

correlation is marking every load instruction's destination register as load dependent.

Every time an instruction executes, we look at the registers read and written. If the

instruction writes to a register, we mark this register as dependent to the registers that

were read by this instruction using a data structure which holds dependency variables.

In the future, if another instruction reads this written register and writes to another

register, we mark this new written register as dependent to the previous written

register. Since the previous written register already holds the information that it's also

dependent on other registers, we have this dependency information like a chain, and

are able to keep track of instructions which are far away being depended on each

other's values. We use this tracking method because branches can be dependent on

load instructions indirectly, in other words they could use a modified value loaded by

a load instruction. Every time we see a branch, we look at the source registers and

follow their dependency chain. When we're following the dependency chain, if we

find out that there's a load instruction's destination register in the chain, then we mark

the branch as having a load correlation and store the information for the load

instruction in the data structure for branches and also mark the load instruction to be

investigated. Every time we see a load instruction, we store the address being read and

also the value which is read from that address. After collecting enough information,

we investigate these address-value pairs. First we look at the distance between the

values of the addresses if these values follow a constant stride, we mark the branch as

being an array access/pointer reference. If most of the distances are the same, but there

27

are different distances every now and then, we also investigate the values loaded from

those addresses. This change in the stride could happen for 2 reasons:

• We could be accessing partial data from and array, then accessing another

partial data but from a different starting point later.

• We could be traversing a linked list which has nodes added to it at different

times, causing the address distance pattern to have spikes in distance rather than

having a constant stride of the node size.

At this point, we look at the values loaded from those addresses. Since we have all the

address-value patter information stored, we can investigate if the values that are

loaded by the load instruction are used to compute the source address of that load

instruction for future execution which is a very common linked list traversal behavior.

If that's the case, we identify the branch as being a linked list traversal. If these values

loaded from those addresses are not used to compute the future addresses for that load,

we mark the branch as being an array access/pointer reference. If the distances

between the load addresses are varying frequently, this could happen for 2 reasons:

• We could be accessing tiny portions of an array at different times and different

indexes.

• We could be traversing a linked list which has nods added to it frequently,

causing the distances between the nodes varying frequently.

Again in this case, we look at the values loaded from

those addresses and try to find a linked list behavior. If the values that are loaded from

those addresses are used to compute future addresses for the load instruction, we mark

28

the branch as linked list traversal. Otherwise we mark the branch as array

access/pointer reference.

Figure 7. Methodology for identifying array access and linked list type mispredictions

3.3 Experimental Methodology

 In this study, the programs I used include several of SPEC CPU 2006

benchmarks [28] and a set of 40 benchmark traces (16 client, 6 integer, 7 multimedia,

5 server, 6 workstation applications) provided with the 2011 Third Championship

Branch Prediction (CBP) Competition [29] framework. SPEC benchmarks were

compiled with gcc full-optimization. For SPEC benchmarks, I used 100M-size

representative samples, which is found by SimPoint tool [30]for the reference input

sets and the traces were generated using the MASE-alpha simulator [31]. Each CBP

benchmark trace is for a 50M dynamic instructions. Table 1 lists the benchmarks I

studied and their dynamic branch counts.

 I ran the best performing (winner of the CBP competition) state-of-the-art

TAGE [10] branch predictor on the benchmarks to be able to correlate PatternFinder’s

results. TAGE predictor uses a number of prediction tables (16 for my simulations)

29

with increasing branch outcome history. For the simulations, I used 16 different length

histories to form a geometric series (as suggested by TAGE) between 4 and 1024 bits.

TAGE favors long history predictions. For example, if there are multiple prediction

table hits, the prediction of longest history table is selected if confidence exceeds a

predetermined threshold.

 Finally, all measurements in this study were performed on an Intel Xeon

X5460 quad-core processor with 8GB of memory

 The simulations I have performed for this study uses the PatternFinder tool

with several different command line parameters. These parameters allow the user to

pinpoint the appropriate patterns according to the goal of the simulation. In order to

make the tool user friendly, PatternFinder implements many command line

parameters.

List of parameters for the PatternFinder:

• Minimum number of occurrence

• Minimum pattern length

• Maximum pattern length

• Minimum coverage per iteration

• Maximum coverage for the complete run

• Interval for collision elimination

• Pattern length to start collision elimination

• Minimum number of unique patterns for collision elimination

• Single iteration

• %Coverage loss per pattern tolerance

30

• Output format parameters

31

CHAPTER 4

FINDINGS

 ThePatternFinder output representations are very detailed providing

importance of each individual pattern of any length in terms of their coverage of the

input trace; where they occur in the input trace and their frequencies. This section

presents the results found by thePatternFindertool. First, I discuss non-overlapping

pattern analysis and implications on temporal and spatial branch outcome locality

followed by overlapping pattern analysis and implications on branch predictability.

Output Information

 The PatternFinder tool inputs a sequence of symbols and outputs detailed

pattern information extracted from the input sequence. The output consists of

information such as; lengths of the patterns, positions of the patterns, number of

occurrence for each unique pattern, coverage of each unique pattern, coverage of all

the patterns, average distance between each occurrence of a pattern. Since the output

has a lot of information, it needs to be post-processed using scripts/programs in order

to extract the specific information needed. Even though output packs a lot of

information, it's much smaller than the input sequence, which makes it very fast to

parse. Table [blabla] shows the input/output sizes for the CBP Framework and

SPEC2006 benchmarks. The y-axis of the chart is logarithmic.

32

Figure 8.PatternFinder input/output size comparison

4.1 Longest Non-overlapping Patterns

 Table 1 reports the longest non-overlapping patterns for each benchmark that is

seen at least twice in the input sequence and their individual coverage. Long patterns

are indicative of better spatial regularityand provide better spatial streaming

opportunity. PatternFindergives priority to long patterns, that is, long patterns are

found first and placed before shorter patterns are searched in the remaining parts of the

input sequence. This is very different than what SEQUITUR does for compression.

Therefore, SEQUITUR cannot usually find longest patterns. As we can see from Table

1, extensive pattern lengths are observed. The highlighted entries in the table show

patterns longer than 200K.In the case of CLIENT02, a 2.9M length pattern exists (and

covers 39% of the input trace). The longest pattern that SEQUITUR reports for this

benchmark is only 1.6K. PatternFinder can find near optimal pattern summary, and

queries can be customized by the user. For instance, instead of longest pattern first

placement, longest pattern with best coverage (magnitude of regularity) provides a

1.00

10.00

100.00

1000.00

INT CLIENT WS SERVER MM SPEC Average

Size (MB)
Input Output

33

B
en

ch
m

ar
k

D
y

n
am

ic

B
ra

n
ch

es
 (

K
)

M
ax

.

L
en

g
th

 (
K

)

M
ax

.
L

en
g

th

C
o

v
er

ag
e

%

B
en

ch
m

ar
k

D
y

n
am

ic

B
ra

n
ch

es
 (

K
)

M
ax

.

L
en

g
th

 (
K

)

M
ax

.
L

en
g

th

C
o

v
er

ag
e

%

INT01 6.0M 67.7 2.26 SERVER01 4.2K 655.4 30.69

INT02 5.4K 26.6 0.99 SERVER02 4.0K 21.8 1.10

INT03 5.1K 236.6 9.25 SERVER03 3.7K 8.7 0.46

INT04 7.9K 1.5K 38.67 SERVER04 3.8K 9.2 0.49

INT05 3.0K 8.1 0.54 SERVER05 3.7K 40.3 4.33

INT06 2.9K 8.3 0.58 MM01 4.0K 55.1 2.77

CLIENT01 3.9K 15.2 1.56 MM02 4.0K 24.2 2.44

CLIENT02 15.1K 2.9K 39.11 MM03 4.5K 25.7 1.14

CLIENT03 4.8K 33.2 1.38 MM04 3.8K 25.5 1.35

CLIENT04 4.4K 1.7 0.08 MM05 5.4K 0.9 0.03

CLIENT05 3.8K 152.0 7.86 MM06 1.8K 46.9 5.34

CLIENT06 8.6K 84.2 1.96 MM07 6.1K 0.1 0.00

CLIENT07 5.7K 289.7 10.24 bzip2 9.1K 65.5 1.43

CLIENT08 3.5K 33.9 1.94 mcf 23.3K 159.0 1.37

CLIENT09 3.5K 49.3 2.85 zeusmp 4.1K 660.6 32.31

CLIENT10 3.2K 15.4 0.96 gromacs 16.4K 1.2 0.01

CLIENT11 4.8K 3.3 0.27 cactusADM 0.4K 154.4 82.35

CLIENT12 3.7K 14.2 0.77 namd 16.3K 119.6 1.47

CLIENT13 4.1K 24.8 1.21 gobmk 13.0K 54.1 0.83

CLIENT14 4.2K 115.6 5.53 hmmer 11.3K 137.4 2.44

CLIENT15 4.7K 52.0 2.23 sjeng 16.4K 7.8 0.09

CLIENT16 4.4K 70.2 3.15 libquantum 21.6K 2.8K 26.66

WS01 4.8K 17.9 0.74 h264ref 5.6K 249.1 8.87

WS02 3.6K 40.4 2.25 omnetpp 18.2K 10.5 0.12

WS03 7.3K 5.4 0.15 astar 15.5K 524.3 6.74

WS04 4.1K 102.9 5.02 sphinx3 7.6K 161.6 4.26

WS05 3.5K 12.0 0.69 xalancbmk 18.7K 228.1 2.45

WS06 4.4K 23.9 1.08

Table 1: Maximum Non-overlapping Pattern Length and Its Coverage

34

bettermetricfor quantifying stream behavior. It also gives faster simulation results as

described in Section3. Overall, many benchmarks has long non-overlapping branch

outcome patterns.

4.2 Spatial and Temporal Branch Outcome Streams

 In this subsection, I discuss spatial and temporal regularities. Spatial regularity

is defined as the number of data points in the regular subsequence. Temporal

regularity is defined as the average number of references between successive non-

overlapping occurrences of the subsequence that exhibits regularity.

Figures 3 and 4illustrate the cumulative distribution of hot pattern sizes, which

summarize the spatial regularity of SPEC CPU 2006 benchmarks and CBP traces,

respectively. In these figures, the maximum pattern length is limited to 1000. Overall

coverage threshold is set to 90%. That is, at least 90% of the data points in the input

must participate in patterns. The figure shows the weighted average pattern length

across all of the sequence’s patterns, where a pattern’s weight is its individual

coverage. Long patterns indicate good spatial regularity. Since PatternFinder finds

long patterns first, only when long patterns cannot cover 90% of the input sequence,

short patterns are given opportunity. Therefore, in Figures 3 and 4, curves closer to the

top left corner represent benchmarks with the worst spatial locality. For example,

gromacs (top line) has the worst spatial locality in Spec CPU 2006 benchmarks as

99% of its patterns are less than 80 references long. Similarly, top left cluster of lines

in Figure 4, MM07, WS03, WS04, INT02, MM05 andINT01 have the worst spatial

behavior as more than 95% of their patterns are less than 100 references long. On the

35

other hand, INT04, xalancbmk, namd, CLIENT02, CLIENT03, CLIENT06,

libquantum, zeusmp, MM06, INT03 have best spatial locality with better distribution

of pattern lengths: 60% or more of their patterns are longer than 700 references

long.By analyzing Figures 3 and 4, programs can be divided into seven classes as

listed in Table 3.This classification is done by examining the slopes at specific points

in the figures and using this information to decide for the boundaries between the

groups.

Figure 9: Cumulative distribution of hot pattern sizes (spatial regularity) for Spec CPU 2006

benchmarks. x-axis: pattern length, y-axis: % number of patterns. Simulations are run for minimum

pattern length of 2, maximum pattern length of 1000 and for 90% coverage.

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

401.bzip2 429.mcf 434.zeusmp 435.gromacs 436.cactusADM

444.namd 445.gobmk 456.hmmer 458.sjeng 462.libquantum

464.h264ref 471.omnetpp 473.astar 482.sphinx3 483.xalancbmk

36

Figure 10: Cumulative distribution of hot pattern sizes (spatial regularity) for CBP traces. x-axis:

pattern length, y-axis: % number of patterns. Simulations are run for minimum pattern length of 2,

maximum pattern length of 1000 and 90% coverage.

Table 2 shows weighted average pattern lengths, where the coverage of a pattern is

used as its weight, so hotter patterns have a greater influence on the reported average

value. As expected, the benchmarks with worst spatial locality, such as MM07,

gromacs, WS03, and MM05 have the smallest average pattern length. Table 2 also

presents the weighted average pattern repetition (temporal regularity) intervals

expressed in terms of number of references. Based on temporal regularities, the

programs divide into five categories as shown in Table 3. The first groups are formed

by benchmarks with higher weighted average repetition intervals, e.g., gromacs, mcf

and hmmer, representing the low temporal locality groups. From group 1 to group 5,

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

INT01 INT02 INT03 INT04 INT05 INT06 CLIENT01

CLIENT02 CLIENT03 CLIENT04 CLIENT05 CLIENT06 CLIENT07 CLIENT08

CLIENT09 CLIENT10 CLIENT11 CLIENT12 CLIENT13 CLIENT14 CLIENT15

CLIENT16 WS01 WS02 WS03 WS04 WS05 WS06

SERVER01 SERVER02 SERVER03 SERVER04 SERVER05 MM01 MM02

MM03 MM04 MM05 MM06 MM07

37

the temporal locality increases.

B
en

ch
.

W
A

P
L

W
A

R
I

T
A

G
E

 m
is

p
.

%

B
en

ch
.

W
A

P
L

W
A

R
I

T
A

G
E

 m
is

p
.

%

INT01 184.74 1.11M 9.03 SER01 344.96 0.47M 3.79

INT02 157.42 1.12M 12.1 SER02 553.92 0.82M 1.02

INT03 917.60 8.41K 0.01 SER03 573.63 0.71M 0.96

INT04 751.28 0.27M 0.09 SER4 610.25 0.47M 0.92

INT05 159.97 0.65M 4.1 SER05 592.10 0.54M 0.86

INT06 191.51 0.62M 4.21 MM01 343.61 0.19M 2.49

CL01 748.56 0.32M 0.49 MM02 342.98 0.37M 2.62

CL02 793.99 1.35M 5.05 MM03 263.19 0.36M 2.62

CL03 775.84 0.46M 0.43 MM04 344.02 0.26M 2.62

CL04 310.26 1.09M 2.66 MM05 73.81 1.33M 14.3

CL05 547.55 0.17M 1.73 MM06 846.06 47.4K 0.14

CL06 788.23 0.43M 0.14 MM07 46.63 1.54M 14.0

CL07 775.86 0.24M 1.29 bzip2 367.27 1.20M 4.65

CL08 739.19 0.24M 0.78 Mcf 424.19 3.33M 2.21

CL09 495.56 0.33M 1.62 Zeus. 836.88 38.5K 0.41

CL10 584.23 0.26M 1.19 gromacs 55.98 4.53M 13.6

CL11 591.68 0.39M 0.76 Cactus 880.86 4.52K 0.07

CL12 404.53 0.4M 1.98 Namd 810.31 0.12M 1.17

CL13 760.73 0.32M 0.41 gobmk 476.88 0.89M 10.1

CL14 740.62 0.14M 0.56 hmmer 177.29 2.57M 5.7

CL15 643.41 0.17M 1.0 Sjeng 295.90 1.46M 4.93

CL16 674.58 0.21M 0.71 Libq. 873.60 1.7K 0.0

WS01 488.12 0.33M 1.99 h264ref 767.18 0.12M 1.45

WS02 626.00 0.15M 1.46 omnetpp 391.44 1.89M 1.67

WS03 69.72 1.28M 14.0 Astar 568.82 0.87M 2.88

WS04 232.13 0.63M 22.3 sphinx3 634.82 0.69M 2.1

WS05 667.93 0.27M 0.45 xalan 799.70 0.64M 0.54

WS06 656.28 0.23M 0.6

Table 2. Weighted average pattern lengths and weighted average repetition intervals

38

Better temporal locality suggests better history table prediction opportunity because

when the pattern repetition interval is large, it is more likely that table history is

polluted with other patterns. Spatial and temporal classifications in Table 3 correlates

well with branch misprediction rates. Benchmarks with better spatial and temporal

localities tend to have lower misprediction rates.

4.3 Overlapping Branch Patterns

Unlike SEQUITUR, where the analysis must start after the whole grammar is

produced, with suffix trees, the analysis can start as the tree is constructed. As the

children of each level of the tree gives a set of unique patterns of same length and the

patterns of the next level of a node is only one bit longer, a branch outcome analysis

with a sliding window can be done during tree construction.

 For each unique branch pattern of any length greater than l, the approximate

confidence to predict the next branch outcome gets computed with the PatternConf in

Eq. 1. For example, for a frequent pattern of 10110, the frequency of patterns101100

and 101101 is checked. If one of them occurs for 90 times and the other for 10 times,

the confidence of 10110 is assumed to be 90%. To compute the overall confidence of

an entire pattern length (with many unique patterns forming one level of the tree), one

needs to sum all the max outcomes and divide the sum to number of total occurrences

of all unique patterns of same length, as shown by PatternLengthConf in Eq. 2.

 ����������� =
��� (� !"#(!#$),� !"#(!#&))

� !"#('((!#�)*+)
 Eq. 1

39

�������,��-�ℎ���� =
∑ ��� (0'##*1"_"3!#�)*)4

567

∑ 0'##*1"_"81*94
567

 Eq. 2

Although Eq. 1 and Eq. 2 compute approximate confidence and is not representative

of branch predictability because it assumes infinite resources and ignores the order in

which the branch outcomes arrive, it is still a good relative confidence metric to

compare different pattern lengths. Other pattern length information, such as

NumUniquePatterns of length l and the OverlappingCoverage – the ratio of number

of unique patterns of length l and the number of input data points, together with Eq. 1

quantifies the importance of each pattern length.

For each level of the tree, the algorithm also finds non-overlapping patterns and

their importance is computed as NonOverlappingCoverage – the product of number

of unique non-overlapping patterns and pattern length. Note that

OverlappingCoverageandNonOverlappingCoverageare very different metrics: one

corresponds to outcome prediction opportunity of a pattern length while the other is

the streaming opportunity of a pattern length.

Due to space limitations, I focus on few of the benchmark results with different

behaviors as shown in Figure 5. As also shown in Table 1, extended pattern lengths

are observed. CLIENT02 has a pattern of 2.9M length. In addition, two unique

patterns of length greater than 2M recur multiple times to give 80% non-overlapping

coverage as shown in Figure 5. Checking this behavior further, I observe (looking at

the points where these patterns occur, which is provided by the pattern tool) that each

of these twonon-overlapping patterns repeats itself back to back in two different

40

Figure 11. Coverage and confidence values for overlapping patterns in CLIENT02

Figure 12. Coverage and confidence values for non-overlapping patterns in CLIENT02

phases of the program. CLIENT02 is one of thebenchmarks that TAGEmisprediction

rate is relatively high, which is not surprising looking at the figure for overlapping

patterns. Even with long histories, the number of unique patterns is very high (more

than 1M). This means that TAGE is not able to provide predictions with the long

history tablesbecause there are many conflicts which prevent long historytables to

exceed the threshold due to frequent evictions. I modified the branch predictor

0

20

40

60

80

100

120

1

10

100

1000

10000

100000

1000000

10000000

N
u

m
b

e
r

o
f

P
a

tt
e

rn
s

CLIENT02 - Overlap

Unique

Coverage

Confidence

0.00

20.00

40.00

60.00

80.00

100.00

120.00

1

10

100

1000

10000

100000

1000000

N
u

m
b

e
r

o
f

P
a

tt
e

rn
s

CLIENT02 - No Overlap

Unique

Coverage

41

simulator and confirm this. Most predictions are provided by short history tables.

Long non-overlapping histories with high coverage suggest that branch streaming is

worth pursuing in cases such as CLIENT02.

Spatial

Group 1: MM07, gromacs, WS03, WS04, INT02, MM05, INT01
Group 2:hmmer, INT06, INT05, bzip2, SERVER01
Group 3: MM04, MM03, MM02, MM01, gobmk
Group 4:CLIENT12, sjeng, WS01, CLIENT09, CLIENT05, astar,
CLIENT04, mcf, omnetpp
Group 5: WS02, CLIENT10, SERVER02, SERVER03, SERVER05,
SERVER04, CLIENT15
Group 6: CLIENT16, sphinx3, WS05, CLIENT11, WS06
Group 7: INT04, xalancbmk, namd, CLIENT02, CLIENT03, CLIENT06,
libquantum, zeusmp, MM06, INT03, 464.h264ref, CLIENT08, CLIENT14,
CLIENT01, CLIENT13, CLIENT07

Temporal

Group 1: gromacs, mcf, hmmer
Group 2:omnetpp, MM07, sjeng, CLIENT02, MM05, WS03, bzip2,
INT02, INT01, CLIENT04, gobmk, astar, SERVER02, SERVER03,
sphinx3, INT05, xalancbmk, WS04, INT06
Group 3: SERVER05, SERVER04, SERVER01, CLIENT03, CLIENT06,
CLIENT12, CLIENT11, MM02, MM03, WS01, CLIENT09, CLIENT13,
CLIENT01
Group 4: INT04, WS05, MM04, CLIENT10, CLIENT07, CLIENT08,
WS06, CLIENT16, MM01, CLIENT15, CLIENT05, WS02, CLIENT14,
h264ref, namd
Group 5: MM06, zeusmp, INT03, cactusADM, libquantum

Table 3: Classification of benchmarks based on their spatial and temporal branch outcome regularities

Second important result that is observed from Figure 11 is that for TAGE-like

predictor, one can estimate the range of the history lengths for best performance. A

common practice today is to simulate the design space for a predictor (or a prefetcher)

to find the best configuration, which is very time-consuming (it may also be

misleading since predictors are designed by ad-hoc observations and it is quite

possible that they do not cover a significant amount of benchmark behavior.)

42

Figure 13. Coverage and confidence values for overlapping patterns in INT03

Figure 14. Coverage and confidence values for non-overlapping patterns in INT03

Looking at Figure 13 and Figure 14, results for INT03-Overlap, number of unique

patterns is very low, less than 500 for pattern length of 128. This suggests that there

will not be many conflicts in TAGE tables. Number of uniquepatterns is only about

2000 for the pattern length of 1024. The confidence goes to 100% at pattern length 16.

Coverage is 100% up to pattern length 512. Overall, with these numbers, I conclude

the following: the best historylengths for TAGE predictor is a geometric series

0

20

40

60

80

100

120

0

20000

40000

60000

80000

100000

120000

N
u

m
b

e
r

o
f

P
a

tt
e

rn
s

INT03 - Overlap

Unique

Coverage

Confidence

0

20

40

60

80

100

120

0

50

100

150

200

250

300

350

400

N
u

m
b

e
r

o
f

P
a

tt
e

rn
s

INT03 - No Overlap

Unique

Coverage

43

between history length 16 and 512, which is also confirmed by simulation. One can

also expect to see very low misprediction rate because a 100% confidence/coverage

betweenthe suggested history lengths is seen with relatively very small number of

unique patterns.

Figure 15. Coverage and confidence values for overlapping patterns in MM05

Figure 16. Coverage and confidence values for non-overlapping patterns in MM06

0

20

40

60

80

100

120

0

20000

40000

60000

80000

100000

120000

140000

160000

1 20 39 58 77 96 11
5

13
4

15
3

17
2

19
1

21
0

22
9

24
8

26
7

28
6

30
5

32
4

34
3

36
2

38
1

40
0

41
9

43
8

45
7

47
6

49
5

51
4

53
3

55
2

N
um

be
r o

f P
at

te
rn

s

MM05 - Overlap

Unique

Coverage

Confidence

0

20

40

60

80

100

120

0

10000

20000

30000

40000

50000

60000

70000

1

1
9

3
7

5
5

7
3

9
1

1
0
9

1
2
7

1
4
5

1
6
3

1
8
1

1
9
9

2
1
7

2
3
5

2
5
3

2
7
1

2
8
9

3
0
7

3
2
5

3
4
3

3
6
1

3
7
9

3
9
7

4
1
5

4
3
3

4
5
1

4
6
9

4
8
7

5
0
5

5
2
3

5
4
1

N
u

m
b

e
r

o
f

P
a

tt
e

rn
s

MM05 - No Overlap

Unique

Coverage

44

 It can be seen from Figure 15 and Figure 16 that MM05 results show a very

different behavior. Much shorter patterns are seen, large number of unique patterns

and coverage drops very quickly to small numbers as the patternlength increases. If we

increase the history length for TAGEbeyond 100, it will not have a good impact; this

favors shorter history lengths (decreasing the history length from 1024 to 256, TAGE

performed better). However, because of the large number of unique patterns, onecan

expect to see high misprediction rate; in fact, TAGE has a 15% misprediction rate.

Although, MM05’s unique patternsdoubles from pattern length 30 to 65, the coverage

drops from 80% to about 20%. Further investigation, using k=1 for finding patterns,

reveal that there is a scan behavior, where within a region the same behavior is not

seen again, so it is impossible to have large coverage with longer histories. The

mispredictions experienced due to lack ofrecurrence of a pattern cannot be eliminated.

Thus, MM05 presents itself as a not history-prediction friendly benchmark.

Figure 17. Coverage and confidence values for non-overlapping patterns in SERVER01

0

20

40

60

80

100

120

1

10

100

1000

10000

100000

N
u

m
b

e
r

o
f

P
a

tt
e

rn
s

SERVER01 - Overlap

Unique

Coverage

Confidence

45

Figure 18. Coverage and confidence values for non-overlapping patterns in SERVER01

4.4 Address patterns

 Aside from branch outcomes, memory addresses requested by programs also

show various pattern behaviors and it's very important to analyze and understand

them. Following section will address the analysis of non-overlapping address patterns.

4.4.1 Longest Non-overlapping Patterns

 Table 4 reports the longest non-overlapping patterns for each benchmark in

SPEC2006 that is seen at least twice in the input sequence and their individual

coverage. Long patterns are indicative of better spatial regularity and provide better

spatial streaming opportunity. PatternFinder gives priority to long patterns, that is,

long patterns are found first and placed before shorter patterns are searched in the

remaining parts of the input sequence. Overall, some benchmarks have very small

patterns. Which would be expected for address patterns. But some of them have really

0

20

40

60

80

100

120

1

10

100

1000

10000

100000

N
u

m
b

e
r

o
f

P
a

tt
e

rn
s

SERVER01 - No Overlap

Unique

Coverage

46

long patterns with length hundreds of thousands. It's also very interesting that the

longest pattern in 462.libquantum has around 1.3 million length, which corresponds to

22.71% of the whole input stream with only 2 occurrences. This is a really interesting

behavior. It shows that not only does the program execute the same piece of long code

twice, but the data structure which is accessed in this piece of code is kept fully intact

after the first execution.

B
en

ch
m

ar
k

Input
Length

Max.
Length

Occurrenc
e Coverage %

401.bzip2 20714659 85780 2 0.83%

429.mcf 33956785 238564 2 1.41%

434.zeusmp 19498172 5091 26 0.68%

435.gromacs 9803632 848 2 0.02%

436.cactusADM 40146082 243 33730 20.42%

444.namd 23031245 997 2 0.01%

445.gobmk 20220532 50045 2 0.49%

456.hmmer 28626061 84566 2 0.59%

458.sjeng 24178018 9465 2 0.08%

462.libquantum 12124879 1376881 2 22.71%

464.h264ref 27126245 280170 2 2.07%

471.omnetpp 24347407 780 3 0.01%

473.astar 25882958 524287 2 4.05%

482.sphinx3 20494556 445101 2 4.34%

483.xalancbmk 22168782 9769 2 0.09%

Table 4. Maximum non-overlapping pattern length and its coverage

4.4.2 Spatial and Temporal Address Streams

In this subsection, I discuss spatial and temporal regularities in the address streams.

47

Figures 19illustrates the cumulative distribution of hot pattern sizes, which summarize

the spatial regularity of SPEC CPU 2006 benchmarks for their address request

streams. In these figures, the maximum pattern length is limited to 100. Overall

coverage threshold is set to 90%. That is, at least 90% of the data points in the input

must participate in patterns. The figure shows the weighted average pattern length

across all of the sequence’s patterns, where a pattern’s weight is its individual

coverage. Long patterns indicate good spatial regularity. Since PatternFinder finds

long patterns first, only when long patterns cannot cover 90% of the input sequence,

short patterns are given opportunity. Therefore, in Figure 19, curves closer to the top

left corner represent benchmarks with the worst spatial locality. For example,

401.bzip2 (top line) has the worst spatial locality in Spec CPU 2006 benchmarks as

99% of its patterns are less than 20 references long. Similarly, top left cluster of lines

in Figure 19, 429.mcf, 482.sphinx3, 462.libquantum, 473.astar and483.xalancbmk

have the worst spatial behavior as more than 85% of their patterns are less than 20

references long. On the other hand, 435.gromacs, 444.namd and 434.zeusmp have best

spatial locality with better distribution of pattern lengths: 30% or more of their

patterns are longer than 20 references long.

48

Figure 19. Cumulative distribution of hot pattern sizes for SPEC2006

Table 5 shows weighted average pattern lengths, where the coverage of a pattern is

used as its weight, so hotter patterns have a greater influence on the reported average

value. As expected, the benchmarks with worst spatial locality, such as 401.bzip2,

473.astar, have the smallest average pattern length. Table 2 also presents the weighted

average pattern repetition (temporal regularity) intervals expressed in terms of number

of references. Better temporal locality suggests better history table prediction

opportunity because when the pattern repetition interval is large, it is more likely that

table history is polluted with other patterns. Spatial and temporal classifications in

Table 3 correlates well with branch misprediction rates. Benchmarks with better

spatial and temporal localities tend to have lower misprediction rates.

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

401.bzip2 429.mcf 434.zeusmp 435.gromacs

436.cactusADM 444.namd 445.gobmk 456.hmmer

458.sjeng 462.libquantum 464.h264ref 471.omnetpp

473.astar 482.sphinx3 483.xalancbmk

49

B
en

ch
m

ar
k

Weighted Average
Length

Weighted Average
Repetition Interval

401.bzip2 13.472462 105932.0105

429.mcf 34.097126 718311.8393

434.zeusmp 54.500971 51961.20459

435.gromacs 57.323758 444341.0402

436.cactusADM 41.612383 43622.56799

444.namd 45.170923 203356.3083

445.gobmk 42.720648 671608.5027

456.hmmer 42.023024 6191908.166

458.sjeng 40.775792 861955.9451

462.libquantum 30.257393 4784850.124

464.h264ref 31.233398 1450808.097

471.omnetpp 24.452185 2558691.564

473.astar 21.082339 1683093.062

482.sphinx3 63.514376 2053108.821

483.xalancbmk 53.581694 342271.6953

Table 5. Weighted average pattern lengths and weighted average repetition intervals

4.4.3 Coarse-grain Triggers for Hot Streams

 As extended hot streams exist, it is important to find efficient ways to exploit

it. Memory streaming [36] was proposed to exploit long recurring memory access

patterns by recording the memory addresses into main memory and replaying when

needed. Most efficient implementations separate storage of address sequences (history

buffer) and correlation data (index table), each of which is stored in main memory due

to their large sizes. For significant performance gains, correlation table must be made

larger than 64MB. Although size is manageable in main memory, practicality

challenge arises from long latency lookups for prefetch meta-data and its bandwidth-

hungry maintaining cost. To prefetch data, two round-trip memory accesses occur

50

initiated by a last-level cache miss. The first access searches the index table to retrieve

the pointer to the history table entry where the stream is stored. The second access is

to the history buffer to start reading the stream. Streamed addresses are buffered on

chip waiting to be prefetched.

 The fundamental problem here is that the trigger for starting a stream is a miss

address. This fine-grain trigger causes many extra bookkeeping for the index table and

consumes significant bandwidth resources, especially critical for today’s multi-core

processors. I propose course-grain triggers for memory streaming. Based on the initial

analysis with few Spec CPU 2006 benchmarks and pointer-intensive Olden

benchmarks, coarse-grain triggers can be found. With course-grain triggers, such as, a

function call or call-chains, a long hot stream traversal can be initiated without

incurring extra index table lookup in memory. It is possible to develop pattern tools

that discover triggers for hot data streams, and thereby guide design of efficient

prefetchers for memory streaming.

 Another problem the current memory streaming method has is that it does not

separate the easy-to-detect patterns, such as constant deltas from the streams which

consumes a lot of extra bandwidth. These constant patterns are easily caught by state-

of-the-art stride prefetchers that are employed in current high-performance processors.

Memory streaming must be coordinated to work together with currently-employed

stride prefetchers for greater performance. Ebrahimi et al. [40] presents an efficient

technique for coordinating multiple prefetchers.

Although above discussion is based on prefetching, course-grain triggers are equally

applicable to any streaming method. Below, I give an example of course-grain trigger

51

from mcf benchmark followed by a discussion on how course grain triggers can be

found with pattern discovery methods.

An example of a hot address stream and a course-grain trigger

I analyzed mcf benchmark since it is one of the hardest to improve performance with

conventional prefetching. I simulated a 100M simulation point selected by SimPoint

tool with Gem5 simulator. The following code shown in Figure 20 corresponds to the

hottest section of the mcf benchmark where most last-level cache misses occur. In the

simulation, two of those load instructions marked as LD1 and LD2 are both executed

2.4M times. Since they are consecutive load instructions that access the same object,

there is always a constant stride between the address loaded by LD2 and the address

loaded by LD1. Even though these instructions are seen 2.4M times, both of them only

load from 34173 different addresses. For each load instruction, 32108 of these

addresses are seen exactly 72 times, which covers about 97% of their whole execution,

which suggests that data structure does not change significantly (few

additions/deletions).

Running Algorithm 1 on the address traces that I generated, the longest pattern found

is about 13K long occurring 15 times. There are, however, shorter patterns, still more

than a thousand of addresses long that occur 72 times. Since, I have not yet

implemented a tool that can find approximate patterns; it is not known if longer

patterns occur. However, with small directed scripts, some longer approximate

patterns are observed. One important observation about the patterns that the exact

pattern tool (Algorithm 1) found is that almost all the long patterns are non-

52

overlapping and recur at a significant distance. More detailed analysis reveal that

every time PC=120009e5c (psimplex.c:127 -- refresh_potential(net)) executed, pattern

repeats (72 times). Here PC address 120009e5c is the course-grain trigger. The

analysis shows us that we need approximate pattern finding tools to automatically

analyze this benchmark. It also shows us that course-grain triggers can be found.

mcfutil.c:84
120007e50: ldq t7,56(t2) → LD2
 120007e54: xor t7,0x1,t7
 120007e58: bne t7,120007e80

<refresh_potential+0xf0>
mcfutil.c:85
 120007e5c: ldq a0,64(t2)
.
.
.
mcfutil.c:92
 120007e9c: mov t2,t6
mcfutil.c:93
120007ea0: ldq t2,24(t2)→ LD1
mcfutil.c:82
 120007ea4: bne t2,120007e50

<refresh_potential+0xc0>
mcfutil.c:98
 120007ea8: ldq a0,16(t6)

 80 while(node != root)
 81 {
 82 while(node)
 83 {
 84 if(node->orientation == UP) → LD2
 85 node->potential = node->basic_arc-

>cost + node->pred->potential;
 86 else /* == DOWN */
 87 {
 88 node->potential = node->pred-

>potential - node->basic_arc->cost;
 89 checksum++;
 90 }
 91
 92 tmp = node;
 93 node = node->child; → LD1
 94 }

Figure 20. Code snippet for hot load PCs in mcf: (a) assembly, (b) C code.

 In order to capture common pattern behavior in multiple streams, I have

extended the tool to let user search for patterns which occur commonly in different

streams. The user can specify the minimum number of occurrences for the pattern in

each stream. The user can also specify the percentage of the input streams that must

have the pattern within their boundaries.

 In order to show an example behavior, I've chosen the refresh_potential

function call as a trigger and split the input trace accordingly. This resulted in having

53

18 different streams which is because this function is called 18 times during the

execution of the trace. The first thing to look at would be the longest pattern length

that can be found which is common to these streams. But since a pattern does not have

to be seen in all of the streams, I've run the simulation with 10 different parameters,

changing the percentage of streams to have the common pattern.

Figure 21. Longest common patterns changing over stream number threshold.

It can be seen from Figure 21 that for 10% of the streams and for 20% of the streams,

the longest pattern length is quite large, which is over 200K. In the 20% case, a pattern

0

50000

100000

150000

200000

250000

300000

10 20 30 40 50 60 70 80 90 100

Maximum Length

54

of 230K length is seen in 4 different streams, which is quite an interesting behavior,

which covers the whole outer loop of tree traversal within that function. This shows

that at 4 calls of this functions, the exact address sequence of length 230K is followed.

 Another potential analysis was looking at the commonality between all the

streams, which would mean looking at patterns which are seen at least once in every

single stream. For this analysis, the max length is chosen as 100. At the end of the

simulation, 42% of the whole stream was covered, which means there's at least 42%

similarity between all the streams generated using that function call.

4.5 Dynamic source code detection by mispredictions

 Figure 22 shows the breakdown of the branch misprediction categories for

SPECint, SPECfp benchmarks, respectively. An interesting observation is that, for

most of the benchmarks, the “other” is the largest category. This is more pronounced

for the following benchmarks: for bzip2, vpr, mcf, parser, perl, and twolf, about 50%

of the mispredictions fall into the “other” category; And for art, swim, mgrid, lucas,

sixtrack, dijkstra, susan, sha, and bitcount, more than 75% of the mispredictions fall

into the “other” category.

55

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

g
zi
p

v
p
r

g
c
c

m
c
f

c
ra
ft
y

p
a
rs
e
r

e
o
n

p
e
rl
b
m
k

g
a
p

v
o
rt
e
x

b
zi
p
2

tw
o
lf

A
V
E

w
u
p
w
is
e

sw
im

m
g
ri
d

a
p
p
lu

m
e
sa

g
a
lg
e
l

a
rt

e
q
u
a
k
e

fa
c
e
re

c

a
m
m
p

lu
c
a
s

fm
a
3
d

si
x
tr
a
c
k

a
p
si

A
V
E

SPECfp

Other

NeedBoth

NeedLocal

Training

Conflict

Figure 22. Breakdown of misprediction types for 4kB gshare predictor for SPECint,
SPECfpbenchmarks.My experiments also show that larger global history decreases mispredictions in

conflict, need other and other categories while increasing mispredictions in training category, which is
expected.

 Table 6 summarizes the results by showing average percentages of each class

of mispredictions per benchmark suite. These results show the importance of wrong

type history along with well known problems of conflicts and training times.

However, one can also see that a large percentage of mispredictions (about 40% on

average) can not be categorized as being from one of the abovementioned

misprediction types using this taxonomy. It must also be noted that, with this

taxonomy, a branch’s mispredictions may fall into different categories for different

dynamic instances of the branch. Therefore, this taxonomy can not provide detailed

information about a specific branch. This suggests a further investigation for important

branch instructions. In this study, after identifying hot branches through run-time

profiling, I perform source-code analysis in order to provide more insights into why

specific branches mispredict often. This also identifies branches, which cause

mispredictions that go under the “other” category.

56

 In this study, I analyze each branch individually, unlike Skadron does. Each

branch can fall into many different categories during the execution of the program,

therefore a counter is kept for each misprediction class for every single class and

collect the results that way. Table 7 summarizes how the information is collected for

each branch.

Conflict Training
Need
Local

Need
Both Array

Linked
List

Constant
Loop
Exit

Varying
Loop
Count

Changing
Function
Input Undecided

SPECint 4.95% 25.30% 24.90% 5.05% 27.63% 8.50% 0.02% 2.88% 0.45% 0.16%

SPECfp 1.23% 8.49% 45.07% 1.38% 39.15% 1.08% 0.00% 2.74% 0.58% 0.24%

Table 6. Average percentage of mispredictions for each class

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

g
zi
p

v
p
r

g
c
c

m
c
f

c
ra
ft
y

p
a
rs
e
r

e
o
n

p
e
rl
b
m
k

g
a
p

v
o
rt
e
x

b
zi
p
2

tw
o
lf

A
V
E

w
u
p
w
is
e

sw
im

m
g
ri
d

a
p
p
lu

m
e
sa

g
a
lg
e
l

a
rt

e
q
u
a
k
e

fa
c
e
re

c

a
m
m
p

lu
c
a
s

fm
a
3
d

si
x
tr
a
c
k

a
p
si

A
V
E

SPECfp

Undecided

ChangingFunctionInput

VaryingLoopCount

ConstantLoopExit

LinkedList

Array

Figure 23. Breakdown of the other category

57

PC Called Misses Conflict Training NeedLocal NeedBoth Other Reason

200693CC 15428 15427 15427 0 0 0 0 Array

200A3E74 32487 7936 2 1217 4231 310 2175 Array

200AA68C 44218 5571 0 542 3822 64 1141 Linked List

200A3D80 40522 4690 78 502 2661 39 1407 Array

200AA65C 53545 4518 133 0 0 0 4385 Linked List

20061E60 12746 4417 0 0 3739 45 632 Array

20048348 17860 4194 139 0 2486 60 1508 Array

200A3D94 35877 3952 0 1774 1275 0 901 C. F. I.

2005FCE8 403820 3474 3457 16 0 0 0 Array

2008E394 12269 3316 0 2455 160 0 700 Array

Table 7. Sample output showing top 10 most mispredicted branches

4.5.1 Source Code Examples

Changing function inputs:

 This example is from the gap benchmark. The branch is a for loop which starts

from start+1 and executes until lenList. Both of these variables; start and lenList

actually play a role in deciding how many times this loop will iterate. The start

variable is directly a function input and the lenList variable is actually the lenght of the

hdList variable which is a function input as well.

The branch is executed 47968 times. It's taken 35627 times and not taken 12341 times.

The branch is correctly predicted for 38134 times and mispredicted for 9834 times. The

function has 44 different function input pairs.

plist.c:533
 12007a4e8: 01 00 6b 21 lda s2,1(s2)
 12007a4ec: 08 00 ad 21 lda s4,8(s4)
 12007a4f0: a2 0d 6c 41 cmple s2,s3,t1

 12007a4f4: d2 ff 5f f4 bne t1,12007a440→ BR1
plist.c:546
 12007a4f8: 00 00 5e a7 ldq ra,0(sp)
 12007a4fc: 08 00 3e a5 ldq s0,8(sp)
plist.c:545
 12007a500: ac 09 8b 41 cmplt s3,s2,s3

(a)

58

 520 long PosPlist (hdList, hdVal, start)
 521 TypHandlehdList;
 522 TypHandlehdVal;
 523 long start;
 524 {
 525 long lenList; /* length of <list> */
 526 TypHandlehdElm; /* one element of <list> */
 527 long i; /* loop variable */
 528
 529 /* get the length of <list> */
 530 lenList = LEN_PLIST(hdList);
 531
 532 /* loop over all entries in <list> */
 533 for (i = start+1; i<= lenList; i++) { → BR1
 534
 535 /* select one element from <list> */
 536 hdElm = ELM_PLIST(hdList, i);

(b)

Figure 24.Code snippet for a hot PC in gap, (a) assembly, (b) C code

Constant Loop Exits:

 A loop with a loop count of n, is often taken for n times followed by a not-

taken at the loop exit. For cases when the loop counts are larger than what branch

predictor can remember, prediction fails at the loop exits. Often, it is difficult for a

global, local, or combined history predictor to keep sufficient history for this type of

branches. Therefore, to target loop-exit mispredictions, loop predictor [26] was

proposed. Constant loop exit mispredictions can also be put into insufficient history

length or wrong-history type mispredictions categories.

 This example is from the benchmark gap. The for loop which iterates from 0 to

SIZE(hdSSeq)/SIZE_HD is marked as a constant loop exit. The branch is executed

22803 times. It's correctly predicted for 22295 times and it's mispredicted for 508

times. It's taken 15202 times and not taken 7601 times. In this example we see a nice

case for a constant loop exit branch. The branch is always taken twice followed by a

single not taken, which indicates the loop count is always 2. Even by looking at the C

59

code, it's obvious that the loop count will always be the same, since the it will run for

SIZE(hdSSeq)/SIZE_HD. SIZE_HD variable is a constant and it's never changed.

AloshdSSeq variable always has the same data type, which means SIZE(hdSSeq) will

never change. Therefore the loop will always have the same iteration count.

12009889c: 48 00 5e a4 ldq t1,72(sp)
statemen.c:233
 1200988a0: 08 04 e0 47 mov v0,t7
statemen.c:231
 1200988a4: 01 00 4a 21 lda s1,1(s1)
 1200988a8: 08 00 ce 21 lda s5,8(s5)
statemen.c:234
 1200988ac: 01 08 01 44 xor v0,t0,t0
 1200988b0: 47 00 20 e4 beq t0,1200989d0
<EvFor+0x490>
statemen.c:231
 1200988b4: 00 00 42 a4 ldq t1,0(t1)
 1200988b8: 82 76 40 48 srl t1,0x3,t1
 1200988bc: a2 03 42 41 cmpult s1,t1,t1

 1200988c0: dbff 5f f4 bne t1,120098830→ BR1

 1200988c4: 00 00 fe 2f unop
 1200988c8: 00 00 fe 2f unop
 1200988cc: 00 00 fe 2f unop
 1200988d0: 20 00 e0 c3 br 120098954 <EvFor+0x414>
 1200988d4: 00 00 fe 2f unop
 1200988d8: 00 00 fe 2f unop
 1200988dc: 00 00 fe 2f unop
statemen.c:241
 1200988e0: ffdf 9d 24 ldah t3,-8193(gp)
 1200988e4: 00 00 fe 2f unop

(a)

230 if (TYPE(hdSSeq) == T_STATSEQ) {
 231 for (k = 0; k < SIZE(hdSSeq)/SIZE_HD; ++k) {
→ BR1
 232 StrStat = ""; HdStat = PTR(hdSSeq)[k];
 233 hdRes = EVAL(HdStat);
 234 if (hdRes == HdReturn) {
 235 ExitKernel(hdRes);
 236 return hdRes;
 237 }
 238 }
 239 }

(b)

Figure 25.Code snippet for top hot PC in gap, (a) assembly, (b) C code

60

Linked List Traversal:

 A pointer-chasing load, such as node=node→next, that determines the end of a

linked list makes it hard to predict the branch that depend on it. If the linked list has n

nodes, the loop iterates n times and the branch outcomes would be n-1 times “taken”

followed by a “not taken”. Branch predictors that exploit correlation in branch

outcome histories often fail to predict these branches accurately. The analysis shows

that mcf, parser, and dijkstra have significant amount of hard-to-predict branches of

this type. However, at a closer look, these hard-to-predict branches may be predicted

correctly because, although they do not have regular correlation in branch histories,

they exhibit a type of locality that can be exploited with different mechanisms. Most

components of data structures in SPEC CPU 2000 and Mibench benchmarks tend to

remain stable. For example, after a linked list is initialized, the address of the end node

remains the same until a new node is added to the end. In fact, even the order of the

node addresses that is traversed remain the same until there is insertion or deletion.

Therefore, if there are n nodes and if last m nodes of the linked list remain stable, once

node n-m is accessed, one can predict that branch outcome that depends on this linked

list traversal should be not taken when node n is reached. If a branch depends on such

stable data, address of the data is sufficient to determine the branch outcome.

Figure 26 shows examples of linked-list-traversal-caused branch mispredictions for

parser. Similar examples are also found in gcc, art, ammp, jpeg, bzip2, basicmath,

dijkstra.

61

Figure 26 shows the source code (assembly and C code) from parser that includes a

tree structure. In this pointer-chasing code, the loaded values that determine the branch

outcome are irregular, which makes this branch hard to predict. Conventional branch

predictors fail to provide very accurate predictions for this type of branches. However,

because BR1 in Figure 5 is mostly taken (92% of the time), a 4KB gshare predictor is

still doing well. The misprediction rate is 8.67%. A 32KB gshare further reduces the

misprediction rate to 7.4%. A 32KB PWL can achieve 6% misprediction rate.

post-process.c:746
 419d70: 28 00 00 00 lw $16,0($18)
 419d78: 05 00 00 00 beq $16,$0,419e80
post-process.c:747
 419d80: 28 00 00 00 lw $3,4($16)
 419d88: 55 00 00 00 sll $2,$3,0x2
 419d90: 42 00 00 00 addu $2,$2,$3
419d98: 55 00 00 00 sll $2,$2,0x2

 419dc0: 02 00 00 00 jal 416ca0
 419dc8: 06 00 00 00 bne $2,$0,419de0
post-process.c:746
 419dd0: 28 00 00 00 lw $16, 8($16) → LD1

419dd8: 06 00 00 00 bne $16,$0,419d80 → BR1

(a)

//post-process.c

743 D_tree_leaf * dtl;
744 int d, count;
745 for (d=0; d<N_domains; d++) {

746 for (dtl = domain_array[d].child;

dtl != NULL; → BR1

dtl = dtl->next) { → LD1

747 if (ppmatch(selector, pp_link_array[dtl>link].name))
 break;

748 }

(b)

Figre 26.Code snippet for top second hot PC in parser (a) assembly, (b) C code.

In Figure 5, branch BR1 checks if the value in register $16 is not equal to NULL. $16

holds the address of dtl. BR1 is dependent on the pointer-chasing load, LD1

(dtl=dtl→next). LD1 often misses in cache, which means BR1 resolves late. BR1 is

62

accessed 476293 times. There are 1172 different values for register $16 (dtl

addresses). Each address is accessed about 400 times on average. The values in these

addresses do not change frequently. There are only a few changes throughout the

simulation. Thus, address values ($16) instead of data loaded from these addresses are

sufficient to know the branch outcome. There is also a pattern in which addresses

follow each other, i.e., few node insertions or deletions for a long time. Since the data

structures are very stable, register values that hold node address values in previous

iterations of the loop can be used to predict the outcome of the branch instance that is

dependent on the end node in the linked list.

Array Access and Pointer Reference:

 In this example the branch has a load-branch correlation with the previous

line of c code. The variable l is being checked if it's null. And l actually is a TypDigit

pointer which is loaded from PTR(hdl)[i]. The branch is executed for 386035 times.

 It's taken 108181 times and not taken 277854 times. The branch is correctly

predicted 311925 times and mispredicted 74110 times.

 The load instruction which produces the variable l, loads from 385795

different memory locations and there are only 9891 different values loaded from these

addresses. And the values in those addresses are always consistent, they never change.

This branch could be correctly predicted by using these addresses.

63

integer.c:796
 120053fb0: 08 00 89 a5 ldq s3,8(s0)
 120053fb4: 00 00 fe 2f unop
 120053fb8: 00 00 fe 2f unop
 120053fbc: 00 00 fe 2f unop

 120053fc0: 00 00 0c 31 ldwu t7,0(s3) → ld1

integer.c:799
 120053fc4: 12 04 e5 47 mov t4,a2
integer.c:800
 120053fc8: 13 04 ff 47 clr a3
integer.c:797

 120053fcc: be 00 00 e5 beq t7,1200542c8 → BR1

(a)

 792 /* run through the digits of the left operand */
 793 for (i = 0; i< SIZE(hdL)/sizeof(TypDigit); ++i) {
 794
 795 /* set up pointer for one loop iteration */
 796 l = ((TypDigit*)PTR(hdL))[i]; → ld1
 797 if (l == 0) continue; → BR1
 798 r = (TypDigit*)PTR(hdR);
 799 p = (TypDigit*)PTR(hdP) + i;
 800 c = 0;
 801
 802 /* multiply the right with this digit and add into the product */
 803 for (k = SIZE(hdR)/(4*sizeof(TypDigit)); k != 0; --k) {
 804 c = l * *r++ + *p + (c>>16); *p++ = c;
 805 c = l * *r++ + *p + (c>>16); *p++ = c;
 806 c = l * *r++ + *p + (c>>16); *p++ = c;
 807 c = l * *r++ + *p + (c>>16); *p++ = c;
 808 }
 809 *p = (c>>16);
 810 }

(b)

Figure 27.Code snippet for one of the hot PCs in gcc, (a) assembly, (b) C code

Based on the source-code analysis, one can summarize the findings as follows:

1. Since few branches correspond to a disproportional amount of mispredictions, it

may be worth performing detailed source-code analysis on these hot branches.

2. In many cases, misprediction patterns exist. Most misprediction classes that we

observed exhibit some sort of repeating patterns.

64

3. Some mispredictions are harder to correct than others. Mispredictions due to linked

list traversals, randomly varying loop counts, changing inputs to functions are

harder (will require more (and different type) history) than other types of

mispredictions (conflicts, wrong-type history, constant loops, insufficient history

length).

4. Address-value correlation provides some opportunity to correct mispredictions

otherwise not possible, especially for linked list traversals and array

accesses/pointer references. Data often do not frequently change in addresses.

Many examples in benchmark programs.

5. Constant loop exit, insufficient history length, and wrong-type history

mispredictions can usually be eliminated with relatively small size of misprediction

histories because they often have regular misprediction patterns.

6. Given a constant hardware budget for branch prediction, it may be better to have a

combination of branch predictor and a predictor that tracks and reduces

mispredictions than having one complicated branch predictor.

65

CHAPTER 5

CONCLUSION

 In this study, I presented the PatternFinder, a tool that we develop to analyze

exact patterns. Using PatternFinder, we presented an example analysis of exact branch

outcome patterns. The analysis have shown that extended data and branch patterns do

exist in modern benchmark. It has also shown that hot patterns are useful in

quantifying branch outcome locality. Spatial and temporal non-overlapping pattern

locality provides useful insights into the branch streaming opportunities. Overlapping

pattern behavior investigates branch predictability. The analysis has shown that the

PatternFindertool can efficiently be used for summarizing a benchmark’s dynamic

branch behavior and thereby gives valuable insights into the design of future

prediction mechanisms. The tool can also be used for pattern-centric classification of

benchmarks and programs.

 Due to the importance of finding common patterns between multiple streams,

I've also extended the tool in order to capture common pattern behavior between

different streams. Capturing this behavior could be useful in identifying coarse grain

triggers and even validating the importance of coarse grain triggers.

 I have also presented a methodology for dynamic source code analysis which

gives the user insight about the data structures accessed by specific instructions

without having any access to a source code or existing debug symbols in the

executable. This type of analysis can give the user insight about the nature of the code

66

being executed such as array accesses, linked list traversals, tree traversals, pointer

accesses, etc.

67

REFERENCES

[1] T. Chilimbi, “Efficient Representations and Abstractions for Quantifying and

Exploiting Data Reference Locality,” PLDI 2001.

[2] Nevill-Manning, C.G. and Witten, I.H., “Identifying Hierarchical Structure in

Sequences: A linear-time algorithm,” Journal of Artificial Intelligence Research,

7, 67-82, 1997.

[3] Wenisch et al “Temporal Streaming of Shared Memory” ISCA 2005.

[4] Somogyi et al. “Spatio-Temporal Memory Streaming,” ISCA 2009.

[5] Wenisch et al. “Practical Off-chip Meta-data for Temporal Memory Streaming,”

HPCA 2009.

[6] D. Gusfield, “Algorithms on Strings, Trees, and Sequences: Computer Science

and Computational Biology,” Cambridge: Cambridge University Press, 1997.

[7] Bieganski et al “Generalized suffix trees for biological sequence data:

Applications and implementation,” 27th Ann Hawaii Int. Conf. on System

Sciences. Vol. 5: Biotechnology Computing, 35-44, 1994.

[8] Gusfield et al “An efficient algorithm for all the pairs suffix-prefix problem,” Inf.

Process. Lett. 41(4):181-185, 1992.

[9] T.-Y. Yeh and Y. N. Patt. “Alternative implementations of two-level adaptive

branch prediction,” ISCA 1992.

[10] Pan et al “Improving the accuracy of dynamic branch prediction using branch

correlation,” ASPLOS 1992.

[11] S. McFarling. Combining branch predictors. Tech. Note TN-36, DEC WRL, June

1993.

68

[12] Evers et al, “Using hybrid branch predictors to improve branch prediction

accuracy in the presence of context switches,” ISCA 1996

[13] Chang et al, “Alternative implementations of hybrid branch predictors,” MICRO

1995.

[14] André Seznec, “Analysis of the O-GEometric History Length Branch Predictor,”

ISCA 2005

[15] A. Seznec, “The L-TAGE predictor,” JILP, May 2007

[16] D. Jiménez and C. Lin, “Dynamic Branch Prediction with Perceptrons,” HPCA

2001.

[17] D. Jiménez, “Piecewise Linear Branch Prediction,” ISCA 2005.

[18] Gabriel H. Loh, “Deconstructing the Frankenpredictor for Implementable Branch

Predictors,” JILP 2005.

[19] D. Jiménez, “Fast Path-Based Neural Branch Prediction,” MICRO 2004.

[20] A. Seznec, “Redundant History Skewed Perceptron Predictors: pushing limits on

global history branch predictors,” IRISA Report No 1554, sept. 2003.

[21] Sendag et al, “Branch Misprediction Prediction: Complementary Branch

Predictors,” IEEE Computer Architecture Letters, Dec. 2007.

[22] W. A. Wulf and S. A. Mckee, “Hitting the Memory Wall: Implications of the

Obvious,” SIG. Comp. Arch. News, 23:20-24, 1995.

[23] J.-L. Baer and T.-F. Chen, “An Effective On-Chip Preloading Scheme To Reduce

Data Access Penalty,” SC 1991.

[24] N. P. Jouppi, Improving Direct-Mapped Cache Perf. by the Addition of a Small

Fully-Assoc. Cache and Prefetch Buffers, ISCA 1990.

69

[25] Roth et al. Dependence Based Prefetching for Linked Data Structures. ASPLOS

1998.

[26] C.-L. Yang and A. R. Lebeck. Push vs. Pull: Data Movement for Linked Data

Structures. ICS 2000.

[27] D. Joseph and D. Grunwald. Prefetching using Markov Predictors. ISCA 1997.

[28] Wenisch et al. Temporal Streaming of Shared Memory. ISCA 2005.

[29] J. Larus, “Whole Program Paths,” PLDI 1999.

[30] A. R. Pleszkun, “Techniques for compressing program address traces,” MICRO

27, 1994.

[31] Brazma et al “Approaches to automatic discovery of patterns in biosequences,” J.

of Computational Biology 5(2):277-304, 1998.

[32] Rigoutsos, I., and Floratos, A., “Combinatorial pattern discovery in biological

sequences: TEIRESIAS algorithm,” Bioinformatics 1998.

[33] Weiner, P., “Linear pattern matching algorithms,” In IEEE 14th Annual

Symposium on Switching and Automata Theory, 1-11, 1973.

[34] C. Charras and T. Lecroq. Handbook of Exact String Matching Algorithms.

King's College London Publications, 2004.

[35] Rasheed et al. Efficient periodicity mining in time series databases using suffix

trees. IEEE TKDE, 23:79-94, 2011.

[36] H. Chim and X. Deng. A new suffix tree similarity measure for document

clustering. In Proc. of ACM WWW, pages 121-130, 2007.

[37] Ferragina et al. Boosting textual compression in optimal linear time. Journal of

ACM, 52:688-713, 2005.

70

[38] Giegerich et al, Efficient implementation of lazy suffix trees, 3rd Workshop on

Algorithmic Eng (WAE99), 1999.

[39] Ukkonen, E., “On-line construction of suffix trees,” Algorithmica 14:249-260,

1995.

[40] Giegerich, R. and Kurtz, S. "A comparison of imperative and purely functional

suffix tree constructions," Science of Computer Programming 25(2-3):187-218,

1995.

71

BIBLIOGRAPHY

J.-L. Baer and T.-F.Chen, “An Effective On-Chip Preloading Scheme To Reduce Data

Access Penalty,” SC 1991.

Bieganski et al “Generalized suffix trees for biological sequence data: Applications

and implementation,” 27th Ann Hawaii Int. Conf. on System Sciences. Vol. 5:

Biotechnology Computing, 35-44, 1994.

Brazma et al “Approaches to automatic discovery of patterns in biosequences,” J. of

Computational Biology 5(2):277-304, 1998.

Chang et al, “Alternative implementations of hybrid branch predictors,” MICRO 1995.

C. Charras and T. Lecroq. Handbook of Exact String Matching Algorithms.King's

College London Publications, 2004.

T. Chilimbi, “Efficient Representations and Abstractions for Quantifying and

Exploiting Data Reference Locality,” PLDI 2001.

H. Chim and X. Deng. A new suffix tree similarity measure for document clustering.

In Proc. of ACM WWW, pages 121-130, 2007.

Evers et al, “Using hybrid branch predictors to improve branch prediction accuracy in

the presence of context switches,” ISCA 1996

Ferragina et al. Boosting textual compression in optimal linear time. Journal of ACM,

52:688-713, 2005.

Gabriel H. Loh, “Deconstructing the Frankenpredictor for Implementable Branch

Predictors,” JILP 2005.

Giegerich et al, Efficient implementation of lazy suffix trees, 3rd Workshop on

72

Algorithmic Eng (WAE99), 1999.

Giegerich, R. and Kurtz, S. "A comparison of imperative and purely functional suffix

tree constructions," Science of Computer Programming 25(2-3):187-218, 1995.

D. Gusfield, “Algorithms on Strings, Trees, and Sequences: Computer Science and

Computational Biology,” Cambridge: Cambridge University Press, 1997.

Gusfield et al “An efficient algorithm for all the pairs suffix-prefix problem,” Inf.

Process. Lett. 41(4):181-185, 1992.

D. Jiménez and C. Lin, “Dynamic Branch Prediction with Perceptrons,” HPCA 2001.

D. Jiménez, “Piecewise Linear Branch Prediction,” ISCA 2005.

D. Jiménez, “Fast Path-Based Neural Branch Prediction,” MICRO 2004.

D. Joseph and D. Grunwald. Prefetching using Markov Predictors.ISCA 1997.

N. P. Jouppi, Improving Direct-Mapped Cache Perf.by the Addition of a Small Fully-

Assoc. Cache and Prefetch Buffers, ISCA 1990.

J. Larus, “Whole Program Paths,” PLDI 1999.

S. McFarling. Combining branch predictors. Tech. Note TN-36, DEC WRL, June

1993.

Nevill-Manning, C.G. and Witten, I.H., “Identifying Hierarchical Structure in

Sequences: A linear-time algorithm,” Journal of Artificial Intelligence

Research, 7, 67-82, 1997.

Pan et al “Improving the accuracy of dynamic branch prediction using branch

correlation,” ASPLOS 1992.

A. R. Pleszkun, “Techniques for compressing program address traces,” MICRO 27,

1994

73

Rasheed et al. Efficient periodicity mining in time series databases using suffix trees.

IEEE TKDE, 23:79-94, 2011.

Rigoutsos, I., and Floratos, A., “Combinatorial pattern discovery in biological

sequences: TEIRESIAS algorithm,” Bioinformatics 1998.

Roth et al. Dependence Based Prefetching for Linked Data Structures. ASPLOS 1998.

Sendag et al, “Branch Misprediction Prediction: Complementary Branch Predictors,”

IEEE Computer Architecture Letters, Dec. 2007.

A. Seznec, “Analysis of the O-GEometric History Length Branch Predictor,” ISCA

2005

A. Seznec, “The L-TAGE predictor,” JILP, May 2007

A. Seznec, “Redundant History Skewed Perceptron Predictors: pushing limits on

global history branch predictors,” IRISA Report No 1554, sept. 2003.

Somogyi et al. “Spatio-Temporal Memory Streaming,” ISCA 2009

Ukkonen, E., “On-line construction of suffix trees,” Algorithmica 14:249-260, 1995.

Weiner, P., “Linear pattern matching algorithms,” In IEEE 14th Annual Symposium

on Switching and Automata Theory, 1-11, 1973.

Wenisch et al “Temporal Streaming of Shared Memory” ISCA 2005.

Wenisch et al. “Practical Off-chip Meta-data for Temporal Memory Streaming,”

HPCA 2009.

Wenisch et al. Temporal Streaming of Shared Memory. ISCA 2005

W. A. Wulf and S. A. Mckee, “Hitting the Memory Wall: Implications of the

Obvious,” SIG. Comp. Arch. News, 23:20-24, 1995.

C.-L. Yang and A. R. Lebeck. Push vs. Pull: Data Movement for Linked Data

74

Structures. ICS 2000.

T.-Y. Yeh and Y. N. Patt.“Alternative implementations of two-level adaptive branch

prediction,” ISCA 1992.

	Analyzing and Quantifying Dynamc Program Behavior in Terms of Regularities and Patterns
	Terms of Use
	Recommended Citation

	Microsoft Word - online.docx

