Supporting Information for “Controlled Organocatalytic Ring-Opening Polymerization of ε-Thionocaprolactone”

Partha P. Datta and Matthew K. Kiesewetter

Department of Chemistry, University of Rhode Island, Kingston, RI 02881 USA

Figure S1. MALDI-TOF of the PtnCL resulting from the 1/BEMP catalyzed ROP of tnCL. Minor peaks could not be identified, but they are not consistent with H+, Li+, Na+ or K+ adducts of cyclic or linear PtnCL with benzyl alcohol or BEMP end groups.
Figure S2. (upper) GPC trace of PtnCL resulting from the 1/BEMP catalyzed ROP of tnCL from pyrene butanol. The high weight tail grows in late in the ROP. (middle) GPC traces (UV) showing the evolution of the peak shape as a function of conversion. (lower) GPC traces (UV) of the polymer species resulting from allowing the ROP solution to stir with catalysts after full conversion (5h is full conversion).
Figure S3. Temperature dependent equilibrium constant for the reversible ROP of tnCL catalyzed by TBD from benzyl alcohol.

\[
\ln \frac{1}{[M]_{eq}} = -\frac{\Delta H_p}{RT} + \frac{\Delta S_p}{R}
\]

Figure S4. First order evolution of monomer vs time for the copolymerization of tnCL and VL. Reaction conditions tnCL (1M, 100 mg), VL (1M, 100 mg), 1 mol% benzyl alcohol, 5 mol% BEMP, 5 mol% 1 in C₆D₆.
Figure S5. Titration curve for the binding of tnCL to 1. Observed chemical shift of 1 (o-protons, 5 mM) vs [tnCL] in C₆D₆. Solid line is the fit from the quadratic binding equation.

Figure S6. First order evolution of [tnCL] vs time in the 1/BEMP catalyzed ROP from benzyl alcohol.
Figure S7. The binding of ethyl acetate (or ethyl thionoacetate) to 1 is too low to be measured, and the binding of tnCL to 1 is: $K_{eq} = 1.6$. Because the binding constant of 1 to ethyl thionoacetate is greater than unity, the selectivity of 1 for tnCL must be: $K_{eq(\text{sel.})} \leq 1.6$, or $\Delta G^\neq < 0.27$ kcal/mol if the selectivity at the reagents were to be translated to the transition state. This incongruity suggests other modes of action of 1 upon the reaction that are unique to the transition state.
Figure S8. 13C NMR (75 MHz, CDCl$_3$) spectrum of the polymer resulting from the ROP of tnCL (2M, toluene) from benzyl alcohol (1 mol%) catalyzed by DBU (5 mol%) at room temperature. The formation of poly(thionocaprolactone) as evidenced by the carbonyl resonance at 223 ppm.
Figure S9. 13C NMR (75 MHz, CDCl$_3$) spectrum of the polymer resulting from the ROP of tnCL (2M, toluene) from benzyl alcohol (1 mol%) catalyzed by DBU (5 mol%) at 100°C results in the formation of poly(thiono-co-thiocaprolactone) as evidenced by the two carbonyl resonances at 223 ppm and 199 ppm. The most downfield resonance is due to unconverted monomer.
Figure S10. 13C NMR (75 MHz, CDCl$_3$) spectrum of P(tnCL-co-VL) (50:50).
Figure S11. 1H NMR (300 MHz, CDCl$_3$) spectrum of P(tnCL-co-VL) (50:50).
Figure S12. 1H NMR (300 MHz, CDCl$_3$) spectrum of tnCL.
Figure S13. 13C NMR (75 MHz, CDCl$_3$) spectrum of tnCL.
Figure S14. 1H NMR (300 MHz, CDCl$_3$) spectrum of PtnCL.
COMPUTATIONAL OUTPUT

Figure S15. Calculated (DFT B3LYP//6-31G**) electrostatic potential of atoms in the C=X bond of 7-membered and s-trans lactones.

methyl thionoacetate
Number of basis functions: 109
Multiplicity: 1
Solvation: toluene [SM8]
Free Energy of Solvation: -22.1872126 kJ/mol
SCF total energy: -591.3523054 hartrees

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 C</td>
<td>0.3532451</td>
<td>0.2893493</td>
<td>0.0004509</td>
</tr>
<tr>
<td>2 C</td>
<td>1.4111241</td>
<td>1.3623631</td>
<td>-0.0001518</td>
</tr>
<tr>
<td>3 H</td>
<td>1.2929082</td>
<td>1.9980110</td>
<td>-0.8861288</td>
</tr>
<tr>
<td>4 H</td>
<td>2.4069332</td>
<td>0.9220162</td>
<td>0.0054894</td>
</tr>
<tr>
<td>5 H</td>
<td>1.2861987</td>
<td>2.0067716</td>
<td>0.8784620</td>
</tr>
<tr>
<td>6 O</td>
<td>-0.8568645</td>
<td>0.8567950</td>
<td>0.0004491</td>
</tr>
<tr>
<td>7 C</td>
<td>-2.0251905</td>
<td>0.0225348</td>
<td>-0.0002794</td>
</tr>
<tr>
<td>8 H</td>
<td>-2.0385119</td>
<td>-0.6114545</td>
<td>-0.8907101</td>
</tr>
<tr>
<td>9 H</td>
<td>-2.8678241</td>
<td>0.7151978</td>
<td>-0.0001000</td>
</tr>
<tr>
<td>10 H</td>
<td>-2.0388005</td>
<td>-0.6124678</td>
<td>0.8893784</td>
</tr>
<tr>
<td>11 S</td>
<td>0.6486888</td>
<td>-1.3323698</td>
<td>-0.0000064</td>
</tr>
</tbody>
</table>

Atomic Charges:

<table>
<thead>
<tr>
<th>Atom</th>
<th>Electrostatic Mulliken</th>
<th>Natural</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 C</td>
<td>+0.504</td>
<td>+0.207</td>
</tr>
<tr>
<td>2 C</td>
<td>-0.831</td>
<td>-0.346</td>
</tr>
<tr>
<td>3 H</td>
<td>+0.253</td>
<td>+0.156</td>
</tr>
<tr>
<td>4 H</td>
<td>+0.220</td>
<td>+0.146</td>
</tr>
<tr>
<td>5 H</td>
<td>+0.252</td>
<td>+0.156</td>
</tr>
<tr>
<td>6 O</td>
<td>-0.175</td>
<td>-0.399</td>
</tr>
<tr>
<td>7 C</td>
<td>-0.409</td>
<td>-0.097</td>
</tr>
<tr>
<td>8 H</td>
<td>+0.164</td>
<td>+0.148</td>
</tr>
<tr>
<td>9 H</td>
<td>+0.204</td>
<td>+0.143</td>
</tr>
<tr>
<td>10 H</td>
<td>+0.164</td>
<td>+0.148</td>
</tr>
<tr>
<td>11 S</td>
<td>-0.345</td>
<td>-0.264</td>
</tr>
</tbody>
</table>
methyl thionoacetate + TU

SPARTAN '14 Quantum Mechanics Driver: (Win/64b) Release 1.1.8
Method: RB3LYP
Basis set: 6-31G**
Number of shells: 184
Number of basis functions: 553
Multiplicity: 1
Solvation: toluene [SM8]
Free Energy of Solvation : -60.5273905 kJ/mol
SCF total energy: -2279.4107961 hartrees

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 C</td>
<td>1.6758054</td>
<td>0.7905501</td>
<td>0.2103707</td>
</tr>
<tr>
<td>2 S</td>
<td>1.7699850</td>
<td>2.4419889</td>
<td>0.5046662</td>
</tr>
<tr>
<td>3 N</td>
<td>2.7382559</td>
<td>-0.0349675</td>
<td>0.0191621</td>
</tr>
<tr>
<td>4 H</td>
<td>2.5193857</td>
<td>-0.9981657</td>
<td>-0.2073029</td>
</tr>
<tr>
<td>5 N</td>
<td>0.4840883</td>
<td>0.0813901</td>
<td>0.1525672</td>
</tr>
<tr>
<td>6 H</td>
<td>0.5678196</td>
<td>-0.9297880</td>
<td>0.2370184</td>
</tr>
<tr>
<td>7 C</td>
<td>4.1838885</td>
<td>0.2584425</td>
<td>0.0771436</td>
</tr>
<tr>
<td>8 C</td>
<td>6.1895278</td>
<td>1.3718173</td>
<td>-0.9885321</td>
</tr>
<tr>
<td>9 C</td>
<td>6.1896003</td>
<td>0.8582718</td>
<td>1.4927664</td>
</tr>
<tr>
<td>10 C</td>
<td>6.6737079</td>
<td>1.8207331</td>
<td>0.3979827</td>
</tr>
<tr>
<td>11 C</td>
<td>4.6606139</td>
<td>0.7008589</td>
<td>1.4716566</td>
</tr>
<tr>
<td>12 C</td>
<td>4.6604995</td>
<td>1.2150088</td>
<td>-1.0315947</td>
</tr>
<tr>
<td>13 H</td>
<td>6.6647803</td>
<td>0.4118277</td>
<td>-1.2430128</td>
</tr>
<tr>
<td>14 H</td>
<td>6.6644235</td>
<td>-0.1241215</td>
<td>1.3470772</td>
</tr>
</tbody>
</table>

15 H H7 6.2899819 2.8293220 0.6073953
16 H H11 4.1834070 1.6511181 1.7308705
17 H H1 4.1762285 2.1869592 -0.8982809
18 H H5 4.1762285 2.1869592 -0.8982809
19 H H8 6.5081149 2.0879485 -1.7562528
20 H H9 6.5081149 1.2121958 2.4810613
21 H H12 7.7688003 1.8908696 0.4126010
22 H H13 4.3383632 -0.0379416 2.2161543
23 H H14 4.3409411 0.8259188 -2.0069730
24 C C8 1.3691312 0.5166385 0.1899527
25 C C9 3.6030408 1.1251961 0.1782265
26 C C10 -1.7898436 -0.3961179 0.6880128
27 C C11 -1.2980363 1.7468134 -0.3128201
28 C C12 -2.6616350 2.0375334 -0.3011851
29 C C13 -3.1508168 -0.0996071 0.1899527
30 H H4 1.4505552 -1.3473527 1.0874682
31 H H15 -0.5893373 2.4645677 -0.7001976
32 H H18 -4.6591973 1.3634615 0.1705037
33 C C14 -3.1276858 3.3368377 -0.9073428
34 C C15 -4.1141617 -1.1164440 1.2125417
35 F F1 2.2546555 4.3385751 -0.6827686
36 F F2 3.2693917 3.2301861 -2.2504660
37 F F3 4.3268251 3.7194112 -0.4152879
38 F F4 5.3814297 -0.8881624 0.8146866
39 F F5 3.7852105 -2.3723859 0.8036362
40 F F6 4.1134408 -1.1424304 2.5625236
41 C C16 0.5795845 -4.5345904 -0.8423796
42 O O2 3.6952656 -4.3628831 1.7213449
43 C C17 1.2148748 -5.8862389 -1.0311069
44 H H19 0.4928772 -6.6656509 -0.7574391
45 C C18 1.1993618 -3.1672036 -1.7105905
46 H H21 0.5656089 -2.2818215 -1.7978401
47 H H26 1.7878523 -3.1162621 -0.7918646
48 H H28 1.4680383 -6.0347472 -2.0867945
49 H H29 2.1052470 -5.9873100 -0.4122837
50 H H30 -1.8519641 -3.2616327 -2.5782532
51 S S2 1.0452882 -3.4593363 0.3329644

Atomic Charges:

<table>
<thead>
<tr>
<th></th>
<th>Electrostatic Mulliken</th>
<th>Natural</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 C1</td>
<td>+0.350</td>
<td>+0.376</td>
</tr>
<tr>
<td>2 S1</td>
<td>-0.375</td>
<td>-0.319</td>
</tr>
<tr>
<td>3 N1</td>
<td>+0.430</td>
<td>-0.536</td>
</tr>
<tr>
<td>4 H3</td>
<td>+0.291</td>
<td>+0.286</td>
</tr>
<tr>
<td>5 N2</td>
<td>+0.466</td>
<td>-0.652</td>
</tr>
<tr>
<td>6 H2</td>
<td>+0.313</td>
<td>+0.285</td>
</tr>
<tr>
<td>7 C2</td>
<td>+0.222</td>
<td>+0.071</td>
</tr>
<tr>
<td>8 C3</td>
<td>-0.141</td>
<td>-0.182</td>
</tr>
<tr>
<td>9 C5</td>
<td>-0.201</td>
<td>-0.182</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>10 C4</td>
<td>-0.155</td>
<td>-0.176</td>
</tr>
<tr>
<td>11 C6</td>
<td>-0.206</td>
<td>-0.165</td>
</tr>
<tr>
<td>12 C7</td>
<td>-0.252</td>
<td>-0.162</td>
</tr>
<tr>
<td>13 H6</td>
<td>+0.080</td>
<td>+0.089</td>
</tr>
<tr>
<td>14 H10</td>
<td>+0.091</td>
<td>+0.089</td>
</tr>
<tr>
<td>15 H7</td>
<td>+0.105</td>
<td>+0.095</td>
</tr>
<tr>
<td>16 H11</td>
<td>+0.105</td>
<td>+0.121</td>
</tr>
<tr>
<td>17 H1</td>
<td>+0.109</td>
<td>+0.122</td>
</tr>
<tr>
<td>18 H5</td>
<td>+0.067</td>
<td>+0.105</td>
</tr>
<tr>
<td>19 H8</td>
<td>+0.078</td>
<td>+0.093</td>
</tr>
<tr>
<td>20 H9</td>
<td>+0.090</td>
<td>+0.092</td>
</tr>
<tr>
<td>21 H12</td>
<td>+0.069</td>
<td>+0.088</td>
</tr>
<tr>
<td>22 H13</td>
<td>+0.076</td>
<td>+0.088</td>
</tr>
<tr>
<td>23 H14</td>
<td>+0.079</td>
<td>+0.087</td>
</tr>
<tr>
<td>24 C8</td>
<td>+0.364</td>
<td>+0.333</td>
</tr>
<tr>
<td>25 C9</td>
<td>-0.300</td>
<td>-0.118</td>
</tr>
<tr>
<td>26 C10</td>
<td>-0.295</td>
<td>-0.143</td>
</tr>
<tr>
<td>27 C11</td>
<td>-0.350</td>
<td>-0.073</td>
</tr>
<tr>
<td>28 C12</td>
<td>+0.171</td>
<td>-0.067</td>
</tr>
<tr>
<td>29 C13</td>
<td>+0.121</td>
<td>-0.052</td>
</tr>
<tr>
<td>30 H4</td>
<td>+0.145</td>
<td>+0.133</td>
</tr>
<tr>
<td>31 H15</td>
<td>+0.182</td>
<td>+0.135</td>
</tr>
<tr>
<td>32 H18</td>
<td>+0.174</td>
<td>+0.121</td>
</tr>
<tr>
<td>33 C14</td>
<td>+0.364</td>
<td>+0.788</td>
</tr>
<tr>
<td>34 C15</td>
<td>+0.379</td>
<td>+0.791</td>
</tr>
<tr>
<td>35 F1</td>
<td>-0.143</td>
<td>-0.266</td>
</tr>
<tr>
<td>36 F2</td>
<td>-0.159</td>
<td>-0.263</td>
</tr>
<tr>
<td>37 F3</td>
<td>-0.148</td>
<td>-0.272</td>
</tr>
<tr>
<td>38 F4</td>
<td>-0.144</td>
<td>-0.268</td>
</tr>
<tr>
<td>39 F5</td>
<td>-0.164</td>
<td>-0.275</td>
</tr>
<tr>
<td>40 F6</td>
<td>-0.147</td>
<td>-0.259</td>
</tr>
<tr>
<td>41 C16</td>
<td>+0.531</td>
<td>+0.223</td>
</tr>
<tr>
<td>42 O2</td>
<td>-0.172</td>
<td>-0.388</td>
</tr>
<tr>
<td>43 C17</td>
<td>-0.805</td>
<td>-0.353</td>
</tr>
<tr>
<td>44 H19</td>
<td>+0.259</td>
<td>+0.169</td>
</tr>
<tr>
<td>45 C18</td>
<td>-0.354</td>
<td>-0.115</td>
</tr>
<tr>
<td>46 H21</td>
<td>+0.132</td>
<td>+0.155</td>
</tr>
<tr>
<td>47 H26</td>
<td>+0.166</td>
<td>+0.146</td>
</tr>
<tr>
<td>48 H28</td>
<td>+0.245</td>
<td>+0.163</td>
</tr>
<tr>
<td>49 H29</td>
<td>+0.220</td>
<td>+0.152</td>
</tr>
<tr>
<td>50 H30</td>
<td>+0.202</td>
<td>+0.159</td>
</tr>
<tr>
<td>51 S2</td>
<td>-0.369</td>
<td>-0.272</td>
</tr>
</tbody>
</table>
methyl acetate

Method: RB3LYP
Basis set: 6-31G**
Number of shells: 38
Number of basis functions: 105
Multiplicity: 1
Solvation: toluene [SM8]
Free Energy of Solvation: -12.7057187 kJ/mol
SCF total energy: -268.4015947 hartrees

Cartesian Coordinates (Angstroms)

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1</td>
<td>-0.2846776</td>
<td>-1.3762272</td>
<td>-0.0001264</td>
</tr>
<tr>
<td>C1</td>
<td>-0.4609993</td>
<td>-0.1779412</td>
<td>-0.0024056</td>
</tr>
<tr>
<td>C2</td>
<td>-1.8012517</td>
<td>0.5173882</td>
<td>0.0006146</td>
</tr>
<tr>
<td>H1</td>
<td>-1.9132642</td>
<td>1.1058138</td>
<td>0.9161049</td>
</tr>
<tr>
<td>H4</td>
<td>-2.5949307</td>
<td>-0.2261949</td>
<td>-0.0594131</td>
</tr>
<tr>
<td>H5</td>
<td>-1.8702228</td>
<td>1.2107086</td>
<td>-0.8425385</td>
</tr>
<tr>
<td>O2</td>
<td>0.5487682</td>
<td>0.7248714</td>
<td>-0.0026729</td>
</tr>
<tr>
<td>C3</td>
<td>1.8714313</td>
<td>0.1631529</td>
<td>0.0017315</td>
</tr>
<tr>
<td>H2</td>
<td>2.0280054</td>
<td>-0.4493535</td>
<td>0.8932729</td>
</tr>
<tr>
<td>H6</td>
<td>2.5529681</td>
<td>1.0133969</td>
<td>-0.0022095</td>
</tr>
<tr>
<td>H7</td>
<td>2.0296374</td>
<td>-0.4591225</td>
<td>-0.8824658</td>
</tr>
</tbody>
</table>

Atomic Charges:

<table>
<thead>
<tr>
<th></th>
<th>Electrostatic Mulliken</th>
<th>Natural</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1</td>
<td>-0.532 -0.469 -0.607</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>+0.864 +0.552 +0.824</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>+0.864 +0.552 +0.824</td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>-0.915 -0.380 -0.790</td>
<td></td>
</tr>
<tr>
<td>H4</td>
<td>-0.364 -0.088 -0.337</td>
<td></td>
</tr>
<tr>
<td>H5</td>
<td>+0.186 +0.132 +0.231</td>
<td></td>
</tr>
<tr>
<td>O2</td>
<td>+0.162 +0.129 +0.222</td>
<td></td>
</tr>
</tbody>
</table>
methyl acetate + TU

Method: RB3LYP
Basis set: 6-31G**
Number of shells: 183
Number of basis functions: 549
Multiplicity: 1
Solvation: toluene [SM8]
Free Energy of Solvation: -52.9506956 kJ/mol
SCF total energy: -1956.4687603 hartrees

Cartesian Coordinates (Angstroms)

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 C</td>
<td>1.5952030</td>
<td>0.7333446</td>
<td>0.0441483</td>
</tr>
<tr>
<td>2 S</td>
<td>1.6635447</td>
<td>2.4007986</td>
<td>0.2631658</td>
</tr>
<tr>
<td>3 N</td>
<td>2.6756253</td>
<td>-0.0897793</td>
<td>-0.0166115</td>
</tr>
<tr>
<td>4 H</td>
<td>2.4767442</td>
<td>-1.0823297</td>
<td>-0.0879662</td>
</tr>
<tr>
<td>5 N</td>
<td>0.4226245</td>
<td>0.0080000</td>
<td>-0.0880125</td>
</tr>
<tr>
<td>6 H</td>
<td>0.5483018</td>
<td>-0.9972603</td>
<td>-0.1664797</td>
</tr>
<tr>
<td>7 C</td>
<td>4.1102989</td>
<td>0.2383665</td>
<td>0.0647189</td>
</tr>
<tr>
<td>8 C</td>
<td>6.1393058</td>
<td>1.2792881</td>
<td>-1.0261030</td>
</tr>
<tr>
<td>9 C</td>
<td>6.0635616</td>
<td>0.9824361</td>
<td>1.4896544</td>
</tr>
<tr>
<td>10 C</td>
<td>6.5761466</td>
<td>1.8510810</td>
<td>0.3311464</td>
</tr>
<tr>
<td>11 C</td>
<td>4.5378219</td>
<td>0.8042879</td>
<td>1.4322258</td>
</tr>
<tr>
<td>12 C</td>
<td>4.6133093</td>
<td>1.1082627</td>
<td>-1.1021982</td>
</tr>
<tr>
<td>13 H</td>
<td>6.6275112</td>
<td>0.3044453</td>
<td>-1.1799822</td>
</tr>
<tr>
<td>14 H</td>
<td>6.5515906</td>
<td>-0.0035736</td>
<td>1.4436710</td>
</tr>
<tr>
<td>15 H</td>
<td>6.1792177</td>
<td>2.8700966</td>
<td>0.4394038</td>
</tr>
<tr>
<td>16 H</td>
<td>4.0388394</td>
<td>1.7647623</td>
<td>1.5909800</td>
</tr>
<tr>
<td>17 H</td>
<td>4.1241710</td>
<td>2.0859963</td>
<td>-1.0598350</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>18</td>
<td>H</td>
<td>H5</td>
<td>4.5940035</td>
</tr>
<tr>
<td>19</td>
<td>H</td>
<td>H8</td>
<td>6.4792094</td>
</tr>
<tr>
<td>20</td>
<td>H</td>
<td>H9</td>
<td>6.3478005</td>
</tr>
<tr>
<td>21</td>
<td>H</td>
<td>H12</td>
<td>7.6698484</td>
</tr>
<tr>
<td>22</td>
<td>H</td>
<td>H13</td>
<td>4.1981217</td>
</tr>
<tr>
<td>23</td>
<td>H</td>
<td>H14</td>
<td>4.3236099</td>
</tr>
<tr>
<td>24</td>
<td>C</td>
<td>C8</td>
<td>-0.9277924</td>
</tr>
<tr>
<td>25</td>
<td>C</td>
<td>C9</td>
<td>-3.7145773</td>
</tr>
<tr>
<td>26</td>
<td>C</td>
<td>C10</td>
<td>-1.8114578</td>
</tr>
<tr>
<td>27</td>
<td>C</td>
<td>C11</td>
<td>-1.4557385</td>
</tr>
<tr>
<td>28</td>
<td>C</td>
<td>C12</td>
<td>-2.8348374</td>
</tr>
<tr>
<td>29</td>
<td>C</td>
<td>C13</td>
<td>-3.1840969</td>
</tr>
<tr>
<td>30</td>
<td>H</td>
<td>H4</td>
<td>-1.4114795</td>
</tr>
<tr>
<td>31</td>
<td>H</td>
<td>H15</td>
<td>-0.7940325</td>
</tr>
<tr>
<td>32</td>
<td>H</td>
<td>H18</td>
<td>-4.7819816</td>
</tr>
<tr>
<td>33</td>
<td>C</td>
<td>C14</td>
<td>-3.3828445</td>
</tr>
<tr>
<td>34</td>
<td>C</td>
<td>C15</td>
<td>-4.0805406</td>
</tr>
<tr>
<td>35</td>
<td>F</td>
<td>F1</td>
<td>-2.5806387</td>
</tr>
<tr>
<td>36</td>
<td>F</td>
<td>F2</td>
<td>-3.5095358</td>
</tr>
<tr>
<td>37</td>
<td>F</td>
<td>F3</td>
<td>-4.6081015</td>
</tr>
<tr>
<td>38</td>
<td>F</td>
<td>F4</td>
<td>-5.3452318</td>
</tr>
<tr>
<td>39</td>
<td>F</td>
<td>F5</td>
<td>-3.6380001</td>
</tr>
<tr>
<td>40</td>
<td>F</td>
<td>F6</td>
<td>-4.1353108</td>
</tr>
<tr>
<td>41</td>
<td>O</td>
<td>O1</td>
<td>1.2480579</td>
</tr>
<tr>
<td>42</td>
<td>C</td>
<td>C16</td>
<td>1.2948172</td>
</tr>
<tr>
<td>43</td>
<td>O</td>
<td>O2</td>
<td>0.3576792</td>
</tr>
<tr>
<td>44</td>
<td>C</td>
<td>C17</td>
<td>2.4050764</td>
</tr>
<tr>
<td>45</td>
<td>H</td>
<td>H19</td>
<td>2.0011934</td>
</tr>
<tr>
<td>46</td>
<td>C</td>
<td>C18</td>
<td>-0.7574220</td>
</tr>
<tr>
<td>47</td>
<td>H</td>
<td>H21</td>
<td>-0.4040796</td>
</tr>
<tr>
<td>48</td>
<td>H</td>
<td>H26</td>
<td>-1.4305995</td>
</tr>
<tr>
<td>49</td>
<td>H</td>
<td>H28</td>
<td>2.8494155</td>
</tr>
<tr>
<td>50</td>
<td>H</td>
<td>H29</td>
<td>3.1651870</td>
</tr>
<tr>
<td>51</td>
<td>H</td>
<td>H30</td>
<td>-1.2689827</td>
</tr>
</tbody>
</table>

Atomic Charges:

<table>
<thead>
<tr>
<th></th>
<th>Electrostatic Mulliken</th>
<th>Natural</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C1</td>
<td>+0.397</td>
</tr>
<tr>
<td>2</td>
<td>S1</td>
<td>-0.384</td>
</tr>
<tr>
<td>3</td>
<td>N1</td>
<td>-0.505</td>
</tr>
<tr>
<td>4</td>
<td>H3</td>
<td>+0.324</td>
</tr>
<tr>
<td>5</td>
<td>N2</td>
<td>-0.535</td>
</tr>
<tr>
<td>6</td>
<td>H2</td>
<td>+0.372</td>
</tr>
<tr>
<td>7</td>
<td>C2</td>
<td>+0.256</td>
</tr>
<tr>
<td>8</td>
<td>C3</td>
<td>-0.180</td>
</tr>
<tr>
<td>9</td>
<td>C5</td>
<td>-0.164</td>
</tr>
<tr>
<td>10</td>
<td>C4</td>
<td>-0.175</td>
</tr>
<tr>
<td>11</td>
<td>C6</td>
<td>-0.259</td>
</tr>
<tr>
<td>12</td>
<td>C7</td>
<td>-0.221</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>13 H6 :</td>
<td>+0.087</td>
<td>+0.088</td>
</tr>
<tr>
<td>14 H10 :</td>
<td>+0.085</td>
<td>+0.087</td>
</tr>
<tr>
<td>15 H7 :</td>
<td>+0.111</td>
<td>+0.095</td>
</tr>
<tr>
<td>16 H11 :</td>
<td>+0.112</td>
<td>+0.122</td>
</tr>
<tr>
<td>17 H1 :</td>
<td>+0.105</td>
<td>+0.121</td>
</tr>
<tr>
<td>18 H5 :</td>
<td>+0.065</td>
<td>+0.098</td>
</tr>
<tr>
<td>19 H8 :</td>
<td>+0.088</td>
<td>+0.092</td>
</tr>
<tr>
<td>20 H9 :</td>
<td>+0.087</td>
<td>+0.092</td>
</tr>
<tr>
<td>21 H12 :</td>
<td>+0.074</td>
<td>+0.087</td>
</tr>
<tr>
<td>22 H13 :</td>
<td>+0.083</td>
<td>+0.085</td>
</tr>
<tr>
<td>23 H14 :</td>
<td>+0.077</td>
<td>+0.086</td>
</tr>
<tr>
<td>24 C8 :</td>
<td>+0.457</td>
<td>+0.336</td>
</tr>
<tr>
<td>25 C9 :</td>
<td>+0.457</td>
<td>+0.336</td>
</tr>
<tr>
<td>26 C10 :</td>
<td>+0.457</td>
<td>+0.336</td>
</tr>
<tr>
<td>27 C11 :</td>
<td>+0.457</td>
<td>+0.336</td>
</tr>
<tr>
<td>28 C12 :</td>
<td>+0.457</td>
<td>+0.336</td>
</tr>
<tr>
<td>29 C13 :</td>
<td>+0.457</td>
<td>+0.336</td>
</tr>
<tr>
<td>30 H4 :</td>
<td>+0.187</td>
<td>+0.120</td>
</tr>
<tr>
<td>31 H15 :</td>
<td>+0.171</td>
<td>+0.137</td>
</tr>
<tr>
<td>32 H18 :</td>
<td>+0.192</td>
<td>+0.120</td>
</tr>
<tr>
<td>33 C14 :</td>
<td>+0.350</td>
<td>+0.789</td>
</tr>
<tr>
<td>34 C15 :</td>
<td>+0.370</td>
<td>+0.786</td>
</tr>
<tr>
<td>35 F1 :</td>
<td>-0.140</td>
<td>-0.266</td>
</tr>
<tr>
<td>36 F2 :</td>
<td>-0.155</td>
<td>-0.263</td>
</tr>
<tr>
<td>37 F3 :</td>
<td>-0.147</td>
<td>-0.273</td>
</tr>
<tr>
<td>38 F4 :</td>
<td>-0.144</td>
<td>-0.267</td>
</tr>
<tr>
<td>39 F5 :</td>
<td>-0.168</td>
<td>-0.276</td>
</tr>
<tr>
<td>40 F6 :</td>
<td>-0.147</td>
<td>-0.259</td>
</tr>
<tr>
<td>41 O1 :</td>
<td>-0.604</td>
<td>-0.491</td>
</tr>
<tr>
<td>42 C16 :</td>
<td>+0.916</td>
<td>+0.578</td>
</tr>
<tr>
<td>43 O2 :</td>
<td>-0.307</td>
<td>-0.430</td>
</tr>
<tr>
<td>44 C17 :</td>
<td>-0.902</td>
<td>-0.384</td>
</tr>
<tr>
<td>45 H19 :</td>
<td>+0.257</td>
<td>+0.168</td>
</tr>
<tr>
<td>46 C18 :</td>
<td>-0.331</td>
<td>-0.113</td>
</tr>
<tr>
<td>47 H21 :</td>
<td>+0.155</td>
<td>+0.147</td>
</tr>
<tr>
<td>48 H26 :</td>
<td>+0.164</td>
<td>+0.136</td>
</tr>
<tr>
<td>49 H28 :</td>
<td>+0.255</td>
<td>+0.166</td>
</tr>
<tr>
<td>50 H29 :</td>
<td>+0.244</td>
<td>+0.148</td>
</tr>
<tr>
<td>51 H30 :</td>
<td>+0.194</td>
<td>+0.150</td>
</tr>
</tbody>
</table>
Method: RB3LYP
Basis set: 6-31G**
Number of shells: 62
Number of basis functions: 170
Multiplicity: 1
Solvation: toluene [SM8]
Free Energy of Solvation: -27.6012335 kJ/mol
SCF total energy: -385.1315410 hartrees

Cartesian Coordinates (Angstroms)

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 C</td>
<td>1.3901836</td>
<td>-0.0473335</td>
<td>-0.0528234</td>
</tr>
<tr>
<td>2 O</td>
<td>0.8528370</td>
<td>1.1802829</td>
<td>0.1803832</td>
</tr>
<tr>
<td>3 C</td>
<td>0.5164992</td>
<td>-1.2873440</td>
<td>-0.2544354</td>
</tr>
<tr>
<td>4 H</td>
<td>1.1796647</td>
<td>-2.1224822</td>
<td>-0.0138065</td>
</tr>
<tr>
<td>5 H</td>
<td>0.3134986</td>
<td>-1.3672387</td>
<td>-1.3324608</td>
</tr>
<tr>
<td>6 C</td>
<td>-0.7952861</td>
<td>-1.3869217</td>
<td>0.5367320</td>
</tr>
<tr>
<td>7 H</td>
<td>-0.6210855</td>
<td>-1.0567782</td>
<td>1.5689137</td>
</tr>
<tr>
<td>8 H</td>
<td>-1.0831465</td>
<td>-2.4424270</td>
<td>0.6083026</td>
</tr>
<tr>
<td>9 C</td>
<td>-0.5385932</td>
<td>1.5050871</td>
<td>0.3735628</td>
</tr>
<tr>
<td>10 H</td>
<td>-0.8013482</td>
<td>1.3262948</td>
<td>1.4246261</td>
</tr>
<tr>
<td>11 H</td>
<td>-0.5595467</td>
<td>2.5856240</td>
<td>0.2101825</td>
</tr>
<tr>
<td>12 C</td>
<td>-1.9469832</td>
<td>-0.5885756</td>
<td>-0.0876377</td>
</tr>
<tr>
<td>13 H</td>
<td>-2.3695512</td>
<td>-1.1439524</td>
<td>-0.9364141</td>
</tr>
<tr>
<td>14 H</td>
<td>-2.7580355</td>
<td>-0.4966170</td>
<td>0.6489899</td>
</tr>
<tr>
<td>15 C</td>
<td>-1.5229819</td>
<td>0.8107349</td>
<td>-0.5661060</td>
</tr>
<tr>
<td>16 H</td>
<td>-1.0672327</td>
<td>0.7657148</td>
<td>-1.5635231</td>
</tr>
<tr>
<td>17 H</td>
<td>-2.4082469</td>
<td>1.4506515</td>
<td>-0.6689660</td>
</tr>
<tr>
<td>18 O</td>
<td>2.5939492</td>
<td>-0.1218670</td>
<td>-0.1355831</td>
</tr>
</tbody>
</table>

Atomic Charges:
- Electrostatic Mulliken Natural
 1 C1 : +0.686 +0.532 +0.830
<table>
<thead>
<tr>
<th>mol</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1</td>
<td>-0.396</td>
<td>-0.465</td>
<td>-0.561</td>
</tr>
<tr>
<td>C2</td>
<td>-0.291</td>
<td>-0.260</td>
<td>-0.588</td>
</tr>
<tr>
<td>H1</td>
<td>+0.102</td>
<td>+0.136</td>
<td>+0.277</td>
</tr>
<tr>
<td>H3</td>
<td>+0.131</td>
<td>+0.142</td>
<td>+0.264</td>
</tr>
<tr>
<td>C3</td>
<td>-0.090</td>
<td>-0.196</td>
<td>-0.478</td>
</tr>
<tr>
<td>H4</td>
<td>+0.085</td>
<td>+0.109</td>
<td>+0.239</td>
</tr>
<tr>
<td>H5</td>
<td>+0.071</td>
<td>+0.111</td>
<td>+0.256</td>
</tr>
<tr>
<td>C4</td>
<td>+0.049</td>
<td>+0.041</td>
<td>-0.121</td>
</tr>
<tr>
<td>H2</td>
<td>+0.097</td>
<td>+0.119</td>
<td>+0.221</td>
</tr>
<tr>
<td>H8</td>
<td>+0.095</td>
<td>+0.127</td>
<td>+0.246</td>
</tr>
<tr>
<td>C5</td>
<td>-0.181</td>
<td>-0.179</td>
<td>-0.470</td>
</tr>
<tr>
<td>H6</td>
<td>+0.088</td>
<td>+0.103</td>
<td>+0.242</td>
</tr>
<tr>
<td>H10</td>
<td>+0.080</td>
<td>+0.104</td>
<td>+0.243</td>
</tr>
<tr>
<td>C6</td>
<td>-0.205</td>
<td>-0.214</td>
<td>-0.510</td>
</tr>
<tr>
<td>H9</td>
<td>+0.117</td>
<td>+0.116</td>
<td>+0.245</td>
</tr>
<tr>
<td>H12</td>
<td>+0.091</td>
<td>+0.119</td>
<td>+0.260</td>
</tr>
<tr>
<td>O2</td>
<td>-0.529</td>
<td>-0.448</td>
<td>-0.594</td>
</tr>
</tbody>
</table>

Method: RB3LYP
Basis set: 6-31G**
Number of shells: 207
Number of basis functions: 614
Multiplicity: 1
Solvation: toluene [SM8]

Free Energy of Solvation: -67.1539901 kJ/mol
SCF total energy: -2073.2133692 hartrees

Cartesian Coordinates (Angstroms)

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C1</td>
<td>1.3556592</td>
<td>-2.9799822</td>
</tr>
<tr>
<td>2</td>
<td>O1</td>
<td>0.0286644</td>
<td>-3.1243347</td>
</tr>
<tr>
<td>3</td>
<td>C2</td>
<td>2.3106176</td>
<td>-4.1611860</td>
</tr>
<tr>
<td>4</td>
<td>H1</td>
<td>3.2615594</td>
<td>-3.7801995</td>
</tr>
<tr>
<td>5</td>
<td>H3</td>
<td>2.4720089</td>
<td>-4.3422279</td>
</tr>
<tr>
<td>6</td>
<td>C3</td>
<td>1.9192017</td>
<td>-5.4650853</td>
</tr>
<tr>
<td>7</td>
<td>H4</td>
<td>1.5484436</td>
<td>-5.2334024</td>
</tr>
<tr>
<td>8</td>
<td>H5</td>
<td>2.8264927</td>
<td>-6.0610485</td>
</tr>
<tr>
<td>9</td>
<td>C4</td>
<td>-0.7482785</td>
<td>-4.3550525</td>
</tr>
<tr>
<td>10</td>
<td>H2</td>
<td>-0.7687060</td>
<td>-4.6736679</td>
</tr>
<tr>
<td>11</td>
<td>H8</td>
<td>-1.7477296</td>
<td>-4.0124178</td>
</tr>
<tr>
<td>12</td>
<td>C5</td>
<td>0.8847899</td>
<td>-6.3023945</td>
</tr>
<tr>
<td>13</td>
<td>H6</td>
<td>1.3779159</td>
<td>-6.8318410</td>
</tr>
<tr>
<td>14</td>
<td>H10</td>
<td>0.4895056</td>
<td>-7.059512</td>
</tr>
<tr>
<td>15</td>
<td>C6</td>
<td>-0.2781302</td>
<td>-5.4674085</td>
</tr>
<tr>
<td>16</td>
<td>H9</td>
<td>-0.0121397</td>
<td>-5.0188759</td>
</tr>
<tr>
<td>17</td>
<td>H12</td>
<td>-1.1361854</td>
<td>-6.1196172</td>
</tr>
<tr>
<td>18</td>
<td>H7</td>
<td>2.6211478</td>
<td>0.0982237</td>
</tr>
<tr>
<td>19</td>
<td>N1</td>
<td>2.6090876</td>
<td>1.1110760</td>
</tr>
<tr>
<td>20</td>
<td>C7</td>
<td>1.4041485</td>
<td>1.7404043</td>
</tr>
<tr>
<td>21</td>
<td>N2</td>
<td>0.3644754</td>
<td>0.8320089</td>
</tr>
<tr>
<td>22</td>
<td>H15</td>
<td>0.6625485</td>
<td>0.1430287</td>
</tr>
<tr>
<td>23</td>
<td>C8</td>
<td>-1.0278079</td>
<td>0.9725106</td>
</tr>
<tr>
<td>24</td>
<td>C9</td>
<td>-3.8568664</td>
<td>0.9705203</td>
</tr>
<tr>
<td>25</td>
<td>C10</td>
<td>-1.7506343</td>
<td>-0.2275133</td>
</tr>
<tr>
<td>26</td>
<td>C11</td>
<td>-1.7426823</td>
<td>2.1801530</td>
</tr>
<tr>
<td>27</td>
<td>C12</td>
<td>-3.1370678</td>
<td>2.1599565</td>
</tr>
<tr>
<td>28</td>
<td>C13</td>
<td>-3.1410042</td>
<td>0.2235349</td>
</tr>
<tr>
<td>29</td>
<td>H14</td>
<td>-1.2163176</td>
<td>-1.1704176</td>
</tr>
<tr>
<td>30</td>
<td>H16</td>
<td>-1.2083525</td>
<td>3.1144995</td>
</tr>
<tr>
<td>31</td>
<td>H19</td>
<td>-4.9386478</td>
<td>0.9730278</td>
</tr>
<tr>
<td>32</td>
<td>C14</td>
<td>3.9125779</td>
<td>1.7703053</td>
</tr>
<tr>
<td>33</td>
<td>C15</td>
<td>5.8159414</td>
<td>2.7047356</td>
</tr>
<tr>
<td>34</td>
<td>C16</td>
<td>6.3056641</td>
<td>1.5672268</td>
</tr>
<tr>
<td>35</td>
<td>C17</td>
<td>6.8210597</td>
<td>1.8564176</td>
</tr>
<tr>
<td>36</td>
<td>C18</td>
<td>4.9139660</td>
<td>0.9161644</td>
</tr>
<tr>
<td>37</td>
<td>C19</td>
<td>4.4262992</td>
<td>2.0511457</td>
</tr>
<tr>
<td>38</td>
<td>H13</td>
<td>5.7399578</td>
<td>3.7016598</td>
</tr>
<tr>
<td>39</td>
<td>H20</td>
<td>6.2504044</td>
<td>2.5100740</td>
</tr>
<tr>
<td>40</td>
<td>H21</td>
<td>6.9869898</td>
<td>0.9040785</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>41</td>
<td>H</td>
<td>H22</td>
<td>4.9849698</td>
</tr>
<tr>
<td>42</td>
<td>H</td>
<td>H23</td>
<td>4.4769721</td>
</tr>
<tr>
<td>43</td>
<td>H</td>
<td>H24</td>
<td>3.7706515</td>
</tr>
<tr>
<td>44</td>
<td>H</td>
<td>H25</td>
<td>6.1729044</td>
</tr>
<tr>
<td>45</td>
<td>H</td>
<td>H26</td>
<td>7.0099796</td>
</tr>
<tr>
<td>46</td>
<td>H</td>
<td>H27</td>
<td>7.7944804</td>
</tr>
<tr>
<td>47</td>
<td>H</td>
<td>H28</td>
<td>4.5440774</td>
</tr>
<tr>
<td>48</td>
<td>H</td>
<td>H29</td>
<td>3.7034470</td>
</tr>
<tr>
<td>49</td>
<td>S</td>
<td>S2</td>
<td>1.2528590</td>
</tr>
<tr>
<td>50</td>
<td>C</td>
<td>C20</td>
<td>-3.8423684</td>
</tr>
<tr>
<td>51</td>
<td>C</td>
<td>C21</td>
<td>-3.8765014</td>
</tr>
<tr>
<td>52</td>
<td>F</td>
<td>F1</td>
<td>-3.4862190</td>
</tr>
<tr>
<td>53</td>
<td>F</td>
<td>F2</td>
<td>-3.5179951</td>
</tr>
<tr>
<td>54</td>
<td>F</td>
<td>F3</td>
<td>-5.1834490</td>
</tr>
<tr>
<td>55</td>
<td>F</td>
<td>F4</td>
<td>-5.1438299</td>
</tr>
<tr>
<td>56</td>
<td>F</td>
<td>F5</td>
<td>-3.2675361</td>
</tr>
<tr>
<td>57</td>
<td>F</td>
<td>F6</td>
<td>-3.9615967</td>
</tr>
<tr>
<td>58</td>
<td>O</td>
<td>O2</td>
<td>1.7847186</td>
</tr>
</tbody>
</table>

Atomic Charges:

<table>
<thead>
<tr>
<th></th>
<th>Electrostatic Mulliken Natural</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C1 : +0.750 +0.580 +0.871</td>
</tr>
<tr>
<td>2</td>
<td>O1 : -0.359 -0.462 -0.554</td>
</tr>
<tr>
<td>3</td>
<td>C2 : -0.285 -0.263 -0.587</td>
</tr>
<tr>
<td>4</td>
<td>H1 : +0.119 +0.150 +0.283</td>
</tr>
<tr>
<td>5</td>
<td>H3 : +0.142 +0.160 +0.276</td>
</tr>
<tr>
<td>6</td>
<td>C3 : -0.143 -0.202 -0.480</td>
</tr>
<tr>
<td>7</td>
<td>H4 : +0.098 +0.116 +0.242</td>
</tr>
<tr>
<td>8</td>
<td>H5 : +0.094 +0.121 +0.262</td>
</tr>
<tr>
<td>9</td>
<td>C4 : +0.045 +0.030 -0.122</td>
</tr>
<tr>
<td>10</td>
<td>H2 : +0.114 +0.137 +0.232</td>
</tr>
<tr>
<td>11</td>
<td>H8 : +0.109 +0.133 +0.255</td>
</tr>
<tr>
<td>12</td>
<td>C5 : -0.178 -0.182 -0.472</td>
</tr>
<tr>
<td>13</td>
<td>H6 : +0.100 +0.110 +0.246</td>
</tr>
<tr>
<td>14</td>
<td>H10 : +0.092 +0.111 +0.247</td>
</tr>
<tr>
<td>15</td>
<td>C6 : -0.243 -0.223 -0.515</td>
</tr>
<tr>
<td>16</td>
<td>H9 : +0.126 +0.124 +0.249</td>
</tr>
<tr>
<td>17</td>
<td>H12 : +0.115 +0.132 +0.268</td>
</tr>
<tr>
<td>18</td>
<td>H7 : +0.403 +0.297 +0.437</td>
</tr>
<tr>
<td>19</td>
<td>N1 : -0.620 -0.552 -0.623</td>
</tr>
<tr>
<td>20</td>
<td>C7 : +0.412 +0.387 +0.284</td>
</tr>
<tr>
<td>21</td>
<td>N2 : -0.508 -0.678 -0.611</td>
</tr>
<tr>
<td>22</td>
<td>H15 : +0.372 +0.306 +0.440</td>
</tr>
<tr>
<td>23</td>
<td>C8 : +0.450 +0.329 +0.181</td>
</tr>
<tr>
<td>24</td>
<td>C9 : -0.356 -0.124 -0.219</td>
</tr>
<tr>
<td>25</td>
<td>C10 : -0.435 -0.146 -0.224</td>
</tr>
<tr>
<td>26</td>
<td>C11 : -0.354 -0.084 -0.227</td>
</tr>
<tr>
<td>27</td>
<td>C12 : +0.165 -0.072 -0.153</td>
</tr>
<tr>
<td>28</td>
<td>C13 : +0.216 -0.050 -0.164</td>
</tr>
</tbody>
</table>
29 H14 : +0.177 +0.146 +0.261
30 H16 : +0.168 +0.138 +0.284
31 H19 : +0.177 +0.118 +0.266
32 C14 : +0.383 +0.085 -0.066
33 C15 : -0.182 -0.184 -0.468
34 C16 : -0.131 -0.182 -0.465
35 C17 : -0.197 -0.172 -0.467
36 C18 : -0.286 -0.188 -0.474
37 C19 : -0.263 -0.158 -0.475
38 H13 : +0.100 +0.097 +0.233
39 H20 : +0.092 +0.098 +0.234
40 H21 : +0.101 +0.088 +0.227
41 H22 : +0.101 +0.090 +0.226
42 H23 : +0.106 +0.082 +0.225
43 H24 : +0.031 +0.127 +0.265
44 H25 : +0.090 +0.091 +0.245
45 H26 : +0.075 +0.093 +0.245
46 H27 : +0.081 +0.090 +0.243
47 H28 : +0.091 +0.103 +0.250
48 H29 : +0.085 +0.109 +0.258
49 S2 : -0.413 -0.342 -0.291
50 C20 : +0.407 +0.798 +1.134
51 C21 : +0.389 +0.790 +1.134
52 F1 : -0.183 -0.273 -0.366
53 F2 : -0.179 -0.275 -0.371
54 F3 : -0.148 -0.268 -0.360
55 F4 : -0.159 -0.275 -0.368
56 F5 : -0.152 -0.268 -0.362
57 F6 : -0.160 -0.263 -0.364
58 O2 : -0.641 -0.480 -0.656

Method: RB3LYP
Basis set: 6-31G**
Number of shells: 63
Number of basis functions: 174
Multiplicity: 1
Solvation: toluene [SM8]

Free Energy of Solvation: \(-38.5515024\) kJ/mol

SCF total energy: \(-708.0828269\) hartrees

Cartesian Coordinates (Angstroms)

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>2.6443549</td>
<td>-0.0542319</td>
<td>-0.0384754</td>
</tr>
<tr>
<td>C</td>
<td>0.9951803</td>
<td>0.0078158</td>
<td>-0.0410194</td>
</tr>
<tr>
<td>O</td>
<td>0.4233157</td>
<td>1.2054108</td>
<td>0.1334787</td>
</tr>
<tr>
<td>C</td>
<td>0.1571504</td>
<td>-1.2365433</td>
<td>-0.3052132</td>
</tr>
<tr>
<td>H</td>
<td>0.8236792</td>
<td>-2.0848949</td>
<td>-0.1453574</td>
</tr>
<tr>
<td>H</td>
<td>-0.0899162</td>
<td>-1.2444339</td>
<td>-1.3779870</td>
</tr>
<tr>
<td>C</td>
<td>-1.1308171</td>
<td>-1.4050806</td>
<td>0.5231224</td>
</tr>
<tr>
<td>H</td>
<td>-0.9387787</td>
<td>-1.0951792</td>
<td>1.5584049</td>
</tr>
<tr>
<td>H</td>
<td>-1.3701154</td>
<td>-2.4734876</td>
<td>0.5755355</td>
</tr>
<tr>
<td>C</td>
<td>-0.9806943</td>
<td>1.4938647</td>
<td>0.3606821</td>
</tr>
<tr>
<td>H</td>
<td>-1.1941477</td>
<td>1.3131823</td>
<td>1.4216044</td>
</tr>
<tr>
<td>H</td>
<td>-1.0236433</td>
<td>2.5718663</td>
<td>0.1913628</td>
</tr>
<tr>
<td>C</td>
<td>-2.3358146</td>
<td>-0.6428765</td>
<td>-0.0499868</td>
</tr>
<tr>
<td>H</td>
<td>-2.7731846</td>
<td>-1.2089190</td>
<td>-0.8822678</td>
</tr>
<tr>
<td>H</td>
<td>-3.1163601</td>
<td>-0.5745124</td>
<td>0.7187103</td>
</tr>
<tr>
<td>C</td>
<td>-1.9699699</td>
<td>0.7670394</td>
<td>-0.5442406</td>
</tr>
<tr>
<td>H</td>
<td>-1.5474492</td>
<td>0.7345369</td>
<td>-1.5558824</td>
</tr>
<tr>
<td>H</td>
<td>-2.8764956</td>
<td>1.3809489</td>
<td>-0.6164145</td>
</tr>
</tbody>
</table>

Atomic Charges:

<table>
<thead>
<tr>
<th></th>
<th>Electrostatic Mulliken</th>
<th>Natural</th>
</tr>
</thead>
<tbody>
<tr>
<td>S S1</td>
<td>-0.332</td>
<td>-0.275</td>
</tr>
<tr>
<td>C C1</td>
<td>+0.292</td>
<td>+0.220</td>
</tr>
<tr>
<td>O O1</td>
<td>-0.367</td>
<td>-0.418</td>
</tr>
<tr>
<td>C C2</td>
<td>-0.170</td>
<td>-0.220</td>
</tr>
<tr>
<td>H H1</td>
<td>+0.040</td>
<td>+0.145</td>
</tr>
<tr>
<td>H H3</td>
<td>+0.124</td>
<td>+0.149</td>
</tr>
<tr>
<td>C C3</td>
<td>+0.032</td>
<td>-0.198</td>
</tr>
<tr>
<td>H H4</td>
<td>+0.067</td>
<td>+0.113</td>
</tr>
<tr>
<td>H H5</td>
<td>+0.042</td>
<td>+0.116</td>
</tr>
<tr>
<td>C C4</td>
<td>+0.199</td>
<td>+0.031</td>
</tr>
<tr>
<td>H H2</td>
<td>+0.073</td>
<td>+0.134</td>
</tr>
<tr>
<td>H H8</td>
<td>+0.057</td>
<td>+0.139</td>
</tr>
<tr>
<td>C C5</td>
<td>-0.259</td>
<td>-0.180</td>
</tr>
<tr>
<td>H H6</td>
<td>+0.097</td>
<td>+0.106</td>
</tr>
<tr>
<td>H H10</td>
<td>+0.086</td>
<td>+0.106</td>
</tr>
<tr>
<td>C C6</td>
<td>-0.183</td>
<td>-0.215</td>
</tr>
<tr>
<td>H H9</td>
<td>+0.122</td>
<td>+0.122</td>
</tr>
<tr>
<td>H H12</td>
<td>+0.079</td>
<td>+0.125</td>
</tr>
</tbody>
</table>
Method: RB3LYP
Basis set: 6-31G**
Number of shells: 208
Number of basis functions: 618
Multiplicity: 1
Solvation: toluene [SM8]
Free Energy of Solvation: -75.7255567 kJ/mol
SCF total energy: -2396.1542883 hartrees

Cartesian Coordinates (Angstroms)

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 S</td>
<td>1.3491588</td>
<td>-2.8471042</td>
<td>-1.0393901</td>
</tr>
<tr>
<td>2 C</td>
<td>0.1040721</td>
<td>-3.1533537</td>
<td>0.0292555</td>
</tr>
<tr>
<td>3 O</td>
<td>-0.7958012</td>
<td>-4.0384500</td>
<td>-0.3616225</td>
</tr>
<tr>
<td>4 C</td>
<td>0.0511756</td>
<td>-2.4934327</td>
<td>1.3999643</td>
</tr>
<tr>
<td>5 H</td>
<td>0.6509269</td>
<td>-1.5845935</td>
<td>1.3246986</td>
</tr>
<tr>
<td>6 H</td>
<td>0.6045472</td>
<td>-3.1526959</td>
<td>2.0867197</td>
</tr>
<tr>
<td>7 C</td>
<td>-1.3368626</td>
<td>-2.1729564</td>
<td>1.9856477</td>
</tr>
<tr>
<td>8 H</td>
<td>-1.9809033</td>
<td>-1.7587246</td>
<td>1.2027872</td>
</tr>
<tr>
<td>9 H</td>
<td>-1.2144788</td>
<td>-1.3703357</td>
<td>2.7217124</td>
</tr>
<tr>
<td>10 C</td>
<td>-2.0354421</td>
<td>-4.4246774</td>
<td>0.3145382</td>
</tr>
<tr>
<td>11 H</td>
<td>-2.7848296</td>
<td>-3.6668164</td>
<td>0.0669271</td>
</tr>
<tr>
<td>12 H</td>
<td>-2.2929019</td>
<td>-5.3466709</td>
<td>-0.2093948</td>
</tr>
<tr>
<td>13 C</td>
<td>-2.0192545</td>
<td>-3.3756158</td>
<td>2.6522934</td>
</tr>
<tr>
<td>14 H</td>
<td>-1.5801047</td>
<td>-3.5568173</td>
<td>3.6412218</td>
</tr>
<tr>
<td>15 H</td>
<td>-3.0747983</td>
<td>-3.1314246</td>
<td>2.8228422</td>
</tr>
<tr>
<td>16 C</td>
<td>-1.9139575</td>
<td>-4.6614815</td>
<td>1.8141225</td>
</tr>
<tr>
<td>17 H</td>
<td>-0.9683074</td>
<td>-5.1846144</td>
<td>2.0023687</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>S1</td>
<td>-0.335</td>
<td>-0.274</td>
</tr>
<tr>
<td>20</td>
<td>N2</td>
<td>-0.347</td>
<td>-0.407</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>H3</td>
<td>+0.140</td>
<td>+0.164</td>
</tr>
<tr>
<td>7</td>
<td>C3</td>
<td>+0.027</td>
<td>-0.211</td>
</tr>
<tr>
<td>8</td>
<td>H4</td>
<td>+0.063</td>
<td>+0.115</td>
</tr>
<tr>
<td>9</td>
<td>H5</td>
<td>+0.057</td>
<td>+0.129</td>
</tr>
<tr>
<td>10</td>
<td>C4</td>
<td>-0.249</td>
<td>-0.184</td>
</tr>
<tr>
<td>11</td>
<td>H6</td>
<td>+0.092</td>
<td>+0.138</td>
</tr>
<tr>
<td>12</td>
<td>H8</td>
<td>+0.068</td>
<td>+0.148</td>
</tr>
<tr>
<td>13</td>
<td>C5</td>
<td>-0.482</td>
<td>-0.211</td>
</tr>
<tr>
<td>14</td>
<td>H7</td>
<td>+0.097</td>
<td>+0.111</td>
</tr>
<tr>
<td>15</td>
<td>H10</td>
<td>+0.096</td>
<td>+0.114</td>
</tr>
<tr>
<td>16</td>
<td>C6</td>
<td>+0.183</td>
<td>+0.019</td>
</tr>
<tr>
<td>17</td>
<td>H2</td>
<td>+0.092</td>
<td>+0.138</td>
</tr>
<tr>
<td>18</td>
<td>H9</td>
<td>+0.068</td>
<td>+0.148</td>
</tr>
<tr>
<td>19</td>
<td>C7</td>
<td>-0.249</td>
<td>-0.184</td>
</tr>
<tr>
<td>20</td>
<td>N1</td>
<td>-0.330</td>
<td>-0.534</td>
</tr>
<tr>
<td>21</td>
<td>C8</td>
<td>+0.309</td>
<td>+0.343</td>
</tr>
<tr>
<td>22</td>
<td>N2</td>
<td>-0.171</td>
<td>-0.222</td>
</tr>
<tr>
<td>23</td>
<td>C9</td>
<td>+0.149</td>
<td>+0.381</td>
</tr>
<tr>
<td>24</td>
<td>C10</td>
<td>-0.256</td>
<td>-0.651</td>
</tr>
<tr>
<td>25</td>
<td>C11</td>
<td>+0.259</td>
<td>+0.280</td>
</tr>
<tr>
<td>26</td>
<td>C12</td>
<td>+0.309</td>
<td>+0.343</td>
</tr>
<tr>
<td>27</td>
<td>C13</td>
<td>-0.332</td>
<td>-0.086</td>
</tr>
<tr>
<td>28</td>
<td>C14</td>
<td>+0.199</td>
<td>-0.067</td>
</tr>
<tr>
<td>29</td>
<td>C15</td>
<td>+0.174</td>
<td>-0.048</td>
</tr>
<tr>
<td>30</td>
<td>H14</td>
<td>+0.164</td>
<td>+0.132</td>
</tr>
<tr>
<td>31</td>
<td>H16</td>
<td>+0.162</td>
<td>+0.140</td>
</tr>
<tr>
<td>32</td>
<td>H19</td>
<td>+0.190</td>
<td>+0.121</td>
</tr>
<tr>
<td>33</td>
<td>C16</td>
<td>+0.205</td>
<td>+0.074</td>
</tr>
<tr>
<td>34</td>
<td>C17</td>
<td>-0.175</td>
<td>-0.184</td>
</tr>
<tr>
<td>35</td>
<td>C18</td>
<td>-0.270</td>
<td>-0.184</td>
</tr>
<tr>
<td>36</td>
<td>C19</td>
<td>-0.132</td>
<td>-0.174</td>
</tr>
<tr>
<td>37</td>
<td>C20</td>
<td>-0.118</td>
<td>-0.180</td>
</tr>
<tr>
<td>38</td>
<td>C21</td>
<td>-0.259</td>
<td>-0.163</td>
</tr>
<tr>
<td>39</td>
<td>H13</td>
<td>+0.102</td>
<td>+0.098</td>
</tr>
<tr>
<td>40</td>
<td>H20</td>
<td>+0.122</td>
<td>+0.098</td>
</tr>
<tr>
<td>41</td>
<td>H21</td>
<td>+0.091</td>
<td>+0.090</td>
</tr>
<tr>
<td>42</td>
<td>H22</td>
<td>+0.093</td>
<td>+0.092</td>
</tr>
<tr>
<td>43</td>
<td>H23</td>
<td>+0.091</td>
<td>+0.089</td>
</tr>
<tr>
<td>44</td>
<td>H24</td>
<td>+0.046</td>
<td>+0.131</td>
</tr>
<tr>
<td>45</td>
<td>H25</td>
<td>+0.086</td>
<td>+0.093</td>
</tr>
<tr>
<td>46</td>
<td>H26</td>
<td>+0.097</td>
<td>+0.095</td>
</tr>
<tr>
<td>47</td>
<td>H27</td>
<td>+0.073</td>
<td>+0.091</td>
</tr>
<tr>
<td>48</td>
<td>H28</td>
<td>+0.060</td>
<td>+0.103</td>
</tr>
<tr>
<td>49</td>
<td>H29</td>
<td>+0.092</td>
<td>+0.108</td>
</tr>
<tr>
<td>50</td>
<td>S2</td>
<td>-0.332</td>
<td>-0.326</td>
</tr>
<tr>
<td>51</td>
<td>C20</td>
<td>+0.439</td>
<td>+0.792</td>
</tr>
<tr>
<td>52</td>
<td>C21</td>
<td>+0.375</td>
<td>+0.789</td>
</tr>
<tr>
<td>53</td>
<td>F1</td>
<td>-0.198</td>
<td>-0.264</td>
</tr>
<tr>
<td>54</td>
<td>F2</td>
<td>-0.172</td>
<td>-0.264</td>
</tr>
</tbody>
</table>
Method: RB3LYP
Basis set: 6-31G**
Number of shells: 63
Number of basis functions: 174
Multiplicity: 1
Solvation: toluene [SM8]
Free Energy of Solvation: -30.4982395 kJ/mol
SCF total energy: -708.1027241 hartrees

Cartesian Coordinates (Angstroms)

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1</td>
<td>-2.407090</td>
<td>0.4476469</td>
<td>0.4665337</td>
</tr>
<tr>
<td>C1</td>
<td>-1.364326</td>
<td>0.2182883</td>
<td>-0.0346220</td>
</tr>
<tr>
<td>S1</td>
<td>-0.6590842</td>
<td>-1.4456467</td>
<td>0.1632378</td>
</tr>
<tr>
<td>C2</td>
<td>-0.5678713</td>
<td>1.2364792</td>
<td>-0.8391372</td>
</tr>
<tr>
<td>H1</td>
<td>-1.2652899</td>
<td>2.0436255</td>
<td>-1.0823049</td>
</tr>
<tr>
<td>H3</td>
<td>-0.2600530</td>
<td>0.7761104</td>
<td>-1.7842466</td>
</tr>
<tr>
<td>C3</td>
<td>0.6672926</td>
<td>1.8171488</td>
<td>-0.0978687</td>
</tr>
<tr>
<td>H5</td>
<td>0.3247390</td>
<td>2.6441594</td>
<td>0.5354685</td>
</tr>
<tr>
<td>H6</td>
<td>1.3323580</td>
<td>2.2605906</td>
<td>-0.8505440</td>
</tr>
<tr>
<td>C4</td>
<td>1.4568502</td>
<td>0.8457055</td>
<td>0.7952601</td>
</tr>
<tr>
<td>H4</td>
<td>0.8243155</td>
<td>0.5423431</td>
<td>1.6384396</td>
</tr>
<tr>
<td>H7</td>
<td>2.2962033</td>
<td>1.3981341</td>
<td>1.2362081</td>
</tr>
<tr>
<td>C5</td>
<td>2.0192904</td>
<td>-0.4191545</td>
<td>0.1266987</td>
</tr>
<tr>
<td>H8</td>
<td>2.5044339</td>
<td>-1.0187639</td>
<td>0.9063752</td>
</tr>
<tr>
<td>H9</td>
<td>2.8072701</td>
<td>-0.1458773</td>
<td>-0.5893921</td>
</tr>
<tr>
<td>C6</td>
<td>1.0018437</td>
<td>-1.3042781</td>
<td>-0.6216590</td>
</tr>
<tr>
<td>H2</td>
<td>0.8669112</td>
<td>-0.9785480</td>
<td>-1.6564981</td>
</tr>
</tbody>
</table>
Atomic Charges:

<table>
<thead>
<tr>
<th>Atomic Number</th>
<th>Atom Type</th>
<th>Electrostatic</th>
<th>Mulliken</th>
<th>Natural</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O1</td>
<td>-0.417</td>
<td>-0.425</td>
<td>-0.547</td>
</tr>
<tr>
<td>2</td>
<td>C1</td>
<td>+0.501</td>
<td>+0.246</td>
<td>+0.402</td>
</tr>
<tr>
<td>3</td>
<td>S1</td>
<td>-0.202</td>
<td>+0.083</td>
<td>+0.211</td>
</tr>
<tr>
<td>4</td>
<td>C2</td>
<td>-0.438</td>
<td>-0.241</td>
<td>-0.565</td>
</tr>
<tr>
<td>5</td>
<td>H1</td>
<td>+0.143</td>
<td>+0.136</td>
<td>+0.273</td>
</tr>
<tr>
<td>6</td>
<td>H3</td>
<td>+0.160</td>
<td>+0.133</td>
<td>+0.255</td>
</tr>
<tr>
<td>7</td>
<td>C3</td>
<td>+0.058</td>
<td>-0.180</td>
<td>-0.464</td>
</tr>
<tr>
<td>8</td>
<td>H5</td>
<td>+0.051</td>
<td>+0.118</td>
<td>+0.251</td>
</tr>
<tr>
<td>9</td>
<td>H6</td>
<td>+0.047</td>
<td>+0.112</td>
<td>+0.245</td>
</tr>
<tr>
<td>10</td>
<td>C4</td>
<td>-0.182</td>
<td>-0.205</td>
<td>-0.479</td>
</tr>
<tr>
<td>11</td>
<td>H4</td>
<td>+0.095</td>
<td>+0.121</td>
<td>+0.244</td>
</tr>
<tr>
<td>12</td>
<td>H7</td>
<td>+0.061</td>
<td>+0.105</td>
<td>+0.253</td>
</tr>
<tr>
<td>13</td>
<td>C5</td>
<td>-0.110</td>
<td>-0.162</td>
<td>-0.481</td>
</tr>
<tr>
<td>14</td>
<td>H8</td>
<td>+0.081</td>
<td>+0.113</td>
<td>+0.249</td>
</tr>
<tr>
<td>15</td>
<td>H9</td>
<td>+0.072</td>
<td>+0.111</td>
<td>+0.245</td>
</tr>
<tr>
<td>16</td>
<td>C6</td>
<td>-0.165</td>
<td>-0.363</td>
<td>-0.615</td>
</tr>
<tr>
<td>17</td>
<td>H2</td>
<td>+0.103</td>
<td>+0.150</td>
<td>+0.249</td>
</tr>
<tr>
<td>18</td>
<td>H11</td>
<td>+0.141</td>
<td>+0.149</td>
<td>+0.272</td>
</tr>
</tbody>
</table>

tCL + TU

Method: RB3LYP
Basis set: 6-31G**
Number of shells: 208
Number of basis functions: 618
Multiplicity: 1
Solvation: toluene [SM8]
Free Energy of Solvation: -69.9213362 kJ/mol
SCF total energy: -2396.1749852 hartrees

Cartesian Coordinates (Angstroms)

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 C C1</td>
<td>4.4731186</td>
<td>0.5180586</td>
<td>0.0196382</td>
</tr>
<tr>
<td>2 H H2</td>
<td>4.6041948</td>
<td>1.5502341</td>
<td>0.3587454</td>
</tr>
<tr>
<td>3 N N1</td>
<td>3.0312180</td>
<td>0.2853340</td>
<td>-0.0116268</td>
</tr>
<tr>
<td>4 H H3</td>
<td>2.7365844</td>
<td>-0.6865955</td>
<td>-0.0390605</td>
</tr>
<tr>
<td>5 C C2</td>
<td>2.0692538</td>
<td>1.2378774</td>
<td>-0.1276174</td>
</tr>
<tr>
<td>6 S S1</td>
<td>2.3885880</td>
<td>2.8902985</td>
<td>-0.1574533</td>
</tr>
<tr>
<td>7 N N2</td>
<td>0.8164257</td>
<td>0.6643585</td>
<td>-0.2366545</td>
</tr>
<tr>
<td>8 H H5</td>
<td>2.7365844</td>
<td>-0.6865955</td>
<td>-0.0390605</td>
</tr>
<tr>
<td>9 O O1</td>
<td>1.1349538</td>
<td>-2.3399877</td>
<td>-0.4870397</td>
</tr>
<tr>
<td>10 C C4</td>
<td>0.2301512</td>
<td>-3.0407593</td>
<td>-0.0464579</td>
</tr>
<tr>
<td>11 S S2</td>
<td>-0.4137692</td>
<td>-2.5594007</td>
<td>1.5500226</td>
</tr>
<tr>
<td>12 C C5</td>
<td>-0.2546244</td>
<td>-4.2581078</td>
<td>-0.8157840</td>
</tr>
<tr>
<td>13 H H10</td>
<td>0.1812353</td>
<td>-5.1485753</td>
<td>-0.3411537</td>
</tr>
<tr>
<td>14 H H11</td>
<td>0.2141627</td>
<td>-4.1652256</td>
<td>-1.8001561</td>
</tr>
<tr>
<td>15 C C6</td>
<td>-1.7858473</td>
<td>-4.4070522</td>
<td>-0.9354245</td>
</tr>
<tr>
<td>16 H H13</td>
<td>-2.0102573</td>
<td>-4.8444159</td>
<td>-1.9148458</td>
</tr>
<tr>
<td>17 H H14</td>
<td>-2.2549797</td>
<td>-3.4162478</td>
<td>-0.9438794</td>
</tr>
<tr>
<td>18 C C7</td>
<td>-2.4304378</td>
<td>-5.2860921</td>
<td>0.1479526</td>
</tr>
<tr>
<td>19 H H15</td>
<td>-2.2105830</td>
<td>-3.3413674</td>
<td>-0.0609731</td>
</tr>
<tr>
<td>20 H H16</td>
<td>-3.5199824</td>
<td>-5.1787666</td>
<td>0.0700652</td>
</tr>
<tr>
<td>21 C C8</td>
<td>-1.9755299</td>
<td>-3.4809374</td>
<td>1.9247270</td>
</tr>
<tr>
<td>22 H H9</td>
<td>-2.0610836</td>
<td>-3.3262319</td>
<td>3.0049830</td>
</tr>
<tr>
<td>23 H H18</td>
<td>-2.8030420</td>
<td>-2.9467176</td>
<td>1.4487483</td>
</tr>
<tr>
<td>24 C C9</td>
<td>-1.9932265</td>
<td>-4.9761572</td>
<td>1.5898458</td>
</tr>
<tr>
<td>25 H H17</td>
<td>-2.6885994</td>
<td>-5.4714885</td>
<td>2.2792491</td>
</tr>
<tr>
<td>26 H H19</td>
<td>-1.0062098</td>
<td>-5.4054045</td>
<td>1.8009996</td>
</tr>
<tr>
<td>27 C C10</td>
<td>5.1292800</td>
<td>-0.4376107</td>
<td>1.0288091</td>
</tr>
<tr>
<td>28 H H1</td>
<td>4.9004009</td>
<td>-1.4778860</td>
<td>0.7456754</td>
</tr>
<tr>
<td>29 H H12</td>
<td>4.6934901</td>
<td>-0.2763367</td>
<td>2.0224205</td>
</tr>
<tr>
<td>30 C C11</td>
<td>6.6538336</td>
<td>-0.2473069</td>
<td>1.0684747</td>
</tr>
<tr>
<td>31 H H21</td>
<td>7.0994169</td>
<td>-0.9673584</td>
<td>1.7660856</td>
</tr>
<tr>
<td>32 H H22</td>
<td>6.8798170</td>
<td>0.7532006</td>
<td>1.4649746</td>
</tr>
<tr>
<td>33 C C12</td>
<td>5.0993587</td>
<td>0.3727727</td>
<td>-1.3790692</td>
</tr>
<tr>
<td>34 H H4</td>
<td>4.8667792</td>
<td>-0.6296586</td>
<td>-1.7699556</td>
</tr>
<tr>
<td>35 H H24</td>
<td>4.6367138</td>
<td>1.0990284</td>
<td>-2.0566580</td>
</tr>
<tr>
<td>36 C C13</td>
<td>6.6228848</td>
<td>0.5652278</td>
<td>-1.3316673</td>
</tr>
<tr>
<td>37 H H23</td>
<td>7.0476424</td>
<td>0.4197086</td>
<td>-2.3327632</td>
</tr>
<tr>
<td>38 H H26</td>
<td>6.8477029</td>
<td>1.6034436</td>
<td>-1.0478238</td>
</tr>
<tr>
<td>39 C C14</td>
<td>7.2806336</td>
<td>-0.3906667</td>
<td>-0.3261487</td>
</tr>
<tr>
<td>40 H H25</td>
<td>7.1569211</td>
<td>-1.4267938</td>
<td>-0.6755785</td>
</tr>
<tr>
<td>41 H H28</td>
<td>8.3610942</td>
<td>-0.2058237</td>
<td>-0.2753113</td>
</tr>
<tr>
<td>42 C C3</td>
<td>-0.4741850</td>
<td>1.2027422</td>
<td>-0.2494049</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>
| 43 | C | C15
 | | -3.1869498 | 1.9923376 | -0.1992111 |
| 44 | C | C16
 | | -1.4863032 | 0.3506145 | -0.7159586 |
| 45 | C | C17
 | | -0.8332059 | 2.4732486 | 0.2298223 |
| 46 | C | C18
 | | -2.1754776 | 2.8508162 | 0.2368277 |
| 47 | H | H6
 | | -1.2193286 | -0.6261543 | 0.11063270 |
| 48 | H | H7
 | | 0.0695428 | 3.1440754 | 0.5966148 |
| 49 | H | H27
 | | -4.2260473 | 2.2932836 | 0.1605675 |
| 50 | C | C20
 | | -2.5399429 | 4.2712677 | 1.2426064 |
| 51 | F | F1
 | | 1.6812562 | 4.6996674 | 1.6348392 |
| 52 | F | F2
 | | 3.7800895 | 4.2712677 | 1.2426064 |

Atomic Charges:

<table>
<thead>
<tr>
<th></th>
<th>Electrostatic Mulliken</th>
<th>Natural</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>+0.449</td>
<td>+0.077</td>
</tr>
<tr>
<td>H2</td>
<td>+0.014</td>
<td>+0.131</td>
</tr>
<tr>
<td>N1</td>
<td>-0.627</td>
<td>-0.539</td>
</tr>
<tr>
<td>H3</td>
<td>+0.368</td>
<td>+0.285</td>
</tr>
<tr>
<td>C2</td>
<td>+0.435</td>
<td>+0.383</td>
</tr>
<tr>
<td>S1</td>
<td>-0.413</td>
<td>-0.337</td>
</tr>
<tr>
<td>N2</td>
<td>-0.559</td>
<td>-0.670</td>
</tr>
<tr>
<td>H5</td>
<td>+0.391</td>
<td>+0.311</td>
</tr>
<tr>
<td>O1</td>
<td>-0.498</td>
<td>-0.469</td>
</tr>
<tr>
<td>C4</td>
<td>+0.500</td>
<td>+0.258</td>
</tr>
<tr>
<td>S2</td>
<td>-0.209</td>
<td>+0.121</td>
</tr>
<tr>
<td>C5</td>
<td>-0.330</td>
<td>-0.242</td>
</tr>
<tr>
<td>H10</td>
<td>+0.161</td>
<td>+0.156</td>
</tr>
<tr>
<td>H11</td>
<td>+0.139</td>
<td>+0.146</td>
</tr>
<tr>
<td>C6</td>
<td>-0.110</td>
<td>-0.215</td>
</tr>
<tr>
<td>H13</td>
<td>+0.080</td>
<td>+0.125</td>
</tr>
<tr>
<td>H14</td>
<td>+0.103</td>
<td>+0.116</td>
</tr>
<tr>
<td>C7</td>
<td>-0.075</td>
<td>-0.183</td>
</tr>
<tr>
<td>H15</td>
<td>+0.069</td>
<td>+0.109</td>
</tr>
<tr>
<td>H16</td>
<td>+0.069</td>
<td>+0.109</td>
</tr>
<tr>
<td>C8</td>
<td>-0.086</td>
<td>-0.363</td>
</tr>
<tr>
<td>H9</td>
<td>+0.144</td>
<td>+0.161</td>
</tr>
<tr>
<td>C10</td>
<td>+0.129</td>
<td>+0.159</td>
</tr>
<tr>
<td>H18</td>
<td>+0.129</td>
<td>+0.159</td>
</tr>
<tr>
<td>C9</td>
<td>-0.267</td>
<td>-0.190</td>
</tr>
<tr>
<td>H17</td>
<td>+0.107</td>
<td>+0.125</td>
</tr>
<tr>
<td>H19</td>
<td>+0.120</td>
<td>+0.122</td>
</tr>
<tr>
<td>C10</td>
<td>-0.292</td>
<td>-0.183</td>
</tr>
<tr>
<td>H1</td>
<td>+0.108</td>
<td>+0.090</td>
</tr>
<tr>
<td>H12</td>
<td>+0.091</td>
<td>+0.106</td>
</tr>
<tr>
<td>C11</td>
<td>-0.163</td>
<td>-0.183</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>31 H21</td>
<td>+0.084</td>
<td>+0.094</td>
</tr>
<tr>
<td>32 H22</td>
<td>+0.100</td>
<td>+0.098</td>
</tr>
<tr>
<td>33 C12</td>
<td>-0.285</td>
<td>-0.161</td>
</tr>
<tr>
<td>34 H4</td>
<td>+0.109</td>
<td>+0.086</td>
</tr>
<tr>
<td>35 H24</td>
<td>+0.089</td>
<td>+0.108</td>
</tr>
<tr>
<td>36 C13</td>
<td>-0.193</td>
<td>-0.184</td>
</tr>
<tr>
<td>37 H23</td>
<td>+0.095</td>
<td>+0.092</td>
</tr>
<tr>
<td>38 H26</td>
<td>+0.104</td>
<td>+0.098</td>
</tr>
<tr>
<td>39 C14</td>
<td>-0.193</td>
<td>-0.174</td>
</tr>
<tr>
<td>40 H25</td>
<td>+0.104</td>
<td>+0.090</td>
</tr>
<tr>
<td>41 H28</td>
<td>+0.083</td>
<td>+0.090</td>
</tr>
<tr>
<td>42 C3</td>
<td>+0.467</td>
<td>+0.343</td>
</tr>
<tr>
<td>43 C15</td>
<td>-0.340</td>
<td>-0.120</td>
</tr>
<tr>
<td>44 C16</td>
<td>-0.482</td>
<td>-0.133</td>
</tr>
<tr>
<td>45 C17</td>
<td>-0.352</td>
<td>-0.080</td>
</tr>
<tr>
<td>46 C18</td>
<td>+0.162</td>
<td>-0.071</td>
</tr>
<tr>
<td>47 C19</td>
<td>+0.242</td>
<td>-0.047</td>
</tr>
<tr>
<td>48 H6</td>
<td>+0.210</td>
<td>+0.118</td>
</tr>
<tr>
<td>49 H7</td>
<td>+0.175</td>
<td>+0.138</td>
</tr>
<tr>
<td>50 H27</td>
<td>+0.174</td>
<td>+0.120</td>
</tr>
<tr>
<td>51 C20</td>
<td>+0.396</td>
<td>+0.791</td>
</tr>
<tr>
<td>52 C21</td>
<td>+0.335</td>
<td>+0.792</td>
</tr>
<tr>
<td>53 F1</td>
<td>-0.154</td>
<td>-0.268</td>
</tr>
<tr>
<td>54 F2</td>
<td>-0.164</td>
<td>-0.274</td>
</tr>
<tr>
<td>55 F3</td>
<td>-0.156</td>
<td>-0.261</td>
</tr>
<tr>
<td>56 F4</td>
<td>-0.149</td>
<td>-0.265</td>
</tr>
<tr>
<td>57 F5</td>
<td>-0.127</td>
<td>-0.265</td>
</tr>
<tr>
<td>58 F6</td>
<td>-0.185</td>
<td>-0.273</td>
</tr>
</tbody>
</table>