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ABSTRACT

Abstract

The oceanographic research and industrial communities have a persistent de-

mand for detailed three dimensional sea floor maps which convey both shape and

texture. Such data products are used for archeology, geology, ship inspection, bi-

ology, and habitat classification. There are a variety of sensing modalities and

processing techniques available to produce these maps and each have their own

potential benefits and related challenges. Multibeam sonar and stereo vision are

such two sensors with complementary strengths making them ideally suited for

data fusion. Data fusion approaches however, have seen only limited application

to underwater mapping and there are no established methods for creating hybrid,

3D reconstructions from two underwater sensing modalities. This thesis develops

a processing pipeline to synthesize hybrid maps from multi-modal survey data. It

is helpful to think of this processing pipeline as having two distinct phases: Nav-

igation Refinement and Map Construction. This thesis extends existing work in

underwater navigation refinement by incorporating methods which increase mea-

surement consistency between both multibeam and camera. The result is a self

consistent 3D point cloud comprised of camera and multibeam measurements. In

map construction phase, a subset of the multi-modal point cloud retaining the

best characteristics of each sensor is selected to be part of the final map. To

quantify the desired traits of of a map several characteristics of a useful map are

distilled into specific criteria. The different ways that hybrid maps can address

these criteria provides justification for producing them as an alternative to current

methodologies. The processing pipeline implements multi-modal data fusion and

outlier rejection with emphasis on different aspects of map fidelity. The result-

ing point cloud is evaluated in terms of how well it addresses the map criteria.

The final hybrid maps retain the strengths of both sensors and show significant

improvement over the single modality maps and naively assembled multi-modal



maps.
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CHAPTER 1

Introduction

1.1 Problem Statement

The oceanographic research and industrial communities have a persistent need

for high resolution three dimensional sea floor maps which convey both shape and

texture. Specialized sea floor mapping techniques are used for marine archeology

[1–4], marine geology [5–7], ship inspection [8, 9], and ecological monitoring [10–13].

Stereo cameras and multibeam sonars are among the instruments which can be used

to make these maps. Both have their respective advantages and drawbacks. In

the land robotics community, it is common to use complimentary mapping sensors

and combine their measurements using data fusion techniques [14, 15]. This data

fusion approach has seen only limited application to underwater mapping [16–

18], and there are no established methods for creating hybrid, 3D reconstructions

from two underwater sensing modalities. The goal of this thesis is to develop a

method that integrates multibeam sonar and stereo vision data into a common

navigation and mapping system to create hybrid maps. These hybrid maps serve

the purpose of reducing multi-modality mapping data to an easily interpreted form

while preserving as much detail as possible.

1.2 Background

Maps of marine environments provide vital insight for scientists and engineers.

The last couple of decades have seen a boom in technologies which provide means

to create increasingly accurate and detailed maps. These methods are based on

a variety of sensing platforms including ships, tow-sleds, divers and increasingly

underwater robots. A good overview of modern mapping platforms is given in [19].

Robotic platforms are of particular interest because they are able to make

detailed observations of the underwater environment using a variety of sensors.
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Figure 1. Remotely operated vehicle Hercules. Images of Hercules being deployed using
a crane (left) and surveying a shipwreck (right).

They can travel to areas too deep, hot, or otherwise extreme for human divers

and carry out more detailed and precise measurements than ship based platforms.

They can acquire optical imagery of the sea floor which can’t obtained from the

surface due high rate of light attenuation in water.

These robots can be either Autonomous Underwater Vehicles (AUVs), which

typically execute pre-programmed missions themselves, or ROVs which are con-

trolled directly by a user throughout the course of the mission (Fig. 1). Mapping

specific robots carry a suite of navigation sensors which measure depth, attitude,

speed and relative position, as well as mapping sensors which make acoustic or

optical range and backscatter measurements. They can also have sophisticated

positioning and control systems in order to hold position or carry out structured

surveys. Sites of interest can be traversed according to specific instructions to

guarantee a certain amount of coverage (Fig. 2).

Robotic platforms are often equipped with several mapping modalities. This

lends flexibility to the mapping system since each modality has its own strengths.

The application of these sensors to navigation and mapping have been researched

thoroughly by researchers in land robotics, computer vision, and photogrammetry.

They are also well researched and understood in the underwater environment.
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Figure 2. Survey tracklines. A typical underwater vehicle survey follows a back and
forth “mowing the lawn” with trackline spacing that provides overlapping coverage for
mapping sensors. The figure shows the tracklines in red, overlapping image footprints
in red and a multibeam sonar map as the underlay. Notice the final trackline running
orthogonal to the rest of the survey. This “loop closure”, ensures that some terrain will
be observed more than once in order to constrain drift in navigation.

Generally, a single survey will be executed using one instrument. Fusion of

data from these sensors is just beginning to be explored in the underwater context.

Kunz developed a system for navigation refinement using both sonar and camera

[17]. Hurtos addressed the issue of finding the offsets between a camera system

and a multibeam sonar which is critical to fusing their data [16]. To date however,

there is no established method for created hybrid maps comprised of 3D structure

from fused stereo and multibeam sonar range data.

This thesis develops a processing pipeline to synthesize hybrid maps from

multi-modal survey data. It is helpful to think of this processing pipeline as hav-

ing two distinct phases. The first is navigation refinement, where data from

navigation sensors are corrected to enforce consistency between mapping mea-

surements. The second phase is map construction where a selected subset of

mapping data is projected into a common coordinate frame to construct a map.

3



1.3 Underwater Navigation

Sensor data is assembled into maps using robot position data. The most basic

requirement of navigation data is that it is at least as good as the mapping sensors

so that it does not become the dominant source of error in the map. Therefore,

a lot of research has gone into improving underwater vehicle navigation so that it

keeps pace with the improvements in mapping sensor resolution.

1.3.1 Dead Reckoning

Vehicle navigation data is acquired using a number of sensors to measure at-

titude, depth and velocity. The vector velocity can be is integrated over time to

compute the distance traveled by the vehicle relative to its starting point. This

relative position measurement can be combined with attitude and depth mea-

surements can be used to form a 6 Degrees of Freedom (DOF) “dead reckoned”

position estimate for the vehicle at any time. Because the random error in the

measurements is also integrated over time, it accumulates and causes the trajec-

tory estimate to drift from the true trajectory. Over the course of a survey, this

type of error begins to dominate mapping sensor error. When the navigation data

places the vehicle in an incorrect location, mapping measurements are also incor-

rectly localized. If the localization error is greater than the sensor precision, the

measurements will appear misaligned.

1.3.2 Direct Measurement

Absolute position measurements such as GPS position are not available. So

other methods have been developed to directly measure robot position and con-

strain navigation drift underwater. Long Baseline (LBL) acoustic systems are the

underwater analog to GPS. A number of acoustic beacons are placed around a

survey site. The vehicle is able to range to the beacons and determine its absolute

position on the site. This approach has been used for underwater mapping in the

detection of hydrothermal vent plumes as well as microbathymetric mapping of an

4



ancient shipwreck [20–22]. While high frequency LBL systems can localize with

centimeter level accuracy without drift, the systems are expensive, cumbersome to

deploy and not practical for all survey locations.

A less cumbersome alternative to LBL systems is Ultra Short Baseline (USBL)

[23]. This method computes a position using range and bearing measurements from

the ship to vehicle. While there is no drift, this method is susceptible to noise an

typically offers accuracies between 0.1% and 1.5% of water depth.

1.3.3 Algorithmic Refinement

Algorithmic approaches provide an alternative to direct measurements for ve-

hicle navigation refinement. The main advantages are that corrections can be

applied in post processing and the methods do not rely on sensors external to the

vehicle. In robotics, refining vehicle navigation is coupled with building a map of

the environment. This is known as SLAM. SLAM utilizes the main tenants of

estimation theory to maintain an estimate of the robot’s pose history as well as a

map of its surroundings with accuracy that exceeds dead reckoned vehicle position

estimates. This is by done enforcing consistency between the robot trackline and

locations of repeated observations. Recent advances in SLAM research make large

scale and repeatable surveys more tractable than ever for all types of underwater

surveys. SLAM is now considered a solved problem by its foremost researchers but

there are still open research questions that arise in specific applications. For exam-

ple, underwater navigation presents challenges such as survey size, unstructured

scenes and limited features.

Several papers have addressed SLAM problems specific to underwater naviga-

tion and mapping. Roman creates a bathymetric map from multibeam sonar data

by assembling sonar pings into submaps using a Kalman framework for filtering

the navigation data. The submaps are used to constrain navigation drift when

sections of the sea floor are re-observed [24, 25]. Eustice and Mahon both filter the

navigation data using a pose based information filter and visual data to constrain
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the robot pose [26, 27]. Barkby uses the principle of particle filtering to estimate

robot pose and assemble a multibeam sonar based map [28, 29].

The SLAM examples mentioned above fuse data from multiple navigation sen-

sors but only one mapping sensor to arrive at a final refined navigation solution

which produces a self consistent map. In order to create a trajectory that maxi-

mizes consistency from two mapping sensors, both types of measurements must be

used in the constraint network. Several examples of this have been investigated.

Fallon fuses sidescan sonar and acoustic ranging within common navigation con-

straint network [30]. Hover et al and Kunz both solve for vehicle trajectories using

constraints from multibeam sonar and monocular cameras [9, 17]. This concept is

vital in aligning 3D structure from multibeam sonar and stereo cameras to create

the proposed hybrid maps.

1.4 Mapping

The purpose of a map is to provide a meaningful reduction of the survey data

for the end user. A scientist is interested in both structure and texture of the scene

and makes interpretations based on colors, shapes, sizes, positions, so the map

should be as metrically accurate as possible and easily texture mapped. In gen-

eral, maps are composed of scene measurements projected into a common spatial

frame of reference. There are two basic ways of producing maps for our purposes.

The first is to optimize the map in SLAM or Structure from Motion (SFM) [31].

This means that navigation and mapping are simultaneously refined and the map

is comprised of strictly the measurements used for navigation refinement. The

second is to refine the vehicle poses using SLAM and then use the poses only

to project environmental measurements into the common reference frame, this is

known as mapping with known poses [32]. For the purposes of multi-modal map-

ping, the latter technique allows more flexibility to use instruments which don’t

lend themselves to probabilistic mapping easily and to create a map where two

sensors can mutually reinforce each other [15].
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1.4.1 Probabilistic Mapping

A straight forward approach to SLAM based mapping is to simply use SLAM

solution’s map. This map can be an occupancy grid where the map is a grid and

cells are populated with the probability that something exists there [32] such as a

hydrothermal vent plume [33]. Or it can be a sparse set of landmarks such as trees

with compact descriptors [34]. These maps contain well localized information, but

are highly abstracted. The level of abstraction is ideal for a autonomous mission

planning but can be too abstract for detailed scientific inquiry.

A more informative map should be comprised of a 3D mesh or 2.5D gridded

height map to convey the structure and a photo-realistic overlay to supply textural

information. Barkby creates a probabilistic height map from multibeam sonar data

alone using a non feature based particle filter [35]. SFM [31, 36, 37] approaches

maintain a large enough number of sparse features that a detailed 3D mesh which

can be easily texture mapped is a direct result. However, not all types of mapping

data are suited to feature-based estimation frameworks. In particular sonar range

data is more suited for pose based SLAM techniques. To ensure mutual alignment

of the camera and the multibeam measurements, they must be incorporated into

the same navigation refinement framework for estimating vehicle poses. This re-

quires a navigation refinement system which is flexible enough to incorporate the

feature based stereo constraints and pose based multibeam constraints. After the

poses have been estimated, then it is possible to construct the map from the known

poses.

1.4.2 Mapping with Known Poses

Mapping with known poses gives particular control over the map character-

istics such as point density and blending techniques since the map is created in-

dependently of the navigation solution. When mapping with known poses, the

map making process is distinct from the robot pose estimation process. There

are a few instances of this technique being used in underwater mapping where

7



the primary goal is photo-realistic scene models. Johnson-Roberson creates photo-

realistic scene models with high point density, using the poses found during a

view-based SLAM solution [38, 39]. [40] estimates the camera trajectory and then

computes a dense stereo correspondence map to create a dense scene reconstruc-

tion.

1.5 Justification for Use of Hybrid Maps

Currently there are no established methods which create hybridized 3D re-

constructions from multibeam sonar and optical imagery for underwater mapping.

However, since both modalities are readily available on mapping ROVs and AUVs,

it is advantageous to present both data sets in a common mapping framework which

incorporates the best attributes of each sensor. The complementary strengths of

the sensors are related to operational range, scale, and spatial resolution. Their

complimentary nature ideally suits them for fusion into a hybrid map to retain the

best characteristics of each sensor.

Optimal operating scales vary between the two sensors. A multibeam sonar

can be used to map at a wide range of scales, while a stereo camera system is far

less flexible. The operational range of our particular multibeam is 1m to 20m, this

coupled with its 90◦ swath width make it a useful tool for both micro-bathymetric

O(5cm) mapping and larger O(km), less detailed surveys. On the other hand, the

stereo camera system has an operational range of 1m to 4m with an across track

field of view of 40◦, so its utility is constrained to smaller areas.

While multibeam is useful for a variety of survey sizes and altitudes, stereo

cameras have far greater spatial resolution. High spatial resolution, defined as the

number of measurement points per unit area, is required to resolve small features.

At 3m range, a 1.3 megapixel camera will have spatial resolution ∼ 40points/cm 2.

The multibeam sonar’s 90◦ swath width is beamformed into 512 beams. At 3m of

altitude, this translates into one measurement every centimeter. With a forward

speed of 12cm per second and a ping rate of 12Hz, the along track resolution of
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the multibeam is also 1 point per centimeter making the overall spatial resolution

of the sensor ∼ 1point/cm2.

Camera and multibeam degrade under different circumstances. The stereo

cameras are particularly sensitive to high turbidity, backscatter and limited tex-

ture. Suspended particles and sediments disturbed by currents or prop wash can

obscure the site making it difficult or impossible to obtain usable range data from

the cameras. In addition, the cameras are difficult to calibrate correctly. The

calibration model used frequently in machine vision is violated underwater due

to the differing indices of refraction between air and water. This modeling error

is particularly apparent in highly structured scenes or at ranges that the calibra-

tion wasn’t intended for [41]. This introduces warping to the final reconstruction.

While turbidity and calibration are not a problem for the multibeam, the acoustic

data can suffer from speckle noise, as well as artifacts introduced by the transducer

geometry. These errors obscure fine details in the final map or cause holes in the

mesh.

Using these two complimentary sensors together will lead to a more flexible

survey apparatus, able to produce maps the highest possible quality available under

any given set of conditions by leveraging each sensors respective strengths.

1.6 Contributions

The contributions of this project will be the following:

• A multi-modal navigation framework for simultaneously refining camera and

multibeam poses throughout the survey using SLAM which emphasizes align-

ment between the two sensors.

• A mapping methodology which selects the best sensor data for each map lo-

cation from a redundant data set while respecting the inherent characteristics

of each sensor.
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1.7 Assumptions

A number of assumptions are necessary to process the data used in this thesis.

• The approach utilizes navigation data that is adequate to constrain vehi-

cle motion. Navigation data comes from a suite of on-board sensors which

provide information regarding vehicle depth, attitude and velocity. This is

enough to constrain the six degrees of freedom vehicle motion. Moreover,

these or analogous sensors are present on nearly all underwater vehicles since

they are required for basic functionality. Therefore, it is reasonable to assume

that the navigation data for the surveys presented here and the vast majority

of underwater surveys will be adequate to constrain vehicle motion.

• A constant velocity model is adequate to predict vehicle motion between

navigation sensor measurements. The constant velocity assumption has been

used previously with good results for filtering underwater vehicle motion [42].

This is because sea floor survey type missions are executed slowly and without

abrupt changes to vehicle speed or attitude which might disrupt the mapping

data quality. Additionally, vehicles capable of imaging surveys are generally

passively stable in pitch and roll, making the platform unlikely to violate the

constant velocity assumption by abrupt attitude changes. Measurements are

also made very frequently so relative motion between measurements is small.

• Estimates of stereo camera calibration and sensor offsets are available. Cam-

era calibrations must be done in order to obtain any metric information from

a camera and can be obtained using a variety of methods before the sensors

are taken into the field. The sensor offsets are straightforward to obtain by

hand measuring relative to the vehicle pose.

• An ideal pinhole camera model is valid over a given survey. While standard

cameras don’t precisely conform to a pinhole model underwater, radial distor-

tion parameters computed during camera calibration closely approximate the
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effect. This assumption holds approximately if the camera is positioned close

to the viewport glass of its housing and the camera altitude stays relatively

close to its calibrated altitude [41]. The cameras used for this survey were

mounted near the viewport glass with the former constraint in mind. The

latter constraint is addressed by the nature of underwater optical surveys.

Surveys typically have a constant moderate altitude since high altitudes pre-

clude imaging due to rapid light attenuation and low altitudes make only a

small amount of terrain observable at once. A small amount of error may

result from this assumption, but the advantages gained in efficiency by lever-

aging pinhole camera geometry and constraints are substantial enough to

outweigh it.

• Overlap exists for some of the mapping sensor measurements to provide con-

straints on vehicle pose and sensor offset estimation. Surveys can generally

be designed to incorporate as much overlap as desired. The survey design

trades off available time with size of area covered and instrument field of

view. Sometimes a survey mission will be aborted before a final loop can be

closed, but this can be mitigated by building overlap into the body of the

survey and not just relying on a single overlapping trackline at the end.

1.8 Layout

The process of map making in this thesis has two parts. The first part is

navigation refinement where navigation and mapping sensor data are combined to

estimate refined vehicle poses. The second part uses the poses determined in part

one to assemble a map. The map construction uses the inherent characteristics

of each sensor to reject outliers and choose the best sensor for each section of the

map. A detailed chart showing how the various processing steps are related is in

(Fig. 1.8).

Chapter 2 describes navigation refinement. In this section, the vehicle posi-
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tion at each mapping sensor measurement is estimated. Constraints on the vehicle

trajectory are derived from multiple observations of the same terrain by the map-

ping sensors. The trajectory estimation solves for the vehicle poses which best

explain the constraints. Chapter 3 describes map construction. The map is assem-

bled by projecting measurements into a common reference frame and then culling

redundant data and outliers. The final Chapter contains so resulting maps and

discussion.
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CHAPTER 2

Multibeam and Stereo SLAM

2.1 Introduction

Navigation refinement is a crucial step in underwater mapping. Dead reck-

oned vehicle positions alone accumulate error that grows unbounded with time

and causes misalignment between mapping measurements. The goal of the navi-

gation refinement step is to reduce navigation error until it is no longer the dom-

inant source of error in the map. Several approaches, both instrument based and

algorithmic were discussed in the Chapter 1. This Chapter begins by explain-

ing several algorithmic approaches that have been used to incorporate data from

multibeam and cameras into a refined vehicle trajectory. Second, the existing work

is extended to incorporate methods which increase measurement consistency be-

tween both multibeam and camera. Then a set of error metrics are summarized

which help evaluate the utility of the method. Finally, results are presented and

evaluated using the proposed error metrics.

2.2 Background
2.2.1 Filtering SLAM: Submap SLAM and SEIF SLAM

The Extended Kalman Filter (EKF) has been a common tool for navigation

refinement since Smith Self and Cheeseman advocated its use for building proba-

bilistic maps in the 1980’s [1]. This filtering approach was applied to underwater

mapping by Roman to assemble multibeam bathymetric maps [2]. The key aspect

to Roman’s implementation is assembling adjacent sonar pings into submaps in

which navigation drift contributes less error than sensor resolution, and can there-

fore be neglected. Navigation data and uncertainties are accumulated in the EKF

which augments the filtered vehicle state vector with delayed states corresponding

to locations of the submap origins. Links between overlapping submaps are made

when the structure of the two submaps can be registered. Relative poses between
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submap origins added to the filter as additional measurements between the delayed

states to produce a well constrained vehicle trajectory that corresponds to a self

consistent map. The utility of this method is limited however by its O(n3) com-

plexity where n is the size of state space. As a result it is impractical for refining

trajectories with many unknown submap origins or image poses. [2].

The Sparse Extended Information Filter (SEIF) has been used as an alterna-

tive to the EKF because it scales well in state space. The information matrix of the

filter is maintained instead of the covariance matrix so that the update step does

not require an O(n3) inversion. Additionally, the information matrix is exactly

sparse when the variables to be estimated consist of prior poses alone, a character-

istic which can be exploited for efficient state recovery with O(n) complexity [3].

This method has been applied to underwater mapping with both monocular and

stereo vision by Eustice [4] and Mahon [5] respectively.

Filtering leaves a few issues unresolved. EKFs and SEIFs estimate the current

robot pose by applying a recursive filter to the previous pose, current measurements

and control inputs. Because of this sensor updates only propagate forward so at

updates with large measurement innovations the trajectory can become less smooth

than might naturally be expected. Furthermore, linearization error can accumulate

over the course of a trajectory.

2.2.2 Smoothing versus filtering

Recently, another approach known as Smoothing and Mapping (SAM) has

been applied to address the lingering problems associated with filtering. In smooth-

ing, the robot trajectory is not marginalized out and inference is done on the entire

trajectory [6]. Since the full non-linear problem can be solved over the entire tra-

jectory, error is evenly distributed around the graph. This produces a trajectory

that is consistent with all of the constraints. It also produces smoother trajectories

than filtering methods leading to more appealing maps [7].

Smoothing treats the SLAM problem as a large non-linear system which is
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Terrain re-observation factor nodes

Navigation factor nodes

Vehicle pose variable nodes

Figure 3. A SLAM Factor Graph. This factor graph contains variable nodes which are
unknown vehicle poses and factor nodes which are measurements that act as constraints
on the variable nodes. Constraints on temporally adjacent variable nodes are based on
the vehicle navigation sensors and terrain re-observation factors are based on multiple
measurements of the same terrain from mapping sensors.

solved all at once. It contains unknowns such as vehicle poses or landmark positions

which are a function of measurements such as range and bearing to a landmark or

vehicle velocity. This problem can be posed as as a factor graph [6]. This graphical

model is an intuitive way to look at the system, breaking it down into variable nodes

(variables to be estimated) and factor nodes (measurement functions)(Fig. 3).

The goal is to find the Maxiumum a Posteriori (MAP) estimate for the unknowns.

Ultimately the graph or non-linear system can be solved using a variety of inference

methods. For most practical situations, the sparsity of the underlying structure

allows for a solution using sparse matrix techniques which are highly efficient.

Smoothing algorithms are traditionally non-causal which generally precludes

real time applications. However, the development of incremental Smoothing and

Mapping (iSAM) gives an efficient method for incrementally adding new measure-

ments in real time while keeping the vehicle position estimate current. As a result,

smoothing approaches are currently being applied to underwater water robotics

for both real time and post processed navigation and mapping. Hover et al com-

bine an imaging sonar and monocular camera constraints incrementally within a

factor graph to navigate and build a map during ship hull inspection [8]. Kunz

uses multibeam sonar and stereo cameras on an AUV to build a map of a coral

reef and refine sensor offsets for biological monitoring [9]. The results in both

cases are robot trajectories which obey constraints imposed by mapping sensors

and navigation sensors and maps which appear self-consistent..

19



A recent underwater mapping method combines both filtering and smoothing

techniques. The EKF is useful for creating submaps for data association and map

assembly, but scaling limitations make it impractical for refining long trajectories

[10]. To mitigate the scaling issue, Vaughn leverages EKF assembled submaps for

data association, but uses submap origins as nodes in a factor graph. The factor

graph is then solved using the iSAM software package. This avoids scaling issues

and efficiently improves navigation for map making [7].

2.3 Methods

The following navigation refinement methods are designed to estimate vehicle

poses using data from both the on-board navigation and mapping sensors. They

extend the state of the art in navigation refinement to enforce consistency be-

tween multiple modalities. The estimated poses will be used in the mapping phase

(Chapter 3) to project measurements into a common reference frame and assemble

a map from two sensors. Camera data is incorporated by aligning overlapping sets

of images. For multibeam, it is common to aggregate sets of pings into submaps

which can be aligned using point cloud registration techniques.

The process detailed in the following section is founded on the work of Kunz [9].

That procedure begins by aligning overlapping sets of images and incorporating

them into a bundle adjustment style navigation solution where consistency is en-

forced using multiple views of the same landmark [11]. The resulting navigation

solution is used to assemble multibeam submaps and establish links between those

that overlap. A final navigation solution is then estimated using all of the avail-

able constraints, both camera and multibeam. This thesis adds a new step where

overlapping camera and multibeam submaps are co-registered to refine their rel-

ative pose and enforce mutual consistency. Additionally, this approach is able to

estimate the offsets of the sensors with respect to the vehicle frame as part of the

navigation solution.

The process is outlined in Figure 4. This figure explicitly breaks the process
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into two phases. The first phase refines camera offset and vehicle navigation.

From this phase, multibeam constraints can be computed and further refinement

of navigation data along with multibeam sensor offset. The specifics elements of

this chart will be further explained in the following sections.

2.3.1 Instrumentation and platform

The data for this work was gathered during surveys using the ROV Hercules

(Fig. 5). The data sets were collected during the 2012 field season in the Aegean

Sea. Dense gridded surveys on spatial scales O(100m2) were designed and executed

over these archeological sites in order to gather simultaneous acoustic and optical

imagery with approximately 200% overlap both along-track and across-track. An

outline of the navigation and survey instruments available on the Hercules ROV

is presented in Tables 1 and 2.

Table 1. Navigation sensors

Measurement Sensor Precision

Heading (north seeking) OCTANS FOG ±.1◦

Pitch/Roll OCTANS ±0.01◦

Depth (surface relative) Pressure sensor ±0.01m
Velocity (bottom relative) Acoustic Doppler (DVL) ±0.01m/s

Table 2. Mapping sensors

Measurement Sensor Precision

Optics (Cameras)
Prosilica GC1380 BW 12-bit images
Prosilica GC1380C Color 1360× 1024 format

Acoustics (Multibeam) Blueview MB1350
∼ 1% of range
512 beams

Acoustic data was collected using a Blueview MB1350 multibeam sonar. This

is a particularly high frequency 1.35 MHz system with a 90◦ field of view. For typ-

ical surveys this translates to approximately 4-6 m swath widths. The instrument

is mounted at the lowest aft point bringing it as close as possible to the sea floor
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Figure 4. Flowchart of navigation refinement steps.
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Color Camera

Laser

∼ 2− 4m

Figure 5. The Hercules ROV with stereo cameras and Blueview multibeam sonar. Flash-
bulb strobes are located on the forward section of the vehicle.

while the ROV maintains a minimum safe survey altitude of 2m. This allowes us

to take advantage of the greater resolution available at reduced range.

Images were taken using a rigid stereo rig fitted with two Prosilica GC1380

cameras. These were mounted within pressure housings with flat glass viewports

300mm apart. Their optical axes are parallel. The color and black and white

images were acquired as 12 bit grayscale and 48 bit Bayer respectively by 1024 by

1360 pixel CCDs.

The lighting was supplied using two Ocean Imaging Systems model M3831

flashbulbs hardware triggered off the master camera. These were mounted on the

forward half of the vehicle to minimize the common volume of water imaged by the

cameras and strobes. The maximum framerate that could be achieved was limited

by the strobe recharge time to about 0.125Hz which translates to 1.25 frames per

meter of travel along track.

Hercules ’s navigation instrumentation includes an Ixsea Octans fiber optic
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gyro, a Paro Scientific depth sensor, and a Teledyne RDI doppler velocity log.

The navigation data has several applications. The measurements are processed in

real-time to drive the vehicle’s autopilot allowing precise survey patterns. It is also

visualized and logged using DVLNav software [12] for use in post processing.

2.3.2 Notation

It is helpful to specify a notation system for coordinate system transforms

which indicate how constraints are integrated into the factor graph. This notation

helps to articulate the spatial relationships formed by the network of constraints.

Coordinate systems

There are several relevant coordinate reference frames which will be referred

to frequently (Fig. 6). The local level coordinate system, ℓ is an absolute frame.

Its origin is in one fixed location. For convenience the origin of ℓ is assigned as the

pose of the vehicle at t0. The vehicle coordinate system v has its origin at a fixed

location on the front of the vehicle. The term vehicle pose refers to the position

and orientation of v within ℓ. The sensor coordinate frames are specific to each

sensor. Multibeam sonar frame m and the left camera c are the sensors referred to

most frequently. The right camera is offset from the left camera using a transform

determined during stereo calibration. By convention however, the camera based

3D point clouds are expressed in left camera coordinate system. The position of

these sensors within v is defined by the sensor offsets (oc,v, om,v),. The sensor

offsets are rigid transformations which can be measured by hand on the vehicle

and will be refined during navigation refinement.

The position and attitude of the vehicle with respect to ℓ at time i is xi,ℓ.

The odometry between vehicle poses at time i and j is written as xi,j which is a

transform that can be computed using the operations described in the following

section.
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Local level frame, ℓ

Vehicle frame, v
Camera frame, c

Sonar frame, m

Figure 6. Relevant vehicle coordinate reference frames. The three main types of coordi-
nate frames are the world frame w, the vehicle frame v and the sensor frames, m and c.
Note that all frames have the z axis pointing down and vary based on the orientation of
x and y

Spatial relationships between coordinate systems

A robot or sensor’s position and attitude with respect to any coordinate system

can be described in terms of the spatial variables x, y, z, θ, φ, ψ. The first three are

translational variables and the last three are the attitude variables indicating roll,

pitch and yaw respectively.

Operations on these variables allow a given pose to be expressed in other coor-

dinate frame. The notation adopted for coordinate transforms is fully explained in

Smith Self and Cheeseman [1]. However, the relevant transforms are summarized

here. The compounding operation takes two relationships xi,j and xj,k and lays

them head to tail to arrive at the compound relationship xi,k It is known as the

head-to-tail operation and is expressed as ⊕. The inverse relationship is useful as

well. This might be used to reverse a spatial relationship that has been applied

and is expressed as ⊖. A composite relationship known as tail-to-tail is useful

for finding the relative pose between two forward relationships. The tail-to-tail

is expressed as xj,k = ⊖xi,j ⊕ xi,k. These operations offer a way to express the

changes in spatial relationships between coordinate systems which occur due to
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vehicle motion and sensor measurements.

2.3.3 Factor graph assembly and structure

A factor graph is a graphical model which expresses a large function in terms

of its factors. It is intuitive to look at and can be solved using a variety of Bayesian

inference methods. The goal of the navigation refinement using factor graphs is

to determine the position of the mapping sensors at the time of measurement.

A factor graph is used to structure the network of constraints from which poses

will be inferred. One group of constraints consists of the dead reckoned navigation

between these poses. Images can be abstracted into features and aligned to provide

additional visual constraints. Multibeam pings can be assembled into submaps and

aligned with each other to provide further constraints. Finally, alignments between

stereo pair reconstruction and multibeam submaps enforce alignment between the

two modalities using a third type of constraint..

The factor graph is assembled and solved in two phases (Fig. 4). In Phase

I the feature based links and navigation links are used to solve for the vehicle

positions and the offset of the cameras. Then the offset of the camera is held fixed

and a graph containing the feature based constraints between cameras, multibeam

constraints, and cross modality constraints is solved to find the vehicle poses and

multibeam offset.

Computing navigation constraints between sequential mapping sensor mea-
surements

The navigation data from the depth, attitude and velocity sensors provides

constraints between sequential mapping sensor measurements (Fig. 7). However,

the navigation data is asynchronous with the mapping sensor measurements, and

must be resampled. The resampling is done using an EKF. Each successive mea-

surement from a navigation sensor is incorporated into the filter using an update

step. A prediction step is run when a multibeam ping or image capture step occurs
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xℓ,1 xℓ,2 xℓ,3 xℓ,4 xℓ,5

x1,2 x2,3 x3,4 x4,5

Figure 7. Factor graph with navigation based factors. These factor nodes only constrain
temporally adjacent nodes and do not prevent drift in navigation data.

in order to recover the vehicle state and state covariance at that time. The relative

poses and covariances between sequential mapping measurements are retained as

constraints for the factor graph. These constraints only link temporally adjacent

vehicle poses and will contain dead reckoning error which accumulates over time,

necessitating the other forms of constraint (Fig. 7).

Data association

Data association is the process of recognizing that two separate observations

relate to the same terrain and deriving a spatial constraint from their relative

alignment. Depending on the sensor, there are two possible approaches to data

association.

The first approach is for creating links between stereo image pairs. Linking

stereo camera poses requires abstracting images into matchable features and rec-

ognizing a link between two poses when a unique feature is viewed in both poses.

The second is for creating links between 3D terrain patches, generated using either

camera or multibeam. Establishing links between 3D patches is done by aligning

the structure of two overlapping patches using point cloud registration techniques.

This approach is appropriate for both multibeam-multibeam links and multibeam-

stereo cross modality links (Fig. 8).

Generally when SLAM algorithms are performed online, links are sequentially

hypothesized when a measurement from an adjacent pose lies within the a confi-

dence ellipse related to the covariance of the current pose or current measurement.

The covariance is kept small because the navigation is continually being refined.

This results in a small search area for potential links and a robustness to false
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Image features

xℓ,1 xℓ,2 xℓ,3 xℓ,4 xℓ,5

x1,2 x2,3 x3,4 x4,5

x2,4

Camera Multibeam Camera Multibeam Multibeam

x3,5

f1

f2

Figure 8. Factor graph with navigation and data association factor nodes. The data
association further constrains the navigation by creating constraints between spatially
adjacent pose nodes. The image-based links between poses 1 and 3 are based on re-
observation of the same two image features f1 and f2. This creates constraints between
camera poses. The link between pose 2 and 4 is based on the relative alignment of two
3D submaps. A relative pose constraint can be used between two multibeam submaps
or between a multibeam submap and stereo camera based reconstruction.
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matches. However, the algorithm presented here is more tractable in post process-

ing given the large number of feature points used and the computing hardware

available. Therefore the entire dead reckoned trajectory is used at once to find

links. A link is hypothesized between two poses if they appear near each other in

the dead reckoned navigation solution. The longer the survey, the more drift ac-

cumulates, increasing the covariance of the vehicle position and requiring a larger

search radius. The size of this search radius grows unbounded with the length of

the survey.

Stereo data association & bundle adjustment (Phase I)

The first factor graph is set up as a bundle adjustment problem [11]. It in-

corporates the odometry constraints with feature based constraints between stereo

image pairs. The graph is solved to obtain the vehicle positions and the camera

offset.

There are a number of ways to use images to constrain robot trajectories.

Hover et al uses a 5DOF pose based image constraint [8]. Kunz uses a landmark

based reprojection error minimization with a single camera [9]. Here however, a

stereo system is available. A calibrated stereo system allows for a 6 DOF motion

constraint unlike a monocular system, which can only provide 5 DOF constraints

on motion due to loss of scale.

Links using stereo imagery are based on sparse feature point matching. First

SIFT image features are extracted from the stereo image pairs in the link hypoth-

esis. SIFT is essentially illumination invariant and requires little prepossessing for

successful matching [13]. If images are particularly low contrast or have very un-

even lighting, adaptive histogram equalization can be used to create more uniform

feature extraction across the images. For each stereo pair, features are matched

with each other. Matches that are more than five pixels from the epipolar line of

their conjugate feature are rejected as poor matches. Typically thousands of stereo

features can by matched at this step. SIFT descriptors in the left image of each
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view are retained (Fig. 9).

Once stereo matching has been done on all image pairs, links between pairs

are hypothesized and tested. The descriptors retained in the previous step are

matched with the left image features in all the hypothesized link poses. Outlier

feature matches between stereo poses need to be rejected so that they don’t corrupt

the factor graph solution. The matched features for each stereo pair are triangu-

lated. Then a rigid motion model is fit to the triangulated features of hypothesized

links using Least Median of Squares. Links are rejected if there are fewer than 6

matching features which fit the rigid motion model(Fig. 9). Though Figure 8

shows only two features which have been viewed by both pose 1 and 3, usually

tens of features can be matched between the stereo pairs of two poses. The result-

ing measurement of stereo link generation is the image frame coordinates (u, v) of

the matching features in the left and right images of each stereo pair. These points

can be triangulated to create full 3D landmarks as viewed from each pose.

Camera and multibeam sensor offsets on the vehicle must be well aligned rel-

ative to each other so that their measurements can be properly aligned. These

offsets are measured by hand and it is difficult to achieve the required precision.

To avoid the guesswork, Kunz added an additional variable node to the graph: the

camera offset node (Fig. 10). This additional variable accounts for the constant

transform between the vehicle and sensor coordinates. The initial hand measure-

ment of the camera offset serves as a prior on the offset node and the covariance

of the prior encodes how well the offset was measured. It is worth mentioning that

this node is often poorly constrained in the z direction and tends to float vertically.

The vehicle is very stable in the pitch and roll directions which is the motion nec-

essary to constrain z. This could make the map more difficult to geo-reference but

has little impact on its self-consistency. The prior on the camera offset it the final

constraint needed in the assembly of the bundle adjustment factor graph before it

can be solved.
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The location of the 3D landmarks projected on their respective images, along

with the camera offset prior and the resampled navigation data are assembled into

a graph. When the graph is solved, the result is a refined vehicle position at the

time of every mapping sensor measurement, as well as an estimated camera offset.

Adding multibeam and cross modality constraints (Phase II)

After camera constraints have been used to refine the navigation and camera

offsets, the data can be used to establish multibeam links. While these links

have less influence on the over all navigation solution than the camera constraints,

they are important for constraining the multibeam sensor offset ensuring proper

alignment with the camera.

• Submap assembly

The multibeam submaps are constructed by aligning adjacent pings in the

submap coordinate system, s, using navigation data. First, the origin of

the submap reference frame is assigned as the pose of the first multibeam

ping of the submap. The individual multibeam pings are localized in s using

the vehicle trajectory from Phase I. This data is segmented into submaps

during the initial resampling phase. Navigation data is filtered according

to section 2.3.3 and the multibeam pings are grouped into submaps. The

submaps are ended when the covariance of the vehicle position relative to

the submap origin reaches a certain threshold. The multibeam pings in a

given submap are transformed into the submap coordinate system and each

submap is considered a rigid point cloud.

First, the origin of the submap reference frame is assigned as the pose of

the first multibeam ping of the submap. The individual multibeam pings are

localized in s using the vehicle trajectory from Phase I. This data is segmented

into submaps during the initial resampling phase. Navigation data is filtered
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View i
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Left Image

Left Image

Right Image
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Stereo Pair Matching

Stereo Based Link Verification

Figure 9. A verified link between stereo pairs. First stereo matching finds unique features
which exist in both images of a stereo pair (top). Then these features are matched with
similar features viewed in overlapping stereo pairs (bottom). This link provides spatial
constraint on their relative positions of camera viewpoints at locations i and j.
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Figure 10. Bundle adjustment factor graph with camera offset node (oc,v). The offset
node for the left camera is estimated concurrently with the vehicle poses at the time of
each mapping sensor measurement.

according to section 2.3.3 and during this process, the multibeam pings are

grouped into submaps. The submap is ended which the covariance of the

vehicle position relative to the submap origin reaches a certain threshold.

The multibeam pings in a given submap are transformed into the submap

coordinate system and each submap is considered a rigid point cloud. The

newly refined trajectory makes it unnecessary to break submaps according

to accumulated error because the accumulated error has been corrected by

the visual constraints. However, this process to break submaps is still used

because it creates reasonably sized submaps in the case where there are very

few or no successful imaging constraints.

These three dimensional submaps can be aligned with overlapping submaps

to produce constraints on the relative position of the vehicle. Any relative

pose constraints formed between submaps act on the vehicle pose which serves

as the submap origin. This process is described in detail in [10] and refined

for factor graph applications in [7].

• Submap link alignment and verification
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Sonar submaps are aligned to constrain adjacent vehicle poses. In general, a

relative pose constraint up to 6 DOFs found by aligning the submaps in x, y, z,

roll, pitch and heading and computing the rigid transformation between their

origins using point cloud registration techniques.

To establish link hypotheses, the submap boundaries are plotted in ℓ using the

bundle adjusted vehicle navigation and the hand measured sonar offset. First

link hypotheses are generated between potentially overlapping submaps then

the overlapping regions are gridded (Fig. 11). The gridded data is aligned in

the x and y directions by minimizing the Some of Squared Differences (SSD).

∆x,∆y = min
∆x,∆y

1

‖S∆x,∆y‖

∑

x,y∈S∆x,∆y

(zi,x,y − zj,x+∆x,y+∆y)
2 . (1)

where zi,x,y is the depth of grid cell x, y in submap i, and S∆x,∆y is the set of

all indices x, y is in submap i and x + ∆x, y + ∆y is in submap j [10]. The

minimum gives can be used to correct the initial estimate for the x and y

components of the relative pose transform. If correlation is successful, a full

3D alignment is attempted with the SSD based alignment as an initial guess.

Point cloud registration has been widely researched for applications in

robotics and scene reconstruction. Iterative Closest Point (ICP) in partic-

ular has become a common way to bring two point clouds into alignment by

computing the rigid transformation between them [14]. ICP works by taking

a random sample of points from one cloud, finding their nearest match in the

other cloud and the computing the transform which pulls these points into

the best alignment. This processes is iterated over for a pre-specified number

of iterations.

ICP gives a full 6 DOF alignment between point clouds, however it is suscep-

tible to local minima and sometimes converges to the wrong answer. After

alignment, the ICP result is assessed to make sure it actually produces an
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alignment improvement when compared with the SSD. Each point in one

submap is linked to the nearest point in the other submap to determine the

point-to-point error. This is done for the SSD as well as the ICP alignment

results. The error histograms are summed and if the ICP error is mainly

higher than that of the SSD, the ICP transform is rejected in favor of the 2

DOF SSD result. This method was developed by Roman [2].

The error surface of the SSD function is useful for determining the uncer-

tainty of the link and for link rejection. A quadratic surface is fitted to the

region around the minimum. The Hessian of this quadratic is the matrix of

information gain for the link [9]. A large Hessian determinant indicates a

very steep quadratic and a good minimum and large information gain from

the link. Links are rejected if the determinant is less than 0.001. This value

is only sensitive to the size of the region approximated by the quadratic. For

the size of overlap and swatch width used in this thesis can be reasonably set

to a 0.4m radius. If a larger region is approximated, the quadratic will tend

to be not as steep even for good alignments, therefore the Hessian threshold

has to be lowered.

When maps are only aligned in x and y, the factor node only constrains the

graph in 2DOF. The link is given essentially zero information gain for all

of the unconstrained degrees of freedom. In this case, the diagonal Hessian

components are the information gain for x and y. When the ICP alignment is

used, the Hessian is also used for x and y information gain and non-zero values

are found empirically for the remaining degrees of freedom since the method

in Roman, 2007 was found to underestimate information gain for these links

to the point where the have no influence on the graph [15]. Instead the x

and y information gain was taken from the 2 DOF information gain. Roll roll

pitch and heading information gain was gradually increased until resulting

map was at its most consistent and the links had moderate effect on the
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Figure 11. Multibeam submap alignment. Submaps are aligned by minimizing the SSD
between the maps and the alignment is further refined if possibly using ICP point cloud
registration.

multibeam sensor offset.

These links are also used to constrain the multibeam sensor offset. Unlike the

camera offset, this offset can only be estimated in x, y, z and roll. Changing

the offset in pitch or heading would change the shape of the submap which

we assume is rigid. For a 6 DOF offset estimation to be valid, the submap

would have to mutable and be re-aggregated for each new iteration of the

navigation solver. Therefore, the offset was not allowed to vary in pitch and

roll as the graph was optimized.

• Cross modality links

Aligning the point clouds from the two sensors is critical to making a multi-

modal map. To accomplish this, another constraint is introduced into the

graph. This constraint connects the multibeam data to the camera data via

a relative pose constraint between two respective submap origins. This is

similar to multibeam data association(Fig. 12).

The first step is to create stereo based submaps. This is done by perform-
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ing dense stereo matching using the Block Matching technique. The stereo

matches are triangulated to create a high point density reconstruction of the

sea floor.

After the initial bundle adjustment and camera offset optimization, the re-

sulting poses are used to select stereo submaps and overlapping multibeam

submaps. Then link hypotheses are drawn between overlapping stereo and

multibeam submaps. Currently this is done by hand-selecting a single multi-

beam submap and camera submap which overlap completely and contain sig-

nificant structure to constrain alignment. The stereo images for the submaps

are generally taken very close to the time associated with the multibeam

submap origin. The relative positions between pose corresponding to these

submaps is found by aligning the submaps using one of two methods. This

relative pose is added as a constraint on the graph. Two types of constraint

are investigated here to create the cross-modality constraint, one imposes

a vertical constraint on the sensor offsets. The second aligns camera and

multibeam subamps using full 6 DOF point cloud registration.

The first alignment method addresses the issue of poor constrained sensors

offsets in the z direction. The two sensor offsets will tend to wander inde-

pendently in the z direction when there is no constraint between them. A

constraint which prevents this is required to keep the measurements of the

two sensors mutually consistent. The relative position between the vehicle

poses associated with these submaps was found by computing the average

vertical distance between submaps. This distance was added as a 1 DOF

vertical constraint between the poses attached to the submaps.

Another way to apply such a constraint is to use a 6 DOF constraint much

like the one used to link two multibeam submaps. For cross modality links,

a set of 15 camera and multibeam links containing reasonable amounts of

structure were selected as link hypotheses. Then with the initial alignment
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provided by the bundle adjusted navigation solution, the sum of squared

differences was used to refine the alignment in x and y directions. Then ICP

is performed to ascertain the full relative pose constraint between the camera

and the multibeam submaps. This relative pose constraint is used to enforce

the mutual alignment of the camera and multibeam point clouds.

For instance, say that an stereo pair is acquired at time i and a multibeam

origin corresponds to time j. The cross modality link between vehicle pose

at i and j is written as xi,j . This relative pose measurement between the

two vehicle poses is the constraint which will be applied to the graph. It is

a function of the relative pose between submap origins (xci,mj
), found using

point cloud registration, and the sensor offsets:

xi,jmeasured
= ⊖oc,v ⊕ (xci,mj

⊕ om,v). (2)

Navigation data between two poses close together in time has a very low

covariance because there has been little opportunity for drift. Therefore

and cross modality constraint between those two poses will tend to have

more impact on the sensor offsets than they do on the navigation data. This

prevents the multibeam sensor offset from floating away from the fixed camera

offset when Phase II is solved. The Phase II graph containing the camera

constraints, navigation constraints, multibeam constraints, multibeam offset

prior, and cross modality constraints is solved to finally estimate the vehicle

poses and multibeam sensor offset (Fig. 12).

2.3.4 Factor nodes: Error functions

The graph solution is inferred using a non-linear least squares solver to min-

imize the sum of the squared errors. The errors are computed from the error

functions defined for each type of factor node. These measurement or error func-

tions compute the error between the actual measurements and the measurements
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Figure 12. Multi-modal factor graph constraint enforces alignment between measure-
ments from both camera and multibeam and simultaneously refines multibeam offset.

induced by the most recent estimate of each of the variable nodes.

Relative pose error functions

The relative pose error functions for multibeam-to-multibeam submap align-

ments and camera-to-multibeam submap alignments is straightforward. The error

is defined as the difference between relative pose measured during the submap

alignment step, and the relative pose induced by the most recent set of pose esti-

mates (predicted relative pose).

The most general case allows for a 6 DOF relative pose constraint where

xi,j = [x, y, z, θ, φ, ψ]T is the full relative pose but, if only 2 DOF are constrained

by the measurement, such as for multibeam submaps when ICP fails, the error is

only computed with xi,j = [x, y]T. Here x̂ refers to the most current estimate of

the relative pose vector and r is the error vector

x̂i,jpredicted = ⊖ (ôm,v ⊕ x̂ℓ,i)⊕ (ôm,v ⊕ x̂ℓ,i) (3)

r = xi,jmeasured
− xi,jpredicted . (4)
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Reprojection error function

The error between two stereo poses is computed using reprojection error. Re-

projection error is a metric to simultaneously evaluate the correctness of camera

poses and scene reconstruction. This is done by comparing the location of a fea-

ture based on the reprojection induced by estimated pose and scene to the same

feature’s actual location in an image (Fig. 13). Here K is the camera matrix for

the left camera, image point U = [u, v]T and the 3D point in the camera reference

frame fc = [Xc, Yc, Zc]
T.

Upredicted =

[

(K1,1Xc + K1,3Zc)/Zc

(K2,2Yc + K2,3Zc)/Zc

]

(5)

r = Umeasured −Upredicted (6)

fc = [X, Y, Z]T can be expressed in the camera coordinate frame by

fv =
ℓ
vRf̂ℓ +

vtℓv

fc =
v
cRf̂v +

ctv,c

From the reprojection error equation, it is reprojection error can be evaluated using

only one camera at each vehicle pose. Stereo image pairs are useful however, for

several reasons. First of all, having two cameras allows a point to be triangulated

which gives a good 3d initialization in ℓ. For monocular vision, the point depth is

unconstrained in distance along the ray passing through the camera focal point and

the image feature. An estimate of this distance is often approximate, perhaps set

to the vehicle altitude at the time of image capture. Less precise initial estimates

induce weaker constraints on the graph.

The constraints between image poses are enforced by minimizing reprojection

error over the associated poses and landmarks. Reprojection error is determined

by comparing the position of an object in the image to the position of the actual

object backprojected onto the image using the camera matrix, camera pose, and

object pose. The Euclidean distance between the backprojected object and its
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Figure 13. Reprojection error, r is a metric for evaluating the accuracy of the estimated
camera pose (x̂c) with respect to the estimated feature position (̂f).

image is the reprojection error. The graph solver however minimizes over a basic

error vector containing the error r = [uerror, verror]
T.

2.3.5 Error metrics

The quality of the map assembled from optimized navigation can be evaluated

using several types of error metric. The first type are the error metrics over which

the graph was optimized. The second type are error metrics which arise from

constructing a multi-modal map and evaluating its characteristics directly. It is

important to distinguish between these two types of error metrics.

Ideally the pose graph would be solved by minimizing an error metric which

best expresses map quality. This might be an error metric which expresses the

alignment of the submap point clouds. Unfortunately, such a function does not

have very well defined local minimum and would have a hard time converging.

Instead we optimize over more constrained error functions which have clear minima

are good approximations for overall map alignment. Ultimately however, it is vital

to know how well the point clouds align since this is a good predictor of final map
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quality.

Optimized error metrics

There are two distinct error metrics which are optimized over during graph

inference. The first is the residual of the relative pose estimation given in Equation

4. The next is the reprojection error calculation shown in Equation 6.

These two residuals are useful for evaluating the quality of graph inference.

They can give insight into potential outliers and assist in finding problems in

preliminary processing. Areas of the graph which contain relatively large residuals

might contain a bad links indicating the need for robust inference methods, or some

other error. However, these methods don’t give very much information about the

quality of the map that might be constructed from the optimized navigation data.

Reprojection error computed over the estimated position of the features gives

some indication of how consistent the stereo point cloud is with the images. Rel-

ative pose residuals evaluate how well submaps alignments were enforced in the

final navigation solution but do not directly evaluate how well camera submaps

align in the final map.

The assumption at this point is that consistent poses should lead to consistent

point cloud alignments. However, since all the constraints are not directly based on

point cloud alignment, and instead reduce point cloud alignment to lower dimen-

sional approximation such reprojection error and relative pose error, maximizing

this reduced approximation of point cloud consistency does not necessarily lead to

more consistent maps.

Map based error metrics

The error metrics for reprojection error and relative pose constraints are prac-

tical approximations for 3D structure alignment, which are proxies for map align-

ment error. Since this is the case, its is valuable to examine map quality directly

to ensure that it is sufficiently improved by navigation refinement proceed with
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the mapping steps.

• Map alignment

A composite map is composed of a number of camera and multibeam submaps

projected into a common coordinate frame. This error metric concerns the

quality of submap alignment across the entire composite map. The error

metric is based on the Map-to-Map error developed by Roman [2], that has

been modified to accommodate comparisons between submaps acquired by

different modalities.

The metric is derived from the idea of the Hausdorff distance [16]. It quan-

tifies error between multiple submap point clouds and assigns an error value

to each cell of the gridded composite map. This particular implementation

is designed to evaluate the distance between submaps produced by different

sensing modalities which may have different sampling densities. The imple-

mentation works as follows: A grid is laid out in ℓ and the composite point

cloud containing all of the submaps is projected onto it. Points are assigned

to the cells that they are projected into and labeled with their submap num-

ber. A point Xi from map Mi is selected at random where i is all of the

maps present in the grid cell. A plane pj is fit to the points representing each

map Mj in that cell and the adjacent cells. The distance (dij) from Xi to

pj is computed for each value of j and the maximum value of dij is noted.

Multiple points Xi can be selected to produce multiple dij and the average is

taken. This process is repeated ∀i ∈ M and the mean dij is taken to be the

map-to-map error for that cell (Fig. 14).

In the previous implementation, a plane was not fit to the set of points in

Mj, instead the distance between Xi and the nearest point in Mj was used.

This is a reasonable approach when sampling densities are consistent and

greater than grid cell size. submaps made from stereo cameras in particular
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Figure 14. Point-to-point versus point-to-plane error. For point-to-point the distance
between a point in one map and its nearest point in each of the other maps is computed,
then the longest distance is retained as error. This can artificially inflate the error in
cases of irregular sampling. Point-to-plane uses the distance the point in one map and
a plane fit to the local area of the other maps. This reduces the impact of irregular
sampling of the surface.

are subject to inconsistent sampling. Dense stereo methods often result in

irregular spacing as well dependent on the photometric characteristics of the

images. In order to properly capture the distance between point clouds,

without over inflating it, it is important to use point to plane in stead of

point-to-point error.

When this cell by cell error metric is evaluated across all of the submaps

(including stereo and multibeam) , the result is a gridded representation of

the map-to-map error. This is a good illustration of the quality of alignment

between the submaps which will ultimately comprise the final composite map

of the surface.

Another way to use this metric is to assign all multibeam submaps to one

submap number and all camera submaps to another map label. Evaluating

the map to map error over these two ‘submaps’ gives a sense for how well the

two modalities are aligned. This is an important thing to examine since it is
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well established that the individual modalities can form self consistent maps,

but no one has ever investigated their how consistent the are with each other.

• Texture alignment

Texture alignment refers to how well we can expect images projected onto

the map structure to line up with each other and it can be evaluated using

reprojection error. 3D locations of features appears in two camera poses are

backprojected into the opposing viewpoint and the backprojected point is

compared to the known feature location in that image to get reprojection

error. In the previous section, this error was evaluated using the feature

locations optimized during navigation refinement, however this is not truly

reflective of the alignment of texture maps when projected on the mesh since

the texture maps are not warped to match the unrefined feature locations.

Instead textures will map to the mesh of the unrefined feature locations .

Therefore, reprojection error will best evaluate texture alignment if done

with the initial feature locations reprojected into the refined camera poses.

While no texture mapping is done in this thesis, that would be a logical and

straightforward way to extend the utility of the work. Reprojection error is

also a useful approximation for how well the camera meshes align with each

other.

2.4 Results

The results of navigation refinement dictate the quality of the ultimate map

so it is important to understand the characteristics and breakdown points of this

process. The various data association techniques contribute an important set of

constraints to the navigation refinement solution. In particular, the use of cross

modality registration has been introduced as a new constraint and the results

presented here. Overall, the navigation refinement results can be evaluated in terms

of the error metrics summarized in the previous section. These error metrics give an
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indication of expected mapping performance as well as give insight into particular

considerations which should be made in developing the mapping methods.

2.4.1 Data association

Links between poses constrain the vehicle to locations which will provide self

consistent maps. This section summarizes the utility and breakdown points of each

of the data association techniques used to constrain the vehicle poses.

Stereo

Stereo data association is based on two stereo poses viewing the same feature.

Figure 15 shows verified links plotted on the refined navigation data. The lines join

poses which have viewed the same feature. To ensure that outliers are rejected,

only links between poses which share six or more features consistent with the same

rigid motion are verified as links. While the links are evenly spread throughout

most of the graph, there are relatively few links between the body of the survey

and the diagonal crossing line.

Stereo links fail in poor imaging conditions. If light is poor, turbidity is high,

scene texture is lacking, or the viewpoint between images is too different, there are

several points where the algorithm will catch bad links:

1. If turbidity is high or the vehicle is too far from the bottom, few or no stereo

matches will be made between images in the stereo pairs, thus no SIFT

descriptors will be available for matching with hypothesized links pairs.

2. If the scene has changed between one measurement and the next due to silt

kick up or moving fish, few common SIFT descriptors will be found between

hypothesized link image pairs. If any are found, they may not be consistent

with a 6 DOF rigid motion so the features matches between stereo pairs will

all be rejected and no link will be verified.

One portion of many surveys where stereo links tend to fail is along diagonal
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Figure 15. Verified stereo links. The links shown here represent poses which share a
view of six or more features, each feature is one link between those poses.

loop closures. Along the diagonal loop closure shown in Figure 16(a), the pink

point and green point corresponding to stereo pairs 352 and 229 respectively are

close together so a link is hypothesized. The left hand image from each pair is

shown in Figure 16(b). The images contain enough distinct and common features

that a link ought to be easily obtained. However, the 11 sift matches overlaid on

the two images are incorrect except for two. There are not enough correct matches

to meet the threshold so this link is rejected. Even so, six links were successfully

established between the survey and the crossing line.

One way to asses bad links is using reprojection error. Any feature with a much

higher final average than the others is likely to be an outlier. Figure 19 shows no

reprojection errors which are inordinately high after optimization, meaning that

there are probably no bad links and a navigation solution consistent with all of

the linking features was obtained.
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(b) Feature Matches between left images of 229 and 352

Figure 16. (a) The pink and green points indicate the pose of the stereo rig for image
pairs 353 and 229 respectively. While the poses are close together and the images overlap,
no link was formed here because the scene was lit from a different angle for each pair
and link verification matching was unsuccessful. The only matches that were found are
displayed in (b) and are clearly incorrect.
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Figure 17. Submap links verified on bundle adjusted navigation data. This figure shows
that the majority of the links are clustered near the center of the survey. This corresponds
to areas where there is more structure.

Multibeam

Multibeam data association is executed after the bundle adjustment step. As

a result, most of the drift has been removed from the navigation data. This gives

good initial alignment for the multibeam relative pose estimates. Figure 17 shows

the distribution of verified links established between multibeam submaps assembled

using the bundle adjusted navigation data. There are 76 total links distributed

throughout the survey.

Submap links are based on the alignment of scene structure, therefore if there

is little scene structure, alignment is less likely to be successful. Figure 17 shows

that there is more concentration of links in the center of the survey where there is

more structure from the debris of the shipwreck. There aren’t as many multibeam

links as there are stereo links, and they appear to not alter the navigation data

very much from the bundle adjusted solution, however they are useful because they

enforce self consistency between multibeam submaps as the cross modality links

enforce consistency between multibeam submaps and camera submaps.

Cross Modality registration

The cross modality registration uses stereo and multibeam sonar range data

and aligns them. Two different methods with different levels of constraint were
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used. The first method constraining only the z direction between aligned submaps

is the only option when there is no scene structure. The second uses the well known

ICP point cloud registration algorithm to compute 6 DOF constraint between the

two overlapping submaps. The results of ICP alignment process are presented here,

and the impact that both methods have on the navigation solution is demonstrated

in Section 2.4.2.

The ICP alignment with selected submaps had a good success rate. 15

multibeam-stereo pairs that were selected. SSD gave a distinct results for 12 of

them and all 12 converged consistently to reasonable solutions. It was helpful to

select submaps covering areas with structure. An advantage of using dense stereo

reconstructions is the very high point density available which provides flexibility.

All of the stereo points could be used, but at a drastically increased processing

time. Instead camera reconstructions were down-sampled to 1.5 points/cm2 den-

sity to match the multibeam’s natural point density of 1.5 points/cm2. It was also

useful to remove outliers from the dense stereo by gridding both point clouds and

removing stereo data more than three standard deviations from the mean. ICP

convergence generally occurred between 4 and 10 iterations.

Figure 18 shows the typical results of aligning camera and multibeam submaps

from the area shown in 18(a). Final alignments showed very little error when

evaluated using the map-to-map error metric (Fig. 18(e)), however there are gaps

around the edge of the objects due to occlusions. These gaps do not prevent ICP

from converging but they contribute ambiguity to the alignment.

ICP has been a successful method for registering stereo submaps to multibeam

submaps because these submaps have achieve the required sampling density, and

have good alignment. Dense stereo techniques allow flexibility in selecting sampling

density which results in convergence of the ICP algorithm. Additionally, since the

navigation data has already gone through one round of refinement, the initial

alignment between submaps is good.
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Figure 18. Cross modality registration. Two sections of multibeam (b) and stereo
reconstruction (c) are aligned using point cloud registration techniques (d). The quality
of the alignment can be assessed using the map-to-map error metric (e).
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2.4.2 Factor graph results evaluated using error metrics

The output of the factor graph inference and the impacts of the various con-

straints are evaluated using the error metrics outlined previously. These error

metrics reveal information about the improvement in the submap alignment as

well as remaining artifacts. In addition they illustrate the utility of cross modality

links.

Reprojection error

The navigation solution is computed by minimizing error over a number of

functions, one of which is reprojection error. Reprojection error is a good metric for

comparing various navigation solutions because it reflects approximately how well

images will line up when they are projected on the 3D map structure. Kunz shows

that adding camera constraints and camera offset estimation improves reprojection

error [9]. Additionally it was shown that multibeam relative pose constraints do

not worsen the reprojection error and those results have been reproduced here.

Figure 19 shows that the addition of cross modality links also does not negatively

impact the reprojection error of the solution. Next it will be shown that cross

modality links also improve the mutual consistency of data from the two sensors.

Map-to-map error

To evaluate mutual alignment of the two sensors, map-to-map error is used.

The dense stereo reconstructions are counted as one map and the multibeam

submaps are counted as another. To evaluate the overall error characteristics of

the map, each submap is treated separately in the map-to-map error calculation.

First map-to-map error is used to show the impact of cross modality links

on the alignment between the two sensors. A histogram of map-to-map errors is

useful when the amount of error is great enough that a spatial distribution plot

becomes difficult to interpret. In this histogram the error for no cross modality

links is large (Fig. 20). Adding either z links or ICP links substantially reduces
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Figure 19. Reprojection error results. Adding cross modality constraints doesn’t degrade
the reprojection error.

this error. Note that the distribution between the a z links and the ICP links are

quite similar.

Examining the spatial distribution of error will give some indication of whether

these cross links have an impact on the alignment of the two sensors in x and y. In

fact, it appears that between the 1 DOF and the 6 DOF alignment, there is very

little difference in the spatial distribution of error (Fig. 21).

If each dense stereo reconstruction and multibeam submap is labeled as a

different map and then map-to-map error is computed, it is an indicator of overall

point cloud thickness (Fig. 22). The most obvious error is at the edges of objects

where slight misalignments between submaps are apparent and error is often as

big the object is tall. The error appears at the edge of every object in the map

and tends to be a consistent width. This indicates either a constant bias in the

relative offset between the two sensors, or that the sensors resolve edges differently

than one another.

Another error type of error appears as a gradual increase in error across the
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Figure 20. Histogram of map-to-map error. Adding cross links significantly reduces the
alignment error between camera and multibeam maps.

width of each trackline (Fig. 22). This is a slight roll bias in the camera offset.

This type of error is usually apparent in the map as well and indicates that the

offset wasn’t fully corrected during the navigation refinement step.

2.5 Discussion

This chapter has focused on the necessary steps for aligning multibeam and

stereo in the same coordinate system by refining navigation data. The motivation

for this is to align the two modalities well enough that a single map can be con-

structed from the fused data sets. Additionally, several error metrics for evaluating

the results have been reviewed.

2.5.1 Data association

One problem with the presented approach to link hypothesis generation for

data association is that as maps get larger, more navigation drift occurs and the

search radius for potential links must be wider. This adds computation time but

this is not a large concern when the solutions are computed in post processing.
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(a) Error with z only Cross Links (b) Error with 6 DOF Cross Links

Figure 21. Closeup of map-to-map error with two different types of cross modality links.
There is not any obvious difference in spatial distribution or error between 1 DOF versus
6 DOF cross modality constraints.
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Figure 22. Map-to-map error with cross modality links. The errors shown here are
indicative of the quality of submap alignment. The majority of map to map errors are
at the edges of objects where slight misalignments in x and y produce errors in z equal
to the height of the objects.
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Another problem is that with so many links being compared, there is more room

for bad matches. To cope with this, we use aggressive outlier rejection thresholds

during link verification. This we can reliably reject bad links and have found that

a large number of good links remain.

Stereo based data association

Matching stereo based measurements with each other to form links is a strong

way to constrain the navigation data. It performs well, providing constraints

on most images even in areas of the sea floor with few structural features since

the textural composition of sea floor tends to be rich enough for unique feature

matches.

The outlier rejection threshold requiring six matched features between poses

is somewhat aggressive but it doesn’t cause too many problems because good

matches are so prolific. However, it may be possible to avoid this during the

navigation solution by incorporating outlier rejection into the navigation solution

and rejecting features which low marginal probability at each iteration. Another

option may be to use a robust error function, though early experiments show that

this approach often fails to converge to a solution.

In spite of the general success with stereo data association, there are much

fewer links associated with images on the crossing line. This is effect is particularly

evident in high relief scenes where lighting and parallax create different effects

as viewpoint changes. There are ways to avoid this problem. First, the vehicle

can close loops over texturally but not structurally rich areas where lighting and

parallax will cause fewer differences between viewpoints, but available texture still

provides substance for good data associations. Another option is to close loops

with the vehicle at the same heading as was maintained during the survey to

achieve similar lighting and projective characteristics. The problem here is that

profiling sensors such as multibeam sonar or structured light require heading and

course over ground to be the same for proper data acquisition and coverage, so

56



this approach isn’t practical if a loop closure is necessary with those instruments.

Finally, more distributed lighting systems (not feasible on Hercules due to space

constraints) are begin used on other vehicles to mitigate the problem of shadows.

Cross modality links

Relative pose between camera and multibeam point clouds can be established

effectively using point cloud registration techniques to create a cross modality link,

however the characteristics of the individual sensors may impact the quality of this

registration.

Camera and multibeam have different susceptibility to occlusions. Stereo cam-

eras are unable to provide depth information for any area of the scene which isn’t

visible in two views. In scenes with large amounts of relief, occlusions become more

obvious farther from the center of the stereo reconstruction (Fig. 18(c)). Farther

from the center of the point cloud, there are more gaps in the data corresponding

with occlusions. On the other hand, multibeam is somewhat less sensitive to oc-

clusions. First of all, a point only has to be visible from one viewpoint, instead of

the two required for stereo. Second, since it is a profiling instrument, occlusions

only increase as a function of across track distance from the instrument center.

There are no along track occlusions which are present in the stereo reconstruc-

tions. These occlusions are a limiting factor in the quality of the registration.

That said, ICP accomplishes alignment for the places where there is data from

two sensors (Fig. 18(e)). The amount of occlusion present implies a corresponding

amount of uncertainty in the alignment between the sensors.

The process of generating link hypotheses between multiple modalities is cur-

rently done by hand. It would not be a stretch to automate, however. Link

hypotheses could be generated based on areas where there is significant overlap

between multibeam and stereo. To reduce the over all number of hypotheses and

improve performance, a metric related to the normals of the surface could be used

to determine which submaps have enough structure to be worth matching. If the
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survey contains little structure z links can be used instead.

It is interesting that even with only z links, the alignment between the two

sensors is good. This indicates that the navigation is constrained well enough

that the submaps tend towards good x, y alignment even without cross modality

constraint in those directions. However, the full cross modality links have a lot

of value because they are a step towards aligning maps from two different sensors

taken during two different surveys.

The necessity of hand tuning the information gain for cross modality links indi-

cates that there is some unresolved issue in determining information gain for point

cloud alignment which undervalues the link. Another possibility is the odometry

or stereo constraints are being over valued. Resolving this issue requires further

investigation since the relative importance of the constraints is important to the

quality of the result.

2.5.2 Map-to-map error and implications for mapping results

It is important to know if the navigation is good enough for map construction.

Figure 22 indicates that we can expect residual navigation error. This manifests at

the edges of objects and tracklines. This same figure also shows ∼ 3cm thickness

to the point cloud even where there are no objects. This point cloud thickness can

be partially attributed to the natural variance in the range measurements. It is

also related to sensor offset refinement an apparent roll error which corresponds to

camera submaps.

Assuming that this navigation solution is the best available, the next chapter

undertakes the goal of creating a map that combines the strengths of each of the

sensors.

List of References

[1] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial relationships in
robotics,” Proceedings of the Second Annual Conference on Uncertainty in Artificial
Intelligence, pp. 167–193, 1986.

58



[2] C. N. Roman, “Self consistent bathymetric mapping from robotic vehicles in the
deep ocean,” Ph.D. dissertation, MIT/WHOI Joint Program, 2005.

[3] R. M. Eustice, “Large-area visually augmented navigation for autonomous under-
water vehicles,” Ph.D. dissertation, MIT/WHOI Joint Program, 2005.

[4] R. M. Eustice, O. Pizarro, and H. Singh, “Visually augmented navigation for au-
tonomous underwater vehicles,” Oceanic Engineering, IEEE Journal of, vol. 33,
no. 2, pp. 103–122, 2008.

[5] I. Mahon, S. Williams, O. Pizarro, and M. Johnson-Roberson, “Efficient view-based
SLAM using visual loop closures,” Robotics, IEEE Transactions on, vol. 24, no. 5,
pp. 1002–1014, Oct. 2008.

[6] F. Dellaert and M. Kaess, “Square Root SAM: Simultaneous localization and map-
ping via square root information smoothing,” Intl. J. of Robotics Research (IJRR),
vol. 25, no. 12, pp. 1181–1204, Dec 2006.

[7] I. Vaughn, “Microbathymetry using self-contained navigation and simultaneous lo-
calization and mapping,” Master’s thesis, University of Rhode Island, 2012.

[8] F. Hover, R. Eustice, A. Kim, B. Englot, H. Johannsson, M. Kaess, and J. Leonard,
“Advanced perception, navigation and planning for autonomous in-water ship hull
inspection,” Intl. J. of Robotics Research, IJRR, vol. 31, no. 12, pp. 1445–1464, Oct
2012.

[9] C. Kunz, “Autonomous underwater vehicle navigation and mapping in dynamic, un-
structured environments,” Ph.D. dissertation, MIT-WHOI Joint Program, Novem-
ber 2011.

[10] C. Roman and H. Singh, “A Self-Consistent bathymetric mapping algorithm,” Jour-
nal of Field Robotics, vol. 24, no. 1-2, pp. 23–50, 2007.

[11] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle ad-
justmenta modern synthesis,” in Vision algorithms: theory and practice. Springer,
2000, pp. 298–372.

[12] J. C. Kinsey and L. L. Whitcomb, “Preliminary field experience with the dvlnav in-
tegrated navigation system for manned and unmanned submersibles,” In: Proceed-
ings of the 1st IFAC Workshop on Guidance and Control of Underwater Vehicles,
GCUV 03, Tech. Rep., 2003.

[13] D. Lowe, “Object recognition from scale invariant feature descriptors,” Computer
Vision, IEEE Conference on, p. 1150, 1999.

[14] P. Besl and N. McKay, “A method for registration of 3-d shapes,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, pp. 239–256,
1992.

[15] C. Roman and H. Singh, “Improved vehicle based multibeam bathymetry using
sub-maps and slam,” in IROS’05: Proceedings of the 2005 IEEE/RSJ international
conference on Intelligent robots and systems, 2005, pp. 3662–3669.

59



[16] P. Cignoni, C. Rocchini, and R. Scopigno, “Metro: measuring error on simplified
surfaces,” in Computer Graphics Forum, vol. 17, no. 2. Wiley Online Library, 1998,
pp. 167–174.

60



CHAPTER 3

Mapping

3.1 Introduction

This chapter focuses on producing a bathymetric map using data from two

mapping sensors. It is assumed that the sensor poses have been established al-

ready during the navigation refinement step. In general, the fidelity of a map

is evaluated by the end user using somewhat abstract characteristics related to

the map’s specific purpose. Several such characteristics of a useful map are dis-

tilled into concrete criteria. The ways that hybrid maps can address these criteria

provide justification for producing them as an alternative to the current method-

ologies. Two possible methods for combining multi-modal 3D point cloud data will

be presented. The first method serves as a basis for comparison and the second

method addresses issues of multi-modal data fusion and outlier rejection with em-

phasis on different aspects of map fidelity. Finally, the resulting point cloud will

be evaluated in terms of how well it addresses the map fidelity criteria.

3.2 Background

A number of methods have been developed for producing reconstructions of

the sea floor from images and acoustics.

3.2.1 Photomosaics

Photomosaics are maps comprised of images which are registered and warped

to bring them into alignment and blended together. This is a fairly simple prob-

lem for a few images but underwater surveys are often made up of hundreds to

thousands of images [1]. If many images are warped and aligned naively, major

distortions can occur. Resolving this type of error requires a global solution to de-

termine the projective transformations for each individual image which distribute

warping evenly across the map. It done properly no section of the map is subject
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to more distortion than the others [2]. This approach to mapping produces flat

maps which convey a large amount of information about shape and texture of the

scene. Such mosaics have been a very useful for archeology since they provide

information about the relative position of artifacts and allow scientists to visualize

an entire underwater scene at once [3].

The underlying assumption of this type of mapping is that each image is of a

planar scene. In practice this is regularly violated. The result is that the map is

not a scale accurate representation of the scene. In spite of this photomosaicking

is still widely used because well automated solutions are available which makes

such maps easy to produce and ultimately, they very informative in spite of their

drawbacks.

3.2.2 2.5D and 3D maps

The next level of complexity in mapping is creating a model which conveys

shape in 2.5D or 3D. A wide variety of methods have been developed to accomplish

this, using both acoustics and optics.

Typical approaches such as SFM have been employed using sparse features

[4, 5]. In feature rich areas the resulting mesh is very accurate and quite dense.

They also rely on sparse feature extraction, which can be tailored to focus on

high relief areas and areas of geometric importance, so complicated terrain can be

efficiently represented. However, since the sparse points are optimized during the

structure from motion solution, this method does not lend itself to arbitrarily high

point densities. It is ultimately limited by the feature extractor’s ability to extract

and match features and the computational burden to optimize feature locations.

Other approaches which use acoustic data such as CUBE and BP-SLAM build

height maps using a Bayesian filter approach. Depth measurements are added to

a graph or grid structure and redundant measurements are fused with a filter

[6, 7]. These approaches are successful but have never been adapted for multiple

modalities. One problem with applying them to multiple modalities is that naively
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fusing two modalities together may reduce the quality of the more precise sensor.

The previously mentioned approaches (except CUBE) refine navigation data

while building the map. Another option is mapping from known poses [8]. Rober-

son assumes known poses and reconstructs a surface using stereo vision data [9].

When a mesh is built from known feature points and poses, producing a seamless

reconstruction becomes an issue of mesh and texture blending [10, 11]. This type

of rendering produces very appealing maps with good local and global accuracy.

Blending textures and meshes however can disguise alignment issues.

Mapping with known poses has some characteristics which are useful for multi-

modal mapping, mainly the idea of splitting navigation and mapping into two

different steps. However, blending two modalities together without taking into

account the characteristics of each sensor may reduce the detail portrayed in the

final surface reconstruction.

3.2.3 Multi-modal mapping

Multi-modal mapping requires specific considerations for the characteristics of

each sensor. Previous attempts have been limited to computing scene structure

with multibeam and overlaying texture with the images [12, 13]. However, stereo

vision range data has some appealing characteristics that can compliment multi-

beam scene reconstruction. A next logical step in multi-modal sea floor mapping

is to synthesize a sea floor reconstruction from both multibeam sonar and stereo

vision.

Microbathymetric mapping at a scale of O(5cm) surface reconstructions of

the sea floor can benefit from merged data [14]. A final surface at this scale can

be overlaid with image data from a camera to create map which conveys detailed

shape and texture of the sea floor [9, 12, 13]

Such surface reconstructions can be thought of as 2.5D where a regular grid is

populated with height data. This is also called a height map or relief map. This

type of map only represents structure that is visible in a plan view. The mapping

63



data naturally takes this form when range measurements are made looking down

from an altitude much greater than the relief of the scene. The result of this

mapping pipeline is a full 3D point cloud which can be gridded any number of

ways or displayed as a triangulated mesh. However, a 2.5D grid representation is a

convenient framework for dividing up a point cloud for operations in this pipeline.

It is also an intuitive way to view height information on a flat page so that is how

the data will be presented in the results section.

3.3 Evaluation of Map Quality

Decisions on how to construct a map are informed by the map’s ultimate

application. For instance, producing maps for navigation requires conservative

depth estimation biased towards the shoalest depth to comply with regulations

[7]. The maps produced in this chapter are intended for quantitative scientific

investigations of the sea floor.

A number of criteria related to the map application are important to the design

of a mapping algorithm. The qualities that are considered in this design are as

follows:

• Grid resolution. Higher point densities are important for resolving detail,

so long as each point is contributing additional information. Greater point

density allows a higher grid resolution if the points are accurately localized.

• Gaps. Gaps in the data make it difficult to interpret. If possible they should

be filled with real data, even if it is at a lower resolution. Interpolation can

also be used to fill the gaps, but interpolated data is generally of less value

than real data. In an interpolated map, it can be difficult to distinguish

between the two which can cause the user to be over confident.

• Artifact reduction. The user must be able to make precise measurements of

individual features in the map. Artifacts such as distortion and ‘ghosting’,

where obviously identical features are mapped in multiple nearby locations,
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need to be avoided. Such misalignments are related to sensor calibration

errors and navigation errors. A logical threshold for concern is when those

errors are greater than the grid size allowable by the instrument’s resolution.

• Preserving discontinuities and detail. Discontinuities in the terrain such as

those related to man made artifacts or hydro thermal vent spires must be

preserved. If sensors with two different sampling frequencies measure an

area, its preferable to represent the scene with only data that has the higher

sampling frequency. This avoids low pass filtering and a loss of information

in areas of high relief area.

• Outliers. Both sensors produce outliers in the range data. A good mapping

algorithm rejects these outliers without rejecting good data.

These criteria can be used to qualitatively asses the fidelity of a map. They

address the more abstract side of map quality which directly contributes to how

effective the map is for its specific application. The mapping algorithm described

in this chapter was developed with these specific criteria in mind.

3.4 Methods

This section describes an algorithm to merge data from two sensors into a map

of the sea floor. Specifically it focuses on combining range data from stereo cameras

and multibeam sonar assuming known vehicle poses. The following are steps in

the process which effect one or more of the above criteria. The way the steps are

independently parametrized is used to maximize the map’s quality according to

the criteria.

3.4.1 Stereo

There are a number of ways to produce range data for mapping from two

cameras. The previous chapter used sparse features to match and triangulate

three dimensional feature points. This is a good approach for navigation refinement
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because it reduces an image to its most unique features. There is no need to keep a

record of the 3D position for every pixel of the image because only unique features

are useful in data association.

A high point density is often desirable for mapping applications, and sparse

feature matching cannot be used to determine a depth measurement for every pixel.

A different approach to stereo matching called dense stereo correspondence is more

capable of computing a depth for each pixel. Dense techniques are more suited to

this task because the feature correspondence search is limited to a set of putative

correspondences which lie on the epipolar line in the conjugate image. The way

that matches are established using this constraint can vary greatly. A review and

classification of current methods can be found in Scharstein and Szeliski [15].

The simplest of the dense methods is the Block Matching Algorithm imple-

mented in OpenCV [16]. A window around a given pixel in the key image is

compared using the sum of squared differences to likely pixel matches in the con-

jugate image. The correspondence search region is constrained by user input of

the minimum and maximum pixel disparity range. Then correspondences are es-

tablished within this range. Stereo correspondences found between pairs of images

can be triangulated to for a 3D point cloud.

The Block Matching dense stereo algorithm is used here. It is fast and its

various filters reliably reject outliers without a lot of tuning. Additionally, since

no smoothing constraint is used, edges and textures are largely preserved. This

consideration is important because the majority of dense methods make assump-

tions about the shape or smoothness of the environment which are appropriate for

urban and indoor settings but are violated in natural terrain of the sea floor.

3.4.2 Multibeam

Multibeam sonar data requires somewhat less processing than stereo cameras

to formulate 3D points. Much of the signal processing necessary for beamforming

is done by the sonar’s data acquisition software. After the data has been gathered,

66



the maximum intensity along a given beam is chosen as the distance to the sea

floor along each of the 512 beams in a single ping. The ranges for each ping are

naturally 3D point clouds which can be assembled into a map by projecting them

into the map coordinate system via the navigation data.

During the processing we reject the outer 15 beams on each side as well as

the center 10 beams. Both locations contain a large number of outliers. Rejecting

a large number of beams is generally an aggressive an approach which rejects

too much good data to be worth its simplicity. In this case however, setting

an aggressive outlier rejection criteria is preferable for two reasons. First, since

the survey geometry was designed to provide 200% overlap for the 45◦ Field of

View (FOV) camera measurements, there is twice as much overlap for the 90◦

FOV multibeam sonar. This means that outlier rejection is unlikely to open up

gaps in the map and at worst will simply cause a slight reduction in sampling

frequency in areas where good data was incorrectly rejected. Second, this type of

aggressive rejection makes the multibeam range data nearly free of outliers. This

is very difficult to do for stereo range data making the multibeam data a good tool

for rejecting bad stereo data. Ultimately, purging the multibeam data of outliers

at the cost of losing some correct data appears to be worthwhile due to survey

design and the difficult characteristics of stereo outliers.

3.4.3 Hybridization

Hybrid maps are created by selecting from the available visual or acoustic data

to fill each grid cell of the map. The concept is that a map can be constructed by

selecting the best data from a redundant data set by accounting for the specific

characteristics of the sensors. The methods used here combine modalities with

specific attention to the map qualities presented previously. The previous chapter

focused on finding the sensor pose for each mapping measurement. This chapter

follows by focusing on projecting them into a common frame using criteria to select

the best data for each location of the map (Fig. 23). At this point, no additional
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Vehicle trajectory

Stereo camera pose

Multibeam sonar pose

Map

Figure 23. Mapping concept. Sensor poses are known at this point so the next step is
to decide which data to use to populate each grid cell of the map. This chapter focuses
on how to select the best data from each sensor with which to build the map.

navigation refinement will be done.

3.4.4 Simple Averaging

A simplistic method used for combining data from multiple sensors is to bin

and average the data with no considerations made for outliers, misalignment or

sensor characteristics. The area of the map is divided up into grid cells, 2× 2cm.

All points which fall into the cell are averaged to get the depth for that cell. This

map is created for comparison (Fig. 24). It gives an idea of how the modalities

might compliment each other, as well as demonstrating the specific problems which

need to be addressed when combining their data.

3.4.5 Mapping based on local criteria

Averaging illustrates the dominant issues which arise from combining multiple

modalities into a single map. Another approach is to cope with each of these issues

individually, and select the best data for map assembly using criteria which are

evaluated only over the grid cell in question or a small surrounding area. Initially,

an appropriate grid size must be selected, then outliers and errors can be dealt

with on a grid cell by grid cell basis. There are two main types of errors that can

appear in a map. The first set of errors are large outliers from erroneous mapping

sensor data, the second are more subtle errors related to sensor calibrations and
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Multibeam Dense Stereo Combined

298.6

299

299.2

298.8

Figure 24. Averaging all sensors to construct multi-modal map. This approach makes
no accommodation for outliers, different modalities, or misalignments. The hybrid map
shows artifacts related to each of these issues. While we are able to fill in the holes usually
seen in stereo, the precision of the stereo is degraded by averaging in the multibeam data.
Additionally, the stereo outliers persist in the final map degrading the relatively outlier
free multibeam range data.
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remaining navigation errors.

Grid size

Grid size is selected to trade off between accuracy and resolution. There is no

one grid size which is perfect for a given map. Instead trade offs must be considered

as the map is being constructed. The minimum grid size is related to either the

smallest grid size which still consistently contains one or two data points, or the

smallest grid size which doesn’t show obvious artifacts or errors. The smallest

grid size that contains real information will have the highest spatial resolution.

However, due to inherently noisy measurements, accuracy is improved when you

can average over more measurements. This is achieved by having larger grid cells

containing many points.

Properly trading off accuracy and resolution requires a bit of tuning. First we

select a grid cell size that tends to contain result in as many grid cells occupied

with range data as possible. We then grid the point cloud to the chosen size and

compute the gridding confidence. An appropriate gridding confidence threshold is

set and then the map is assembled. If too much of the map is cropped out, either

decrease the gridding confidence (which will increase the likelihood of ghosting) or

increase the grid cell size, depending on which is more valuable.

It is important to note that much of this discussion makes the assumption that

most error in x and y is from navigation and most error in z is due to intrinsic

sensor errors. Sensor calibration errors can also manifest in x and y but these

simplifications are still a reasonable tool for selecting a grid size and pruning maps

associated with poorly constrained vehicle poses.

Egregious outliers

Each sensor has outliers with particular characteristics. Taking these into

account, its possible to reduce their effect on the final map. In particular, stereo

outliers can be very difficult to eliminate without manually adjusting rejection
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thresholds. On the other hand, multibeam ranges are relatively outlier free. This

information can be leveraged to create an effective outlier rejection scheme which

requires minimal input on the part of the user.

Dense stereo based outliers are usually the result of poorly matched pixels

between the left and right images. These errors do not follow a normal distribution

around the true range value. Instead they are often very far from the true range

value. These commonly occur at the edges of the image and often there often

many more of these outliers in a single grid cell than there are good measurements

from either sensor. Areas of low texture which are frequently a problem for stereo

matching are filtered out by the Block Matching stereo algorithm and generally

don’t result in outliers. The standard methods for rejecting stereo outliers are to

remove points who’s matches don’t conform to the epipolar constraints of stereo

system. However, dense stereo imposes the epipolar geometry as a constraint on

matching, thus mismatches already conform and the constraint is not effective for

outlier rejection.

The multibeam sonar has comparatively few outliers per grid cell is a useful

tool for identifying stereo outliers. We compute the median and the square root

of second moment about the median (standard deviation) of sonar range values

in a four cell radius around a cell. The median is used instead of the mean to

reduce the influence of any multibeam outliers present in the cell. Any stereo

measurement more than three standard deviations from the median is rejected.

There are many fewer multibeam outliers than stereo outliers and those that exist

are rejected later in the process. As a result, it is not necessary to explicit reject

them here. However, when they are present, the use of the median keeps them

from having undue influence on stereo outlier rejection (Fig. 25).

Subtle errors

Once any egregious errors have been rejected, errors due to navigation, cali-

bration and fundamental differences between sensors must be dealt with.
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Multibeam sonar ranges

Retained stereo ranges

Rejected stereo ranges

Figure 25. Stereo vision outlier rejection using multibeam sonar. Depth measurements
normalized by sonar neighborhood median are shown. Stereo ranges are in green if kept
and red if rejected. The sonar ranges are shown in blue. In the next step, any sonar
that occupies the same cell as a stereo point will be rejected which eliminated the sonar
outliers shown here.
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• Gridding Confidence Based Selection

Ghosting will result from misalignments between submaps. This is not ex-

plicitly addressed in the outlier rejection step. Much of ghosting is a result

of errors in navigation which aren’t fully resolved during navigation refine-

ment. Certain areas of the map might contain fewer constraints on navigation

making them not adequately correlated with the rest of the map. Therefore

navigation refinement may fail to bring the maps into very close alignment.

The amount of navigation error in x and y, and to a lesser extent z determines

the appropriate grid size. With high resolution mapping sensors, navigation

error is often the dominant error source, and you might expect to see ghosting

if your grid size is smaller than navigation error. Instead of increasing grid

size to accommodate navigation error at the expense of resolution, poorly

aligned submaps are detected and removed, allowing sensor resolution to

dictate the grid size at which a self consistent map can be achieved. Even so,

the minimum grid cell still should not be smaller than the minimum point

cloud density. This avoids holes in the final surface reconstruction.

It is reasonable to assume that a pair of overlapping maps with poorly cor-

related poses will be poorly aligned with each other. Using this assumption,

we can rid the map of submaps which aren’t consistent with each other by

flagging poses which are poorly correlated with each other. To do this, each

point in the multi-modal point cloud is assigned to a grid cell. The marginal

covariances are computed between each of the poses which have maps present

in the grid cell. This covariance is used to compute a percent confidence that

those two poses have been localized correctly to within the size of a grid cell.

If the gridding confidence is lower than a threshold, both poses are flagged.

After all the poses contributing to each grid cell have been flagged, the flags

are summed. Incrementing through each grid cell again, the map associated

with the pose which has been flagged the most times for poor pairwise con-
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fidences is eliminated from the grid cell. This process reduces conflicts by

eliminated maps which aren’t well correlated with respect to each other and

keeps poorly constrained points out of the map.

Computing the gridding confidence starts with determining the marginal co-

variance Σij of the x, y components of the transform xi,j between two poses xi

and xj. xi,j = [x, y]T is a Gaussian random variable described by the ellipse

[

x− µxi,j

]T

Σ−1
i,j

[

x− µxi,j

]

= k2. (7)

k2 is a χ2
2 random variable which parametrizes the ellipse. Setting k2, to

a value corresponding to the required level probability (α) gives the equa-

tion of the ellipse defining the error circle for that level of confidence. For

instance,k2 = 5.99 has a 95% probability or α = .95 according to the χ2
2

probability distribution function. If the entire ellipse falls within a square

the size of a grid cell, that indicates that the the two points come from maps

are correlated enough that there is α confidence that they truly exist within

the same square (Fig. 26).

• Sensor Selection

Attempts to fuse the two data sources together can result in reduced precision.

The edges of objects which are sharp in stereo reconstruction become blurred,

and surfaces which are smooth become rough. To address this, only a single

sensor is used to compute the depth at a given cell. In general stereo range

data is preferred, and sonar data is rejected whenever it shares a cell with

good stereo range data.

3.5 Results

This processing pipeline is designed to aggregate data from two sensors to

produce a map which best addresses the map quality criteria introduced in Section

3.3. These criteria are more abstract than the quantitative error metrics used in
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µx

grid size

ellipse of desired
% confidence

Figure 26. Confidence that maps appearing in the same grid cell are actually in same
grid cell. This gridding confidence is computed using the marginal covariance of the two
submap poses in X and Y. If the confidence of 95% confidence falls within a square the
size and orientation of a grid cell, then those maps have an acceptable amount of relative
uncertainty and both will be used in the grid cell. Otherwise, both will be flagged and
the map associated with the pose related to the most bad flags will be rejected.

Chapter 2 but they are relevant because they are predicated on map characteristics

important to the end user. Furthermore, these criteria can be used to evaluate the

pipeline by comparing the criteria-based quality of each single sensor map to the

final multi-modal map. This section begins by presenting the single modality maps

and their characteristics. The parameters of the pipeline are explained in terms

of their effect on the composite product. Finally the results of the single and

multi-modal maps are compared.

3.5.1 Multibeam

Multibeam maps created directly from iSAM refined navigation have been in-

vestigated by both Kunz and Vaughn [13, 17]. The multibeam map in Figure 27

is the result of binning the point cloud of multibeam range data into grid cells

and averaging the z values of the points in each grid cell. This map illustrates the

type of artifacts which arise in multibeam maps and need to be addressed through

multi-modal mapping. The artifact shown in the left inset commonly occurs when

the vehicle stops briefly and many noisy multibeam pings are averaged together. In

this case, the vehicle stopped and the navigation data dropped out for 6 seconds.
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Figure 27. A multibeam map with 1.5cm grid size. The map appears reasonably self
consistent with few gaps in the data. The point densities are much sparser in areas which
have only been passed over once. So some grid cells around the edge are not populated,
leaving holes. The left inset illustrates a linear artifact of the vehicle being stationary
and a dropout of navigation data. The right inset shows the effect of noisy data and
slight misalignment between overlapping submaps on the map.
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This impacted the navigation data in a way this isn’t modeled by the pose uncer-

tainties during navigation filtering, therefore it is not properly dealt with during

the navigation refinement. Because the vehicle pose covariances do not capture the

uncertainty, it is difficult to identify and reject these bad points. In the right hand

inset the edges of objects are not always distinct where multiple submaps overlap

with slight misalignments. This results in blurry edges and repeated or ’ghosted’

objects. Additionally, surfaces of amphorae which should appear smooth are often

bumpy because of the noise in the range data.

Gaps in the data are another issue in this map. The effect of low point density

can be seen around the edges of the map. Depending on the grid cell size, areas of

the survey with no overlapping coverage may not have high enough point density

to guarantee points will occupy every cell. This leads to sporadic empty cells.

However, it may be advantageous to maintain this smaller grid size at the expense

of small gaps in order to take advantage of the finer resolution available in regions

with more overlapping coverage.

In spite of these issues, the multibeam map has some very favorable char-

acteristics in terms of map quality. While there is some blurring of details and

discontinuities, the data has few large misalignments. Small gaps are only evident

where there is no overlapping coverage and this occurs mainly around the edges of

the map and there are no large areas where the sensor fails to provide data. There

are also few large outliers.

3.5.2 Stereo

A map assembled from dense stereo matching is shown in Figure 28. The

most apparent feature is the number of gaps in the data. In this case, the gaps

are caused by a poor calibration which prevents adequate alignment between the

images during stereo matching. As a result, portions of the image could not be

matched so range data could not be computed. Calibration issues are not the only

cause of stereo ranging failures however. A number of other failures common to
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Figure 28. A stereo map with 1.5cm grid size and vertical averaging in the z. The
precision of stereo measurements is apparent in the inset where the surfaces of amphorae
are rendered smoothly. However, the gaps in the data are an obvious weakness. Outliers
also appear in the inset (linear artifacts indicated by red arrows) and ghosting indicated
by the black arrow.

underwater stereo are illustrated in Figure 29. These include high turbidity and

high altitude, both of which complicate feature matching.

Figure 29(a) demonstrates that for ideal conditions the selected stereo match-

ing algorithm, Block Matching, performs well enough to produce range data for

mapping. It also generally decays gracefully as conditions decline. Few mismatches

appear in poorly aligned or poorly textured regions leaving only gaps in the data.

The exception to this is at the edges of the images where the distinct line be-

tween the image border and the black background can cause a large number of

false matches (Figure 29(f), box 1). These matches can be difficult to reject with-

out direct user intervention since they are not flagged by any standard automated

stereo outlier rejection technique. Often these types of outliers can masked out,

but instead, we opt to eliminate them during a later stereo outlier rejection step

which simultaneously deals with outliers due to other types of false matches (Figure

29(h), box 2).
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(a) Ideal Conditions Image (b) Ideal Conditions Disparity

(c) High Altitude Image (d) High Altitude Disparity

(e) Stirred up Sediment Image

1

(f) Stirred up Sediment Disparity

(g) Calibration Error Image

2

(h) Calibration Error Disparity

Figure 29. Dense stereo matching under varied conditions. This figure shows the left
hand image of a rectified stereo pair (on the left) and a depth map produced using stereo
matching (on the right). The Block Matching algorithm used here works well under idea
conditions for underwater stereo. It fails however, for situations where altitude is high
(or outside of calibrated zone of sensor), sediment has been stirred up, or the camera
calibration is bad. Under the best conditions, the center of the image matches well but
the corners generally do not.
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Another notable feature of dense stereo matching is that has trouble resolving

the edges of objects. This issue can be observed in the inset of Figure 28 where

there is no data at the edges of many amphorae. There are two reasons for this.

Some pixels are not matched simply because they are occluded, not visible in both

the left and the right image as mentioned in Section 2.5.1. The other reason is that

pixel matching is based on correlation between patches surrounding the pixels of

interest. This assumes that the area around the pixel being matched is flat enough

that parallax will not effect the content of the patch. This local flatness assumption

is violated at the edges of objects. This is a common problem which applies to a

greater or lesser extent to most stereo algorithms. Similarly, multibeam sonar has

a limited ability to resolve edges due to having a relatively large beam footprint

and as well as occlusions.

The stereo range data has much higher data density than the multibeam sonar,

so it is better able to represent small details. However, the high point densities

quickly become impractical for processing in Matlab. To deal with this, the dense

stereo reconstructions were subsampled to a sample density slightly higher than

the multibeam data density. Even so, the stereo cameras appear to provide better

measurement fidelity. Figure 28 illustrates this where amphorae appear smoother

and more distinct in the stereo map than in the multibeam map (Figure 27).

Sharp sherds are also reconstructed faithfully in the stereo whereas they tend to

be blurred out by the large beam width of the multibeam. The higher precision

data available from stereo is good for representing detail but also makes ghosting

more apparent. This is visible in in the inset in Figure 28 at the arrow.

3.5.3 Parameterizing the pipeline
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Figure 30. The final multi-modal map. This map is constructed from both stereo and multibeam sonar ranges, combined according
to the procedure outlined in Section 3.4.5

.
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The final map is shown in Figure 30. This map represents the results of the

steps outlined in the in Section 3.4.5. The following sections summarize the results

of the various steps, their parametrization and its effect on map quality. First a

reasonable grid size is selected and validated, then the point cloud is gridded. Then

several variables which parametrize outlier rejection are tuned and applied to the

gridded point cloud. The outcome of this process compares favorably with the

single modality maps.

While this map has no issues with ghosting, because there are plenty of links

between poses, ghosting is a consistent issue in creating sea floor maps and it can

occur any time there are not enough link constraints between poses with overlap-

ping map data. To illustrate this point and the way that the mapping pipeline

addresses it, the links between the crossing line and the rest of the survey were

removed. This makes the crossing line poorly constrained and results in some

ghosting where the crossing line overlaps the rest of the map.

Determining Grid Resolution

Grid size is the first parameter which must be set because then the point

cloud can be gridded and all subsequent steps can be executed cellwise. This step

helps decide on a reasonable minimum resolution at which to operate, however,

the final result is a point cloud which can be re-gridded using any algorithm at

any resolution.

Deciding on an appropriate grid resolution begins with choosing a minimum

grid size that generally guarantees each grid cell will contain data. By plotting

the percentage of occupied grid cells over a number of grid sizes, the minimum

grid size becomes apparent. This is the point where increasing the grid cell size no

longer increases the percentage of occupied grid cells. Figure 31 shows the percent

occupancy of the grid for each sensor. It is necessary to examine both sensors. The

sensor indicating the largest grid size should dictate the overall minimum grid size.

By examining this plot, a reasonable minimum grid size of 1.5cm can be selected.
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Figure 31. Using number of occupied grid cells for minimum grid size selection. This
figure shows the percentage of occupied grid cells as a function of grid size. As grid
size increases, the gain in grid occupancy levels off. The point where it levels off is a
reasonable minimum grid size and is indicated by the star.

(a) 1.5cm Gridding (b) With gridding confidence rejection

Figure 32. Verifying grid size selection on an averaged multi-modal map. (a) shows that
some navigation error is still visible in the map at 1.5cm grid size. By using gridding
confidence elimination and finding that it effectively removes the ghosting (b), and re-
averaging, we can demonstrate that the ghosting was due to a few poorly constrained
poses instead of a pervasive high level of navigation error across the map.
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Grid size trades off several map attributes. A larger grid size results in lower

resolution but fewer apparent artifacts and fewer gaps in the data. Our current

choice of grid size is strictly based on gaps. It also must be validated in terms

of navigation error artifacts. If navigation error is widespread and obvious at the

current grid size, then the grid size should be increased. If there only a few localized

errors, these might be due to isolated poor navigation data and can be eliminated

in an outlier rejection step without having to increase grid size.

Errors related to navigation data can be observed by gridding and averaging

in z (Fig. 32(a)). When this point cloud is gridded, there is clearly some ghosting

in the area of the map indicated by the arrow. The question is whether this error

is related to a small area of poorly constrained poses which can be eliminated as

outliers, or if it is the dominant error magnitude for the whole map. This can

be determined by eliminating points from different maps which don’t have 95%

confidence of being in the same grid square. In this case the gridding confidence

elimination rejects the misaligned maps without reducing overall map quality (Fig.

32(b)). The resulting increase in clarity confirms this grid size is reasonable. If the

resulting map had still contained misalignments or become noisier due to gridding

confidence rejection, it would have been likely that the navigation error was too

large for the chosen grid size. In the latter case, the grid size must be increased until

it is on the order of the navigation error. There is no further trade off associated

with a larger grid size other than the loss of resolution due to subsampling.

Outlier rejection

Outlier rejection is the next step in mapping once the appropriate grid size

has been determined and verified. The main purpose of this step is to identify and

reject egregious outliers. Misalignments and more subtle errors will be addressed

during subsequent steps. Having observed that there are very few egregious outliers

in the multibeam data, its reasonable to use this data to reject stereo data which

contains far more large outliers.
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Stereo Data

No Stereo

(a) Stereo occupancy after outlier rejection radius 0

Stereo Data

No Stereo

(b) Stereo occupancy after outlier rejection radius 2

(c) Map after outlier rejection radius 0 (d) Map after outlier rejection radius 2

Figure 33. Demonstration of rejecting stereo outliers using multibeam cellwise statistics.
The results of computing the rejection statistics from a single cell are shown in plot (a)
and from a two cell radius in plot (b). There is more widespread camera rejection when
only one grid cell is used, and this corresponds to a bumpier looking map as observed
in (c) relative to (d). No other types of outlier rejection were used at this stage, these
plots are strictly the result of rejecting camera data based on cellwise statistics.
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Initially, outlier rejection was done simply by eliminating any stereo points

lying more than three standard deviations from the median of the multibeam range

for a given cell. This resulted in some valid stereo data being rejected simply

because the multibeam data was noisier than the stereo or slightly misaligned.

This appears as clipped off data creating jagged edges on objects, or widespread

elimination of stereo data. This can be corrected by computing the rejection

statistics using a two grid cell radius around the cell where rejection is being

performed.

When using a two cell radius there is no evidence of rejecting valid data which

would necessitate a larger radius. Meanwhile, the stereo outliers appearing as

horizontal lines are consistently rejected (Figure 28, red arrows). This radius

can be tuned for each new map. When alignment between the two modalities

is nearly perfect, the rejection threshold can be computed from a one grid cell

radius. Computing statistics from zero radius (or a single grid cell) isn’t advisable

since a single grid cell runs the risk of containing very few points and can produce

statistics which poorly represent the area due to the noisiness of multibeam data.

Figure 33(a) shows that when the rejection statistics are computed from only one

grid cell, many sporadic camera points are rejected. These same isolated areas

are not rejected when a two grid cell radius is used in Figure 33(b) resulting in

smoother object surfaces in Figure 33(d).

Gridding Confidence Rejection

After rejecting large outliers, the more subtle misalignment errors can be ad-

dressed. Gridding confidence rejection can be used to eliminate points related to

poorly constrained navigation data from the outlier rejected point cloud. While

this step was run previously as a way to verify the grid size selection, now it is

used as part of the map making pipeline.

Reducing ghosting can be accomplished by removing maps which are projected

from poorly localized poses. In the example map, the crossing line is poorly con-
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Submaps in crossing line

Figure 34. Gridding Confidence for overlapping submaps. This figure shows the percent
confidence that poses contributing maps to the same grid cell are localized with less than
a grid cell of uncertainty. Poses on the crossing line have low confidence of contributing
points to the proper grid cell. Points projected from the poorly localized poses are good
candidates for rejection since they may create ghosting artifacts due to misalignment.

(a) Outlier Rejected (b) Outlier & Gridding Confidence Rejected

Figure 35. Results of gridding confidence rejection. Removing the points related to
poorly constrained navigation from the map removes ghosting and improves the clarity
of the map.
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strained to the map because the crossing line has no links with the main part of the

survey. This lack of links leads to a relatively large marginal covariance between

poses on the crossing line and poses from nearby portions of the map. In fact, the

marginal covariance between poses on the crossing line and poses with overlapping

submaps leads to only a 65% or lower confidence that points measured during the

crossing line are being projected to the correct grid cell (Fig. 34). These gridding

confidences are a good predictor of ghosting. The 95% confidence interval is both

reasonable in theory and gives good results in practice (Fig. 35).

Generally, eliminating points from the grid cell average would tend to reduce

accuracy because there are now fewer noisy measurements to average over. How-

ever, by eliminating only those points which are poorly localized, the map will be

improved since points which are not representative of the surface in that grid cell

have been removed. The exception to this is if only one point remains in a grid

cell after rejection and that one point poorly localized. In this case, artifacts may

continue to appear. At this point, the map the grid size should be increased, how-

ever this issue would have been apparent during grid size validation, and addressed

with a larger grid size at that time.

Sensor selection

A single sensor is assigned to each grid cell during the sensor selection step.

This step occurs after all other outliers have been rejected. By saving this step for

last, any gaps in the an individual sensor’s data created during outlier rejection

can be filled with the remaining sensor. This step assumes that all the data which

remains in a grid cell is accurate but that having only one sensor per grid cell is

preferable. The stereo camera range data is higher resolution and more precise so

it is selected whenever two sensors occupy the same grid cell.

There is some error apparent between the two modalities which manifests

itself at transitions between multibeam and stereo coverage. It appears to be

a bias in z of 1 − 2cm with the multibeam ranges being slightly longer. The
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Multibeam sonar data

Stereo camera data

Figure 36. Sensor selection. Each grid square only contains a single sensor’s data. This
reduces the effect of averaging improperly aligned submaps and blurring the reconstruc-
tion.
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appearance of the bias is accentuated by the transition from the relatively smooth

stereo measurements to the noisier multibeam measurements. A broader issue with

this mapping pipeline is that there isn’t perfect alignment between the camera

and the multibeam data. Where there are many adjacent cells containing different

sensors, the map appears bumpy even if the terrain is smooth (Fig. 30).

The sensor selection step allows the map to retain the favorable characteristics

of the stereo data. The stereo data remains undistorted by multibeam data because

the latter is only used in places where there is no stereo data (Fig. 36). Textures

are also preserved which is not possible when using multibeam only or multibeam

and camera data averaged together.

3.5.4 Comparison between single and multiple modalities

Comparing the single and multi-modality maps serves as a measure of perfor-

mance for the mapping pipeline. Grid resolution was maintained at 1.5cm for the

final map product. At this grid size, the multi-modal map is generally better than

either single modality map.

The multi-modal map effectively incorporates the strengths of the single

modality maps. The gaps in the stereo data are corrected using the multibeam

data. However stereo data is the dominant data source which results in a highly

detailed map. Outliers have been successfully rejected with minimal user interven-

tion. The remaining artifacts in the final map are largely those which were also

in the single modality maps. The area mentioned in Section 3.5.1 for having some

dropped navigation data still contains artifacts, there is also a remaining artifact

due to roll bias in the stereo cameras. It is present in both the camera only and

the multi-modal map and is a flaw in the navigation refinement as opposed to the

mapping.
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(a) Photomosaic
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(b) Initial point cloud & estimated surface
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(c) Final point cloud & estimated surface

Figure 37. Initial and final point cloud vertical slices. (a) Photomosaic of the area
around a vertical point cloud slice. (b) The slice of the initial point cloud shows that it
is several cm thick. This thickness can obscure small features. (c) The final slice shows
the features more accurately and is more faithful to textures. The profile is smooth
where the image is smooth and rough where the image appears rough.91
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Figure 38. Profile of an unprocessed point cloud. The point cloud here shows both
multibeam (+) and camera points (.). The colors correspond to the map number with
warm colors being submaps from the beginning of the survey and cool colors from the
end.

3.5.5 Point cloud profile

Figure 37(b) shows a slice of the naively merged multi-modal point cloud.

The black line shows a profile of the surface created by gridding and vertically

averaging. The initial point cloud is several centimeters thick and appears to have

a multi-modal distribution in z, particularly in areas where there is more structure.

A close up shows that even in flatter regions, the vertical distribution of points in

a grid cell tends to be composed of clusters (Figure 38). Here submaps which are

adjacent in time are also adjacent in the colormap, so warm submaps were acquired

at the beginning of the survey and cool colors at the end. Notice that maps with

similar colors tend to lie closer to each other than they do to other submaps in

the same x, y location. This occurs regardless of modality. This indicates that

navigation error is still a significant source of error in the map.

As mentioned previously, vertical averaging across such a clustered distribution

in z will not give a good scene representation. The appearance of bumpiness in the

initial estimated surface is mainly due to averaging across the unevenly distributed

ranges in each grid cell. The final point cloud is much thinner, and it is able
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to faithfully render smoothness where the images show the bottom is probably

smooth.

3.6 Discussion

This pipeline produces maps synthesized from multibeam and camera data.

The design of the pipeline was intended to address the map fidelity criteria laid out

in Section 3.3. The steps above specifically address the issues of grid resolution,

outliers, artifacts, detail preservation and gaps. This results in an improved map

relative to the single modality maps. However, a few issues remain unresolved by

this process. This section discusses the successful aspects of the pipeline as well

as its limitations and potential remedies.

Gaps

There appear to be two types of gaps in the gridded data. One consists

of large missing segments of data. These can be due to sensor malfunction or

data elimination during outlier rejection steps. The solution to this problem is to

substitute in other data. This pipeline is effective for coping with these types of

gaps. The holes in Figure 28 are filled using multibeam data as shown in Figure

36.

The other type are small dispersed gaps. These occur when the grid size

is too small for the sensor’s measurement density leaving grid cells that are not

populated with range data. If small holes are pervasive, it means that measurement

density is too low for the chosen grid size and it should be increased. However,

if increasing the grid size is not desired, or only small sections of the map have

this problem, there are two ways these gaps could be addressed. First you could

try to extract more range data from existing sources. Lowering filter threshold on

dense stereo matching will result in more stereo matches, however these tend to

be mainly bad matches. Therefore, this option impractical. Another option is to

interpolate existing data. Interpolation should be handled with caution since it
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creates data where there was none by making assumptions about the characteristics

of the surface. This is inadvisable because interpolated data can be confused with

real data and make the user over confident. However, when the gaps are the size

of a grid cell, a local interpolation technique such as linear interpolation would

help make the map more readable without running the risk of creating fictitious

structures or flat ground where there is texture.

Accuracy

Evaluating the map accuracy is very difficult with sea floor data. To evaluate

the proposed method for true accuracy would require a ground truth data set.

Lacking this data set, we can note that the method requires no assumptions such

a scene flatness, frequently used in photomosaicking, which introduces systemic

distortions. Additionally, the map-to-map error (Fig. 22) shows that the map is

relatively self consistent which also increases our confidence in the map’s accuracy.

Artifacts

Many of the artifacts initially present in the naively combined multi-modal

map have been eliminated, however a few biases remain. The roll bias in the camera

data is still apparent after mapping, which can be expected since no specific effort

was made to eliminate it in the mapping processes. This is clearly a shortcoming in

the previous navigation refinement step. However, it may be possible to reduce the

effect of a roll bias during mapping without adversely effecting the map. Roll bias

is most apparent at the edges of submaps. In areas where multiple maps overlap,

points which are farthest from the center of the submap can be eliminated. If a

sophisticated gridding process is used to process the ultimate point cloud, blending

techniques could be used to reduce the appearance of such artifacts [11].

There is a small difference in z value between the camera and the multibeam

data. This is apparent in areas where there is no camera data and the multibeam

data fills in the gap. In those places, there is a small depth discontinuity. While
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its possible to reduce the appearance of problems like this with blending, that is

strictly a cosmetic solution. This issue requires better agreement between the two

sensors to be established during navigation refinement.

Sequential steps versus a unified approach to mapping

The presented approach is a series of steps that deal with individual mapping

issues specifically and directly as they arise. A series of individual steps has the

advantage that it is easy to add and subtract steps and tailor the algorithm to

data sets with unique issues. More unified techniques could be harder to adapt

in cases where they fail. Another advantage is that tuning the algorithm is fairly

straightforward since available dials correspond directly with physical parameters.

However, this design can be an issue because the approach doesn’t solve prob-

lems that haven’t been explicitly modeled. Instead specific techniques need to be

developed to deal with the characteristics of some data sets. For instance, the

outlier rejection technique used here rejects bad points based on their distance

from the mean value of the grid cell. Over terrain with very large discontinuities,

this method may not be able to distinguish outliers from large discontinuities so

a new outlier rejection technique might be necessary. Even so, this method has

addressed some common issues of mapping which can be expected to reoccur thus

these techniques will generally transfer to other mapping problems.

The alternative would be to develop a more unified global method for sur-

face reconstruction. Such a method was devised for this data set where multiple

depth hypothesis were generated based on clustering algorithm for each grid square.

Depth hypothesis were resolved using a Markov Random Field to minimize a cost

metric which weights hypotheses based on factors influencing map quality. The

challenging aspect is that tuning the cost function is very difficult. The tunable

parameters tend to be highly abstracted from their physical effect on the map.

Additionally, the smoothness constraint implicit in a Markov Random Field made

over-smoothing a pervasive issue. The steps in the processing pipeline presented
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here appear better suited because the tunable parameters aren’t relative weights,

they are parameters with physical interpretations.

This result shouldn’t eliminate the use of tools such as Gaussian Processs

(GPs) or B-Splines. These unified methods could be very powerful for representing

the scene. GPs naturally lend themselves to adaptive grid sizes to reflect actual

resolution of the available sensors and have been used successfully for multi-sensor

mapping on land [18]. One issue with such approaches is that they require a very

strong understanding of the error characteristics of each point in the map which are

derived from good modeling of the sensors and navigation data. Having a limited

understanding of interplay of these uncertainties will lead to results such as over

valuing one sensor’s data, failure to recognize noise or biases, over-smoothing or

over-fitting. These approaches also present a significant computational burden but

this will be less of a problem as methods and hardware improve. In spite of these

issues, such unified methods are likely to be the next evolution in multi-modal

surface reconstruction, now that we have a more thorough understanding of how

the two sensors interact in a single map. Even so, the outlier rejection steps listed

will still be needed in a unified approach to surface reconstruction.
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CHAPTER 4

Conclusion

4.1 Introduction

This thesis presents a method for producing sea floor maps from multiple

modalities. This is motivated by the recognition that the two sensors commonly

available on underwater mapping platforms have complementary strengths. With

this in mind we present two part system. This system has identified some of the

challenging areas of the multi-modal mapping problem and addressed them by

breaking the problem into navigation and mapping components. First mapping

measurements from both sensors are localized in a common reference frame while

enforcing consistency between their maps using navigation refinement. Considering

the relative strengths and weaknesses of each sensor, data is then drawn selectively

from the two sensors to populate a map. This map exceeds either individual

modality’s map on a number of map quality criteria while coping with outliers and

remaining navigation error.

4.2 Summary of contributions

The system as a whole was successful at producing a multi-modal map. Several

developments were necessary in accomplishing this:

• Navigation framework with cross modality registration. A naviga-

tion framework was developed using the iSAM smoother. This framework

built on the multi-modal navigation refinement system developed by Kunz by

incorporating cross modality links between stereo reconstructions and multi-

beam submaps. The cross modality links emphasized consistency between

the stereo camera and multibeam sonar maps.

• Summary of relevant error metrics. Several methods were used to eval-

uate the quality of the navigation refinement. These metrics included an
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alteration to Roman’s map-to-map error metric for quantifying the degree to

which overlapping maps agree with one another.

• Multi-modal map fidelity criteria. Evaluating a map’s utility requires

some more abstract criteria than error metrics presented in the navigation

chapter. To evaluate the fidelity of the maps produced here, several charac-

teristics of a useful map are distilled into concrete criteria. The ways that

hybrid maps can address these criteria provide justification for producing

them as an alternative to the current methodologies.

• Multi-modal mapping processing pipeline A mapping methodology was

developed which selects the best sensor data for each map location from

a redundant data set while respecting the inherent characteristics of each

sensor. The individual steps in this processing pipeline were designed to

address the map quality criteria.

4.3 Limitations and Future Work
4.3.1 Navigation

There are several lingering problems with navigation processing. Some re-

maining navigation error was apparent after refinement which indicates that the

refinement process needs further improvement. The error was mainly obvious at

the edges of objects. This could be the result of poorly understood covariances

between submap registration. These covariances encode the relative weights of the

various constraints acting on each node, and if one constraint is overvalued, it can

pull the corresponding node and mapping sensor measurement out of alignment.

More work is needed to determine why existing methods over-predict point cloud

registration covariance. With noise in the constraints more accurately models, we

can expect between alignment between maps.
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4.3.2 Mapping more sites

Processing more data sets will certainly improve results for the mapping por-

tion of the algorithm. Each new data set will reveal issues associated with its

particular environment such a turbid water or high altitude. Methods to cope

with each of these issues can be incorporated in turn into the mapping process

without reformulating the existing algorithm.

4.3.3 Local versus global mapping

The proposed mapping method selects appropriate data based on local and

neighborhood criteria. This is one class of solutions to this problem. A strength

of this is that the tunable parameters have very obvious physical meanings and

effects. Another class of solutions to the multi-modal mapping problem would be

more unified or global solutions such as representing the entire surface with a spline

fit or GP. These algorithms require good understanding of the error characteristics

of the point clouds, and may in fact benefit from some of the proposed mapping

techniques presented in this thesis. These unified approaches are powerful tools

that offer an alternative to the proposed method.

4.3.4 Ground truth for navigation and mapping

Ground truth is absent from this thesis because it is difficult to obtain. Ground

truth navigation data can be obtained using an LBL system. This data will avail-

able during the summer of 2013 so that the navigation algorithm can be com-

pared against an accurate ground truth. Ground truth mapping data requires

construction of a synthetic sea floor which can be measured using sensors other

than multibeam and sonar (such as a kinect or laser scanner) with accurate naviga-

tion data. This is the ultimate ground truth data set to help evaluate and improve

this algorithm.
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List of Acronyms

SLAM Simultaneous Localization and Mapping

ROV Remotly Operated Vehicle

AUV Autonomous Underwater Vehicle

DVL Doppler Velocity Log

EKF Extended Kalman Filter

iSAM incremental Smoothing and Mapping

SAM Smoothing and Mapping

SEIF Sparse Extended Information Filter

MAP Maxiumum a Posteriori

SFM Structure from Motion

LBL Long Baseline

USBL Ultra Short Baseline

ICP Iterative Closest Point

DOF Degrees of Freedom

FOV Field of View

SSD Some of Squared Differences

GP Gaussian Process
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