An *Escherichia coli* Nissle 1917 Missense Mutant Colonizes the Streptomycin-Treated Mouse Intestine Better than the Wild Type but Is Not a Better Probiotic

Jimmy Adediran
University of Rhode Island

Mary P. Leatham-Jensen
University of Rhode Island

Matthew E. Mokszycki
University of Rhode Island

Jakob Frimodt-Møller

Karen A. Krogfelt

See next page for additional authors

Follow this and additional works at: https://digitalcommons.uri.edu/cmb_facpubs

Terms of Use
All rights reserved under copyright.

Citation/Publisher Attribution

Available at: http://dx.doi.org/10.1128/IAI.01149-13

This Article is brought to you for free and open access by the Cell and Molecular Biology at DigitalCommons@URI. It has been accepted for inclusion in Cell and Molecular Biology Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons-group@uri.edu.
An *Escherichia coli* Nissle 1917 Missense Mutant Colonizes the Streptomycin-Treated Mouse Intestine Better than the Wild Type but Is Not a Better Probiotic

Authors

Terms of Use
All rights reserved under copyright.

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/cmb_facpubs/85
An *Escherichia coli* Nissle 1917 Missense Mutant Colonizes the Streptomycin-Treated Mouse Intestine Better than the Wild Type but Is Not a Better Probiotic

Previously we reported that the streptomycin-treated mouse intestine selected for two different *Escherichia coli* MG1655 mutants with improved colonizing ability: nonmotile *E. coli* MG1655 flhDC deletion mutants that grew 15% faster *in vitro* in mouse cecal mucus and motile *E. coli* MG1655 envZ missense mutants that grew slower *in vitro* in mouse cecal mucus yet were able to cocolone with the faster-growing flhDC mutants. The *E. coli* MG1655 envZ gene encodes a histidine kinase that is a member of the envZ-ompR two-component signal transduction system, which regulates outer membrane protein profiles. In the present investigation, the envZ P41L gene was transferred from the intestinally selected *E. coli* MG1655 mutant to *E. coli* Nissle 1917, a human probiotic strain used to treat gastrointestinal infections. Both the *E. coli* MG1655 and *E. coli* Nissle 1917 strains containing envZ P41L produced more phosphorylated OmpR than their parents. The *E. coli* Nissle 1917 strain containing envZ P41L also became more resistant to bile salts and colicin V and grew 50% slower *in vitro* in mucus and 15% to 30% slower on several sugars present in mucus, yet it was a 10-fold better colonizer than *E. coli* Nissle 1917. However, *E. coli* Nissle 1917 envZ P41L was not better at preventing colonization by enterohemorrhagistic *E. coli* EDL933. The data can be explained according to our “restaurant” hypothesis for commensal *E. coli* strains, i.e., that they colonize the intestine as sessile members of mixed biofilms, obtaining the sugars they need for growth locally, but compete for sugars with invading *E. coli* pathogens planktonically.

Previously we reported that when streptomycin-treated mice were fed wild-type *Escherichia coli* MG1655, the intestine selects for nonmotile flhDC deletion mutants (1, 2) and envZ missense mutants (3), both of which are better colonizers than the wild type. The flhDC mutants have deletions of various sizes, beginning downstream of an IS1 element in the flhDC regulatory region and extending into or beyond the flhDC structural genes (1, 2). FlhD and FlhC form the FlhD C2 complex (4), which activates transcription of class I flagellar genes that encode components of the flagellar basal body and export machinery (5). The IS1 element immediately upstream of the *E. coli* MG1655 flhDC promoter increases expression of the flhDC operon and makes *E. coli* MG1655 hypermotile (1, 6). One of the better-colonizing nonmotile flhDC deletion mutants, *E. coli* MG1655 ΔflhD, grew 15% faster *in vitro* in mouse cecal mucus and 15% to 30% faster on several sugars present in cecal mucus than *E. coli* MG1655 (1), presumably explaining its better colonizing ability. Additional studies suggested that the *E. coli* MG1655 flhDC operon deletion mutants utilize sugars better than their parent at least in part because a number of metabolic genes are repressed by the FlhDC C2 regulatory complex, including *gltA* (citrate synthase), *sdhCDAB* (succinate dehydrogenase), *mlh* (malate dehydrogenase), *mglBAC* (galactose transport), and a large number of sugar catabolism operons (7–9).

EnvZ, a histidine kinase, and OmpR, its cognate response regulator, comprise a two-component signal transduction system that modulates gene expression in response to osmolarity (10). Among the many activities controlled by EnvZ-OmpR are transcription of *ompF*, which encodes an *E. coli* outer membrane porin that allows passage of bile salts as well as other small molecules from the environment into the periplasm (11); transcription of the flhDC operon (12); and transcription of *omrA* and *omrB*, which encode two small RNAs that regulate the expression of a number of outer membrane proteins, including CirA, the receptor for colicin V (13). The better-colonizing *E. coli* MG1655 envZ missense mutants were more resistant to bile salts and colicin V than *E. coli* MG1655 and *E. coli* MG1655 ΔflhD and were less motile than *E. coli* MG1655, consistent with them containing a higher level of phosphorylated OmpR (OmpR—P) (3). One better-colonizing *E. coli* MG1655 envZ missense mutant which was studied further, i.e., *E. coli* MG1655 mot-1 (referred to here as *E. coli* MG1655 envZ P41L), grew about 15% slower in mouse cecal mucus *in vitro* and on several sugars present in mucus than *E. coli* MG1655 ΔflhD, but it grew 30% faster on galactose (3). In addition, despite growing slower in mouse cecal mucus *in vitro*, *E. coli* MG1655 envZ P41L appeared to colonize one intestinal niche in the cecum as well as *E. coli* MG1655 ΔflhD, suggesting that factors other than competition for nutrients were responsible, and it ap-
pared to use galactose to colonize a second intestinal niche in the cecum that was either not colonized or poorly colonized by \textit{E. coli} MG1655 \textit{Δ}flhD (3).

\textit{E. coli} Nissle 1917 is a commensal strain that has been used as a probiotic agent to treat gastrointestinal infections in humans since the early 1920s (14). Several features of \textit{E. coli} Nissle 1917 have been proposed to be responsible for its probiotic nature, including its ability to express two microcins (15), the absence of known toxins, its semi-slim lipopolysaccharide, and hence serum sensitivity (16,17), and the presence of six iron uptake systems (18). To study the \textit{envZ} derivative encoding the P41L mutation (\textit{envZ}P41L), further, we constructed an \textit{envZ}P41L derivative of \textit{E. coli} Nissle 1917 in the present study characterized the strain and tested whether it has improved mouse intestinal colonizing ability and whether it is better at limiting colonization of \textit{E. coli} EDL933, a human enterohemorrhagic strain. We found that \textit{E. coli} Nissle 1917 \textit{envZ}P41L is not a better probiotic, but like \textit{E. coli} MG1655 \textit{envZ}P41L, it colonized an intestinal niche not colonized by wild-type \textit{E. coli} Nissle 1917. We discuss the results in terms of the restaurant hypothesis.

MATERIALS AND METHODS

Bacterial strains

Bacterial strains used in this study are listed in Table 1. The original \textit{E. coli} K-12 strain was obtained from a stool sample from a convalescing diphtheria patient in Palo Alto, CA, in 1922 (19). The sequenced \textit{E. coli} MG1655 strain (CGSC7740) was derived from the original K-12 strain, having only been cured of the temperate bacteriophage lambda and the F plasmid by means of UV light and acridine orange treatment (19). It has an IS1 element in the \textit{flhDC} promoter (20). \textit{E. coli} Nissle 1917 was originally isolated during World War I from a soldier who escaped a severe outbreak of diarrhea (14). It has a beneficial effect on several European countries since the 1920s (14). The allelic exchange method described by Datsenko and Wanner (21) was used to construct \textit{E. coli} Nissle 1917 \textit{Δ}galK:cat in Table 1, which contains a 912-bp deletion replaced by a chloramphenicol resistance cassette on January 25, 2019 by guest http://iai.asm.org/ Downloaded from

Table 1 Bacterial strains used in this study

<table>
<thead>
<tr>
<th>\textit{E. coli} strain</th>
<th>Description</th>
<th>Name used in text</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDL933 Strr Rif⁰</td>
<td>Spontaneous rifampin-resistant mutant of EDL933 Strr</td>
<td>EDL933</td>
<td>34</td>
</tr>
<tr>
<td>MG1655 Strr</td>
<td>Spontaneous streptomycin-resistant mutant of MG1655</td>
<td>MG1655</td>
<td>3</td>
</tr>
<tr>
<td>MG1655 Strr Nal⁰</td>
<td>Spontaneous nalidixic acid-resistant mutant of MG1655 Strr</td>
<td>MG1655</td>
<td>3</td>
</tr>
<tr>
<td>MG1655 Strr mot-1</td>
<td>P41L \textit{envZ} missense mutant of MG1655 Strr</td>
<td>MG1655 \textit{envZ}P41L</td>
<td>3</td>
</tr>
<tr>
<td>MG1655 Strr mot-2</td>
<td>P148S \textit{envZ} missense mutant of MG1655 Strr</td>
<td>MG1655 \textit{envZ}P148S</td>
<td>3</td>
</tr>
<tr>
<td>MG1655 Strr mot-3</td>
<td>V33E \textit{envZ} missense mutant of MG1655 Strr</td>
<td>MG1655 \textit{envZ}V33E</td>
<td>3</td>
</tr>
<tr>
<td>MG1655 Strr mot-1</td>
<td>Spontaneous nalidixic acid-resistant mutant of MG1655 Strr</td>
<td>MG1655 \textit{envZ}P41L restored to wild type with respect to \textit{EnvZ}</td>
<td>3</td>
</tr>
<tr>
<td>MG1655 Strr mot-1 restored</td>
<td>MG1655 Strr mot-1 restored to wild type with respect to \textit{EnvZ}</td>
<td>MG1655 \textit{envZ}P41L restored to wild type with respect to \textit{EnvZ}</td>
<td>3</td>
</tr>
<tr>
<td>MG1655 Strr \textit{envZ}⁰</td>
<td>Spontaneous nalidixic acid-resistant mutant of MG1655 Strr \textit{envZ}⁰</td>
<td>MG1655 \textit{envZ}⁰</td>
<td>This study</td>
</tr>
<tr>
<td>MG1655 Strr Nal⁰ \textit{envZ}⁰</td>
<td>Spontaneous nalidixic acid-resistant mutant of MG1655 Strr \textit{envZ}⁰</td>
<td>MG1655 \textit{envZ}⁰</td>
<td>This study</td>
</tr>
<tr>
<td>Nissle 1917 Strr</td>
<td>Spontaneous streptomycin-resistant mutant of Nissle 1917</td>
<td>Nissle 1917</td>
<td>34</td>
</tr>
<tr>
<td>Nissle 1917 Strr \textit{envZ}⁰</td>
<td>Spontaneous nalidixic acid-resistant mutant of Nissle 1917 \textit{envZ}⁰</td>
<td>Nissle 1917</td>
<td>34</td>
</tr>
<tr>
<td>Nissle 1917 Strr \textit{envZ}P41L</td>
<td>Spontaneous nalidixic acid-resistant mutant of Nissle 1917 \textit{envZ}P41L</td>
<td>Nissle 1917 \textit{envZ}P41L</td>
<td>This study</td>
</tr>
<tr>
<td>Nissle 1917 Strr \textit{envZ}P41L restored</td>
<td>Nissle 1917 Strr \textit{envZ}P41L restored to wild type with respect to \textit{EnvZ}</td>
<td>Nissle 1917 \textit{envZ}P41L restored to wild type with respect to \textit{EnvZ}</td>
<td>This study</td>
</tr>
<tr>
<td>Nissle 1917 Strr \textit{Δ}galK:cat</td>
<td>912-bp deletion in galactokinase gene replaced by a chloramphenicol resistance cassette</td>
<td>Nissle 1917 \textit{Δ}galK:cat</td>
<td>This study</td>
</tr>
<tr>
<td>Nissle 1917 Strr \textit{envZ}P41L \textit{Δ}galK:cat</td>
<td>Same deletion as in Nissle 1917 Strr \textit{Δ}galK:cat</td>
<td>Nissle 1917 \textit{envZ}P41L \textit{Δ}galK:cat</td>
<td>This study</td>
</tr>
<tr>
<td>Nissle 1917 Strr \textit{envZ}P41L \textit{Δ}galK:cat restored</td>
<td>Nissle 1917 Strr \textit{envZ}P41L \textit{Δ}galK:cat restored to wild type with respect to \textit{galK}</td>
<td>Nissle 1917 \textit{envZ}P41L \textit{Δ}galK:cat restored to wild type with respect to \textit{galK}</td>
<td>This study</td>
</tr>
<tr>
<td>Nissle 1917 Strr \textit{Δ}galK:cat restored</td>
<td>Nissle 1917 \textit{Δ}galK:cat restored to wild type with respect to \textit{galK}</td>
<td>Nissle 1917 \textit{Δ}galK:cat restored to wild type with respect to \textit{galK}</td>
<td>This study</td>
</tr>
<tr>
<td>F-18 Strr Rif⁰</td>
<td>Spontaneous streptomycin- and rifampin-resistant mutant of F-18</td>
<td>F-18</td>
<td>31</td>
</tr>
<tr>
<td>BW37751(pKD267)::\textit{kan}⁰</td>
<td>The plasmid in this strain contains \textit{parE} under the control of the rhamnose promoter and the kanamycin resistance gene</td>
<td>pKD267</td>
<td>Barry Wanner</td>
</tr>
</tbody>
</table>

⁰ Strr, streptomycin resistant; Rif⁰, rifampin resistant; Nal⁰, nalidixic acid resistant; Kan⁰, kanamycin resistant.
with selection for restored growth on M9 minimal galactose agar plates. The restored Gal+ strain grew at the same rate as E. coli Nissle 1917 Str′ envZ411P in M9 galactose minimal medium. The E. coli MG1655 envZ gene was replaced with the E. coli Nissle 1917 wild-type envZ gene by an unpublished allelic replacement strategy developed by Barry Wanner and Kiryl Datsenko at Purdue University, as described previously (3). The same method was used to replace the E. coli Nissle 1917 envZ gene with the envZ411P gene. All constructions were confirmed by sequencing.

Growth of strains and sample preparation for detection of phosphorylated OmpR. Bacteria were grown overnight in the presence of 100 μg/ml of streptomycin sulfate in M9 minimal medium (22) supplemented with 0.2% glucose or M63 medium (23) supplemented with 0.2% glucose and 0.0005% vitamin B12. Cells were diluted 100- to 200-fold in the same medium or medium supplemented with 150 mM NaCl or 15% sucrose, respectively. Cultures (32 to 35 ml) were grown to an optical density of 0.600 (OD600) of 0.5 to 0.7 and harvested by centrifugation at 14,500 × g for 10 min at 4°C. Samples were prepared for Phos-tag analysis as described by Wayne et al. (24), with the following changes. For samples grown in M63 medium, cell pellets were suspended in 1 ml of cold 20 mM Tris-HCl, pH 7.0, supplemented with 15% sucrose and EDTA-free bacterial protease inhibitor cocktail (RPI Corp., Mount Prospect, IL). Suspensions were transferred to chilled tubes of lysing matrix B (MP Biomedical, Solon, OH), and cells were disrupted by two 40-s cycles of homogenization at a speed of 6.0 m/s in a FastPrep-24 instrument (MP Biomedicals). Samples were chilled on ice for 5 min between disruption cycles. For samples grown in M9 medium, cell pellets were suspended in 1 ml of cold BugBuster master mix (Novagen, Darmstadt, Germany) supplemented with EDTA-free bacterial protease inhibitor cocktail (RPI Corp.). Suspensions were transferred to chilled tubes of lysing matrix B (MP Biomedicals) and incubated on a platform shaker for 15 min at 4°C. Cells were disrupted by one 20-s cycle of homogenization at a speed of 4.0 m/s in a FastPrep-24 instrument (MP Biomedicals). After cell disruption, all samples were centrifuged at 10,000 rpm for 1 min at 4°C, and 75 μl of each cleared lysate was mixed with cold 4% Laemmli buffer (Bio-Rad, Hercules, CA). Samples were frozen on dry ice and stored at −80°C until analysis.

SDS-PAGE, Western blotting, and detection of OmpR and OmpR-P. SDS-PAGE and Western blotting were performed as described by Wayne et al. (24), with the following changes. Samples were thawed briefly on ice. Approximately 16 OD600 units of each sample was loaded into each well of a chilled 10% SDS-polyacrylamide gel containing 25 μM or 50 μM Phos-tag acrylamide (AAL-107; Wako Chemicals USA Inc., Richmond, VA) and then separated by electrophoresis at 140 V for 2.25 h at 4°C. Proteins were transferred to a 0.45-μm Immobilon-P membrane (polyvinylidene difluoride [PVDF]; EMD Millipore, Billerica, MA) at 30 V for 15 h, followed by an additional 1 h at 100 V. Membranes were blocked in 3% (wt/vol) Amersham ECL blocking agent (GE Healthcare Biosciences, Pittsburgh, PA) in 1× Tris-buffered saline (TBS), 0.5% (vol/vol) Tween 20, incubated in a 1:50 to 1:80 dilution of affinity-purified rabbit anti-OmpR antibody for 24 h at 4°C, and then incubated in a 1:100,000 dilution of horseradish peroxidase (HRP)-conjugated goat anti-rabbit IgG (Pierce Antibodies, Rockford, IL) for 1 h at room temperature (RT). Signals were detected using SuperSignal West Pico chemiluminescent substrate (Pierce Antibodies) followed by exposure to Hyblot-CL film (Denville Scientific Inc., Plainfield, NJ).

Outer membrane protein analysis. Outer membrane fractions were prepared as described by Morona and Reeves (25), with the following modifications. Briefly, bacteria were grown overnight in LB broth supplemented with 100 μg/ml of streptomycin sulfate. Cells were diluted 100- to 200-fold in medium A (26) and medium A supplemented with 15% sucrose and grown to an OD600 of 0.6 to 1.0. Cultures (25 to 30 ml) were harvested by centrifugation at 3,000 × g for 15 min at 4°C, and cell pellets were frozen on dry ice. After storage at −20°C, pellets were thawed on ice and suspended in 0.2 ml of 20% (wt/vol) sucrose in 30 mM Tris-HCl, pH 8.8. Fifty microliters of lysozyme solution (5 mg/ml) in 5 mM Tris-HCl, pH 8.0, 0.1 M EDTA, pH 8.0, was added to each suspension. After 30 min of incubation on ice, 5 ml of cold 3 mM EDTA was added to the suspensions, which were mixed by vortexing and sonicated three times for 30 s at power setting 7, using a Fisher Scientific model 100 Sonic Dismembrator instrument. Cellular debris was removed by centrifugation at 3,000 × g for 15 min at 4°C. Supernatants were centrifuged at 21,000 × g for 1 h at 4°C, and membrane pellets were suspended in 100 μl of 4% Laemmli buffer. Samples were heated at 95°C for 10 min before electrophoresis at 125 V on a 4% M urea, 10% SDS-polyacrylamide gels.

Other media and growth conditions. LB broth Lennox (Difco Laboratories, Detroit, MI), LB agar Lennox (Difco), and MacConkey agar (Difco) were used for routine cultivation. SOC medium was prepared as described by Datsenko and Wanner (21). For testing of carbon and energy source utilization, M9 minimal medium (22) was modified by addition of 120 mM NaCl to more closely approximate the sodium chloride concentration in the intestine (27). Growth was also tested in cecal mucus (2.5 mg protein/ml) in HEPEs-Hanks buffer (pH 7.0), which contains 137 mM NaCl, the sodium chloride concentration in jejunal and ileal intestinal fluid (27). Cultures were prepared and growth was monitored as described previously (1).

Isolation of cecal mucus. Mouse cecal mucus was isolated as previously described (28). Briefly, mice (5 to 8 weeks old) were fed Teklad mouse and rat diet (Harlan Laboratories, Madison, WI) for 5 days after being received. The drinking water was then replaced with sterile distilled water containing streptomycin sulfate (5 g/liter). Twenty-four hours later, the mice were sacrificed by CO2 asphyxiation, and their ceca were removed. The cecal contents were washed out with sterile distilled water, and cecal mucus was scraped into HEPEs-Hanks buffer (pH 7.0), centrifuged, and sterilized by UV irradiation as described previously (28). All animal protocols were approved by the University Committee on Use and Care of Animals at the University of Rhode Island.

Motility. Motility of E. coli Nissle 1917 strains was assayed by transferring colonies by toothpick from LB agar Lennox onto Luria motility agar as described previously (3). Plates were incubated at 37°C for 6 h, after which spreading was measured from the edge of each colony.

Growth in the presence of bile salts. Strains to be tested for bile sensitivity were grown overnight in LB broth Lennox, diluted to an OD600 of about 0.1 in fresh LB broth Lennox containing 5% (wt/vol) Bacto bile salts no. 3 (Difco Laboratories), and incubated at 37°C with shaking in 125-ml tissue culture bottles. Growth was monitored as described previously (1).

Mouse colonization experiments. The specificity of the streptomycin-treated mouse model used to compare the large intestine-colonizing abilities of E. coli strains in mice have been described previously (3). Briefly, sets of three male CD-1 mice (5 to 8 weeks old) were given drinking water containing streptomycin sulfate (5 g/liter) for 24 h to eliminate resident facultative bacteria (29). Following 18 h of starvation for food and water, the mice were fed 1 ml of 20% (wt/vol) sucrose containing 105 CFU or 1010 CFU of LB broth Lennox-grown E. coli strains, as described in Results. After ingestion of the bacterial suspension, both the food (Teklad mouse and rat diet; Harlan Laboratories, Madison, WI) and streptomycin-water were returned to the mice, and 1 g of feces was collected after 5 h and 24 h and on odd-numbered days, at the indicated times. Mice were housed individually in cages without bedding and were placed in clean cages at 24-h intervals. Individual fecal pellets were therefore no older than 24 h. Each fecal sample (1 g) was homogenized in 10 ml of 1% Bacto tryptone (Difco), diluted in the same medium, and plated on MacConkey agar plates with appropriate antibiotics. When appropriate, 1 ml of a fecal homogenate (sampled after the feces had settled) was centrifuged at 12,000 × g, resuspended in 100 μl of 1% Bacto tryptone, and plated on a MacConkey agar plate with appropriate antibiotics. This procedure increased the sensitivity of the assay from 102 CFU/g of feces to 10 CFU/g of feces. To distinguish the various E. coli strains in feces, dilutions were plated on lactose MacConkey agar containing streptomycin sulfate (100 μg/ml), streptomycin sulfate (100 μg/ml) and nalidixic acid (50 μg/ml),
streptomycin sulfate (100 µg/ml) and chloramphenicol (30 µg/ml), or streptomycin sulfate (100 µg/ml) and rifampin (50 µg/ml). Streptomycin sulfate, chloramphenicol, and nalidixic acid were purchased from Sigma-Aldrich (St. Louis, MO). All plates were incubated for 18 to 24 h at 37°C prior to counting. When necessary to distinguish strains, 100 colonies from plates containing streptomycin were transferred by toothpick onto MacConkey agar plates containing streptomycin and nalidixic acid or onto MacConkey agar plates containing streptomycin and chloramphenicol. Each colonization experiment was performed at least twice, with essentially identical results. Pooled data from at least two independent experiments (for a total of six mice) are presented in the figures.

Sequencing and primers. DNA sequencing was done at the URI Genomics and Sequencing Center, University of Rhode Island, Kingston, RI, using an Applied Biosystems 3130xl genetic analyzer (Applied Biosystems, Foster City, CA). A BigDye Terminator v3.1 cycle sequencing kit (Applied Biosystems) was used for the sequencing reactions. Primers were designed using the *E. coli* K-12 genome sequence (20) or the *E. coli* CFT073 genome sequence (30), which is closely related to the *E. coli* Nissle 1917 genome sequence (18).

The galk deletion primers used to make *E. coli* Nissle 1917 StrrΔgalk::cat (uppersense, *E. coli* Nissle 1917 DNA; lowersense, chloramphenicol resistance cassette DNA) were as follows: primer 1, 5’-AACAGGCAAGCGAGGCTTGC-3’; and primer 2, 5’-CGACTACAGACGGGTCTC-3’. The same primers were used for replacement of the *galK* gene and for confirmation of the *galK* gene with the *kan-rhaP-parE* cassette DNA): primer 1, 5’-CAGGCAAGCGAGGCTTGCACCTCCCGTTTTTTTACCCTCTTTTGTCG-3’; and primer 2, 5’-CATCTCTCTCTTTAGAAAGCAAAACGGGAGGCACCTTCGCCCTCCCGTTTTTTTACCCTCTTTTGTCG-3’. The primers used for confirmation of the envZ replacements by sequencing were as follows: primer 1, 5’-GATGGCGGCTGTCCGAAGAAGGTCTTCTCTCTCTGGAAGGCT-3’; and primer 2, 5’-TACCTCTCTCTCTTACTATTTTCTTTTACTTTTGTTCACCTTG-3’.

Colicin V sensitivity. *E. coli* F-18 produces colicin V (31). *E. coli* MG1655 strains to be tested for sensitivity to colicin V were grown overnight in LB broth at 37°C with shaking in 125-ml tissue culture bottles. The next day, 100 CFU of each strain to be tested was added to 3 ml of Luria broth containing 7 g/liter Difco agar (soft agar), which was then poured onto a 20-ml Luria broth agar plate. After the soft agar on each plate solidified, *E. coli* F-18 colonies were transferred by toothpick to each plate and incubated for 18 h at 37°C, and zones of growth inhibition were measured.

FISH. Fluorescence in situ hybridization (FISH) was performed as described previously (3, 32). Briefly, the cecum of a mouse designated for FISH was cut into 1- to 2-cm pieces, suspended in Tissue-Tek OCT compound (Sakura, Torrance, CA), and snap-frozen in 2-methylbutane suspended in liquid nitrogen. Pieces were then stored at −80°C until ready for sectioning. For sectioning, an UltraPro 5000 cryostat (Vibratome, St. Louis, MO) was used to cut 10-µm sections, which were adhered to poly-l-lysine-treated slides for visualization. Slides were fixed in 4% paraformaldehyde for 1 h at room temperature, followed by a wash in phosphate-buffered saline for 10 min. Slides were allowed to air dry overnight prior to hybridization. Fluorescent probes were diluted in hybridization solution (0.1 M Tris-HCl buffer, pH 7.2, 0.9 M NaCl, and 0.1% SDS). The *E. coli* 23S rRNA-specific Cy-3 probe (5’-5Cy3-CACCGGCTTGTGCACTCAAGTCA-3’) (red) and the eubacterial 23S rRNA-specific Cy-3 probe (5’-5Cy3-CACCGGCACGAGGAACTTTCGAGCCACCGTAATTTATCGCACTTGTCTCAGTACCGGATCCCTCGG-3’) (green) were used at concentrations of 5 ng/µl and 25 ng/µl, respectively. Subsequently, 10 µl of diluted probes in hybridization solution was pipetted onto each slide. Each slide was then covered with a HybriSlip hybridization cover (Life Technologies, Carlsbad, CA) and allowed to incubate in the dark for 2 h at 50°C. The slides were then placed in a wash buffer (0.1 M Tris-HCl buffer, pH 7.2, and 0.9 M NaCl) and allowed to soak for 20 min at 50°C. Slides were then rinsed with distilled water and air dried overnight. Sections were viewed by confocal microscopy. Prior to viewing, sections on the poly-l-lysine-treated slides were treated with Vectashield mounting medium (Vector Laboratories, Burlingame, CA), an antibleaching agent which helps to prolong fluorescence for imaging, and covered with a coverslip.

Statistics. Means and standard deviations derived from the indicated numbers of samples in Tables 2 and 3 were compared by two-tailed Student’s *t* test (P values). The colonization data on *E. coli* Nissle 1917 envZ, between days 3 and 15 in Fig. 5A were compared, as were those of *E. coli* MG1655, and the means for the two strains were compared by two-tailed Student’s *t* test (see Fig. 5A). The same analysis was applied to *E. coli* Nissle 1917 envZ, restored to the wild type with respect to envZ, as well as *E. coli* MG1655 (see Fig. 5B). *P* values of >0.05 were interpreted as indicating no significant difference, and *P* values of <0.05 were interpreted as indicating a significant difference.

RESULTS

The *E. coli* Nissle 1917 envZ gene bestows no colonization advantage to *E. coli* MG1655. The *E. coli* Nissle 1917 EnvZ protein differs from that of *E. coli* MG1655 in two places: the V25A and M446T changes. Since *E. coli* Nissle 1917 is a probiotic strain considered to have enhanced colonization properties, it was possible that the *E. coli* Nissle 1917 envZ gene (called envZNissle here) might confer increased colonization ability to *E. coli* MG1655. To test this possibility, the *E. coli* MG1655 envZ gene was replaced with envZMG1655 to create *E. coli* MG1655 envZ and the colonization ability of this strain was examined. *E. coli* MG1655 and *E. coli* MG1655 envZ were found to be identical in colonization ability,
i.e., when 10^5 CFU of each strain was fed to mice, the strains cocolonized equally well (Fig. 1A); when 10^{10} CFU of \(\text{E. coli} \) \(\text{MG1655} \) \(\text{envZ} \) \(\text{Nis} \) and 10^5 CFU of \(\text{E. coli} \) \(\text{MG1655} \) were fed to mice, the 10^5 ratio of the input CFU values of the 2 strains in feces was maintained throughout the 15-day duration of the experiment (Fig. 1B); and when 10^{10} CFU of \(\text{E. coli} \) \(\text{MG1655} \) and 10^5 CFU of \(\text{E. coli} \) \(\text{MG1655} \) \(\text{envZ} \) \(\text{Nis} \) were fed to mice, the 10^5 ratio of the input CFU values of the 2 strains was maintained in feces throughout the 15-day duration of the experiment (Fig. 1C). Therefore, despite the two amino acid differences between the wild-type \(\text{envZ} \) genes of \(\text{E. coli} \) \(\text{Nissle 1917} \) and \(\text{E. coli} \) \(\text{MG1655} \), the \(\text{E. coli} \) \(\text{Nissle 1917} \) \(\text{envZ} \) gene conferred no colonization advantage to \(\text{E. coli} \) \(\text{MG1655} \).

Effects of \(\text{envZ} \) missense mutations on OmpF, OmpC, and phosphorylated OmpR (OmpR$^/$H11011) in \(\text{E. coli} \) \(\text{MG1655} \) and \(\text{E. coli} \) \(\text{Nissle 1917} \). The phenotypic effects of the P41L missense mutation in the \(\text{E. coli} \) \(\text{MG1655} \) \(\text{envZ} \) gene (\(\text{envZ}_{\text{P41L}} \)) reported previously were consistent with it containing a higher level of OmpR$^/$H11011 than that in \(\text{E. coli} \) \(\text{MG1655} \) (3). In order to test this possibility, we examined OmpR$^/$H11011 levels in these strains. At low osmolality, the wild-type \(\text{E. coli} \) \(\text{MG1655} \) strain had no detectable OmpR$^/$H11011, and at high osmolality, the OmpR$^/$H11011 level in the wild-type strain was barely detectable (Fig. 2A). In contrast, \(\text{E. coli} \) \(\text{MG1655} \) \(\text{envZ}_{\text{P41L}} \) exhibited an extremely high level of OmpR$^/$P at low osmolality that did not appear to increase further at high osmolality (Fig. 2A). P148S and V33E mutants behaved similarly (Fig. 2A).

The elevated levels of OmpR$^/$P observed in the \(\text{E. coli} \) \(\text{MG1655} \) \(\text{envZ} \) mutant strains even at low osmolality (Fig. 2A) suggested that OmpC levels should also be elevated (10). We prepared outer membranes and examined the porin content of cells grown at low and high osmalalities (Fig. 2B). As expected (10), in the wild-type strain, OmpF was the major porin at low osmolality.
Enhanced Colonization of an E. coli envZ Mutant

Effects of envZ_{P41L} on E. coli Nissle 1917 motility, sensitivity to bile salts and colicin V, and growth rate on galactose. The mutant envZ_{P41L} gene in E. coli MG1655 envZ_{P41L} causes it to be less motile than E. coli MG1655, because the higher level of OmpR^{−P} negatively regulates production of FlhD_C, the master regulator of flagellum biosynthesis (12). E. coli MG1655 envZ_{P41L} is more resistant to bile salts than E. coli MG1655 and E. coli MG1655 ΔflhD_C because higher levels of OmpR^{−P} negatively regulate production of OmpF, the porin that transports bile salts (33) (Fig. 2B). A higher level of OmpR^{−P} also causes E. coli MG1655 envZ_{P41L} to be more resistant to colicin V than E. coli MG1655 and E. coli MG1655 ΔflhD_C, because OmpR^{−P} positively regulates the transcription of omrA and omrB, which encode two small RNAs that negatively regulate the expression of a number of outer membrane proteins, including CirA, the receptor for colicin V (13).

Finally, for as yet unknown reasons, the envZ_{P41L} gene causes E. coli MG1655 envZ_{P41L} to grow 30% faster on galactose as the sole carbon and energy source than E. coli MG1655 and E. coli MG1655 ΔflhD_C (3). We were interested in determining whether envZ_{P41L} would have the same effect on E. coli Nissle 1917, and therefore E. coli Nissle 1917 envZ_{P41L} and E. coli Nissle 1917 were tested for motility, resistance to bile salts, resistance to colicin V, and growth rate on galactose. Indeed, E. coli Nissle 1917 envZ_{P41L} was less motile (Table 2), more resistant to colicin V (Table 2), and more resistant to bile salts than E. coli Nissle 1917 (Fig. 4). However, E. coli Nissle 1917 envZ_{P41L} grew about 15% slower than E. coli Nissle 1917 on galactose (Table 3). Still, three of the four phenotypic characteristics ascribed to the envZ_{P41L} gene were transferred to E. coli Nissle 1917. The hypothesis that the phenotypic changes in E. coli Nissle 1917 envZ_{P41L} were due to the envZ_{P41L} gene was sup-

![FIG 3](A) OmpR^{−P} levels in E. coli Nissle 1917 (wt), Nissle 1917 envZ_{P41L} and Nissle 1917 envZ_{P41L} restored to the wild type. Bacteria were grown in glucose M9 minimal medium modified by addition of 150 mM NaCl to approximate the sodium chloride concentration in intestinal fluids. (B) OmpC and OmpF in the outer membranes of the E. coli Nissle 1917 strains grown in the absence (−; low osmolality) or presence (+; high osmolality) of 15% sucrose. Sizes of prestained molecular standards are indicated on the left.

![FIG 4](Growth of E. coli Nissle 1917 strains in the presence of 5% bile salts. E. coli Nissle 1917 Str[−] (△), E. coli Nissle 1917 Str[−] envZ_{P41L} (■), and E. coli Nissle 1917 Str[−] envZ_{P41L} restored to the wild type with respect to envZ (□).) Growth of E. coli Nissle 1917 Str[−] envZ_{P41L} restored to the wild type with respect to envZ, P < 3 × 10^{−4}. In Student’s t tests on each time point between 3.5 h and 6.5 h for E. coli Nissle 1917 Str[−] versus E. coli Nissle 1917 Str[−] envZ_{P41L} restored to the wild type with respect to envZ.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Colicin V sensitivity (mean zone of inhibition [mm] ± SD)</th>
<th>Mean motility spread (mm) ± SD (n = 6)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli Nissle 1917</td>
<td>2.06 ± 0.47</td>
<td>1.08 ± 0.31</td>
</tr>
<tr>
<td>E. coli Nissle 1917 envZ<sub>P41L</sub></td>
<td>0.44 ± 0.37**</td>
<td>0.60 ± 0.20***</td>
</tr>
<tr>
<td>E. coli Nissle 1917 restored to wild type with respect to EnvZ</td>
<td>2.41 ± 0.24**</td>
<td>1.02 ± 0.15**</td>
</tr>
</tbody>
</table>

* Spread of E. coli Nissle 1917 strains on Luria motility agar containing 200 mM NaCl after 6 h at 37°C or zones of inhibition of growth of the strains caused by colicin V produced by E. coli F-18 overnight at 37°C, as described in Materials and Methods. Student’s t-test P values were calculated for each strain relative to E. coli Nissle 1917 in the same experiment. *, P < 0.0001; **, P < 0.10; ***, P < 0.01.
ported by the fact that when the envZ_{P41L} gene in E. coli Nissle 1917 envZ_{P41L} was replaced with the wild-type E. coli Nissle 1917 envZ gene, the restored E. coli Nissle 1917 strain was more motile (Table 2), more sensitive to colicin V (Table 2), and more sensitive to bile salts (Fig. 4), and grew faster on galactose, than E. coli Nissle 1917 envZ_{P41L} (not shown).

Growth of E. coli Nissle 1917 envZ_{P41L} on a variety of sugars present in mucus in vitro. We previously reported that E. coli MG1655 envZ_{P41L}, grew slower than E. coli MG1655 ΔflhD on arabinose, fucose, glucose, maltose, and mannose, at the same rate as E. coli MG1655 ΔflhD on fructose, gluconate, and ribose, and faster than E. coli MG1655 ΔflhD on galactose and N-acetylglucosamine (3). In contrast, E. coli Nissle 1917 envZ_{P41L} did not grow faster than E. coli Nissle 1917 on any of the sugars tested and grew slower than E. coli Nissle 1917 on a number of sugars, i.e., with doubling times about 15% greater than that of E. coli Nissle 1917 galK[−] (3). Even more dramatically, the doubling time of E. coli Nissle 1917 envZ_{P41L} was twice that of E. coli Nissle 1917 in mouse cecal mucus in standing cultures in vitro (Table 3), i.e., it grew far slower than E. coli Nissle 1917 (P < 0.001).

E. coli Nissle 1917 envZ_{P41L} is a better mouse intestinal colonizer than E. coli Nissle 1917. Since E. coli Nissle 1917 envZ_{P41L} grew slower than E. coli Nissle on a number of sugars present in cecal mucus and in cecal mucus itself in vitro, it would be expected that if colonizing ability was based solely on the ability of a strain to utilize sugars present in mucus for growth, E. coli Nissle envZ_{P41L} would be the poorer colonizer. Yet E. coli Nissle 1917 envZ_{P41L} was about a 10-fold better colonizer than wild-type E. coli Nissle 1917 when 10⁵ CFU of each strain was fed to mice (P = 3.49 × 10^{−7}) (Fig. 5A). The hypothesis that the better colonizing ability of E. coli Nissle 1917 envZ_{P41L} was due to the envZ_{P41L} gene was supported by the fact that when the envZ_{P41L} gene in E. coli Nissle 1917 envZ_{P41L} was replaced with the wild-type E. coli Nissle 1917 envZ gene, the restored E. coli Nissle 1917 and wild-type E. coli Nissle 1917 strains had identical colonizing abilities (P = 0.16) (Fig. 5B).

We found previously that despite E. coli MG1655 envZ_{P41L} growing about 15% slower than E. coli MG1655 ΔflhD in mouse cecal mucus in vitro, large numbers of E. coli MG1655 envZ_{P41L} (10¹⁰ CFU) prevented small numbers of E. coli MG1655 ΔflhD (10⁵ CFU) from growing to larger numbers in the mouse intestine, whereas small numbers of E. coli MG1655 envZ_{P41L} were able to grow to larger numbers in the presence of large numbers of E. coli MG1655 ΔflhD (3). Similarly, despite E. coli Nissle 1917 envZ_{P41L} growing far slower than E. coli Nissle 1917 in mouse cecal mucus in vitro and on a number of sugars present in mucus, large numbers of E. coli Nissle 1917 envZ_{P41L} prevented small numbers of E. coli Nissle 1917 from growing to larger numbers in the mouse intestine (Fig. 5C), suggesting that E. coli Nissle 1917 envZ_{P41L} resides in and competes effectively in all intestinal niches occupied by E. coli Nissle 1917. In contrast, despite its growing 50% slower than E. coli Nissle 1917 in mouse cecal mucus in vitro, small numbers of E. coli Nissle 1917 envZ_{P41L} grew to larger numbers in the presence of large numbers of E. coli Nissle 1917 (Fig. 5D), suggesting that E. coli Nissle 1917 envZ_{P41L} resides in at least one intestinal niche that E. coli Nissle 1917 fails to colonize or colonizes poorly. Moreover, the growth of E. coli Nissle 1917 envZ_{P41L} from small to large numbers in the presence of large numbers of E. coli Nissle 1917 was not restricted to the mucus layer of any one section of the intestine, i.e., it did so in ileal mucus, cecal mucus, and colonic mucus in vivo (Table 4).

E. coli Nissle 1917 envZ_{P41L} uses galactose to grow from small to large numbers in vivo in the presence of large numbers of E. coli Nissle 1917. Previously we showed that E. coli MG1655 envZ_{P41L}, which grows 30% faster than E. coli MG1655 on galactose, uses galactose to grow from small to large numbers in the mouse intestine in the presence of large numbers of E. coli MG1655 ΔflhD (3). Here we show that E. coli Nissle 1917 envZ_{P41L} also uses galactose to grow from small to large numbers in the mouse intestine in the presence of large numbers of E. coli Nissle 1917, despite growing 15% slower than E. coli Nissle 1917 in vitro on galactose (Table 3). That is, small numbers of E. coli Nissle 1917 envZ_{P41L} ΔgalK failed to grow to larger numbers in the presence of large numbers of E. coli Nissle 1917 (Fig. 6A), whereas small numbers of E. coli Nissle 1917 ΔgalK restored to the wild type with respect to galactose utilization did so (Fig. 6B). These data suggest that E. coli Nissle 1917 envZ_{P41L} uses galactose to colonize an in-

Table 3: Generation times of E. coli Nissle 1917 and E. coli Nissle 1917 envZ_{P41L} on various sugars

<table>
<thead>
<tr>
<th>Carbon source</th>
<th>E. coli Nissle 1917 envZ<sub>P41L</sub> mean generation time (min) ± SD (n = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arabinose</td>
<td>66 ± 1</td>
</tr>
<tr>
<td>Fructose</td>
<td>96 ± 4</td>
</tr>
<tr>
<td>Fucose</td>
<td>83 ± 1</td>
</tr>
<tr>
<td>Galactose</td>
<td>69 ± 1</td>
</tr>
<tr>
<td>Glucuronate</td>
<td>61 ± 2</td>
</tr>
<tr>
<td>Glucose</td>
<td>89 ± 2</td>
</tr>
<tr>
<td>Maltose</td>
<td>85 ± 3</td>
</tr>
<tr>
<td>Mannose</td>
<td>129 ± 7</td>
</tr>
<tr>
<td>N-Acetylglucosamine</td>
<td>84 ± 1</td>
</tr>
<tr>
<td>Ribose</td>
<td>104 ± 7</td>
</tr>
<tr>
<td>Cecal mucus</td>
<td>52 ± 3</td>
</tr>
</tbody>
</table>

- Generation times were calculated from semilogarithmic plots.
- Carbon source utilization was determined in M9 minimal medium (0.4% [wt/vol]) in 125 ml tissue culture flasks with shaking after inocula were grown on M9 glycerol (0.4% [vol/vol]) and then overnight on the specified carbon source.
- Each P-value refers to a comparison between the generation times of E. coli Nissle 1917 and E. coli Nissle 1917 envZ_{P41L}, growing on a specific sugar: *, P > 0.05; **, P > 0.10; ***, P < 0.05; ****, P < 0.001; 1, P = 0.0036.

Adediran et al. | Infection and Immunity | 676 | iai.asm.org on January 25, 2019 by guest http://iai.asm.org/ Downloaded from
intestinal niche that \(E. coli \) Nissle 1917 fails to colonize or colonizes poorly. \(E. coli \) Nissle 1917 resides closely associated with other members of the microbiota in the mouse intestine. Since commensal \(E. coli \) strains colonize the streptomycin-treated mouse intestine by growing in the intestinal mucus layer of the large intestine (35, 36), and since it has been shown that \(E. coli \) MG1655 resides in mixed biofilms in the mouse cecal mucus layer (3), we examined whether \(E. coli \) Nissle 1917 also resides in mixed biofilms in mucus in vivo. Indeed, as shown in Fig. 7A, \(E. coli \) Nissle 1917 appears to reside in the cecal mucus layer, closely associated with other members of the microbiota. As expected, \(E. coli \) was not found in the cecal mucus of mice not fed \(E. coli \) Nissle 1917 (Fig. 7B).

Protection against \(E. coli \) EDL933 colonization by \(E. coli \) Nissle 1917 and \(E. coli \) Nissle 1917 \(envZ \) \(P41L \). Different resident commensal \(E. coli \) strains vary by as much as 10,000-fold with respect to the level of colonization of the prototypic enterohemorrhagic \(E. coli \) strain EDL933 that they allow in the streptomycin-treated mouse intestine (38). Among several commensal strains previously tested, \(E. coli \) Nissle 1917 was one of the best at limiting \(E. coli \) EDL933 colonization, i.e., in mice precolonized with \(E. coli \) Nissle 1917 and then fed \(10^5 \) CFU of \(E. coli \) EDL933 10 days later, \(E. coli \) EDL933 dropped from \(10^5 \) CFU/g of feces and colonized at a level between \(10^3 \) and \(10^4 \) CFU/g of feces (39). While this level of colonization is low, as long as the relatively few \(E. coli \) EDL933 cells are healthy and able to persist in the intestine at that low level, they might also be able to initiate the pathogenic process in humans by damaging the mucosa, resulting in subsequent disease. It was therefore of interest to determine whether \(E. coli \) Nissle 1917

Table 4

<table>
<thead>
<tr>
<th>Location</th>
<th>Log(_{10}) CFU (E. coli) Nissle 1917</th>
<th>Log(_{10}) CFU (E. coli) Nissle 1917 (envZ) (P41L) restored to wt</th>
<th>Log(_{10}) ratio of (E. coli) Nissle 1917 to (E. coli) Nissle 1917 (envZ) (P41L) restored to wt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ileal mucus</td>
<td>(5.01 \pm 0.71)</td>
<td>(1.10 \pm 0.57)</td>
<td>(4.51)</td>
</tr>
<tr>
<td>Cecal mucus</td>
<td>(7.51 \pm 0.24)</td>
<td>(6.30 \pm 0.15)</td>
<td>(1.21)</td>
</tr>
<tr>
<td>Colonic mucus</td>
<td>(6.96 \pm 0.33)</td>
<td>(5.71 \pm 0.21)</td>
<td>(1.25)</td>
</tr>
<tr>
<td>Feces</td>
<td>(8.88 \pm 0.07)</td>
<td>(7.82 \pm 0.38)</td>
<td>(1.06)</td>
</tr>
</tbody>
</table>

*Mice were fed \(10^5 \) CFU of \(E. coli \) Nissle 1917 and \(10^5 \) CFU of \(E. coli \) Nissle 1917 \(envZ \) \(P41L \), as described in the legend to Fig. 4D, and the animals were sacrificed on day 15. The values are means ± standard errors of the means for three mice. Mucus preparations were isolated on day 15 postfeeding. The CFU values for the mucus preparations were corrected for the entire volume of each mucus preparation. The fecal values are numbers of CFU/g of feces 15 days after feeding.
envZ\textsubscript{P41L}, the better colonizer, was better than \textit{E. coli} Nissle 1917 at limiting \textit{E. coli} EDL933 colonization. It was not. In fact, although not statistically significant, it appeared that \textit{E. coli} Nissle 1917 \textit{envZ\textsubscript{P41L}} was not quite as effective as \textit{E. coli} Nissle 1917 in limiting \textit{E. coli} EDL933 growth in the intestine (compare Fig. 8A and B).

DISCUSSION

When a bacterial species persists indefinitely in stable numbers in the intestine of an animal, without repeated introduction, the animal is, by definition, colonized by the bacterium. Commensal \textit{E. coli} strains colonize the human intestine in the presence of a dense and diverse intestinal microbiota comprised of at least 500 culturable species and \textit{10}^{13} to \textit{10}^{14} total bacteria (40). Unfortunately, \textit{E. coli} colonization cannot be studied experimentally in conventional animals due to colonization resistance, which results when all niches are filled by the microbiota (41). Such experiments require an animal model with open niches for \textit{E. coli} to colonize in relatively large numbers, but the animal model intestine should have a dense and diverse anaerobic community that matches as closely as possible the native microbiota of the conventional animal in order to examine interactions among members of the microbiota. The streptomycin-treated mouse model is used routinely for this purpose because it fulfills these criteria (35, 36).
Enhanced Colonization of an \textit{E. coli} \textit{envZ} Mutant

This study was undertaken to determine whether the \textit{envZ}_{P41L} gene, selected in \textit{E. coli} MG1655 by the streptomycin-treated mouse intestine (3), would make the probiotic strain \textit{E. coli} Nissle 1917 a better mouse intestine colonizer and better able to resist colonization by \textit{E. coli} EDL933, an enterohemorrhagic strain. The data presented here clearly show that despite being a 10-fold better colonizer than \textit{E. coli} Nissle 1917 and despite appearing to colonize an intestinal niche not colonized by \textit{E. coli} Nissle 1917, \textit{E. coli} Nissle 1917 \textit{envZ}_{P41L} is not better than \textit{E. coli} Nissle 1917 at limiting \textit{E. coli} EDL933 growth in the intestine (Fig. 8).

The concept that nutrient availability dictates the community structure of the intestine was originally presented in Freter’s nutrient-niche hypothesis, which states that species coexist in the intestine because each is able to grow faster than all others on one or a few limiting nutrients and that the rate of growth of each species during the colonization process is at least equal to its washout rate from the intestine (42). The hypothesis assumes that all nutrients are perfectly mixed and that they are equally available to all species present in the intestine. According to the hypothesis, two strains cannot coexist in the intestine when one competes less well than the other for the same nutrient(s), unless the metabolically less efficient one adheres to the intestinal wall (42). As a corollary to the hypothesis, when two strains each use one or more major nutrients better than the other strain, small numbers of each strain will grow up in the intestine to larger numbers in the presence of large numbers of the other strain, as observed in mouse colonization studies using a number of human fecal \textit{E. coli} strains isolated from different humans (39).

Despite general acceptance of the nutrient-niche hypothesis, recent data suggest that it is not entirely correct for \textit{E. coli} (3). We recently reported that \textit{E. coli} MG1655 \textit{envZ}_{P41L}, selected by the mouse intestine as a better colonizer than \textit{E. coli} MG1655, colonizes as well as \textit{E. coli} MG1655 \textit{ΔflhD}, also a better colonizer selected by the mouse intestine, but grows less well than \textit{E. coli} MG1655 \textit{ΔflhD} in bacterium-free mouse cecal mucus \textit{in vitro} and on several sugars present in cecal mucus (3). These results were in contrast to what would be expected if the nutrient-niche hypothesis were entirely correct as discussed above. Furthermore, \textit{E. coli} requires mono- and disaccharides for growth in the intestine (35, 36), but mono- and disaccharides present in the diet are unlikely to be available to \textit{E. coli} because they are absorbed in the small intestine. The anaerobes in the intestine secrete polysaccharide hydrolases (43), but \textit{E. coli} cannot do so (44, 45). Indeed, \textit{Salmonella enterica} serovar Typhimurium, which is in the same family as \textit{E. coli} and has a very similar metabolism, catabolizes fucose and salic acid liberated from mucosal polysaccharides by \textit{Bacteroides thetaiotaomicron} (46). It therefore is clear that \textit{E. coli} obtains the bulk of the mono- and disaccharides it requires for growth in the intestine from degradation of dietary fiber-derived and mucin-derived polysaccharides by anaerobes. In view of this information and since we found that \textit{E. coli} MG1655 resides in mixed biofilms in the mucus layer of the intestine but does not appear to adhere to the intestinal wall, to explain our findings we suggested the “restaurant hypothesis” as a modification to the nutrient-niche hypothesis (3). According to the restaurant hypothesis, the mono- and disaccharides that \textit{E. coli} requires for growth are not derived from the diet and are not perfectly mixed in the intestine but are served locally to \textit{E. coli} by the anaerobes within the mixed biofilms that \textit{E. coli} inhabits. The restaurant hypothesis also raises the possibility that \textit{E. coli} strains with different surfaces (e.g., fimbiae, capsule, O, K, and H antigens, outer membrane protein profiles, etc.) might reside in mixed biofilms made up of different anaerobes that supply different sugars to those strains, which could explain why different \textit{E. coli} strains display different nutritional programs in the intestine despite using the same sugars when cultured \textit{in vitro} (38, 39).

The data presented here are also consistent with the restaurant hypothesis. \textit{E. coli} Nissle 1917 \textit{envZ}_{P41L} did not grow faster than \textit{E. coli} Nissle 1917 on any of the sugars present in mucus that were tested, grew 10% to 30% slower than \textit{E. coli} Nissle 1917 on several of the sugars tested, and grew 50% slower in cecal mucus \textit{in vitro} in which all nutrients were perfectly mixed, i.e., in UV-sterilized cecal mucus that had been centrifuged free of bacteria (Table 3). Yet in contrast to what would be expected solely on the basis of competition for nutrients from a mixture that is equally available to all, \textit{E. coli} Nissle 1917 \textit{envZ}_{P41L} colonized the streptomycin-treated mouse intestine 10-fold better in competition with \textit{E. coli} Nissle 1917 (Fig. 5A) and grew from small to large numbers in the mouse intestine in the presence of large numbers of \textit{E. coli} Nissle 1917 (Fig. 5D).

Although these data cannot be explained solely by the nutrient-
niches, hypothesis, since E. coli Nissle 1917 strains appear to reside in mixed biofilms in cecal mucus in vivo (Fig. 7A), the data can be explained if the lower growth rate of E. coli Nissle 1917 envZ_{P41L} than that of E. coli Nissle 1917 in those mixed biofilms is more than compensated for by its ability to occupy most of the binding sites in those biofilms, i.e., if E. coli Nissle 1917 envZ_{P41L} has a greater affinity for biofilm binding sites than E. coli Nissle 1917. If so, then it is not surprising that when E. coli Nissle 1917 envZ_{P41L} and wild-type E. coli Nissle 1917 are fed to mice in equal numbers, E. coli Nissle 1917 envZ_{P41L} is the better colonizer (Fig. 5A). Furthermore, it is not surprising that when mice are fed E. coli Nissle 1917 envZ_{P41L} and wild-type E. coli Nissle 1917 at a ratio of 10³:1, the ratio reaches 10³:1 with time (Fig. 5C). However, it is surprising that when mice are fed wild-type E. coli Nissle 1917 and E. coli Nissle 1917 envZ_{P41L} at a ratio of 10³:1, E. coli Nissle 1917 envZ_{P41L} uses galactose to grow to larger numbers (Fig. 5D and 6A), despite wild-type E. coli Nissle 1917 being able to grow faster than E. coli Nissle 1917 envZ_{P41L} on galactose in vitro (Table 3). This can be explained if E. coli Nissle 1917 envZ_{P41L} uses galactose to grow in a second niche that wild-type E. coli Nissle 1917 cannot colonize. That second niche could be another mixed biofilm consisting of a different group of anaerobes in which E. coli Nissle 1917 envZ_{P41L} has a higher affinity for binding sites than E. coli Nissle 1917 and thereby prevents it from occupying that niche. Alternatively, that second niche could be another mixed biofilm that contains an anaerobe that makes a bacteriocin that inhibits wild-type E. coli Nissle 1917 growth more than it inhibits E. coli Nissle 1917 envZ_{P41L} growth, much in the same way that E. coli Nissle 1917 is more sensitive than wild-type E. coli Nissle 1917 to colicin V (Table 2). To reiterate, we emphasize that the envZ_{P41L} mutation, when transferred from E. coli MG1655 envZ_{P41L} into E. coli Nissle 1917, directs E. coli Nissle 1917 envZ_{P41L} to occupy a distinct niche in which it is served galactose (Fig. 5D), just as it does in E. coli MG1655 envZ_{P41L} (3). Moreover, occupation of the galactose niche gives E. coli Nissle 1917 envZ_{P41L} a colonization advantage, despite its growing more slowly on galactose than the wild type in vitro. We consider this to be strong evidence for the restaurant hypothesis.

In support of the view that surface differences between E. coli Nissle 1917 envZ_{P41L} and E. coli Nissle 1917 could result in different binding affinities for mixed biofilms, when we replaced the envZ_{Su} gene in E. coli Nissle 1917 with envZ_{P41L}, three phenotypic changes observed in E. coli MG1655 envZ_{P41L}, caused by outer membrane changes resulting from increased OmpR-P, were transferred to E. coli Nissle 1917 envZ_{P41L}. These surface changes, i.e., decreased OmpF and increased OmpC (Fig. 3), decreased CirA causing increased resistance to colicin V (3, 13) (Table 2), and decreased motility (Table 2) caused by the negative regulatory effect of increased OmpR-P on the flhDC promoter (12), could contribute to an increased affinity for binding sites in a mixed biofilm. It has been shown that decreased motility favors biofilm formation following the initial adhesion event (47) and that OmpC can serve as an adhesin (48). It should also be mentioned that increased OmpR-P (Fig. 1) has been shown to stimulate production of curli fibers that also stimulate biofilm formation (49). It therefore seems reasonable that E. coli Nissle 1917 envZ_{P41L} could have a higher affinity than E. coli Nissle 1917 for binding sites on a mixed biofilm.

At this time, we do not know why despite being a better colonizer than E. coli Nissle 1917, E. coli Nissle 1917 envZ_{P41L} is not better at limiting E. coli EDL933 colonization than E. coli Nissle 1917; however, the possibility should be considered that when E. coli EDL933 infects the mouse intestine, it initially grows planktonically in mucus and not in mixed biofilms. If we are correct that E. coli Nissle 1917 and E. coli Nissle 1917 envZ_{P41L} colonize the mouse intestine by being served specific sugars by the anaerobes in the mixed biofilms they inhabit, then small amounts of these sugars that escape the mixed biofilms might be available to invading E. coli EDL933 as well as to the small numbers of planktonic E. coli Nissle 1917 or E. coli Nissle 1917 envZ_{P41L} that leave the mixed biofilms. Therefore, it may be that both planktonic E. coli Nissle 1917 envZ_{P41L} and E. coli Nissle 1917 compete directly with planktonic E. coli EDL933 for the sugars that escape the biofilms or that are produced by small numbers of planktonic members of the rest of the microbiota that leave the biofilms. This scenario would allow planktonic E. coli EDL933 to colonize to the extent allowed by the available concentrations of those sugars in competition with planktonic E. coli Nissle 1917 envZ_{P41L} or E. coli Nissle 1917, which could explain why E. coli Nissle 1917, the faster grower in perfectly mixed mucus, appears to limit E. coli EDL933 growth in the intestine more than E. coli Nissle 1917 envZ_{P41L} does (Fig. 8).

In summary, E. coli Nissle 1917 envZ_{P41L} is a 10-fold better mouse intestinal colonizer than E. coli Nissle 1917, despite growing far slower than E. coli Nissle 1917 in bacterium-free, perfectly mixed cecal mucus in vitro and on several sugars present in mucus, yet it is not better at limiting E. coli EDL933 colonization. The data presented here are consistent with the restaurant hypothesis for commensal E. coli strains that colonize the intestine as members of mixed biofilms and obtain the sugars they need for growth locally (3). Indeed, introduction of an envZ_{P41L} mutation into either of two E. coli commensal strains directs the mutants to a niche that is defined at least in part by the availability of galactose and cannot be occupied by the parent strains. However, it may be that it is not sessile E. coli but the small number of planktonic E. coli cells that compete for sugars with invading E. coli pathogens. If so, then an efficacious E. coli probiotic agent not only should be able to inhabit mixed biofilms better than its parent and, as such, be a better colonizer but also should be better at utilizing nutrients for growth to outcompete the invading pathogen.

ACKNOWLEDGMENTS

This research was supported by Public Health Service grant GM095370 to T.C. and P.S.C. and grant VA I01BX-000372 to L.J.K.

We thank Kaylin Terhune for excellent technical assistance.

REFERENCES

