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Excitation spectra of the linear alternating antiferromagnet
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Physics Department, University of Rhode Island, Kingston, Rhode IsLand 02881
and Laboratorium voor Technische Natuurkunde, Technische Hogeschool Delft,

Delft, The Netherlands

(Received 29 June 1981)

The linear, spin- —,alternating Heisenberg chain has attracted theoretical and

experimental attention from physical chemists for about two decades, particularly in

relation to spin exciton theory and the properties of linear, exchange-coupled free
radicals. The model is somewhat unfamiliar to physicists but has become of increasing

interest recently, primarily because of its relation to spin-Peierls transition systems. A
striking feature of this model is that it has so far proved resistant to any form of analytic

attack. Existing theories are therefore all approximate, and are not in agreement with

one another. In particular, there is disagreement about the existence of an energy gap in

the excitation spectrum for nonzero alternation, such a gap being crucial to spin-Peierls

theory and spin exciton theory. In this paper we employ the method which has so far
proved more reliable than any other approximate technique, namely the method of
extrapolating exact finite-chain calculations to the thermodynamic limit. Our study is an

extension of earlier work in this direction, and focuses on the nature of the ground state
and on low-lying excitations in general, and the existence and properties of the gap in

particular. We introduce the features of the linear alternating antiferromagnet through
an initial description of the spin-Peierls transition and with brief reference to organic free
radicals and spin exciton theory. This is followed by a survey of existing approximate
theories. Features of the excitation spectrum are discussed and finite-chain extrapolations
for the ground-state energy and energy gap as a function of alternation are presented.
Comparisons are made with similar procedures performed on exactly solvable models, as
a test of the expected accuracy of the extrapolations. Excitation spectra for a variety of
other alternating models, classical and quantum, are calculated and surveyed

comparatively. An unusual variety of behavior is observed, with striking differences
between quantum and classical systems. Finally, a detailed comparison is made between

our results and those of other approximate methods, including the new quantum
renormalization-group approach. Particular attention is paid to values for the T =0
spin-Peierls critical exponents.

I. INTRODUCTION

A spin-Peierls transition occurs when a system
of uniform, isotropic, Heisenberg antiferromagnetic
linear chains undergoes a transformation to a sys-
tem of dimerized or alternating antiferromagnetic
linear chains. This transition may be regarded as
the insulating analog of the familiar Peierls transi-
tion in a one-dimensional conductor, although in
the spin-Peierls case there is, of course, no signifi-
cant change in the electrical conductivity as the

temperature is lowered through the transition tem-
perature Tsp (an insulator-to-insulator rather than
a metal-to-insulator transistor). Strictly both
Peierls and spin-Peierls transitions arise through
the effects of weak interchain coupling; interchain
spin-phonon coupling occurs in the spin-Peierls
case. ' Spin-Peierls transitions thus belong to the
general class of magnetoelastic transitions. It must
be supposed that in spin-Peierls systems the under-
lying crystal lattice is "soft," i.e., subject to distor-
tion. For a more rigid lattice one might expect in-
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stead the occurrence of the familiar quasi-one-
dimensional (quasi-1D, i.e., 3D) magnetic ordering.

At a spin-Peierls transition the lattice distorts in
such a way that successive spin-bearing ionic com-
plexes move alternately closer and further apart.
Instead of a single exchange constant J for the uni-
form chain, there are now two alternating ex-
change constants J~ and J2, with J~ & Jq, for ex-
ample. A simple description of this dimerization
effect implies that J~ ——J(1+5) and J2 ——J(1—5),
where 5 is an interaction modulation parameter re-

sulting from a shift in interionic distance. This
implies the constraint J1 +J2 ——2J.

The Hamiltonian for a linear, alternating mag-
netic chain of an even number of spins (i.e., the
magnetic part of the Hamiltonian for a spin-Peierls
system) may be written

N/2= —&) g S2; ).S2; —2J2 g S2; S2(+, ,

1D ANT(FERRO

HEMATIC

'0 TSp

FIG. 1. Characteristic zero-field susceptibility, P vs

T, for a system showing a spin-Peierls transition. Above
the transition the system behaves as an assembly of uni-

form Heisenberg antiferromagnetic chains. Below the
transition, Tsp, g drops sharply, going exponentially to
zero, whereas the uniform curve, now shown dashed,
continues on to a nonzero value, go.

where for much of this discussion, J~, J2 &0, i.e.,
the systems are antiferromagnetic; we also assume
N even. It is convenient to define an alternation
parameter a=J2/J~, and the Eq. (1.1) appears as

N/2
H = —2J& g (S2; ~.S2;+aS2 S2; ) . (1.2)

Although theoretical descriptions of the spin-
Peierls dimerization phenomenon have been avail-
able for almost two decades, experimental data
which exhibit with classic simplicity the features
expected of a spin-Peierls transition, have been ob-
served only recently. * The dimerization process
has been confirmed by x-ray studies. The static
low-field (zero-field) susceptibility data closely
resemble the schematic curve shown in Fig. 1. For
T) Tsp the data show a very good fit to the
theoretical curve for a uniform linear, spin- —,, anti-

ferromagnet. Below Tsp the experimental data,
instead of approaching a nonzero value as T—+0
following the theoretical curve (now shown dashed)
show a sharp, apparently exponential, drop to zero.
The striking feature that the T & Tsp data are in-
dependent of single-crystal orientation indicates
that the spin-isotropic, or Heisenberg, character of
the associated magnetic system is preserved below
the transition. The essentially exponential charac-
ter of the susceptibility below Tsp indicates that an
energy gap has opened up between the nonmagnet-

ic, total-spin S =0, singlet ground state and the

(band of) lowest-excited S =1 triplet states. The
situation is sketched in Fig. 2. In Fig. 2(a) the
lowest-lying excitations for a uniform linear
Heisenberg antiferromagnet are shown. The exci-
tation branches follow the well-known

~

sink
~

dispersion law calculated analytically by des
Cloizeaux and Pearson. It is now known that
these states actually form the lower edge of a two-

parameter continuum of degener'ate singlet and

triplet delocalized (spin-wave) excitations. ' Fig-
ure 2(b) shows schematically the effect on the exci-

tation spectrum of introducing alternation. Since
the unit cell is now double, the Brillouin zone is
halved, extending from m. /2 to —m. /2 instead of
from m to —~. More importantly, the excitation
branches are now detached from the singlet ground
state by a minimum excitation gap AE. The
sketch in Fig. 2(b) is based on various approximate
theories, such as that of Bulaevskii" and oth-
ers. ' ' The sketch is also in accordance with nu-
merical studies of Duffy and Barr for a relatively
large degree of alternation. '

The field of physical chemistry provides a
second area of application for linear, antiferromag-
netic spin- —, Heisenberg magnets. Organic molecu-
lar crystals exist containing linear chains of
exchange-coupled free radicals. Since the free-
radical solids are insulators or semiconductors con-

taining tightly bound electrons, the exchange prob-
lem along each chain reduces to that of the alter-
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FIG. 2. (a) Schematic excitation dispersion spectrum for a uniform Heisenberg antiferromagnetic chain. (b) Schemat-
ic excitation dispersion spectrum for an alternating (dimerized) Heisenberg antiferromagnetic chain. Note the energy
gap at k =0 and the halving of the Brillouin zone.

nating linear Heisenberg antiferromagnet [Eqs.
(1.1) or (1.2)]. Spin-exciton theory describes the
magnetic excitations of such crystals, and is based
on the picture of a singlet ground state with a
band of triplet excitations above an- excitation gap
[as in Fig. 2(b)]. It has further been suggested that
close to the uniform limit, the triplet spin excitons
are delocalized in character (Wannier spin exci-

. tons), whereas close to the fully alternating
(noninteracting-dimer) limit, 'the excitons have a
bound character (Frenkel spin excitons). '

It is clear from the above discussion that the ex-
istence of an energy gap in the alternating, antifer-
romagnetic Heisenberg chain for all degrees of al-

ternation is fundamental to both spin-Peierls
theory and spin-exciton theory. (In addition, a pre-
cise knowledge of the character of the low-lying
spectral excitations would determine the validity of
spin-exciton theory. ) Unfortunately, the general
problem of the spin- —, alternating linear chain ap-

pears analytically intractable at this time. ' It is
not even feasible, apparently, to attain the limited
objective of using rigorous methods of proof to
demonstrate the existence of a gap. Nevertheless,
attention has been called to the general question of
the low-lying spectral excitations of alternating
chains; in particular, the existence of a gap.

A. Existing theories

Let us first review the status of theories which
predict a gap and then review theories and argu-
ments which do not. An important approximate
calculation on which much subsequent work has

rested' is the Bulaevskii Haitree-Fock approach. "
The corresponding theory for the uniform limit'9

has been surprisingly successful in correctly pre-
dicting the general qualitative features of the uni-

form antiferromagnet where other approximate
methods have failed rather badly, as discussed in
Refs. 20 and 21. Subsequently numerical calcula-
tions by Duffy and Barr' in the spirit of earlier
work by Bonner and Fisher were undertaken to
provide results more quantitative than those of the
Bulaevskii approach for comparison with experi-
mental data on various organic free radicals.
Specifically, the exact eigenvalues and thermo-
dynarn. ic properties of the alternating-spin Hamil-
tonian for short spin- —, rings of N =4, 6, 8, and 10
spins were calculated for alternation values a=0.2,
0.4, 0.6, and 0.8. Rapid convergence of the finite-
N alternation energy gap, i.e., the gap between the
singlet ground state and the first excited (triplet)
state(s), enabled Duffy and Barr to conclude that it
was most unlikely that the gap would vanish in the
limit N mao for a &0.6. —The calculations which
are the focus of this paper are, in fact, an exten-
sion of the Duffy-Barr approach to rings of length
X =12, together with a detailed examination of the
character of the low-lying excited states and a
variety of extrapolation techniques to determine
the large-N behavior of the alternation energy gap
for all a.

Other many-body theories applied to this prob-
lem include the quasiboson calculation of Mont-
gomery, ' which gives a gap for all a & 1, vanish-
ing in the limit a=1. Unfortunately, the theory is



6962 JILL C. BONNER AND HENDRIK %. J. BLOTE

in disagreement with the rapidly converging
Duffy-Barr calculations near the dimer limit, and
must be considered less reliable than the Bulaevskii

theory. " Other theories' ' predict a gap for all

a, including the uniform limit, where a gap is
known rigorously not to exist, and therefore cannot
be considered reliable.

A relatively high-order (third-order) perturba-
tion-theory calculation by Harris, ' where the in-
terdimer or weak interpair interaction is treated as
a perturbation on a noninteracting pair model,
yields an expansion in a whose convergence indi-

cates strongly that the energy gap does not vanish
for a &0.6, in accordance with the finite-cluster
calculations of Duffy and Barr. A nonvanishing

energy gap for a g0.6 is in accordance with exten-
sive experimental measurements on copper nitrate,
whose dominant underlying magnetic structure is
argued to correspond to an alternating, Heisenberg
alitlfelYonlaglletlc clialll wltll ali alternatjon pal'aiil-

eter 0. 0.3. ' ' Recently, calculations have
been performed on a Heisenberg, spin- —,, alternat-

ing, antiferromagnetic linear chain in a continuum
approximation rather than on a discrete lattice.
The theoretical approach is an extension of a cal-
culation by Luther and Peschel on the
corresponding uniform continuum model. This re-
cent work of Cross and Fisher predicts the ex-

istence of a gap for all a & 1, but the effects of the
continuum approxination are hard to assess.

Arguments which have raised doubts concerning
the existence of a singlet-triplet gap in the linear,
alternating antiferromagnetic chain are based on
spin-wave arguments and also the isotropic spin
character of the Heisenberg Hamiltonian. Classi-
cal spin-wave discussions (equivalent to spin infini-

ty) led Ginzberg and Fain to conclude that the
alternating Heisenberg chain possesses only an
acoustic (i.e., gapless) branch in its excitation spec-
trum. Further studies of classical, spin-oo linear
chains will be presented later in this paper. The
isotropic character of the spin Hamiltonian is re-
lated to the interesting question of Goldstone
modes. "

In magnetic terms, a system with isoiropic spin
symmetry is expected to show a gapless "acoustic"
excitation branch emanating from the ground state.
This situation actually occurs in the case of the un-

iform Heisenberg ferromagnet and antiferromag-

net, and in the case of the alternating Heisenberg
ferromagnet for all a. However, the Goldstone
theorem depends for its validity on the presence of
an infinitely degenerate grourid state. For the case

of the spin- —,, alternating ferromagnet, the ground

state is (%+1)-fold degenerate for a & 0 (including
the uniform limit). Hence, there is no gap. In the
case of the alternating antiferromagnet, however,
the ground state is known to be a (nondegenerate)

singlet, in which case the Goldstone theorem

need not necessarily apply. Nevertheless, the
stimulus was present to examine the validity of the
Bulaevskii approximation, which predicts a gap for
a g 1. The decoupling procedures in the Bulaevskii

theory fail to preserve the spin-rotational symme-

try associated with a gapless node. Therefore
Drawid and Halley (DH) formulated a Green's-

function approximation which preserved spin-

rotational invariance, and the outcome is that two

branches always appear; a gapless acoustic, arid an

optic branch with a gap. (Note that in this paper
we use the adjective "acoustic" for dispersion

branches without a gap, and the adjective "optic"
for branches with a gap, without consideration of
the nature of the excitations corresponding to the

particular branches. ) Figure 3 is a sketch of the

DH predictions, based on Fig. 2 of their paper. i

They give a clear discussion of the significance of
their results in comparison with other predictions
then available, and this is summarized in Fig. 4,
based on Fig. 1 of their paper, which is a qualita-

tive sketch of gap hE as a function of alternation

parameter a. The possibilities include curves of
types a, b, c, and d. The DH approach gives curve
a. No gap is present for all a & 0. At a =0, corre-
sponding to an assembly of noninteracting spin di-

mers, a gap discontinuously appears. Our feeling

is that curve a is highly implausible in view of the

0.8
hE
lJ)l

06

0.4

0.2

0 0.2 0,4 0.8 0.8 l,0
lil v

FIG. 3. Schematic predictions of an approximate ap-

proach to the spin- —,alternating Heisenberg antifer-

romagnetic chain (based on Fig. 2 of Ref. 30). A gap-

less acoustic mode is predicted in addition to an optic
mode with a gap.
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A+2
IJ) I

00

0 4 /&

FIG. 4. Qualitative sketch of gap hE as function of
alternation parameter a (based on Fig. 3 of Ref. 30).
Curve a implies no gap for all a & 0. For curve b the

gap vanishes midway through the range of alternation.
Curves c and d show energy gaps persisting to the uni-
form limit, i.e., for all a & 1.

rapid convergence of finite-X chains first observed

by Duffy and Barr' in the region close to the di-

mer limit (i.e., a & 0.6), and also the. rapid conver-

gence of the perturbation series of Harris' in the
same alternation region. Curve b, where the gap
disappears midway through the region 0(cz (1, is
an interesting possibility not inconsistent with the
Duffy-Barr and Harris calculations. Such a possi-
bility would, however, be in conflict with the
smoothness-universality hypothesis which states, in

essence, that no drastic change in the critical
behavior of a system is expected as a linear param-
eter in the Hamiltonian is varied, unless a funda-
mental change in the symmetry character of the
Hamiltonian occurs.

Our intuition, therefore, lies in favor of excita-
tion curves of type c or d in Fig. 4, where the gap
disappears only in the uniform (a = 1) limit. Ex-
tensive numerical calculations are in agreement
with our intuition and, further, suggest a gap curve
of type d rather than type c. A similar type of
curve results from the recent Cross and Fisher con-
tinuum linear-chain calculation. Of course, nu-
merical calculations for small finite systems cannot
"prove" the existence or otherwise of a spectral en-

ergy gap for an infinite system. However, such
numerical extrapolations have proved reliable in
the past, as will be discussed later in the paper, and
we feel the weight of evidence for the presence of a
gap for all a & 1 is now very strong. This con-
clusion is reinforced by very recent and ongoing
zero-temperature renormalization-group (RG) cal-
culations ' which reveal the existence of two
fixed points for the alternating, antiferromagnetic
Heisenberg chain. One fixed point occurs at a =0
(dimer limit) and is stable; the other occurs at
a= 1 (uniform limit) and is unstable. Therefore

systems with initial values a & 1 must flow (with
increasing RG iteration) into the stable fixed point
a=0. Therefore, for a & 1, the system is
equivalent to a completely dimerized system as far
as its low-lying energy-state symmetries are con-
cerned.

The organization of this paper is as follows. In
Sec. II the character of the low-lying spectral exci-
tations, including the ground state, deduced froin
exact finite-chain calculations is investigated. The
results of numerical extrapolations are presented in
Sec. III. Details of the quantum-mechanical calcu-
lations are given in Appendix A and details of the
various extrapolation techniques in Appendix B.
In Sec. IV interesting exact calculations on various
solvable alternating-spin chains are summarized
and their significance discussed. Section V gives a
critical discussion of the significance of the various
results.

II. FEATURES OF THE
EXCITATION SPECTRUM

To gain an understanding of the nature of the
low-lying excitations of finite, antiferromagnetic
chains, it is useful to being with an examination of
the dispersion spectrum for a uniform ring of
N =12 spins. The dominant, low-lying states are
shown in Fig. 5, plotted in terms of excitation en-
ergies from the nondegenerate, singlet, antifer-
romagnetic ground state, as a function of wave
vector k. The states are characterized in terms of
multiplicity, i.e., singlet, triplet, quintet, etc., and

E
J

6.0

5.0

4.0

5.0
(

2.0

l.0

0:-
0 v/2

-r
k

-&/2

FIG. 5. An exact calculation of the lowest-lying exci-
tations of a finite, uniform Heisenberg antiferromagnetic
ring with X=12. Singlet, triplet, and quintet states
only are featured. The nature of the various dispersion
branches P, y, 5, and P is explained in the text.
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are arranged in sets of dispersion branches. The
assignment prescription for the states is an exten-
sion of the Yang picture of hole-particle excita-
tions from a filled Fermi sea. In Fig. 5 we also
show, for comparative purposes, branch P, which
is the lowest-lying excitation branch for N —~ Oo.

Branch P has the des Cloizeaux —Pearson' disper-
sion relation

Ei(k)=nJ
~

sink
~

. (2.1)

For N =12 the most important excitation branch
is branch P containing only triplet states. As
N~ oo, branch P approaches the limiting disper-
sion value (2.1) as I/X. However, these states are
not the only single particle-hole excitations. There
are altogether a total of E(%+2)/8 low-lying tri-
plets, whose relation to the P states is shown by
the dashed dispersion curves in Fig. 5, and which
foll a spin-wave double contlnuuIIl as N ~Do
(two-parameter continuum) whose lower limit is
the des Cloizeaux —Pearson dispersion curve (2.1)

and whose upper limit is the envelope dispersion
34, 8, 10,35

Eq(k) =2'
~

sink/2 ~,

which clearly has twice the amplitude and half the
periodicity of (2.1). However, an interesting fea-
ture of Fig. 5 is the existence of a second double
continuum of singlet states, each of which "sha-
dows" a corresponding triplet state. In the limit
X—+ oo, numerical calculations show that the
singlet states become degenerate with the triplet
states. This numerical observation is in agreement
with a prediction of Johnson et al. ' that the
low-lying spectral excitations should have a four-
fold degeneracy. This two-parameter singlet con-
tinuum arises out of dispersion branch y. In addi-
tion to the singlet and triplet excitations, low-lying

quintet states appear, resulting from two-particle,
two-hole excitations in the Yang prescriptions (see
dispersion branch 5). However, the states of im-

portance for this study are the ground state, the
triplet states of dispersion branch P, and the singlet
states of dispersion branch y. While one is not
sure, from studies on finite rings, that higher-order
excitations may not become important in the limit
X—+ oo, it is unlikely that we are neglecting any

relevant states. This belief is supported by com-
parable finite-ring studies in spin- —, XY' systems,

where the behavior in the X~ ao limit is known

exactly.
In Fig. 6, which also refers to the uniform limit,

we see again the triplet branch P of Fig. 5. It

&/2 2T/5 5706
-mrs -~&6

k

FIG. 6. A comparison of corresponding triplet
dispersion branches for the X=12 uniform Heisenberg
model and the X =12 XF model. The significance of
the two branches P, and P, and the states a~ and a2 is

explained in the text. The dashed curves show the exact
S~Oo results for each model.

should be noted that the P branch for small

finite N is not symmetric about k =~/2, as in

the X= Oo-limiting dispersion curve of des
Cloizeaux —Pearson. Figure 6 shows that a similar
phenomenon occurs in the case of the XFmodel.
It appears that there is a breakdown of symmetry
for finite X which is restored in the X—+ Oo limit.
In particular, the state at k =a is split off from
the ground state by an energy gap vanishing as
1/X. To simulate the situation when alternation is
present, part of branch P is reflected about
k =rr/2 to yield a reduced Brillouin zone of 0 to

/2 (strict.ly —m/2 to ir/2). The two branches in
the reduced zone are denoted Pi and P2. In consid-
ering the possibihty of a Drawid-Halley (DH) (Ref.
30) excitation scheme one might suppose that the
branches P~ and Pz remain nondegenerate in the al-

ternating case in the limit X~Oo, and, further,
that the branch Pi would remain attached to the

ground state, becoming the DH acoustic branch

and that the branch Pz would become the optic
branch, split off from P& and from the ground
state by an optical excitation energy gap. Howev-

er, our numerical extrapolations show rather con-
clusively that this is not so. It appears that both
branches, P& and Pz, again become degenerate in
the E~ Oo limit, as in the case of the uniform
chain, and that an excitation energy gap opens up
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between the ground state and the lower end of the
dispersion branches for all a & 1. This situation is
illustrated in Fig. 7 for alternation a=0.8 and Fig.
8 for alternation a=0.5, respectively. In each fig-
ure comparison dispersion curves (exact in this
case) and the corresponding finite-N states are
shown for the spin- —,, alternating XF model. The
similarities between the two models are very strik-
ing; for example, the pattern of convergence to the
infinite-N limit. This gives us confidence that our
numerical extrapolations are reliable.

In Fig. 9 we show the results of extrapolations
on branch p2 as a function of alternation a. Actu-
ally, the extrapolations are of the energy difference
between the ground state and the lowest state of
P2. Curves for finite N =2, 4, 6, 8, 10, and 12 are
also shown. This figure is an extended version of
Fig. 5 of Ref. 15 (Duffy and Barr). Clearly, for
a &0.5, the convergence is very rapid, and the ex-
istence of an energy gap is not in doubt. For
a & 1.0, however, the convergence is much poorer
and there is definite uncertainty in our extrapola-
tions, affecting the actual magnitude of the energy

gap near the uniform limit. However, the extrapo-
lation procedures clearly indicate the existence of a
gap for a & 1 and not +=1. In Fig. 10 we show
the results of extrapolations on the lowest states of
branch Pi. Again, the energy gaps for N =4, 6, 8,
10, and 12 are also shown. The convergence is
rather slower in this case than in the case of
branch Pz. However, as the figure shows, the ex-
trapolation results for Pi are very close to those for
P2, and may be regarded as identical, to within the

I I I I
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FIG. 8. A comparison figure to Fig. 7, corresponding
to alternation a=0.5.

limits of numerical uncertainty. Hence we infer
that branch Pi becomes degenerate with branch P2
in the limit N~ oo in the alternating case as mell

as the uniform case.
A further set of spectral excitations which might

possibly show a gapless or acoustic character in the
N~ Do limit, is the alternating equivalent of the
singlet dispersion branch y in Fig. 5. As already
noted, branches y and P become degenerate (and

gapless) as N~ac for the uniform chain. There
would be the possibility that this N = ao singlet-

triplet degeneracy is broken for finite alternation,
with the singlet dispersion branch remaining gap-
less and the triplet branch showing a gap. This is

I I I I

HE IS. MODE L
ii= 0.8

I I I

XT MODEL
a=0.8

40

o ~»
0
~/

/
/

9
MEXTRAP.

/
o /

/

/
I.O'I- //

~t

r
EXTRAP. GAP

~ N= 12
o N=IO
~ N=B
o N=B
x N=4

I

I I I I I I I I

0 0.2 0.4 0.6 0.8 I.O 0 0.2 0.4 0.6 0.8 I.O
2 lrr tkiir

3.0

—2.0
hE

/JI/

EXTRAP. GAP

0 I I I I I I I I

0 O. I 0.2 0.3 0.4 0.5 0.6 0.7 0.8

12

0.9 I.O

FIG. 7. A comparison of the lowest-lying triplet
branches for alternation a=0.8, extrapolated from
finite-N calculations for the Heisenberg antiferromagnet
(dashed curve) and exact for the XY model (solid curve).
The corresponding finite-chain states are shown in both
cases.

FIG. 9. Extrapolation (dashed curve) as a function of
alternation a of the energy difference between the
ground state and the lowest state of optic dispersion
branch Pz. Curves for finite N =2, 4, 6, 8, 10, and 12
are shown also. The dotted-dashed curve represents ex-
trapolations on the minimum singlet energy gap.
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FIG. 10. Extrapolated points (denoted +) of the en-

ergy differences between ground states and lowest states
of the acoustic dispersion branch Pi. Corresponding
curves for finite X=4, 6, 8, 10, and 12 are shown also.
For comparison, the optic extrapolated points (denoted

g ) from Fig. 9 are displayed. The close agreement of
extrapolations performed on hvo distinct classes of
states is very sigmficant, implying that both branches Pi
aud pl become degenerate (optic} as N~ 00.

The exact finite-sequence extrapolation technique
has been found to be very successful for the ther-
nlodyllalIllc propcrtlcs of thc nlagllctlc chaiil, 111

cases where comparison can be made with a reli-
able alternative numerical calculation based on an
exact analytic formalism. However, it seemed to
us worthwhile to check the extrapolation technique
on two exactly solvable one-dimensional systems
showing energy gaps, both gaps vanishing in a par-
ticular limit. These two models are the spin--, , al-

tcrnat1ng XF IDodcl whose HRImlton1RQ 18

N/2

&.y=2I&I I g (~xi-I~»+~»-I~»)

(2.3)

and the antiferromagnetic, spin-amsotropic Ising-
Heisenberg model with uniform coupling:

an 1ntcrcst1ng possibility, 81ncc QOIlIDagnctlc s1Qglct

states would not quahtatively affect magnetic sus-

ceptibility or spin-resonance experiments, nor
would they contribute any spectral weight in low-

temperature inelastic neutron scattering studies.
Hence, existing experimental studies of spin-Peierls
and spin-exciton systems which indicate a triplet

gap would not necessarily be in conflict with a
gapless, singlet acoustic mode. 5 Accordingly, ex-

trapolations were performed on the lowest state of
the "alternation-reflected" portion of the y branch
(see the appropriate set of finite-E states at k =0
in Figs. 7 or 8). The resulting curve is shown in

Fig. 9. IQ the dimer hmit, the gap corresponding
to this low-lying singlet is exactly haiee the triplet

gap, and a gap which is approximately (i.e., to
within numerical extrapolation accuracy) twice the
triplet gap persists apparently to c=1,where it
vanishes. This result does indeed demonstrate that
the singlet-triplet degeneracy in the N~ ao uni-

form limit is broken in the presence of alternation,
but in such a way that the singlet branch hes above
thc triplet branch, not below, and therefore thc
singlet branch does not yield a gapless mode. Al-

though still higher-order excitation dispersion
branches may be identified in the finite-N spectra,
their convergence is too poor for reasonable extra-
polation. However it 18 considered most unlikely
that they play a significant role.

(2.4)

In the latter case, it should be mentioned that nu-
merical extrapolations (on rings up to 10 spina
only) were made before an analytic result ap-
peared. ' Comparison shows that the early nu-
merical extrapolations correctly predicted that thc
energy gap vanished in the limit y~ l. The ana-
lytic result is that the gap, in fact, vanishes with
Rn csscntlal slngulaflty, 1Q qua11tatlvc RgrccIDcnt
with the numerical results.

%C have repeated the numerical extrapolations
on lafgcl rings Rnd coIDpaflson with tlM Rnalyt1c
result is shown in Fig. 11, along with the curves
for finite N =2, 4, 6, 8, 10, and 12 spins. Again,
the extrapolations indicate that the gap vanishes
only in the isotropic limit y=1. In the region

p 49.5, convergence 18 IDorc 1ap1d and thc extrapo-
lations are quantitatively rather accurate. Greater
quantitative uncertainty arises in the region y& 0.5,
but the extrapolations apparently cons18tently yield
a lower bound.

T1M second system thc spin~ altcmatlng XP
chain has RQ cncrgy gaP PI'OPortlonal to 1-As

therefore vanishing linearly in the uniform limit
a~1. In Fig. 12 we show tbc exact gap, the gaps
fol' flIlltc N =4, 6, 8, 10, aild 12, alld thc llllnlcfl-
cal extrapolations, Again, the extrapolations reli-
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3.0

—20
hE
]Jf

whether a gap is present or not, (2) give reasonable
quantitative accuracy over the whole parameter
range, and (3) where some degree of quantitative
uncertainty does exist, the extrapolations appear to
give a lower bound on the gap. Therefore we be-
lieve our numerical studies are both exhaustive and
quantitatively quite reliable, and they refute the ex-
istence of a gapless mode as predicted by Drawid
and Halley.

I.O,

III. ANTIFERROMAGNETIC GROUND STATE

I I I I I

0 O, I 0.2 . 0.3 0.4 0.5 0.6 0.7 0.8 0,9 I.O

1

FIG. 11. Test extrapolated points {shown as crosses)
on rings of N =2, 4, 6, S, 10, and 12 spins for the spin-

—,, uniaxially anisotropic Ising-Heisenberg antiferromag-

netic chain. The exact solution for this model is shown

as the solid curve and a comparison indicates the ex-

pected accuracy of finite-chain extrapolation techniques.

ably predict that the gap vanishes as a—+1, and are
quantitatively very accurate in the region a (0.7.
However, we see again qiiantitative uncertainty
near a= 1, making it difficult to be sure of the
correct functional dependence of the gap on a in
this region. However, again we observe that the
extrapolations consistently form a lower bound on
the exact result.

Studies on these two exactly solvable test cases
therefore give us considerable confidence that our
extrapolation techniques (1) reliably indicate

—0.5
hE
jJIJ

FIG. 12. Test extrapolated points {shown as crosses)

gs on +=4, 6, S, 10, and 12 spins for

alternating XY chain. The exact solution is shown as
the solid straight line. The extrapolations generally give

good agreement with the exact result, except for
a & O. S5, where the extrapolated points lie consistently
below.

The behavior of the energy gap is not the only
question of interest in the case of the alternating
Heisenberg antiferromagnetic chain. A decrease in
magnetic energy as dimerization takes place is a
necessary condition for the existence of a spin-
Peierls transition in the system. %hether a given
system can possibly undergo a spin-Peierls transi-
tion therefore be determined by an examination of
the behavior of the T =0 free energy, i.e., the
ground-state energy, as a function of a [or, better,
the parameter 5=(1—a)/(1+a)]. We have used
techniques outlined in Appendix 8 to extrapolate
the Eo '(5), i.e., the finite-N ground-state energies
for various 5 values, and believe our results to have
good accuracy over the whole range of a (or 5). It
is possible, in fact, to extrapolate the finite-N
ground-state energies much more accurately than it
is possible to extrapolate the energy gaps. The re-
sults are compared with those of other theories in
the final section (Sec. V).

However, we should note that the alternating
ground-state energy is interesting in its own right,
and not merely in connection with spin-Peierls
theory. In Fig. 13, the extrapolated ground-state
energy Eo is shown as a function of the two ex-

change constants J~ and J2, and consideration is
given also to the case where Ji and/or J2 are fer-
romagnetic. The upper curve through the extrapo-
lated points (circles) refers to Ji & 0, i.e., antifer-
romagnetic, and the horizontal scale gives J2. For
example, the point at J2 ——0 gives the (exactly
known) energy of isolated, antiferromagnetic di-
mers. The extrapolated points to the right of the
dimer limit correspond to ferromagnetically cou-
pled antiferromagnetic pairs (dimers). The points
behave smoothly as a function of J2 (&0), and the
point at J2 ——1=—J& shows, to numerical accura-
cy, no evidence of being a special point. However,
to the left of the dimer limit where J2 &0 (antifer-
romagnetic), the point at Ji =J2 ———1 does show
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IV. CLASSICAL AND OTHER EXACTLY
SOLVABLE ALTERNATING CHAINS

0
Jp

FIG. 13. Plot of the ground-state energy of alternat-

ing Heisenberg chains, both antiferromagnetic and fer-

romagnetic, as a function of the two exchange constants,

J~ and J2. The significance of the asymptotes and spe-
cial points is discussed in the text.

features which indicate that it is a special point
(singular point). This corresponds, of course, to
the uniform limit of the alternating antiferromag-
net. At this point, no discontinuity is apparent in
the curve or in its first derivative (BED/BJ2), but
its second derivative is estimated to be divergent.
The situation is analogous to the case of the anti-
ferromagnetic ground-state energy of the Ising-
Heisenberg linear chain, where again the point at
y=1 is a special point. ' ' However, the singu-

larity in this case is much weaker (an essential

singularity) which may be hard to detect by nu-

merical techniques. Returning to Fig. 13, it should
be noted that if the tangent (BED/BJz) exists at the
uniform limit, it can be shown to be equal to one
half the value of Eo itself at the uniform limit.
Since Eo is known exactly, it follows that the
slope is also known exactly.

The lower curve through the extrapolated points
(squares), refers to J~ &0, i.e., ferromagnetic, again
plotted versus J2 on the horizontal scale. Note
that in the limits J2—++ 00, the upper and lower
curves converge, representing isolated antifer-
romagnetic and ferromagnetic dimers, respectively.
The point at J~ ——0 also corresponds to isolated fer-
romagnetic dimers. The tangent to the left of this
dimer point has a slope directly related to the
ground-state energy of a spin-one, antiferromagnet-
ic (uniform) chain. ' The points to the right of
the J2 ——0 dimer limit correspond to a completely
ferromagnetically coupled alternating chain. The
uniform limit (J2 ——I) shows no evidence of being
a special point.

Our numerical studies on Heisenberg antifer-
romagnetic alternating chains and exact results for
XF alternating chains show that an excitation ener-

gy gap exists for all nonzero alternation. However,
we have remarked above that a classical calculatioo
for the Heisenberg case gives no gap. To investi-

gate further this interesting point, we have per-
formed a systematic study of a variety of classical
systems, including, in addition to the Heisenberg
alternating antiferromagnet (HAA), the XY alter-
nating magnet (XY-A), the Heisenberg alternating
ferromagnet (HAF), and an intermediate model be-

tween Heisenberg (antiferromagnetic and ferromag-
netic) and XY (XY-HAA and XY-HAF). Two ap-
proaches have been used: a straightforward spin-
wave approach based on classical dynamics and
also a quantum-operator approach taking the limit
S~ ao. Both techniques yield identical results.
Comparison can be made not only with the numer-
ical extrapolations for the alternating Heisenberg,
spin- —, antiferromagnet, but also with exact results

for the spin- —,, alternating ferromagnet model

(AFM) and the spin- —,, alternating XY mo-

del 41 —43,49

The most striking result of these calculations is
that, whereas the spin- —,, alternating Heisenberg

antiferromagnet (numerically) and the XY alternat-
ing magnet (exactly) show an excitation energy

gap, the corresponding classical (spin-ao) systems
do not. This represents a further demonstration
that low-dimensional systems show very different
behavior at low temperatures in the quantum and
classical limits. It also dramatically points out the
inapplicability of spin-wave theory. Furthermore,
the fact that a similar situation occurs in a model
exactly solvable in both limits (alternating XY),
strongly supports our numerical conclusions about
the Heisenberg alternating antiferromagnet.

However, an additional striking feature of these
calculations, which has not, to our knowledge, been
pointed out before, is the variety of excitation
behavior which results. Alternating spectra are ob-
tained which show the conventional "expected"
behavior, i.e., both an acoustic and an optic
branch, one model shows only acoustic excitations,
and others show only optic excitations. Each
model is discussed in some detail in what follows.
A preliminary catalogue of the salient features of
the models is presented in Table I, to help the
reader avoid confusion. To predict the presence or
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TABLE I. Comparative summary of the variety of excitation behavior of classical and

quantum linear-spin models in relation to properties of the ground state.

Spin
value Model

LRO in

ground state
Acoustic
branch

Optic
branch

S= oo
1S=—
2

All S
S=ao

1S=—
2

HAA
HAA

HAF
XY-A
XY-A

XY-A
XY-HAF

yes

no

yes

yes
no

yes
yes

yes
no

yes
yes
no

yes

yes

no

yes

yes

yes

yes

yes

yes

absence of an acoustic branch, the degeneracy of
the ground. state should be known. This represents
an extension of Goldstone-mode discussions in the
introduction for systems of isotropic spin symme-

try to more general systems. Systems with a de-

generate ground state have, in consequence, long-
range order (LRO) in the ground state or, equi-

valently, have broken symmetry in the ground
state. Spin-wave theory correctly gives the number
of gapless modes, depending on the symmetry. In
quantum systems with no broken symmetry, spin-
wave theory is inapplicable and gapless, acoustic
modes are absent. The lack of an optic branch in
one of the models (S= oo, HAA) has also to be ex-

plained. An interpretation in the context of a clas-
sical dimer (spin-pair) model is given subsequently.

Specifically, the classical expression for the
Heisenberg AFM is

AE =4va ~sink
~

.
JiS

(4.1)

In the uniform limit a =1, this expression reduces
to the well-known spin-wave result

AE 1

J =2
~

sink ~, (S=—, ) . (4 2)

It is noteworthy that the classical system shows
only gapless branches, whereas we find only
branches with a gap in the corresponding spin- —,

system (see Figs. 14 and 15, respectively ') for gen-
eral a. However, the absence of an optical branch
can be understood by considering a dimer of two
strongly coupled antiferromagnetic spins, with only
a weak interaction with other pairs. Applying
classical mechanics, one may see that (in contrast
to the ferromagnetic and XY cases below) the di-
mer does not perform small-amplitude oscillations

by itself about an equilibrium position. Interac-
tions with other dimers are therefore essential. It
has also been noted, "on the other hand, that the
behavior of the quantum-AFM dimer completely
violates the fundamental premise of spin-wave
theory that the ground state is the doubly degen-
erate Neel state, even for a=0. The antiferromag-
netic Heisenberg dimer is, of course, the well-
known singlet-triplet system, where the ground
state is a singlet and the excited state is a (degen-
erate) S =1 triplet. This gives some physical in-

sight into the contrasting behavior of the quantum
and classical systems.

The comparable result for the alternating
Heisenberg ferromagnetic chain is

EE =2(1+a)[1+(cosk+5 sin k)' ],JiS
(4.3a)
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I
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-7T/2 7T/2

FIG. 14. Dispersion curves for the classical (spin-oo),
Heisenberg antiferromagnetic chain for a =1 (uniform),
a =0.8, and a =0.5. Note that only gapless (acoustic)
modes are present.
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FIG. 15. Comparison figure to Fig. 14. Dispersion
curves for the spin- —Heisenberg antiferromagnetic

chain for a = 1 (uniform), a =0.8, and a =0.5. Note
that by contrast with the classical counterpart, for a & 1

only excitations with a gap (optic) occur.

FIG. 16. Dispersion curves for the Heisenberg fer-
romagnetic chain, valid for all spin values, for a=1 (un-
iform), a=0.8, and a=0.5. Note that for the ferro-
magnetic cases (for a & 1), both gapless {acoustic) and
optic modes are present.

where

1 —a5=
1+a

and

J= —,'(J, +J,)= —,'(1+a)J, .

Expression (4.3a) may also be written

hE
J)S

=2(1+a)+2(1+a +2a cos2k }'/

(4.3b)

The expression holds for all S, including the case
S=—, (which can easily be calculated exactly by
quantum mechanics}, and this result establishes
some justification for the spin-wave approximation
for Heisenberg ferromagnets.

In the uniform limit, expression (4.3) becomes

and is shown in Fig. 17 for various a values.
In the uniform limit, (4.5) reduces to

JS
=4(1—cosk )'/ =4(2)'/

~

sink/2
~

. (4.6)

Again, for general a, we see two types of excita-
tions, acoustic (gapless) and optic. In this respect,
the classical alternating XI' chain differs strikingly
from the classical alternating Heisenberg antifer-
romagnetic chain, which has no optic branch, as
discussed above. Accordingly, we shall subse-

quently investigate how the classical optic branch
makes its appearance on proceeding from the
Heisenberg to the XY limits. The other feature of
considerable interest concerning the XY alternating
chain is the difference between the S = oo and
S = —, limits. The exact S = —, solution is shown

in Fig. 18, and is given by the expression

hE 8sin k/2 or
=4(1+cosk)= '

zkJS gcos k 2. (4.4)

For general a, two types of excitations are present,
an acoustic (gapless) mode and an optic mode with
an excitation gap. This result is illustrated in Fig.
16 for several values of a.

The classical result for the alternating XY linear
chain is

i I

~ Xy MODEL
I

I

I

I

I I

I

I

I I

5E/JI S
I

I

a= I.o
' ———Q =08
' ———0=05 ~

I

I I

=2(1+a)[1+(cosk+5 sin k)' ]'
J)S

(4.5) 7T/2

where again,

1 —a5=-
1+a

FIG. 17. Dispersion curves for the classical (spin-w)
XY chain for a=1 {uniform), a=0.8, and a=0.5. For
a & 1, both acoustic and optic modes are present.
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FIG. 18. Comparison figure to Fig. 17. Dispersion

curves for the spin- —XY chain for a=1 (uniform),

a=0.8, and a=0.5. Note that for the spin- —case,

only optic modes are present for a & 1 and the situation

qualitatively resembles that of the spin- —,alternating

Heisenberg antiferromagnet.

FIG. 19. Variation of classical dispersion spectra
(considering only the uniform limit for convenience)
with anisotropy between the XY limit and the antifer-
romagnetic Heisenberg limit. Note that the acoustic
branch is little affected, but the optic branch is strongly
affected, dipping down and becoming degenerate with
the acoustic branch in the Heisenberg limit.

hE
JiS

=2(1+a)(sin k+5 cos k)'/,

where

1 —a5=
1+a

(4.7)
=2(1+a)[1—P(cos k+52sin k)JiS

+(1—P)(cos k+5 sin k)' ]'

(4.9}

No acoustic (gapless) branch appears in this ex-

pression for a & 1, and the excitation energy gap is

given by

where

and

1 —a
1+a

EE =1—a
J)

(4.8}
0&/&1,

where
(see Fig. 12). The excitation spectrum qualitatively
resembles that of the spin- —,, Heisenberg linear al-

ternating chain (see Fig. 15). Finally, in Figs. 19
and 20, we investigate the classical dispersion spec-
tra as the spin anisotropy varies. For convenience,
we consider the limit a=1, but show a reduced
zone appropriate to an alternating system. Starting
from the XY limit and proceeding to the Heisen-

berg antiferromagnet we observe the following
features of Fig. 19: (1) The acoustic branch of the
XY model is modified very little as the Heisenberg
limit is approached, but (2) the optic branch is
strongly affected, dipping down, and eventually
becoming degenerate with the acoustic branch in
the Heisenberg limit. Similar behavior is observed
for other alternation (a) values. The dispersion re-
lation for general alternation is given by

$=J,/J„, J„=Jy .

/=0 corresponds to the XY model and P=+ I
corresponds to the antiferromagnetic Heisenberg
model. In the uniform limit, expression (4.9) be-
comes

hE
JS =4[(1—cosk )(1+/ cosk )]'/ (4.10)

For the less dramatic case of the classical XY-
Heisenberg ferromagnet, the dispersion relation is
simply given by (4.10) with the sign of P reversed.
The variation between the XY limit (/ =0) and the
Heisenberg ferromagnet (P= —1) is shown in Fig.
20.

In summary, we have examined a number of ex-
actly solvable alternating linear systems and found
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FIG. 20. Companion figure to Fig. 19. Here varia-
tion of classical dispersion curves is shown between the
XY limit and the ferromagnetic Heisenberg limit.

much diversity in their excitation spectra. Only
the ferromagnetic Heisenberg system displays the
"expected" behavior for an alternating system,
namely both an acoustic and an optic mode, for all
values of spin S. The XY model shows both an
acoustic and optic mode in the classical limit,

1S= oo, but shows only an optic mode for S= —,.
These are both exact results, and on the surface in-

dicate a breakdown of spin universality for the
critical singularities at T =0 and also a breakdown
of spin-wave theory for the quantum limit. The
alternating Heisenberg model shows only acoustic
modes in the S= op limit and, according to our
numerical studies, only optic modes in the S=—,

limit, again in apparent violation of spin universal-

ity. %e were therefore stimulated to investigate
the case of intermediate spin S. For the alternat-
ing antiferromagnetic chain with S =1, our finite-
ring extrapolations show gap values very close in
magnitude (as a function of a) to the correspond-
ing gap-value extrapolations for S = —,. It is there-

fore tempting to infer that the gap remains essen-

tially independent of S. However, the normaliza-
tion of energies required when proceeding to the
S~ ao limit implies a gap vanishing as bE/S.
Since AE &S is then effectively constant, indepen-
dent of S, spin universality, from this perspective,
is preserved.

tion of alternation, and hE, the corresponding ex-
citation energy gap between the singlet ground
state and the triplet lowest-lying excited states.
The discussion will focus on both the overall quan-

titative accuracy of our results over the entire
range of alternation and the specific nature of the
behavior of both Eo and b,E near the uniform lim-

it, which is important for spin-Peierls theory.
Our discussion will include a comparative assess-
ment of our results in relation to those of other ap-
proximate theories.

Let us first consider the ground-state energy. To
investigate the behavior near the uniform limit it is
appropriate to consider the deviation of the energy
for nonzem alternation, Eo(5,J), from its value at
the uniform limit, Eo(O,J). Hence we define the
quantity

e(5)=Eo(O,J)/J —Eo(5,J)/J .

We give predictions for the asymptotic behavior of
e(5) as 5~0 for the various theories and models.
For the XF model (exact) e(5)-5 ln5 (Ref. 49),
and for the Hartree-Pock approximation" to the
Heisenberg case, e(5)-5 ln 5. The Luttinger-
model approach of Cross and Fisher gives rise to a
different functional dependence on 5, i.e., a pure
power law, e(5)-5 / . Let us first make a rough
assessment of which functional form is in best ac-
cordance with our numerical results for the alter-
nating Heisenberg chain. In Fig. 21 our extrapo-
lated data points near the uniform limit are plotted
in terms of f(5), where f(5) takes on the three
forms above. Agreement with a particular func-
tional form will result in a straight-line plot.

6—
X IO

eo(3)3

l —,'
/

I I ) ) ) I ) ) )

0.0l 002 003 004 005 0.06 007 0.08 009 Ql0

&(s)

V. DISCUSSION

Our primary interest in this section is to discuss
the probable accuracy of our numerical results for
Eo, the ground-state energy per spin of the Heisen-
berg alternating antiferromagnetic chain as a func-

FIG. 21. Extrapolated numerical data points for the
ground-state energy of the alternating Heisenberg anti-
ferromagnetic chain plotted in terms of three functional
forms: the Cross-Fisher theory (points denoted o), the
Bulaevskii Hartree-Fock theory (points denoted X), and
the XY model (points denoted + ). The plot in terms of
Cross-Fisher theory gives the best straight line.
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Clearly, agreement (at least within numerical accu-
racy) of the Heisenberg data with the expression
for the XFmodel is quite poor, as we should ex-

pect. The Bulaevskii Hartree-Pock prediction is in
much better agreement for small 5, but significant
deviations appear for 5)0.07. The fit to the
Cross-Fisher prediction is strikingly good. The
special features of the Cross-Fisher calculation for
alternating chains, which is substantially based on
earlier work by Luther and Peschel on uniform
cha1ns, have already been d1scussed at some length

by these authors. Here we shall just give the
relevant highlights. The Luther-Peschel continu-
um (Luttinger) approximation applied directly
gives exact T =0 critical exponents for the XF
model but results which are approximate to the ex-
tent of a few percent for the antiferromagnetic
Heisenberg model. However, Cross and Fisher
have made use of a valuable feature of the model,
namely that scaling relations are preserved between
exponents. Hence if an exact exponent is fed in,
additional exponents are obtainable which should
also be exact. This is the basis on which the
Cross-Fisher 4/3 exponent was obtained.

Our numerical results of Fig. 21 lend support to
power-law behavior. Another feature of interest,
observed first by Cross and Fisher, is that the 4/3
power law appears to be valid not only in the
asymptotic region 5—+0, but over the whole range
of dimerization 0~5(1. Cross and Fisher used
older data of Duffy and Barr. Using our more re-
cent, extensive data on longer chains, we have ap-
parently verified their observation. In Fig. 22 a
log-log plot of 14 data points yields an apparently
linear behavior with a "best exponent" of 1.36+ii'2.
There is no obvious reason why power-law be-
havior close to 4/3 should extend right to the di-
mer limit. This result is at present a curiosity (a
4/3 power law over the whole alternation range is
not consistent with the Harris expansion'7). In
fact, we shall see, in view of subsequent theoretical
considerations, that pure power law is not the ex-
pected behavior near the uniform limit.

The T =0 quantum-renormalization-group
(QRG) approach also predicts values for exponents.
In view of the rather high current level of interest
in this particular approach, we shall review it
separately, later in this section.

%e now concern ourselves with the overall quan-
titative accuracy of the various calculations of
Eo(5,J). A specific inherent feature, and unfor-
tunate limitation, of the Cross-Fisher calculation is
that the nature of the critica1 singularities is ob-
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tainable, but unique values for the corresponding
amplitudes and therefore actual values for E(5,J)
(or b,E) cannot reasonably be obtained. Hence it is
difficult to make comparison with our extrapola-
tions. In Fig. 23 our extrapolations (solid curve)
are compared with the Bulaevskii Hartree-Fock ap-
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FIG. 23. Comparison of ground-state energy per spin
as a function of alternation for various models. Open
triangles denote points corresponding to the Bulaevskii
Hartree-Fock theory. Open squares come from the
theory of Klein and Garcia-Bach and open circles from
a theory of Harris. Solid circles denote an XI ——2,
Eq ——9 RG calculation of Fields and open diamonds an
NI. ——4, Eq ——4 RG calculation. Points from a quasibo-
son theory of Montgomery are shown as solid triangles
where they deviate from the extrapolated results {solid
curve) near the uniform limit. The finite-chain %=12
curve is shown dashed where it deviates from the
N —+ oo extrapolated result, again near the uniform limit.
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FIG. 22. A log-log plot of 14 numerically extrapolat-
ed Heisenberg data points for the alternating ground-
state energy. A very good straight-line plot with a slope
of —1.36 is obtained over the entire alternation range.
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proximation and an appreciable quantitative dis-

crepancy is observed for all alternation. Note that
the exact result of Hulthen, 6 for the uniform limit

only, is indicated by the arrow. It has already been
shown that extrapolations in terms of 1/N give
very high accuracy in this limit. Since the dimer
limit is given trivially and exactly for all finite N,
and our extrapolations give excellent agreement in
the uniform limit, there is good reason to believe
that for intermediate alternation our extrapolated
results should be quite accurate. A Kekule state
calculation of Klein and Garcia-Bach gives much
better agreement with our extrapolations than the
Bulaevskii calculations. A discrepancy between
our results and this valence-bond-type calculation
appears only very close to the uniform limit, where
there is a 1.S% discrepancy. It may be remarked
that this Kekule state approach has also been ap-
plied to the spin-1 alternating chain, where it is
less successful, showing a 12% discrepancy with
accurate extrapolations for the ground-state energy
in the uniform limit. ' We consider this to re-
sult from the fact that the valence-bond approach
is inherently more suited to an S = —, rather than

an S =1 alternating problem. Finally, in Fig. 23,
we observe that a third-order perturbation-theory
calculation of Harris, ' evaluated over the entire
range of alternation, also gives very good results.
This is interesting, and perhaps surprising, since
the calculation is a perturbation calculation about
the dimer limit.

We come now to the case of the energy gap b,E.
Again, specific predictions are available for the
way in which hE vanishes in the vicinity of the
uniform limit. For the X1'model, b,E-5 (exact),
whereas for the Bulaevskii approximation to the
Heisenberg model hE-51n5. A quasiboson calcu-
lation of Montgomery gives 5' . The Cross-
Fisher theory predicts 5 ~ . Unfortunately, our ex-

trapolations are not sufficiently accurate close to
the uniform limit to yield an exponent. The only
conclusion we can reasonably draw is that the cur-
vature indicates an exponent less than unity. Very
recent work has given us an insight into why con-
vergence of numerical approaches is slow, and will

be discussed subsequently.
Regarding quantitative accuracy, a comparison

of various approximate theories for the alternating
excitation energy gap is shown in Fig. 24. This
time we have included a Cross-Fisher-based calcu-
lation of hE. The normalization is arbitrary and
the form 5 is assumed to hold over the entire
range of 5, by analogy with observations on Eo.

2.0
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FIG. 24. Comparison of various approximate theories
for the alternating Heisenberg anitferromagnetic excita-
tion energy gap. The direct extrapolations are shown as
a solid curve without symbols. The S=12 curve is

shown dashed where it departs from the limiting curve.
The solid curve through the solid circles is the Sz ——2,
N~ ——9 RG calculation, whereas the solid curve through
solid triangles is the NI ——4, Nq ——4 RG calculation.
The open squares represent a quasiboson calculation of
Montgomery. The dashed-dotted line gives a Cross-

Fisher-type, —power-law expression with arbitrary nor-

malization. The extrapolations are in remarkably good
agreement with the Bulaevskii theory (points shown by
curves), deviating only for u) 0.8 near the uniform
limit.

Our extrapolated results are shown with the X=12
curve for comparison. For a[=(1—5)/(1+5)]
&O.S, convergence has effectively occurred.

Theories which agree with our results in this re-

gion, where they may be regarded as quantitatively
reliable, include the perturbation calculation of
Harris' and the Hartree-Fock approach of Bu-
laevskii. " In fact, the Bulaevskii results are re-

markably close to our direct extrapolations over
the whole alternation range. This result gives ex
post facto justification for use of a theory incor-

porating a Hartree-Fock approximation to interpret
recent experimental results as indicating the first

good example of a spin-Peierls system. ' The
quasiboson calculation shows deviations from the
extrapolations at all alternation values, including
the vicinity of the dimer limit, and must therefore
be regarded as less reliable than other theories.
For the energy gap, the Harris perturbation results

are only reliable for o. (0.5. Attempts to continue
to the uniform limit, whether by direct evaluation

or more sophisticated Pade approximant tech-

niques, tend to result in persistence of the gap even
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at the uniform limit, a result which is well known

to be incorrect.
An abbreviated discussion of some of these re-

sults and comparisons has already appeared in the
context of T =0 quantum-renormalization-group
(QRG) theory. The T =0 QRG is a variant of
the real-space renormalization-group approach
pioneered by Niemeijer and van Leeuwen which
focuses on the ground state and dominant set of
lowest-lying excited states. ' It is therefore par-
ticularly suitable for treating ideal one-dimensional
(1D) systems whose critical singularities occur at
T =0, and also systems characterized by a gap
which vanishes at a particular value of a variable
parameter in the Hamiltonian. Hence, it has been
used to investigate Eo(5) and bE(5) for S=—, XF
and Heisenberg antiferromagnetic alternating
chains, ' S=1 Heisenberg antiferromagnetic al-
ternating chains, and Ising-Heisenberg antifer-
romagnetic, uniform chains. Since the S=—, al-

ternating XF and the S= —, Ising-Heisenberg uni-

form models are exactly solvable, sl 19 ~I they have
been used to test the T =0 QRG method, as
indeed, they have been used to check the accuracy
of the direct finite-chain extrapolations (sce Sec.
II). Since reasonable qualitative success results in
the case of the solvable test models, we shall sum-
marize here the corresponding T=0 QRG results
for the alternating Heisenberg antiferromagnet, and
then make comparison with thc extrapolations and
other methods, particularly the Cross-Fisher calcu-
lation.

The essence of the method is that the lattice is
divided into blocks of spins whose eigenvalues and

eigenvectors may be calculated exactly. A given
number of low-lying eigenstates are retained to
write the interblock interaction, and the scheme is

repeated until convergence results to a "fixed
point. " Denoting the number of spins in the block

by N„and the number of levels retained at each
iteration step by EL, a comprehensive investigation
has been undertaken, systematically increasing both

N, and Ni for both S=—, and S=1. The eigen-

structure yielded by the T =0 QRG has been care-
fully compared with the eigenstructure in the ther-
modynamic limit as deduced from calculations on
large finite-ring systems Af.ull report is in

preparation.
The QRG calculations fall naturally into two

classes: X, odd, with XL ——2, and X, even, with

Ng =4 (6 or 8). Tlic N odd ca-lclllRtlolls llavc tllc
advantage that an important symmetry of the al-
ternating Hamiltonian, namely invariance with

respect to relabeling of Jl and Jz (or replacing a
by a '), is automatically preserved. The problem
is that retaining only two levels means that impor-
tant information fails to be utilized at each step.
It turns out that the lowest-order E,-odd calcula-
tion, namely n, =3, NJ„——2, is equivalent to an
early calculation of de Braak et al. S6

When N, is even, retention of more levels, name-

ly El ——4, allows the fundamental singlet-triplet
level structure of the alternating Hisenberg chain
to be preserved, and hence, offers the likelihood of
greater quantitative accuracy. Unfortunately, the
situation when X, is even inherently violates J~, J2
symmetry.

RG calculations have been performed for N, =3,
5, 7, and 9 and Eq ——2 for the alternating Heisen-
berg system. Fixed points are found at specific
values of a. The uniform limit, a' =1, is always
found to be an unstable fixed point of the system.
Illltlal VRlucs c ( 1 flow (wltll Increasing ilulllllcr
of iterations n) into the stable fixed point a(n~ ao ) =Q =0 colYcspolldlllg to llldcpclldcllt dl-

mers. This result leads immediately to the con-
clusion that the alternating spectrum has a gap
wlllc11 valllsllcs ollly 111 thc ulllforlll 111Mt. This
conclusion is supported by similar fixed-point
behavior in the case of the exactly solvable alter-
nating XFmodel ' and thc Ising-Heisenberg uni-
form spin-anisotropic model, which also show

gaps which vanish only in the uniform (isotropic)
limit. In fact, the antiferromagnetic fixed point
corresponds to a' =y' = 1, and is therefore dpubly
unstable (with respect to both alternation and an-

isotropy). We conclude that these RG results are
in agreement with the direct finite-chain extrapola-
tions, and thus support the existence of a gap for
ex+1.

The T =0 QRG calculations also give exponents
for e(5) and EE(5) as 5~0. The N, =3, NI, ——2
calculation, which can be done analytically yields
the result e(5)-5'S ~, in very good agreement
with the extrapolation exponent value of 1.36 and
the Cross-Fisher value of 1.33. For larger values
of E, an analytic RG calculation is no longer
feasible. The calculation must be done on a com-
puter, and the exponent determined numerically.
An analysis of numerical results for X,=7, XL ——2
near the uniform limit suggests a higher value for
the exponent of —1.5, which agrees with results
obtained by an RG-based finite-size scaling ap-
proach.

For the sequence where X, is even, for example„

N, =4, 6, and 8, it should be mentioned that the
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FIG. 25. Extrapolations of two-level RG groups for

N, =3, 5, 7, and 9 in comparison with direct numIerical

extrapolations on finite chains.

fixed-point structure is not as satisfactory as for
the X,-odd sequence, since the unstable fixed point
is no longer precisely at unity. The deviation,
however, is never more than a few percent and is
directly attributable to the breakdown of Ji, J2
symmetry noted above. An investigation in the vi-

cinity of the unstable fixed points (a' =0.962, for
N, =Nr ——4) yields a value for the eo exponent
which is the same, to numerical accuracy, for all

N„and is 1.6. This value is significantly larger
than the finite-chain value and the Cross-Fisher
value. Reasons for this discrepancy will be dis-

cussed later in this section.
%e return to Fig. 23 to consider the quantitative

accuracy of the RG approach. Clearly, global ac-
curacy for the RG calculations under discussion is
not high, a feature which tends to characterize
many types of RG treatments. For the ground-

state energy, the Nl ——2, N, =9 RG calculation is
almost equivalent in accuracy to the SL ——4, X,=4
RG calculation, and both are comparable with the
Bulaevskii results, and hence are poorer than other
calculations. Specifically, there is a quantitative
discrepancy amount to 12% in the uniform limit.
However, in Fig. 25 we show the NL ——2 RG se-

quence, X,=3, 5, 7, and 9, extrapolated to N, = 00.
The accuracy is now much improved. In Fig. 24
the RG predictions for the energy gap, hE, are
shown. The points for the Nl ——2, N, =9 RG are
seriously in error near the dimer limit (this RG
fails to reproduce even the linear term of a pertur-

bation series about the dimer limit). The NL ——4,
X,=4 RG gives much improved results, especially
near the dimer limit, since the basic singlet-triplet
structure is preserved at each step of the iteration

scheme, i.e., the symmetry is correct. Unfortunate-

ly, the Nl ——4, N, =4 gap vanishes prematurely be-
cause of breakdown of Ji, Jz symmetry. Regard-
ing the energy-gap exponent, the S,-even RG cal-
culations give an exponent of 0.62, whereas the
NL ——2, N, =7 (Ref. 31) calculations give -0.76.
Again there is agreement with an RG-based finite-
size scaling approach, which gives an exponent of
-0.75.

In summary of the above, the direct finite-chain
extrapolation technique appears to yield the most
informative and reliable results overall. Its most
serious competitors are the Cross-Fisher calcula-
tion and the T=0 RG calculations. Since the
Cross-Fisher method cannot give amplitudes, seri-
ous quantitative comparison of spectral properties
in general is precluded. The T =0 quantum-RG
method, handled with caution, can be made to
yield reasonable results for both quantitative
behavior and exponents. Hence, an attempt was
made to combine quantum-RG concepts with
finite-size scaling techniques. ' The attempt ap-
peared rather successful, giving exact results when

tested on the alternating XF model. For the
Heisenberg alternating model the exponents for e
and bE have already been noted to be 1.5 and 0.75,
respectively, significantly different from the
Cross-Fisher values of 4/3 and 2/3, respectively.
The discrepancy is a matter of some note, since the
Cross-Fisher results are claimed to be exact. Very
recent work has given us insight into a reason for
the discrepancy between finite-size scaling ex-

ponents and Cross-Fisher exponents and also a
reason for the slow convergence of the direct
finite-chain extrapolations close to the uniform

limit. The alternating Heisenberg antiferromagnet-

ic chain can be mapped into a rather general kind

of two-dimensional (2D) staggered eight-vertex

model, equivalent to a Potts model with number of
components, q =4. Now q =4 is the "marginal
component dimensionality" at which the 2D
Potts-model transition changes from first to second

order, and logarithmic factors are observed as criti-
cal corrections to scaling. The inference is that
logarithmic factors may well affect (a) the conver-

gence of the direct finite-Heisenberg-chain extrapo-
lations close to the uniform limit, and (b) the ap-

parent exponents derived from finite-size scaling
techniques. A further, more dramatic inference, is

that there are logarithmic corrections to the
power-law exponents of Cross and Fisher. A fu-

ture project, therefore, is to reanalyze the finite-

chain results in such a manner as to take account
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of logarithmic corrections, and improve accuracy
near the uniform limit. Clearly the very interest-

ing matter of the spin-Peierls critical exponents is
not yet satisfactorily resolved, either numerically
or in terins of an analytic (Cross-Fisher-type) cal-
culation. ' Note that the effect just described is an
indication that the uniform limit of the Heisenberg
chain behaves as a singular point, as has already
been observed in another context and described in
Sec. III. The uniform limit of the alternating XY
chain is not a special point and the finite-size scal-
ing technique gives exact results (as does the
Cross-Fisher approach).

This work has been concerned with the low-lying

spectra1 excitations of quantum, antiferromagnetic,
alternating Heisenberg chains. From the point of
view of practical application, however, static ther-

modynamic properties are important, and the
dynamics of such systems in zero and nonzero

magnetic fields would be interesting. ' We have
investigated the zero-field susceptibility, specific
heat, and the zero-temperature magnetization
isotherms. Our susceptibility results are already
published as part of a comparative study of the
Bulaevskii Hartree-Fock approximation and direct
finite-chain extrapolations. ' Extrapolations for
specific heat and magnetization isotherms will be
published iri due course, and, in the mean. time,
are available on request. In general, our results are
in agreement with earIier studies of Duffy and
Barr on rings up to 10 spins for the alternation
range 0&a &0.6. However, we have results avail-
able for a greater number of alternation values in
this region. For a g 0.6, our extrapolations show
deviations from the Duffy-Barr results where com-
parison can be made at a=0.8. in fact, Duffy and
Barr did not attempt to extrapolate down to T =0
in this alternation regime.

As part of the investigation, we have compared
our spectral extrapolations with exact results for
related 1D models and revealed an interesting com-
plexity of behavior. In particular, strikin~ differ-
ences in behavior between quantum, S= —,, and the
corresponding classical, S= 00, models demon-
strate the lack of validity of standard spin-wave
theory, and intuition based theorem, for these
quantum models.

We conclude with a final discussion of our re-
sults in relation to spin-Peierls theory and spin-
exciton theory. Both theories are firmly based on
the assumption of an excitation energy gap, which
has recently been called into question. We have
established, as conclusively as seems possible in the

absence of exact results, that an energy gap is
present between a singlet ground state and a band
of triplet-dominant low-lying excitations for all
nonzero alternation, in agreement with spin-exciton
theory. The nature of the excitations, whether lo-
calized or delocalized in character, could be deter-
mined by investigating the character of the corre-
sponding finite-N eigenfunctions. The convergence
of the fjnite-chain gap extrapolations is now ex-

pected, on theoretical grounds, to be slow near the
Heisenberg uniform limit. A future attempt to im-

prove the accuracy of the energy gap close to the

uniform limit is planned.
Note added in proof. After this paper was

prepared we learned that H. Matsusama and Y.
Okwamoto [J. Phys. Soc. Jpn. 50, 2837 (1981)]
have obtained significantly higher values for the
"spin-Peierls exponents" for excitation gap and
ground-state energy than those given here.
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APPENDIX A: EXACT NUMERICAL
CALCULATIONS

Exact machine calculations have been performed
to obtain the eigenvalues of finite, alternating, anti-
ferromagnetic Heisenberg chains of N =2, 4, 6, 8,
10, and 12 spins in the case of S= —,, and N =2, 4,
6, and 8 in the case of S =1 for a variety of de-

grees of alternation. Use has been made of sym-
metry properties of the problem to block-diagon-
alize the original Hamiltonian matrix with dimen-

sionality (2S+1) such that the largest block ma-

trix of dimension approximately 350&& 350 took
about 20 m to solve on the University of Leiden
IBM 370/158 computer system

A similar technique was first used by Bonner
and Fisher (and also Grifflths ) to calculate the
eigenvalues of uniform linear chains. Symmetry
operations or conserved quantities associated with

the Hamiltonian may be defined and used to create
invariant subspaces of successively smaller size.
These operators include the total spin S, and the Z
component of the total spin S'=g,. i S,*. If
periodic boundary conditions are used, a transla-

tion operator T may be used which corresponds to
translating a given spin configuration two lattice
sites around the ring. All three operators commute
with the Hamiltonian H, and with each other, and
therefore may be simultaneously diagonalized in an

appropriate set of basis vectors
~

i ). The eigen-

values are then given by

SiiS S„T)=S(S+1)iS S„T),
where

N NS=———1 0~ ~ ~ &

Sg ~S,S„T)=S,~S,Sg, T),
~here

S,=S,S—1, . . . , —S,
S y) 2 'kIN(SS P)

where

Ek=01 . — 1

Another symmetry operator is I, which is a spin-
inversion operator with eigenvalue +1. The effect
of I is to invert the Z components of the individu-

al spins in a basis vector. Spin-inversion symmetry
means that the energy eigenvalues of states for a
given S' are identical to those corresponding to
—S' in zero field. A very useful operator is the
(mirror) reflection operator R, which interchanges
the spins at sites r and N+1 —r. The eigenvalues

of R are +1. A systematic description of the

Heisenberg Hamiltonian symmetry operators has
been given. In the original work of Bonner and
Fisher, the symmetry operators used to reduce the
Hamiltonian matrix were S' and T. Conservation
of total spin provides a very powerful way to
reduce the Hamiltonian, and various approaches
have since been considered which use this symme-

try, but the associated calculational techniques

appear cumbersome and perhaps not worth the ef-

fort. A problem encountered by Bonner and Fish-
er was that many of the reduced submatrices con-

tained complex elements, which increased comput-
er running time and limited the largest N value

solvable to S=11. The situation is that the opera-

tors in the set H, S', and T commute with each
other, and therefore are simultaneously diagonali-

zable. This is also the case for the operator set H,
S', and R. Unfortunately, the enlarged set H, S',
T, and 8 cannot be simultaneously diagonalized,

since R and T do not commute with each other.
+ +

However, since RT=T R it is possible to com-
bine the subspaces k and N —k such that R can be
diagonalized. One of us has used this property to
choose an orthogonal basis set such that the associ-

ated submatrices of the Hamiltonian only contain
real elements, ' and further, that the Hamiltoni-

an submatrices for the eigenvalues of T such that

k+0 or N/2 (N even) are identical in both the

R. =+1 subspace and R =1 subspace. This simpli-

fies the eigenvalue problem and is also very con-
venient for the calculation of eigenvectors.
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APPENDIX B: EXTRAPOLATION
TECHNIQUES

a generalized power-law type of fit, and

(3) G„=G„+a,a, ", (B3)

(1) G„=G„+Qa;n

where various a; may be put equal to zero to ob-
tain different types of polynomials in 1 in,

(2) G„=G„+a;n (B2)

The limiting spectral energies as X~ 00 may be
estimated using the standard graphical "I/N"' plot
technique, as was used to estimate the antifer-

romagnetic ground-state energy for uniform chains
in Ref. 6. However since a large number of alter-
nation values a were considered it was necessary to
devise computer-based extrapolation techniques for
convenience in handling large amounts of data.
First, the gaps, G„, obtained for finite rings of
E=2n =2, 4, 6, 8, 10, and 12 spins were examined,
and found to show a smooth behavior as a func-
tion of n, suggesting that extrapolation of the gaps
to n = Oo would give reliable results. Three main

types of expression were used to fit the gaps,
namely:

an exponential type of fit.
A fitting procedure using Pade approximant-

extrapolation techniques was also tried but was not
more successful than techniques (1)—(3). Conver-

gence rates of different types of fit were derived by
comparing results for different sets of n values.

Specifically, sets of three consecutive ri values were

chosen so that the extrapolated 6„'s again formed
a series whose convergence could be estimated. It
was found that type (1) or type (2) polynomial fits
gave the best results near the uniform limit (a=1),
whereas type (3) was preferable near the dimer lim-

it (a=O). However, in this region, say a(0.4,
convergence was so rapid that the limit was riot in

doubt.
The computer-based extrapolation procedures

were thoroughly tested on other systems known to
show a "gap" phenomenon, vanishing at a particu-
lar limit. An example is the spin- 2 XY alternating

chain which happens to be exactly solvable for
N = 00, and has an alternation energy gap which
vanishes in the uniform limit. These other systems
are discussed in some detail in Sec. II.
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