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ABSTRACT 

The use of Lithium-ion batteries (LIB’s) in commercial electronics such as 

computers and cell phones has expanded in recent years.  LIB technology offers 

higher energy density, lower self-discharge as well as higher operating voltage vs. 

other rechargeable battery technologies.  However, the natural flammability of 

standard LIB carbonate based electrolyte along with risk of thermal runaway poses 

safety concerns.  Thus, the research and development of nonflammable alternative 

electrolyte mixtures for standard LIB’s is of high interest to researchers.  To that end, 

Organophosphate containing Flame retardant (FR) compounds are being investigated 

as they possess natural fire suppressing qualities. 

LIB utilization in large platform applications, such as electric vehicles (EV’s) 

and aerospace designs has stimulated interest in higher energy density electrode 

materials such as Si. However, the practical use of Si does bring with it challenges 

related to the enormous volume changes which take place during cycling.   The use of 

LIB’s for large high energy applications raises elevated safety concerns relating to 

thermal runaway.  Detailed investigations relating to the benefit, cycling performance, 

and effect on the solid electrolyte interphase (SEI) upon FR incorporation into LIB’s 

with various anodes with/without SEI film stabilizing agents will be presented.  SEI 

composition and structural changes upon FR incorporation are analyzed via surface 

analysis techniques including SEM and XPS.
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PREFACE 

This dissertation is written in manuscript format.  The first chapter provides an 

introduction to lithium-ion batteries, lithium-ion battery electrolyte and flame 

retardant cosolvents/additives.  The second chapter is a manuscript published in the 

Journal of the Electrochemical Society.  The third chapter is a manuscript that will be 

submitted to the Journal of Power Sources.  The fourth chapter is a manuscript that 

will be submitted to the Journal of Power Sources. 
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Chapter 1 – Introduction 

Background  

 Lithium-ion batteries have fast become the preferred energy storage option for 

consumer electronics including laptop computers, and smartphones.  In addition, Li-

ion batteries are being utilized for large-scale applications such as hybrid and electric 

vehicles (EV’s) as well as aerospace platforms.  As compared to other battery systems 

such as NiZn, NiMH, and NiCd, Li-ion batteries offer lower self-discharge, superior 

operating voltage, wide operating temperature range, and higher gravimetric and 

volumetric energy density.
1,2

  

The early use of Li metal anodes in rechargeable cells met with cell safety 

issues relating to Li dendrite accumulation on the surface of the Li during repeated 

cycling.  The constant buildup of dendrites led to puncturing of the separator material 

and therein safety issues stemming from internal short circuit.  The safety issues 

relating to use of Li metal as an anode led to the study of anode materials which allow 

for the reversible intercalation and deintercalation of Li ions. 
2,3

  

The current standard for Li-Ion batteries (Fig. 1) consists of a graphite anode 

on a Cu current collector together with a Li metal oxide cathode such as LiCoO2, 

LiNi0.8Co0,2O2 or LiNi1/3Co1/3Mn1/3O2 on an Al current collector.  A polyolefin or 

polyethylene separator is utilized which provides electrical insulation between the 

terminals but allows for Li-ion migration during cycling.
1,2  

Standard Li-Ion battery 

electrolyte uses either binary mixtures of ethylene carbonate (EC) combined with ethyl 

methyl carbonate (EMC) or ternary mixes of EC with diethyl carbonate (DEC) and 
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dimethyl carbonate (DMC) for a solvent along with Lithium hexafluorophosphate 

(LiPF6) as the salt of choice.
2,4

  The physical properties of these solvents are detailed 

in Table 1. 
2,5  

These mixtures are by their very nature flammable and thus the safety 

risks associated with thermal runaway pose concern. 

 

Li-Ion battery Safety Issues 

Li-Ion cell thermal runaway events can stem from any one of several causes 

including excessive heat buildup within cell, and/or cell overcharge/cell 

overdischarge.  Internal short circuit via metallic dendrite accumulation as a result of 

poor manufacturing quality is also a trigger for a thermal runaway event.  During an 

overcharge, significant heat within the cell leads to break down of the protective SEI 

(solid electrolyte interphase) film layer and separator material.  The destruction of the 

SEI layer exposes the bulk electrode material now at states of extreme voltage and 

heat triggers conversion of the electrolyte into flammable gases.  This over-delithiation 

of the cathode leads to failure of the cathode structure as well as the generation of 

oxygen and further heat evolution.  Flammable gases build up also results in excess 

internal cell pressure.  This process often leads to venting and subsequent ignition 

upon exposure to air as well as possible flame ignition inside the cell.  Today, the 

majority Li-Ion cell models are fitted with safety relief valves/vents to reduce the 

possibility of explosion.  However, the threat of thermal runaway upon individual Li-

ion cells threatens fire spread to surrounding cells and therein the overall safety of the 

outside payload .
2,5,6
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Flame Retardant Incorporation 

 The possibility of thermal runaway poses significant safety threats most 

especially to large scale high power/energy applications such as electric and aerospace 

vehicles.  These safety concerns have prompted researchers to investigate the 

feasibility of Flame retardant (FR) cosolvent/additive incorporation into standard Li-

ion electrolyte.  Organophosphate containing compounds are now being studied for 

their natural fire suppressing qualities.
5-7

 Many research groups have reported using 4-

Isopropyl Phenyl Diphenyl Phosphate (IPPP)
8
, Diphenyloctyl phosphate (DPOF)

9
, 

Triphenyl Phosphate (TPP) 
10-14

, and Dimethyl methylphosphonate (DMMP)
7,15-17

 as 

FR cosolvents/additives for Li-Ion cells.  The advantage through the use of these 

additives is to perfect a viable nonflammable alternative which offers comparable 

electrochemical performance to standard electrolyte mixtures.  The origination of 

these flame mediating qualities is thought to stem via radical scavenging and therein 

halting of combustion or though char layer formation.
2,5-7 

Chapter 2 of this dissertation 

discusses the FR benefits and electrochemical effects of the incorporation of Triphenyl 

phosphate (TPP) into Li-Ion batteries with standard Graphite anodes. 

 

 

High Capacity Si Anodes 

 The higher energy and power requirements of large scale platforms such as 

electric automobiles and space vehicles have prompted the development of anodes 

with higher energy density. Si anodes are of keen interest as an anode material due to 

their significant theoretical specific capacity advantage (3579 mAh/g) vs. standard 
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Graphite anodes (372 mAh/g).
18

 The practical use of Si anodes has been wrought with 

challenges relating to the immense volume variations (3-4 fold) that occur between 

their charged and discharged states resulting in substantial internal mechanical 

stresses.  These physical stresses lead to loss of electrical contact between the Si anode 

active material and the Cu current collector.  The surface variations of Si anodes 

during repeated cycling also leads to breakdown of the protective SEI and continual 

reformation.  This continuous SEI formation results in large initial irreversible 

capacity loss, poor capacity stability and over the long term shorter cell life.
18,19

  

Many research groups have been investigated thin-film Si anodes as well as Si-

inactive composite materials with decreased Si particle size and alternative binder.
 20-23

 

These efforts are directed towards mediation of the enormous mechanical strains 

associated with repeated cycling of Si anodes.  The cycling benefits offered via the use 

of SEI film stabilizing additives such as lithium bis(oxalato)borate (LiBOB) and  

fluoroethylene carbonate (FEC) have also been explored by various groups.
24-26

 

Chapter 3 of this dissertation describes the electrochemical effects of Triphenyl 

phosphate (TPP) and Dimethyl methyl phosphonate (DMMP) FR cosolvent 

incorporation into Li-Ion batteries with Thin-film Si anodes.  Chapter 4 of this 

dissertation covers the incorporation of TPP and DMMP into Li-Ion batteries with Si 

nanoparticle anodes.  
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1.90 
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145 

 

 

EMC 

 

104 
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23 
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90 
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18 
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-74.3 
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2.805 

 

0.75 

 

33 

 

Table 1-1.  Properties of Std. Li-Ion battery electrolyte 

components. 
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Fig.1-1. Standard Li-Ion Battery Concept 
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Fig. 1-2. Thermal Runaway 
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Abstract 

The development and subsequent incorporation of flame retardant additives 

(FRAs) has become a priority for Li-Ion battery research and development.  Triphenyl 

phosphate (TPP) was studied to ascertain the safety benefits and electrochemical 

performance when incorporated into a LiPF6/ethylene carbonate (EC)/ethyl methyl 

carbonate (EMC) electrolyte system.  The flammability of electrolytes containing TPP 

was investigated via self-extinguishing time and flash point analysis. The 

electrochemical stability was studied by cyclic voltammetry (CV), battery cycling in 

graphite/LiNi0.8Co0.2O2 cells, electrochemical impedance spectroscopy (EIS) and Tafel 

polarization.  In order to better understand the role of TPP, ex-situ surface analysis of 

the cycled electrodes was conducted with X-ray photoelectron spectroscopy (XPS) 

and scanning electron microscopy (SEM).  Incorporation of TPP results in a moderate 

decrease in the flammability of the electrolyte with relatively minor detrimental effects 

on the performance of the cells and thus is a promising additive for lithium ion 

batteries. 

 

Introduction 

Lithium-ion battery technology in recent years has proven itself as a dependable 

energy storage medium for commercial consumer electronics.  Li-ion batteries offer 

higher operating cell voltage, higher energy density, longer cycle life and lower self-

discharge.  These advantages make Li-ion cells superior to other rechargeable systems 

such as Ni-MH and Ni-Cd. Safety issues however remain a concern with today’s Li-

ion batteries since the electrolyte is typically a blend of ethylene carbonate (EC) with 
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ethyl methyl carbonate (EMC) with a lithium salt, such as lithium 

hexafluorophosphate (LiPF6).  These electrolyte solutions are flammable and a risk of 

thermal runaway is a concern.  The main causes of Li-ion cell thermal runaway are 

attributed to both internal short via metallic dendrite accumulation and/or cell 

overcharge leading to destabilizing over-deliathiation of the cathode.
1-5

 

The potential for thermal runaway has led to efforts to reduce the fire risk and the 

propagation within Li-ion cells.  Many of these efforts focus on the development, and 

subsequent incorporation, of flame retardant additives (FRA) into the electrolyte 

solution.  A number of organophosphorus compounds have been investigated for 

lithium ion batteries.  For example, various research groups have reported the use of 

trimethyl phosphate (TMP),
6
 triphenyl phosphate (TPP)

3,7-11
, tris(2,2,2-trifluoroethyl) 

phosphate
12-14

,  and dimethyl methylphosphonate (DMMP)
1,4,15

  in lithium ion battery 

electrolytes.   These additives are believed to result in lower electrolyte flammability 

due to the formation of a layer of char which protects the uncombusted condensed 

phase and/or the decomposition products serving as radical scavengers in the gas 

phase inhibiting combustion chain reactions.
16,17

  Of the phosphate-based FRAs, 

triphenyl phosphate (TPP) is especially attractive since it has been reported to improve 

the safety of Li-ion cells under abuse conditions by lowering the flammability of 

electrolytes when incorporated in sufficient proportion
18

, and it has been observed to 

provide good life characteristics
7,9

.  

Some FRAs have been observed to disrupt the formation and stability of the anode 

solid electrolyte interphase (SEI) layer, and are thus detrimental to the cycling 

performance of the cells. FRAs have also been investigated in combination with SEI 
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forming additives such as lithium bis(oxalato)borate (LiBOB) or vinylene carbonate 

(VC) which generate a more stable anode SEI and limit the detrimental effects of the 

FRA.
7,9,19

 A stable SEI layer is critical to the proper functioning of Li-Ion cells, 

allowing the intercalation and de-intercalation of Li
+
 at the graphite anode and 

preventing further reduction of the electrolyte.
2
  The formation mechanisms of the SEI 

and the role of the constituent solvents and salts in the solid electrolyte interphase 

(SEI) are currently under investigation.
20 

This current research is focused upon the effort to inhibit flammability of 

electrolytes via incorporation of FR additives while mitigating their negative attributes 

and maximizing electrochemical performance.  The drawbacks of FRA incorporation 

into lithium-ion batteries include increased discharge capacity fade and poor cycling 

performance at low temperatures.  Loss of electrochemical performance in the 

presence of FR  additives is commonly attributed to inadequate formation of a stable 

SEI on the surface of the anode, and in some cases undesirable properties of the 

cathode electrolyte interphase (CEI).
21,22

  This investigation focuses on the effects of 

the incorporation of TPP on the flammability of the electrolyte, the conductivity of the 

electrolyte, the cycling performance of graphite/LiNi0.8Co0.2O2 cells, electrode transfer 

kinetics, and electrode interphase structure in lithium ion batteries.  

 

Experimental 

Battery-grade carbonate solvents ethylene carbonate (EC), ethyl methyl 

carbonate (EMC), and dimethyl carbonate (DMC), as well as lithium 
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hexafluorophosphate (LiPF6) salt, were obtained from Novolyte Technologies, Inc. 

Two different electrolytes 1.2 M LiPF6 in EC/EMC (3:7 vol.%, BL1) and 1.0 M LiPF6 

in EC/EMC (2:8 vol.%, BL2) were obtained from Novolyte Technologies and utilized 

without further purification (water content was less than 50 ppm in all cases). 

Triphenyl phosphate (TPP) was obtained from Thermo Fisher Scientific at 99% purity 

and used as received. TPP containing electrolytes were prepared with a constant 

concentration of LiPF6 and EC while EMC was replaced with TPP. 

Self-extinguishing time, or SET, of the electrolyte combinations was measured 

via a modified version of the procedure detailed by Xu and coworkers using 

commercial cotton swabs as the test wick.
1,12

 The commercial cotton swab wicks were 

manufactured to a uniform diameter of 1 cm and were injected with 100 µl of 

electrolyte.  The wick was placed in a fume hood with an air flow velocity of 90 ft/s 

and suspended at uniform height above a watch glass.  Burning time was recorded 

with the use of a digital stopwatch.  This procedure was performed on ten samples of 

each electrolyte and an average SET was calculated for each.  

The flash points of solvent blends incorporating TPP were measured using a 

Pensky-Martens Closed Cup Flash Tester from Koehler Instrument Company.  

Solvent blends were mixed excluding Li salt to a total mass of 70 g and placed in a 

closed test cup.  A motorized stirrer was used to enhance solvent evaporation within 

the closed cup and a propane supplied flame was dipped into the sample cup every 

1°C to test for vapor ignition signaling the flash point of the sample.  



 

16 

 

Conductivity measurements were performed with a Thermo Scientific Orion 3 

Star conductivity benchtop meter using an Orion 011050MD 2-electrode conductivity 

probe (the cell constant value was 0.976 cm
-1

).  The probe was sealed under Ar in a 

threaded Ace glass cell and threaded Teflon adapter and O ring to avoid moisture 

contamination of the electrolyte.  The cell was filled with approximately 9 mL of 

electrolyte solution and the cell was placed in a Tenney environmental chamber. 

Conductivity readings were recorded after 4 hour equilibration time between -60°C to 

30°C. 

Cyclic voltammetry (CV) was utilized to establish the electrochemical window 

of the electrolyte on the anode.  Lithium metal was utilized as a reference and counter 

electrode, while a glassy carbon electrode was used as the working electrode.  Three 

reduction potential sweeps were performed between 0 V and 3.0 V versus Li/Li
+ 

at a 

scan rate of 0.01 V/s.  All experiments were carried out using a VersaSTAT 3-200 

with FAR option Electrochemical WorkStation (Princeton Applied Research).
1
 

Coin cells were assembled utilizing electrodes obtained from Yardney Technical 

Products.  The anodes were composed of 89% mesocarbon microbead (MCMB), 8% 

poly(vinylidene difluoride) (PVDF) binder, and 3% conductive carbonaceous dilutant 

on a copper foil current collector.  Cathodes contained 89% LiNi0.8Co0.2O2, 5% PVDF 

and 6% conductive carbonaceous dilutant on an aluminum foil current collector. 

Preparation of the electrolyte and coin cell assembly was performed in a pure Argon 

atmosphere glove box with a water content < 5 ppm.  Cells were constructed and 

cycled between 4.1 V and 3.0 V using an Arbin BT4010 battery cycler at 60 °F (15.5 

°C).  
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The cycling protocol followed an initial formation cycling schedule with the first 

cycle at a C/20 current rate, followed by C/10 during cycles two and three, and C/5 for 

cycles four and five.  Nominal cycling was conducted at C/5 current rate for an 

additional 30 cycles.  The cells were then opened in an Ar filled glove box after a total 

of 35 cycles.  Electrodes were extracted and rinsed three times with dimethyl 

carbonate (DMC) to remove residual salts.  The rinsed electrodes were then vacuum 

dried overnight prior to surface film and morphological examination. 

 Larger experimental three-electrode cylindrical cells (approximately 400 mAh in 

capacity) were also assembled, which consisted of O-ring sealed, glass cells 

containing anodes (89% mesocarbon microbead (MCMB), 8% poly(vinylidene 

difluoride) (PVDF) binder, and 3% conductive carbonaceous dilutant on a copper foil 

current collector), cathodes  (89% LiNi0.8Co0.2O2, 5% PVDF and 6% conductive 

carbonaceous dilutant on an aluminum foil current collector), and lithium reference 

electrodes separated by two layers of polyethylene (Tonen-Setella) separator material. 

The anodes were coated with active material on both sides of the substrate and had an 

active material area of approximately 158 cm
2
, corresponding to an electrode loading 

of 16 mg/cm
2
.  The NCO electrodes were also coated on each side with an active 

material area of approximately 141 cm
2
, corresponding to a loading of 19 mg/cm

2
.  

Electrochemical characterization, including linear micro-polarization and Tafel 

polarization measurements, were performed using an EG&G potentiostat/galvanostat 

(273A) interfaced with a computer using Softcorr 352 software. To perform 

electrochemical impedance spectroscopy (EIS) measurements, a Solartron 1255 

frequency response analyzer was used in conjunction with this potentiostat.  All cells 
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were fully charged prior to impedance measurements, with the open circuit voltage > 

4.07 V.  Charge-discharge measurement and cycling tests were performed utilizing an 

Arbin battery cycler.  The formation cycling was performed at current densities of 

0.25 mA/cm2 (~C/16 rate) and the cells were charged to 4.10 V, followed by a tapered 

charge period at constant potential until the current decayed to a C/100 rate, and 

discharged to 2.75 V.  For low temperature discharge rate characterization, the cells 

were charged at room temperature and allowed to soak at the desired temperature (in a 

Tenney environmental chamber with temperature control of +/- 1
o
C) for at least five 

hours prior to discharging to 2.00 V.   

Surface species characterization was accomplished via the collection of X-ray 

photoelectron spectroscopy (XPS) spectra using a PHI 5500 system and Al Kα 

radiation.  A graphite reference peak of 284.3 eV was used for proper final shifting of 

the spectra collected.  Multipak versions 6.1 as well as XPS Peak 4.1 software were 

utilized for analysis and curve fitting of collected spectra respectively.  A combination 

of Gaussian and Lorentzian functions was used for the least squares curve fitting.  The 

surface morphology of cycled electrodes was examined using a JEOL 5900 Scanning 

Electron Microscope (SEM).  

 

Results and Discussion 

Self-Extinguishing Time (SET) 

The self extinguishing time (SET) of electrolyte with increasing TPP concentration 

is summarized in Table 1.  The baseline electrolyte 1 (BL1, 1.2 M LiPF6 in EC/EMC 
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3:7 vol.%) shows high flammability with an SET of 23 seconds.  Electrolyte with 5% 

TPP does not show appreciable decrease in flammability.  However, incorporation of 

10% - 15% TPP results in a significant reduction in SET (9 s).  SET experiments were 

also conducted on solvent blends without LiPF6 and the trends in flammability 

reduction were very similar. 

 

Flash Point (FP) 

The flash points (FP) of solvent blends incorporating TPP are provided in 

Table 2.  The FP values of all solvents blends are very similar.  The FP values 

correlate with the expected FP of EMC and suggest that TPP does not significantly 

alter the composition of the vapor phase above the cup.  The significant differences in 

the quantity of reduced flammability when comparing SET and FP data with added 

TPP suggest that the development of additional straightforward flammability 

measurements would be beneficial.  This also supports that the primary flame 

retarding action of the triphenyl phosphate is dependent upon its decomposition, either 

due to the formation of radical scavenging species or the formation of a thermal 

barrier of char, which would not be as significant in the flash point test.  

 

Ionic Conductivity 

 The ionic conductivity of 1.2 M LiPF6 in 3:7 EC/EMC (vol.%) compared to 

1.0 M LiPF6 in 3:6:1 EC/EMC/TPP (wt. %) between -60°C and 30°C is depicted in 

Figure1.  Addition of 10% TPP results in a slight decrease in the conductivity of the 
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electrolyte.  The decrease is attributed to a reduction in Li ion transport as a result of 

TPP incorporation.  The difference in conductivity between BL1 and electrolyte with 

10 % TPP becomes smaller with decreased temperature. 

 

Cyclic Voltammetry 

 The cyclic voltammogram (CV) of the BL1 electrolyte and the electrolyte with 

10 % TPP and 15 % TPP are shown in Figure 2.  During the first potential sweep of 

the BL1 electrolyte, no reduction peaks are observed above 0.5 V vs. Li.  The first 

potential sweep of electrolytes containing 10 % TPP and 15 % TPP contains a 

reduction peak at 1.8 V which is not present during the subsequent second and third 

potential sweeps. In addition, the current intensity of the peak increases with 

increasing concentration of TPP.  This indicates that TPP is reduced on the anode 

surface but does not adversely affect the formation of a stable anode SEI. 

 

 Electrochemical Performance of Cells with Triphenyl Phosphate 

Lithium ion coin cells containing an MCMB anode and LiNi0.8Co0.2O2 cathode 

were prepared with BL1 electrolyte and electrolyte with 5, 10, and 15 % TPP (Figure 

3) to evaluate the effect of TPP on the electrochemical performance.  Cells containing 

electrolyte with 5 and 10% TPP have comparable discharge capacity (~155 mAh/g) to 

cells with BL1 electrolyte (~165 mAh/g).  Continued cycling (35 cycles) results in a 

small increase in the discharge capacity fade for cells containing 5 and 10 % TPP.  

The initial capacity is lower and the capacity fade upon cycling is more pronounced in 
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cells with 15 % TPP (~145 mAh/g) as compared to the BL1 electrolyte.  It should be 

noted that although more pronounced capacity decline is observed in these 

experimental cells, good cycle life performance has been observed in larger prototype 

cells (7Ah), being comparable with cells containing electrolytes with lower 

concentrations of TPP.
23

  

 

Performance Characterization of Three-Electrode Experimental Cells with 

Electrolytes Containing Triphenyl Phosphate 

Three electrode cells consisting of MCMB anodes and LiNi0.8Co0.2O2 cathodes 

were fabricated containing a baseline electrolyte (BL2, 1.0M LiPF6 in EC+EMC 

(20:80 vol %) and electrolytes with increasing concentration of triphenyl phosphate 

(i.e., 5, 10, and 15% by volume).  In the preparation of these electrolytes the ethylene 

carbonate content was held constant (at 20% by volume) and the ethyl methyl 

carbonate content was adjusted accordingly.  As illustrated in Table 3, very 

comparable reversible capacities and irreversible capacities were obtained for all cells, 

indicating that the incorporation of TPP into the electrolyte does not adversely impact 

the initial specific capacity.  It should be noted that the small observed differences in 

reversible capacity are not entirely attributable to electrolyte effects, but rather owing 

to cell to cell variability (i.e., < 5% variation in electrode weights).  As shown in 

Figure 4, when the potentials of the MCMB anodes are observed during the first 

charge of the formation process, there is no significant reactivity with increasing TPP 

content and they behave in a similar fashion to the baseline solution soon adopting 

voltages indicative of lithium intercalation rather than excessive reductive 
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decomposition of the additive.  This suggests that if TPP is participating in the film 

formation process it is resulting in the formation of a protective film, rather than 

reacting continually. 

After completing the formation cycling and electrochemical characterization of the 

cells (discussed in the sections below), the cells were subjected to low temperature 

discharge rate characterization.   This testing consisted of charging the cells at room 

temperature and discharging the cells at -20
°
C at various rates.  As illustrated in Table 

4, a noticeable decrease in the discharge rate capability was observed at low 

temperature with increasing TPP content.  This is partly attributed to a decrease in the 

conductivity of the electrolyte solutions with increasing TPP content.  As discussed 

below, the decreased rate capability is also attributed to decreased lithium 

intercalation/de-intercalation kinetics at the interfaces, since increased film and charge 

transfer resistances are observed during the measurement of electrochemical kinetics 

parameters.  

 

Tafel Polarization Measurements of Three-Electrode Experimental Cells with 

Electrolytes Containing Triphenyl Phosphate 

To determine the lithiation/de-lithiation kinetics of both the anode and the 

cathodes in the three-electrode cells, Tafel polarization measurements were performed 

on the MCMB/ LiNi0.8Co0.2O2 cells at 20
o
, 0

o
, and -20

o
C.  These measurements were 

performed after the cells completed the formation cycling and were fully charged (i.e., 

the open circuit potential was above 4.08 V).  To approximate steady-state conditions, 
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the measurements were performed under potentiodynamic conditions with slow scan 

rates (0.2 mV/sec).  During the polarization of 150 mV vs. the open-circuit potentials, 

there is noticeable mass-transfer interference on the charge-transfer process. 

Corrections were therefore applied for this mass transfer interface, by electrode 

potential against Log [I/{(1-(I/Il)}], where Il  is the limiting current estimated from 

extrapolation.  The rate parameters for the intercalation/de-intercalation of lithium 

(i.e., the exchange current and transfer coefficients), were calculated from the intercept 

and the slope of the mass-transfer corrected plots.
24

   

From the exchange current densities listed in Table 5, it is clear that the anode 

kinetics are nearly comparable for the baseline electrolyte (0.51 mA/cm
2
) and the 

electrolyte with 10% TPP content (0.57 mA/cm
2
).  However, decreased kinetics were 

observed at the MCMB anode when utilizing an electrolyte with 15% TPP (0.46 

mA/cm
2
).  These results suggest that increasing TPP content results in interfacial 

surface films that impede the lithium kinetics and is also accompanied by decreased 

ionic conductivity of the electrolyte, which will be reflected by decreased limiting 

currents.  In contrast to the anode kinetics which are not significantly altered even 

though TPP contributed to the SEI, the cathode kinetics are noticeably reduced upon 

incorporation of TPP into the electrolyte, for example from 1.15 mA/cm
2
 for the 

baseline up to 0.59 mA/cm
2
 for 10% TPP and 0.22 mA/cm

2
 for 15% TPP.  Similar 

trends are observed upon evaluating the cells at lower temperature, with the electrolyte 

with 10% TPP content also displaying decreased lithium intercalation and de-

intercalation kinetics compared with the baseline.  As shown in Figure 5, when Tafel 

measurements were performed at -20
o 

C on the MCMB anodes, the following trend in 
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the anode kinetics was observed (in decreasing amount): LiPF6 in EC+EMC (20:80) >  

LiPF6 in EC+EMC+TPP (20:70:10) > LiPF6 in EC+EMC (20:65:15).  A similar trend 

in the electrode kinetics was observed when Tafel measurements were performed on 

the LiNi0.8Co0.2O2 cathodes, as shown in Figure 6.  In addition to resulting in reduced 

ionic conductivity, these results support the contention that the TPP is being 

incorporated into the cathode surface films as well, which is supported by the ex-situ 

analysis of the electrode harvested from the coin cells discussed in the section below.   

 

Electrochemical Impedance Spectroscopy (EIS) Measurements of Three-Electrode 

Experimental Cells with Electrolytes Containing Triphenyl Phosphate 

In an attempt to further understand the effect that triphenyl phosphate has upon 

the electrode/electrolyte interface, EIS measurements were performed on each 

individual electrode, as well as the full cell, by utilizing the reference electrode.  In the 

interpretation of the data, an equivalent circuit consisting of a series resistance, Rs, a 

parallel resistor-capacitor network (for film capacitance Cf and film resistance Rf) in 

series for the high frequency relaxation loop, a resistor-capacitor parallel network in 

series for the low frequency relaxation loop, which is represented by a double-layer 

capacitance Cdl in parallel with as series combination of charge transfer resistance Rct, 

and a Warburg impedance (w) representing the slow solid state diffusion of lithium 

ions in the bulk.
25-28

 It is generally held that the high frequency relaxation loop is 

associated with the surface film between the electrolyte and the electrode, whereas the 

low frequency relaxation loop is correlated to the charge transfer resistance.  These 
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data were analyzed using the equivalent circuit described above and Z Simpwin 

software. 

When EIS measurements were performed on the MCMB anodes after 

formation, as shown in Figure 7, a noticeable increase in the series resistance is 

observed with increasing TPP content, especially when 15% is added.  This increase is 

primarily attributable to the decrease in ionic conductivity of the electrolyte solution, 

due to the addition of TPP, which increases the viscosity and lowers the ionic 

mobility.  The trends in the film resistance and the charge transfer resistances are not 

as clear as expected.  Part of this may be attributed to the interference of the mass 

transfer on the charge transfer kinetics (as was also seen in the Tafel plots), and the 

non-ideal Warburg impedance overlapping with the charge transfer relaxation loop.   

In general, there is an increase in the film and charge transfer resistances with addition 

of TPP, being again most dramatic for the electrolyte with 15% content (Table 6).  

This suggests that TPP is altering the SEI film hindering facile lithium kinetics due to 

a more resistive nature compared to the baseline solution.  The addition of TPP may 

also influence the solvation and coordination of Li ions in solution, in turn influencing 

the de-solvation characteristics.  However, the extent of this potential interaction and 

how the subsequent de-solvation characteristics may influence the charge transfer 

characteristics
29

 requires further study.  When EIS measurements were performed on 

the LiNi0.8Co0.2O2 cathodes, only modest increases in the film and charge transfer 

resistance were observed with the cell containing the electrolyte with 10% TPP. 

However, the cell with the electrolyte possessing 15% TPP resulted in much higher 

series, film, and especially charge transfer resistance, as illustrated in Figure 8. 
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Scanning Electron Microscopy (SEM) 

Scanning electron microscope (SEM) images of MCMB anodes and 

LiNi0.8Co0.2O2 cathodes from cycled full cells with LB1 electrolyte and electrolyte 

with 10 % TPP are provided in Figures 9-10.  Anodes extracted from full cells cycled 

with BL1 electrolyte and electrolyte containing 10 % TPP have very similar surface 

morphology.  Cathodes extracted from full cells with BL1 and 10 % TPP electrolytes 

also have very similar surface structure.  The results suggest that the incorporation of 

TPP does not significantly affect the bulk structure of the materials. 

 

X-ray Photoelectron Spectroscopy (XPS) 

 XPS analysis of the surface of electrodes extracted from cells containing BL1 

and TPP-containing electrolytes was conducted to understand the role of TPP on the 

structure of surface films on the electrode materials.  Elemental surface concentrations 

of the anodes are provided in Table 7.  After 35 cycles, the concentration of C 

decreases while the concentration of O and F increase relative to the fresh anode, 

consistent with the formation of an SEI on the anode.  Incorporation of 5 % TPP 

results in an increase in the concentration of O and a decrease in the concentration of 

F, but further increases in the concentration of TPP result in a decrease in the 

concentration of O and increase in the concentration of C suggesting that the 

composition of the anode SEI is being altered by the addition of TPP.  The P elemental 

concentrations remain small for all samples suggesting that TPP is not being 

incorporated into the anode SEI. 
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The XPS spectra of anodes extracted from full cells cycled with TPP 

electrolyte are depicted in Figure 11.  The fresh anode contains peaks for graphite at 

284.3 eV and two peaks for PVDF at 286.4 and 290.5 eV in the C1s spectrum.  The 

corresponding F1s peak for PVDF is observed at 688 eV and a small peak is observed 

in the O1s spectrum at 533 eV characteristic of residual oxygenated impurities on the 

graphite surface.  The C1s spectrum of cycled anodes contains a new peak at 289.5 

eV, consistent with the presence of C=O containing species such as lithium alkyl 

carbonates, in addition to the peaks characteristic of graphite and PVDF, suggesting 

that the anode SEI is relatively thin.  The C1s spectrum does not change significantly 

upon incorporation of TPP indicating that TPP does not significantly alter the carbon 

containing components. The F1s spectrum contains peaks for PVDF (688 eV) and LiF 

(684.5 eV).  LiF is a common component of anode SEIs resulting from the 

decomposition of LiPF6.  The relative concentration of LiF, compared to PVDF, 

decreases with increasing TPP concentration suggesting that the TPP may inhibit the 

decomposition of LiPF6.
1, 30

 The O1s spectrum shows a mix of C=O and C-O bonds at 

531.5 eV confirming the production of a mix of lithium carbonate (Li2CO3) and 

lithium alkyl carbonates. The P2p spectrum contains evidence of lithium 

fluorophosphates (LixPOyFz) at 133.5 eV while the corresponding F1s peaks for 

LixPOyFz coincides with the peak for PVDF at 688 eV. 

Elemental surface concentrations of cathodes with TPP based electrolyte are 

shown in Table 8.  After 35 cycles, the concentration of C decreases while the 

concentration of O and F increase for cells cycled with the BL1 electrolyte.  The 

incorporation of TPP alters the elemental concentration on the surface of the cathode. 
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The concentration of C and O are increased while the concentration of F is decreased 

with increasing TPP concentration.  In addition, P and Ni concentrations remain low 

for all electrodes. 

XPS spectra of cathodes extracted from full cells cycled with TPP electrolyte 

are presented in Figure 12.  The C1s spectrum of the fresh cathode contains peaks 

characteristic of graphite (284.3 eV) from the conductive carbon dilutant and PVDF 

binder (286.4 and 290.5 eV).  The F1s spectrum contains a single peak characteristic 

of PVDF at 688 eV while the O1s spectrum has peaks for lithium carbonate (531.5 

eV) and metal oxide (529 eV).  Analysis of the cathode extracted from a cell cycled 

with baseline 1 electrolyte reveal small changes to the cathode surface.  The C1s 

spectrum is similar but the F1s spectrum contains a new peak at 684.5 eV consistent 

with the presence of LiF and the O1s peak for the metal oxide is decreased consistent 

with the formation of a cathode surface film.  The addition of TPP to the electrolyte 

further alters the C1s spectra of the extracted electrodes.  With increasing 

concentrations of TPP a gradual decrease in the intensity of the C-F peak at 290.5 eV 

and C-H peak at 286.4 eV are observed indicating the formation of a cathode surface 

film covering the PVDF binder.  Increasing the concentration of TPP also decreased 

the intensity of the peak for LiF suggesting less LiF on the cathode surface with added 

TPP.  The decrease in LiF concentration on the cathode is similar to the decreased LiF 

concentrations on the anode discussed above further supporting the stabilization of 

LiPF6 in the presence of the Lewis basic TPP.
1,30

 The O1s spectra of samples cycled 

with TPP contain peaks characteristic of Li2CO3 and lithium alkyl carbonates at 531.5 

eV as well as Li metal oxide at 529 eV.  
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Conclusions 

The effect of the addition of triphenyl phosphate (TPP) as a flame retarding 

additive for lithium ion battery electrolytes was investigated.  The incorporation of 

TPP into standard carbonate based electrolytes resulted in a significant reduction in 

the flammability of the electrolyte as determined by self-extinguishing tests (SET).  

However, the incorporation of TPP did not significantly alter the flash point of the 

solvent blends, suggesting that the decomposition of TPP (either leading to the char 

formation or radical scavenging species) is essential to the flame retarding action.   

TPP incorporation resulted in a slight decrease in the electrolyte conductivity which 

corresponds to slight increase in the cell impedance especially at low temperature (-20 

o
C).  However, addition of up to 10 % TPP did not significantly reduce the cycling 

performance and capacity retention of lithium ion cells.  When EIS measurements 

were performed, a noticeable increase in the series, film, and charge transfer 

resistances was observed, especially on the MCMB anodes, suggesting that TPP is 

altering the structure of the SEI film hindering facile lithium kinetics due to a more 

resistive nature.  Decreased kinetics were also observed at both electrodes with an 

electrolyte with 15% TPP especially at lower temperatures, as determined by Tafel 

polarization measurements, being attributed to lower ionic conductivity as well as the 

presence of TPP altering the surface layers of both electrodes.    Post-mortem XPS and 

SEM analysis of the electrode surfaces suggest that the addition of up to 10 % TPP 

results in small changes to the composition of the surface films but does not 

significantly interfere with the anode SEI film formation process.  In summary, TPP is 

a promising flame retarding additive for lithium ion batteries with minimal deleterious 
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effect on the electrode kinetics performance, but may result in improved safety for the 

large format cells. 
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Electrolyte Solutions 

S.E.T 

(s) 

σ 

(s) 

  Std. - {1.2M LiPF6 (EC/EMC) (3:7) vol.%} 23 2.6 

 5% TPP - {1.0M LiPF6 (EC/EMC/TPP) 

(3:6.5:0.5) wt. %}   23 2.3 

 10% TPP - {1.0M LiPF6 (EC/EMC/TPP) 

(3:6:1) wt.%}   9 2.2 

 15% TPP - {1.0M LiPF6 (EC/EMC/TPP) 

(3:5.5:1.5) wt.%}  9 1.2 

 

 

 

Table 2-1. Self-extinguishing times for electrolytes with TPP 
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    Table 2-2.  Flash Points of solvent blends. 

 

 

 

 

Solvent Mixture  

  Flash Point 

(°C) 

Std. – {EC/EMC 3:7 wt.%} 29.7 

5% TPP– {EC/EMC + 5  wt.%TPP} 29.7 

10% TPP –{EC/EMC + 10 wt.% TPP} 30.7 

15% TPP – {EC/EMC + 15 wt.% TPP} 31.0 
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Electrolyte Type 

Charge 

Capacity 

(Ah)       

1st Cycle 

Discharge 

Capacity 

(Ah)       

1st Cycle 

Irrev. 

Capacity 

(Ah)       

1st Cycle 

Coulombic 

Efficiency       

1st Cycle 

Charge 

Capacity 

(Ah)           

5th Cycle 

Discharge 

Capacity 

(Ah)       

5th Cycle 

Cumulative 

Irrev. 

Capacity     

(1st -5th 

Cycle) 

Coulombic 

Efficiency       

5th  Cycle 

1.0M LiPF6 in 

EC+EMC          

(20:80  v/v 

%) 

 

0.4682 

 

0.4044 

 

0.064 

 

86.39 

 

0.4013 

 

0.3914 

 

0.1136 

 

97.53 

1.0M LiPF6 in 

EC+EMC+TPP 

(20:65:5 v/v 

%) 

 

0.4561 

 

0.3977 

 

0.058 

 

87.19 

 

0.3898 

 

0.3894 

 

0.0734 

 

99.88 

1.0M LiPF6 in 

EC+EMC+TPP 

(20:70:10 v/v 

%) 

 

0.4705 

 

0.3978 

 

0.073 

 

84.55 

 

0.3969 

 

0.3819 

 

0.1449 

 

96.20 

1.0M LiPF6 in 

EC+EMC+TPP 

(20:75:15 v/v 

%) 

 

0.4645 

 

0.4037 

 

0.061 

 

86.91 

 

0.4027 

 

0.3980 

 

0.0881 

 

98.84 

 

Table 2-3. Charge-discharge (formation) characteristics of experimental MCMB/ 

LixNiyCo1-yO2 lithium-ion cells containing electrolytes with and without triphenyl 

phosphate.  
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1.0 M LiPF6 in 

EC+EMC                               

(20:80 v/v %) 

1.0 M LiPF6 in 

EC+EMC+TPP 

(20:70:10 v/v %)  

1.0 M LiPF6 in 

EC+EMC+TPP 

(20:65:15 v/v %)  

Temp. 
Current   

(mA) 

Capacity 

(Ah) 

Percent 

(%) 

Capacity 

(Ah) 

Percent 

(%) 

Capacity 

(Ah) 

Percent 

(%) 

23
o
C 25 0.3914 100.00 0.3819 100.00 0.3980 100.00 

- 20
o
C 25 0.3370 86.12 0.3208 84.00 0.2436 61.19 

 50 0.3206 81.92 0.2579 67.54 0.1889 47.45 

 100 0.3044 77.79 0.1354 35.45 0.0944 23.72 

 150 0.2913 74.44 0.0429 11.23 0.0419 10.53 

 

Table 2-4. Summary of the discharge characteristics experimental MCMB/ LixNiyCo1-yO2 

lithium-ion cells containing various electrolytes at -20
o
C.  Cells were charged at 20

o
C.  
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FRA Content Anode io, mA/cm
2
 Cathode io, mA/cm

2
 

25
o
C 0

o
C -20

o
C 25

o
C 0

o
C -20

o
C 

0 % 0.51 0.26 0.08 1.15 0.31 0.06 

10 % 0.57 0.28 0.06 0.59 0.27 0.06 

15 % 0.46 0.23 0.04 0.22 0.14 0.02 

 

Table 2-5. Summary of the electrode kinetic data obtained from Tafel 

polarization measurements. 
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FRA 

(%) 

25
o
C 0

o
C -20

o
C 

 

Rf 

(Ω) 

    

Rct 

(Ω) 

Io, 

mA/cm
2
 

 

Rf 

(Ω) 

    

Rct 

(Ω) 

Io, 

mA/cm
2
 

 

Rf 

(Ω) 

    

Rct 

(Ω) 

Io, 

mA/cm
2
 

MCMB 

0 0.03 0.02 10.93 0.21 0.28 0.59 1.08 0.44 0.37 

10 0.12 0.17 0.99 0.31 0.20 0.82 - - - 

15 0.10 - 16.69 0.31 - 0.42 1.21 0.36 0.46 

LiNiCoO2 

0 0.08 0.05 3.28 0.15 0.25 0.73 1.10 0.14 1.31 

10 - 0.03 5.12 0.26 1.03 0.18 - - - 

15 0.10 0.15 1.09 0.09 0.90 0.20 10.27 - - 

 

Table 2-6. Summary of the electrochemical parameters obtained from EIS 

measurements. 
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Table 2-7. Elemental concentration of C, O, F, P, on the anode surface using TPP 

FR electrolyte. 

 

 

 

C 1s 

(%) 

O 1s 

(%) 

F1s 

(%) 

P 2p 

(%) 

Fresh Anode 70 4 26 N/A 

Std. - 1.2M LiPF6 EC/EMC (3:7) vol.% 40 24 34 2 

5% TPP  - 1.0M LiPF
6 

EC/EMC/TPP 

(3:6.5:.5) wt.% 41 33 25 1 

10% TPP - 1.0M LiPF
6 

EC/EMC/TPP  

(3:6:1) wt.% 52 22 25 1 

15% TPP - 1.0M LiPF6 EC/EMC/TPP 

(3:5.5:1.5) wt.% 52 18 30 1 
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C 1s 

(%) 

O 1s 

(%) 

F 1s 

(%) 

P 2p 

(%) 

Ni 1s 

(%) 

Fresh Cathode 58 10 32 

  Std. -1.2M LiPF6 EC/EMC (3:7) vol.% 47 12 36 1 4 

5% TPP  -1.0M LiPF
6 

EC/EMC/TPP 

(3:6.5:.5)wt.% 52 18 26 1 3 

10% TPP -1.0M LiPF
6 

EC/EMC/TPP 

(3:6:1) wt.% 61 17 19 1 2 

15% TPP -1.0M LiPF6 EC/EMC/TPP 

(3:5.5:1.5) wt.% 66 16 12 1 4 

 

 

Table 2-8. Elemental concentration of C, O, F, P, and Ni on the cathode surface using 

TPP FR electrolyte. 
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Figure 2-1. Ionic conductivity of electrolyte (1.2 M LiPF6 in EC/EMC 

(3:7 vol)) with and without triphenyl phosphate (1.2 M LiPF6 in 

EC/EMC/TPP (3:6:1 vol)) between +30 and - 60 
o
C 
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Figure 2-2. Combined 1
st
 Potential Sweep-Cyclic Voltammogram of 1.2 M LiPF6 in 

EC/EMC (3:7 vol, BL1) vs. EC/EMC/TPP (3:6:1 vol) vs. EC/EMC/TPP (3:5.5:1.5). 
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Figure 2-3. Cycling Performance of MCMB/LiNiCoO2 full cells utilizing  1.2 M LiPF6 

in EC/EMC (3:7 vol), EC/EMC/TPP (3:6.5:0.5 vol), EC/EMC/TPP (3:6:1 vol), and 

EC/EMC/TPP (3:5.5:1.5). 
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Figure 2-4.  The anode potential (V vs. Li+/Li) of MCMB/ LiNi0.8Co0.2O2 lithium-ion cells 

containing electrolytes containing varying amounts of triphenyl phosphate during the first charge 

of the formation process, 1.0 M LiPF6 in EC/EMC (2:8 vol), EC/EMC/TPP (2:7.5:0.5 vol), 

EC/EMC/TPP (2:7:1 vol), and EC/EMC/TPP (2:6.5:1.5). 
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Figure 2-5.  Tafel polarization measurements at - 20
o
C of MCMB electrodes from 

MCMB/ LiNi0.8Co0.2O2 lithium-ion cells containing electrolytes containing varying 

amounts of triphenyl phosphate, 1.0 M LiPF6 in EC/EMC (2:8 vol), EC/EMC/TPP 

(2:7:1 vol), and EC/EMC/TPP (2:6.5:1.5). 
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Figure 2-6.  Tafel polarization measurements at - 20
o
C of LiNi0.8Co0.2O2 electrodes from 

MCMB/ LiNi0.8Co0.2O2 lithium-ion cells containing electrolytes containing varying amounts of 

triphenyl phosphate, 1.0 M LiPF6 in EC/EMC (2:8 vol), EC/EMC/TPP (2:7:1 vol), and 

EC/EMC/TPP (2:6.5:1.5). 
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Figure 2-7.  Electrochemical impedance spectroscopy (EIS) measurements at 

23
o
C of MCMB electrodes from lithium-ion cells containing electrolytes with 

and without triphenyl phosphate, 1.0 M LiPF6 in EC/EMC (2:8 vol), 

EC/EMC/TPP (2:7:1 vol), and EC/EMC/TPP (2:6.5:1.5). 
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Figure 2-8.  Electrochemical Electrochemical impedance spectroscopy (EIS) 

measurements at 23
o
C of LiNi0.8Co0.2O2 electrodes from lithium-ion cells containing 

electrolytes with and without triphenyl phosphate, 1.0 M LiPF6 in EC/EMC (2:8 

vol), EC/EMC/TPP (2:7:1 vol), and EC/EMC/TPP (2:6.5:1.5). 
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a

b 

c 

Figure 2-9. SEM of MCMB anodes. a) Fresh; b) 1.2 M LiPF6 in EC/EMC (3:7 vol); 

c) EC/EMC/TPP (3:6:1 vol). 
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a 

 

b 

c 

 

Figure 2-10.  SEM of LiNi0.8Co0.2O2 cathodes.  a) Fresh; b) 1.2 M LiPF6 in 

EC/EMC (3:7 vol); c) EC/EMC/TPP (3:6:1 vol). 
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Figure 2-11. XPS Spectra of MCMB anodes.   a) Fresh; b) 1.2 M LiPF6 in 

EC/EMC (3:7 vol); c) EC/EMC/TPP (3:6.5:0.5 vol);  d) EC/EMC/TPP (3:6:1 

vol); e) EC/EMC/TPP (3:5.5:1.5). 
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Figure 2-12.   XPS Spectra of  LiNi0.8Co0.2O2 cathodes  a) Fresh; b) 1.2 M LiPF6 

in EC/EMC (3:7 vol); c) EC/EMC/TPP (3:6.5:0.5 vol);  d) EC/EMC/TPP (3:6:1 

vol); e) EC/EMC/TPP (3:5.5:1.5). 
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Abstract 

Due to the inherent flammability and therein risk of thermal runaway associated 

with standard Li-Ion battery electrolyte, the incorporation of Flame retardant (FR) co-

solvents or additives has become a focus for researchers.  In addition, there is 

significant demand for lithium ion batteries with greater energy density.  One method 

to improve the energy density of lithium ion batteries is to increase the capacity of the 

anode by using silicon.  To that end, Triphenyl phosphate (TPP) and Dimethyl 

methylphosphonate (DMMP) were incorporated into a standard binary LiPF6/ethylene 

carbonate (EC)/Ethyl methyl carbonate (EMC) electrolyte with and without anode SEI 

film forming lithium bis(oxalato)borate (LiBOB) to evaluate achievable cycling 

performances with thin-film silicon/Li half cells.  The electrochemical impact of FR 

incorporation was evaluated via cell cycling and differential chronopotentiometry data 

analysis.  TPP and DMMP incorporated electrolytes show comparable performance to 

the standard electrolyte.  FR incorporation into the standard electrolyte coupled with 

LiBOB addition results in improved cycling efficiency and capacity retention when 

cycling in thin-film Si/Li cells.  Ex-situ analysis via X-ray photoelectron spectroscopy 

(XPS) and scanning electron microscopy (SEM) is also performed as to characterize 

the role of TPP and DMMP in SEI structure and composition. 

 

Introduction 

The use of Lithium-ion batteries for portable electronics applications has 

become widespread in recent years.  Li-ion batteries offer higher gravimetric and 
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volumetric energy density than Ni-Zn, NiCd and NiMH based battery systems.  This 

translates into a longer running and more light-weight rechargeable system.
1,2

 

The integration of Li-ion battery systems into platforms with higher energy 

requirements such as hybrid and electric automobiles has led to the investigation of 

anode materials with superior energy density.  To this end, Silicon has been 

investigated as a potential anode material due to the higher theoretical specific 

capacity (3579 mAh/g) compared to the traditional graphite anode (372 mAh/g).
3-5

  

The demand for Li-ion battery technology for larger scale applications, such as 

automotive and aerospace, has prompted researchers and developers to address safety 

issues in Li-ion battery systems.  The standard electrolyte in lithium ion batteries is 

composed of a binary or ternary mixture of ethylene carbonate (EC) with ethyl methyl 

carbonate (EMC), diethyl carbonate (DEC), or dimethyl carbonate (DMC) and are 

flammable.  The flammability of the electrolyte coupled with the potential for thermal 

runaway during cell over-charge or over-discharge provides significant safety 

concerns for large battery systems.
6,7

 

Thus there is significant interest in the development of nonflammable 

electrolytes for lithium ion batteries.  One method to develop nonflammable 

electrolytes is via the incorporation flame retardant (FR) cosolvents/additives.  

Organophosphates are of high interest due to their natural fire quelling attributes.
8,9

 

Compounds that have been studied by various groups  include 4-Isopropyl Phenyl 

Diphenyl Phosphate (IPPP)
10

, Diphenyloctyl phosphate (DPOF) 
11

, Triphenyl 

Phosphate (TPP) 
9,12-16

, and Dimethyl methylphosphonate (DMMP) 
8,17-19

. Triphenyl 

phosphate (TPP) and Dimethyl methylphosphonate (DMMP) have both shown to be 
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effective in reducing the flammability of standard electrolytes while offering a 

comparable electrochemical performance. 
8,9,12-19

 

Unfortunately, the incorporation of FR co-solvents into standard electrolyte 

mixtures has frequently resulted in poor capacity retention and poor low temperature 

performance.  This has frequently been attributed to interference of the FR co-solvent 

with the formation of the anode solid electrolyte interface (SEI).  This has prompted 

many groups to investigate the addition of SEI film stabilizing additives such as 

vinylene carbonate (VC) and lithium bis(oxalato)borate (LiBOB) in FR 

electrolytes.
8,9,13-15

 

The use of Si anodes as a viable high capacity electrode material poses 

challenges due to the considerable volume changes (3-4 fold) between the charged and 

discharged states. 
4
 The enormous volume changes result in significant internal 

mechanical stress and subsequent loss of electrical contact between the current 

collector and Si active material.  The overall high level of surface area changes leads 

to continual reformation of the SEI.  This breakdown of the SEI allows for repeated 

exposure of the electrolyte with the bare electrode.  The continuous SEI formation 

prevalent in the cycling of Si anodes can bring with it large irreversible initial 

capacity, poor long-term discharge capacity retention/stability and short cell life.  In 

an effort to moderate the effects of the volume changes and resulting breakdown of the 

Si active material, many groups have focused on decreasing Si particle size within 

composite materials as well as pursuing thin-film Si anodes. 
3-5

 The addition of SEI 

film stabilizing additives such as VC, LiBOB, and fluoroethylene carbonate (FEC) has 

also been investigated. 
5,20,21
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The core focus of many research groups has been the incorporation of FR co-

solvents into standard carbonate based lithium ion electrolytes in an effort to reduce 

flammability without sacrificing electrochemical performance.  At the same time, 

much work has been directed towards the development of silicon anodes to improve 

the capacity of lithium ion batteries.  This study focuses on the electrochemical 

performance and SEI properties of thin-film Si anodes cycled with flame retardant 

TPP and DMMP containing electrolytes with and without SEI film stabilizing LiBOB. 

 

Experimental 

Battery grade lithium hexafluorophosphate (LiPF6), lithium bis(oxalato)borate 

(LiBOB), ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl 

carbonate (DMC) were obtained from BASF.  A standard electrolyte, 1.2 M LiPF6 

(EC/EMC) 3:7 (vol.%), was also obtained from BASF and utilized without additional 

purification.  Triphenyl phosphate (TPP) was obtained from Thermo Fisher Scientific 

at 99% purity.  Dimethyl methyl phosphonate (DMMP) was purchased from Sigma-

Aldrich dried with sodium hydride and molecular sieves and purified via vacuum 

distillation.  DMMP purity was confirmed via gas chromatography with mass selective 

detection (GC-MS).  FR electrolyte solutions with and without LiBOB were prepared 

with a constant concentration of LiPF6 and EC.  Incorporation of the FR co-solvent 

coincided with a decrease in the concentration of EMC. 

Thin-film Si electrodes were prepared via electron-beam evaporation of Ti 

onto a Cu foil substrate.  A 20 nm thick Si film layer was then deposited via Radio-

Frequency (RF)-magnetron sputtering at 150 W in an Ar chamber with approximately 
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2 mTorr of pressure.  The layer of Ti is applied to aide in Si-Cu adhesion.
3,5

  Thin-film 

Si/Li metal coin cells (half cells) were fabricated using electrolyte blends 1-6 in Table 

1, in a pure Ar glove box.  The Si anode functioned as the working electrode and the 

Li metal as the counter/reference electrode.  A polyolefin separator was utilized and 

the coin cells were assembled and pressed under a load of 1000 psi. 

Cells were cycled at constant-current charge and constant current discharge 

between 1.3V and 0.05V using an Arbin BT4010 battery cycler at 60 °F (15.5°C).  

The coin cell cycling protocol followed a formation schedule consisting of one cycle 

at a C/20 current rate and two subsequent cycles at C/10.  The cells were then cycled 

at a C/5 current rate for 52 cycles.  Cycling performance was gathered and coulombic 

efficiency (cycling efficiency) as well as capacity retention was calculated.  

Coulombic efficiency is defined as the ratio of discharge capacity or output of the cell 

to charge capacity or input.  Capacity retention is defined as the ratio of discharge 

capacity at a particular cycle to the initial (1
st
) cycle discharge capacity. 

Ex-situ analysis was conducted following the conclusion of the cycling schedule.  

Cells were opened in a pure Argon atmosphere glovebox and the cycled Si anodes 

were extracted and rinsed with DMC to remove residual LiPF6 salt.  The rinsed 

electrodes were then vacuum dried overnight prior to surface analysis.  Surface 

analysis of fresh and cycled Si electrodes was conducted using a JEOL Scanning 

Electron Microscope (SEM) in an Argon atmosphere chamber.  Surface species 

characterization using X-Ray Photoelectron Spectroscopy (XPS) analysis was 

performed using a PHI 5500 system and Al Kα radiation.  A hydrocarbon (C-H) 

contamination reference peak of 285 eV was used for spectral adjustment.  Multipak 
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versions 6.1 as well as XPS Peak 4.1 software were utilized for analysis and curve 

fitting of collected spectra respectively.  Gaussian and Lorentzian functions were used 

for the least squares curve fitting during data processing. 

 

 

Results and Discussion 

 

Differential Chronopotentiometry 

 

 Differential chronopotentiometry analysis of Si/Li cells is consistent with the 

reduction of LiBOB prior to the reduction of EC, as previously reported (Fig. 1).
21

 The 

DQ/DV results also reveal irreversible reduction of both TPP and DMMP at 1.2 V, 

very similar voltage to that of LiBOB.  Due to similarity of irreversible reduction of 

LiBOB, DMMP and TPP, a broad irreversible reduction peak is centered at 1.2 V for 

cells with LiBOB and DMMP or TPP.  Thus from the DQ/DV results it is difficult to 

distinguish if LiBOB alters the reduction of DMMP or TPP. 
21, 22

   

Electrochemical performance of Si/Li cells 

The effect of incorporation of FR co-solvents, TPP and DMMP, into a standard 

carbonate electrolyte was investigated in Si/Li cells.  The capacity retention and 

coulombic efficiency of the cells during the first 55 cycles is depicted in Fig. 2 while 

the first cycle efficiencies are provided in Table 2.  

Cells cycled with the standard electrolyte have good first cycle efficiency (69 

%) and discharge capacity after formation cycles (3100 mAh/g, 5th cycle), but have 

rapid capacity fade and low coulombic efficiency (93-96 %) during the next 54 cycles.  

Cells containing the DMMP electrolyte have very similar cycling behavior to the cells 
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containing standard electrolyte.  The first cycle efficiency is 60 % and comparable 

capacity fade and coulombic efficiency are observed during the next 54 cycles.  Cells 

cycled with the TPP electrolyte have similar first cycle efficiency, 62 %, to cells 

cycled with standard electrolyte but experience slightly better capacity retention 

during the next 54 cycles.  Cells cycled with the LiBOB containing electrolytes tend to 

have slightly worse first cycle efficiency but much better capacity retention.  Cells 

cycled with the LiBOB electrolyte have the lowest first cycle efficiency, 46 %, and 

lowest discharge capacity (~2400 mAh/g) at the end of formation cycling (5th cycle), 

but these cells retain 87 % of the capacity after 55 cycles.   In addition, the coulombic 

efficiencies of cycles 10 - 55 are greater than 98 %.  The incorporation of both LiBOB 

and FR co-solvent results in further improvement of the cycling performance.  The 

first cycle efficiencies of cells cycled with the TPP and LiBOB electrolyte (62 %) and 

the DMMP and LiBOB electrolyte (51 %) are improved over the LiBOB electrolyte.  

In addition, the discharge capacity after formation cycles is higher (3150 mAh/g, 5th 

cycle), the cycling efficiencies for cycles 10-55 remain high (~98 %), and the capacity 

retention after 55 cycles is good (83-87 %).  The results suggest that the best overall 

performance of the thin film Si electrodes is observed with flame resistant electrolytes 

with added LiBOB. In order to develop a better understanding of the source of 

performance changes as a function of changes in the electrolyte, ex-situ analysis of the 

surface of the thin film silicon electrodes was conducted. 

Scanning electron microscopy (SEM) 

 SEM imaging of fresh thin-film Si anodes show a smooth surface while Si 

anodes extracted from Si/Li cells after 55 cycles have observable changes to the 
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surface consistent with the formation of an SEI (Fig 3a-f).  Si anodes cycled with the 

standard electrolyte, TPP electrolyte, and DMMP electrolyte all show similar 

increases in surface striations with a relatively thin surface film covering the striations. 

Si anodes extracted from cells cycled with the LiBOB electrolyte, TPP and LiBOB 

electrolyte, and DMMP and LiBOB electrolyte, reveal a thick film on the surface of 

the Si with lesser changes to the surface striations. The thicker surface coverage in the 

presence of LiBOB is consistent with a thicker SEI on the silicon surface while 

increased striation in the absence of LiBOB is consistent with more damage to the 

silicon surface.  

 

X-ray photoelectron spectroscopy (XPS) 

 XPS analysis of thin-film Si electrodes extracted from cells after 5 and 55 

cycles reveal changes in the composition of the anode SEI as a result of the 

incorporation of FR cosolvents with and without the incorporation of LiBOB as a SEI 

film forming additive (Fig. 4-5, Tables 3-4).  Analysis of the silicon electrode after 5 

cycles reveal very low concentrations of Si (< 2 %) for all electrolytes consistent with 

the generation of a thick SEI passivation layer covering the electrode surface. The 

decrease in Si concentration is accompanied by a decrease in the O concentration and 

a large increase in the concentration of F for electrolytes without LiBOB.  The 

electrodes extracted from cells cycled with electrolytes containing added LiBOB have 

an increase in the concentrations of C and B, while electrolytes containing TPP and 

DMMP have a slight increase in the concentration of P.
5,8,21,22
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 XPS spectra of the fresh thin-film Si anode contains peaks characteristic of 

pure Si at 99.6 eV and Si-O at 102.3 eV in the Si2p spectrum, Si-O at 532.5 eV in the 

O1s spectrum, and universal hydrocarbon (C-H) contamination at 285 eV in the C1s 

spectrum.  The XPS spectra of the silicon electrodes after cycling reveal significant 

changes. Electrodes extracted from cells cycled with standard electrolyte contain 

peaks in the C1s spectra characteristic of C-O and C=O containing species at, 286.5 

and 288.5 eV respectively.  The broad peak in the O1s spectrum is also consistent with 

the presence of C-O (533-534eV) and C=O (532-533eV) containing species. The C1s 

and O1s peaks are consistent with the presence of lithium alkyl carbonates in the 

anode SEI as previously reported.
3,5,21

  The F1s spectrum contains a very strong peak 

at 685 eV characteristic of LiF and a shoulder at 687 eV with a corresponding P2p 

spectrum contains a weak peak at 135 eV characteristic of LixPFyOz. Thus, the SEI 

generated on the silicon electrode surface in the presence of standard electrolyte is 

primarily a mixture of lithium alkyl carbonates and LiF with a low concentration of 

LixPFyOz.
3,5,21

  Upon incorporation of the FR co-solvents, DMMP and TPP, only small 

changes are observed in the element spectra. The C1s, O1s, and F1s spectra are very 

similar, while a slight increase in intensity and shift to lower energy observed in the 

P2p spectrum suggesting that the TPP and DMMP are being reduced on the silicon 

surface. In addition, the Si2p spectrum of the electrode cycled with DMMP electrolyte 

contains weak peaks characteristic of Si and Si-O. Thus, the incorporation of TPP and 

DMMP result in small changes to the SEI consistent with the small variation in 

cycling performance. 
5,21,22
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XPS spectra of Si electrodes cycled with the LiBOB electrolyte contain strong 

C1s peaks at 286.5 and 288.5 eV characteristic of C-O and C=O containing species, 

but the high intensity of the peak at 288.5 eV is consistent with the presence of a high 

concentration of lithium oxalate, as previously observed for LiBOB containing 

electrolytes. 
5,8,21,22

  The corresponding peak for lithium oxalate is observed in the O1s 

spectrum at 531-532 eV. The F1s spectrum contains a weak peak at 685 eV consistent 

with a low concentration of LiF while the B1s spectrum contains a weak peak at 193 

eV characteristic of borates.
5,8,22

  The XPS spectra of Si electrodes cycled with the 

DMMP and LiBOB electrolyte and the TPP and LiBOB electrolyte are very similar to 

the electrodes cycled with the LiBOB electrolyte. The surface contains a high 

concentration of lithium oxalate and low concentrations of LiF and borates.  However, 

the presence of TPP and DMMP reduction products are observed at 134 eV in the P2p 

spectrum. 

 XPS analysis was also conducted on electrodes extracted from cells after 55 

cycles and compared to the electrodes after 5 cycles to develop a better understanding 

of the evolution of the SEI and the role of the SEI in capacity fade (Figure 5, Table 4).  

The Si electrodes extracted from cells after 55 cycles with standard electrolyte, TPP 

electrolyte, and DMMP electrolyte have higher concentrations of F and lower 

concentrations of C and O consistent with additional electrolyte decomposition and an 

SEI with greater inorganic content.
8.9

 The C1s spectra of the electrodes extracted from 

cells containing the standard electrolyte, the TPP electrolyte and the DMMP 

electrolyte have significant changes.  The intensity of the C1s peak at 286.5 eV is 

increased consistent with the further deposition of additional C-O containing 
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decomposition products.  However, the changes to the F1s, O1s, Si2p, and P2p 

element spectra are relatively small.  The changes to the SEI are consistent with 

additional electrolyte decomposition which correlates well with the poor capacity 

retention observed during cycling.     

 Alternatively, the Si electrodes extracted from cells containing electrolyte with 

the LiBOB electrolyte, the TPP and LiBOB electrolyte, and the DMMP and LiBOB 

electrolyte have only small changes in the element concentrations consistent with a 

stable SEI.  The element spectra of the electrodes extracted after 55 cycles are also 

very similar to the element spectra after 5 cycles.  The small changes to the SEI are 

consistent with the generation of a stable SEI which correlates with good capacity 

retention.   

Conclusions 

The electrochemical performance of thin-film Si anodes cycled with flame 

retarding electrolytes containing either TPP or DMMP with and without added LiBOB 

as a SEI stabilizer was investigated.  Silicon anodes cycled with standard electrolyte, 

DMMP electrolyte and TPP electrolyte have poor capacity retention over the first 50 

cycles and ex-situ surface analysis reveals significant changes to the composition of 

the SEI.  The changes to the SEI on the Si electrode are consistent with additional 

electrolyte reduction and poor passivation by the surface film.   Silicon electrodes 

cycled with electrolytes containing the SEI stabilizing additive, LiBOB, have 

improved capacity retention.  The incorporation of both a flame retarding additive, 

DMMP or TPP, and LiBOB results in the highest discharge capacity and the best 
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capacity retention.  Ex-situ surface analysis suggests that the SEI generated in the 

presence of added LiBOB has a high concentration of lithium oxalate and a low 

concentration of LiF.    In addition, very small changes occur to the structure of the 

SEI during the first 55 cycles suggesting that the SEI has good stability.  The 

incorporation of either DMMP or TPP results in the presence of additional phosphorus 

containing reduction products in the SEI which results in improved cell capacity.  

Non-flammable electrolytes have been developed for thin film silicon electrodes 

which allow good cycling performance and the generation of a stable SEI. 
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  Electrolyte Composition 

1 Standard 1.2M LiPF6 EC/EMC (3:7) vol.% 

2 LiBOB 1.0M (95% LiPF6 + 5% LiBOB) EC/EMC (3:7) vol.% 

3 TPP 1.0M LiPF6 EC/EMC/TPP (3:6:1) wt.% 

4 TPP and LiBOB 1.0M (95% LiPF6 + 5% LiBOB) EC/EMC/TPP (3:6:1) wt.% 

5 DMMP 1.0M LiPF6 EC/EMC/DMMP (3:6:1) wt.% 

6 DMMP and LiBOB 

 

1.0M (95% LiPF6 + 5% LiBOB) EC/EMC/DMMP (3:6:1) 

wt.% 

 

Table 3-1. Electrolyte blend compositions 
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Electrolyte 

1st Cycle 

Efficiency 

(%) 

Capacity 

Retention 

5th Cycle 

(%) 

Capacity 

Retention 

55th Cycle 

(%) 

Std. Binary - 1.2M LiPF6 EC/EMC (3:7) vol.% 69 97 59 

Std.w/ 5% LiBOB - 1.0M (95% LiPF6 + 5% 

LiBOB) EC/EMC (3:7) vol.% 46 91 87 

10% TPP - 1.0M LiPF6 EC/EMC/TPP (3:6:1) 

wt.% 62 94 71 

10% TPP w/ 5% LiBOB - 1.0M (95% LiPF6 + 

5% LiBOB) EC/EMC/TPP (3:6:1) wt.% 64 90 83 

10% DMMP - 1.0M LiPF6 EC/EMC/DMMP 

(3:6:1) wt.% 60 95 51 

10% DMMP w/ 5% LiBOB - 1.0M (95% LiPF6 

+ 5% LiBOB) EC/EMC/DMMP (3:6:1) wt.% 51 94 87 

 

Table 3-2. 1st Cycle Efficiency & Capacity Retention at 5
th

 and 55
th

 cycles for cells using FR 

electrolyte with/without LiBOB. 
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Table 3-3. Elemental concentration of C, O, F, P, Li, and B on Fresh vs. cycled Si anodes 

using FR electrolyte with/without LiBOB after 5 cycles. 

 

 

C 1s 

(%) 

F 1s 

(%) 

O 1s 

(%) 

Si 2p 

(%) 

P 2p 

(%) 

B 1s 

(%) 

Fresh Si Anode 25 - 52 23 - - 

Std. - 1.2M LiPF6 EC/EMC (3:7) 

vol.% 40 20 39 1 - - 

Std.w/ 5% LiBOB - 1.0M (95% 

LiPF6 + 5% LiBOB) EC/EMC (3:7) 

vol.% 40 4 48 - - 8 

10% TPP - 1.0M LiPF6 

EC/EMC/TPP (3:6:1) wt.% 34 24 38 - 4 - 

10% DMMP - 1.0M LiPF6 

EC/EMC/DMMP (3:6:1) wt.% 26 31 37 2 4 - 

10% TPP w/ 5% LiBOB - 1.0M 

(95% LiPF6 + 5% LiBOB) 

EC/EMC/TPP (3:6:1) wt.% 38 4 50 - 1 7 

10% DMMP w/ 5% LiBOB - 1.0M 

(95% LiPF6 + 5% LiBOB) 

EC/EMC/DMMP (3:6:1) wt.% 36 10 46 - 2 6 
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  C 1s F1s O 1s Si 2p P 2p B 1s 

Fresh Si Anode 25 - 52 23 - - 

Std. Binary - 1.2M LiPF6 

EC/EMC (3:7) vol.% 29 44 23 1 3 - 

Std. Binary w/5% LiBOB–1.0M 

LiPF6 (95% LiPF6 + 5% LiBOB) 

EC/EMC (3:7) vol.% 42 2 51 - 1 4 

10% TPP - 1.0M LiPF6 

EC/EMC/TPP (3:6:1) wt.% 26 34 37 - 3 - 

10% DMMP - 1.0M LiPF6 

EC/EMC/DMMP (3:6:1) wt.% 25 40 31 2 2 - 

10% TPP w/ 5% LiBOB - 1.0M 

(95% LiPF6 + 5% LiBOB) 

EC/EMC/TPP (3:6:1) wt.% 41 4 49 - 1 5 

10% DMMP w/ 5% LiBOB - 
1.0M (95% LiPF6 + 5% LiBOB) 

EC/EMC/DMMP (3:6:1) wt.% 34 7 42 - 1 9 

 

 

 

Table 3-4. Elemental concentration of C, O, F, P, Li, and B on Fresh vs. cycled Si 

anodes using FR electrolyte with/without LiBOB after 55 cycles. 
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Figure 3-1. Combined dQ/dV of Std. vs. Std w/ 5% LiBOB vs. 

10%TPP vs. 10%TPP w/ 5% LiBOB vs. 10%DMMP vs. 

10%DMMP w/ 5% LiBOB. 
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Figure 3-2. Cycling Performance of Si/Li half cells utilizing Std. 1.2M LiPF6 

(EC/EMC) (3:7) vol.%, Std. with 5% LiBOB, 10% TPP, 10% TPP with 5% LiBOB, 

10% DMMP, 10% DMMP with 5% LiBOB. 
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Figure 3-3. SEM imaging of Si anodes after 55 cycles with (a) Std. 1.2M LiPF6 

(EC/EMC) (3:7) vol.%, (b) Std. with 5% LiBOB, (c) 10% TPP, (d) 10% TPP with 5% 

LiBOB, (e) 10% DMMP, (f) 10% DMMP with 5% LiBOB.  
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Figure 3-4: XPS Spectra of Si anodes after 5 cycles with  (a) Std.,( b) Std. + 5% 

LiBOB;  (c)10% TPP,  (d) 10% TPP + 5% LiBOB;   (e) 10% DMMP;  (f) 10% 

DMMP + 5% LiBOB. 
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Figure 3-5: XPS Spectra of Si anodes after 55 cycles.  (a) Std., (b) Std. + 5% LiBOB,  

(c) 10% TPP, (d) 10% TPP + 5% LiBOB,  ( e) 10% DMMP,  (f) 10% DMMP + 5% 

LiBOB. 
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Abstract 

 The natural flammability characteristics of standard Li-Ion battery electrolyte 

and associated safety concerns have led to research centered on the incorporation of 

Flame retardant (FR) cosolvents or additives. There has also been parallel interest in 

the development of high capacity electrodes to address the call for Li-Ion batteries 

with greater energy density. The electrochemical stability of Si-nanoparticle /Li half 

cells using standard binary LiPF6/ethylene carbonate (EC)/Ethyl methyl carbonate 

(EMC) electrolytes with incorporated Triphenyl phosphate (TPP) and Dimethyl 

methylphosphonate (DMMP) was evaluated  via cell cycling. Anode SEI film 

stabilizing fluoroethylene carbonate (FEC) was also utilized so as to stabilize 

performance. The incorporation of TPP and DMMP into standard electrolyte together 

with FEC additive results in comparable improvements in capacity retention to that 

observed in cells with standard electrolyte and FEC when cycling in Si-nanoparticle 

anode half cells.   

 

Introduction 

Li-ion batteries are now the energy storage technology of choice for commercial 

electronics including laptop computers and smartphones. In addition, Li-ion battery 

packs are now being introduced to high energy applications such as the automotive 

and aerospace arenas. Li-ion batteries offer higher volumetric and gravimetric energy 

densities versus NiMH, NiZn and Lead-Acid battery systems which as a result yield a 

light weight and longer running energy storage alternative. 
1-2
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The introduction of Li-ion batteries to systems with high energy requirements 

such as electric vehicles (EV’s) and aerospace platforms has prompted the research 

community to study Si for practical use as an anode material. Si offers 

substantially higher theoretical specific capacity (3579 mAh/g) compared to 

Graphite anodes (372 mAh/g).
3,4

  Large platform implementation of Li-ion battery 

packs also brings with it increased concerns towards safety issues that are inherent 

to Li-ion cells. Standard Li-ion battery electrolyte is composed of naturally 

flammable binary or ternary mixtures of Ethylene carbonate (EC) with Ethyl 

methyl carbonate (EMC), Diethyl carbonate (DEC), or Dimethyl carbonate 

(DMC). The possibility of cell thermal runaway via heat buildup within the cell, 

and/or cell over-charge/over-discharge is thus a constant hazard.
 5,6 

The safety concerns associated with Li-ion cell thermal runway have led to 

efforts by various research groups to investigate the development and practical 

incorporation of Flame retardant (FR) cosolvents/additives. Organophosphate 

containing compounds have been examined by several groups due to their natural 

flame suppressing properties 
7-8

  including Trimethyl phosphate (TMP) 
9
, 4-

Isopropyl Phenyl Diphenyl Phosphate (IPPP) 
10

, Triphenyl Phosphate (TPP) 
8,11-15

 

and Dimethyl methylphosphonate (DMMP) 
7, 16-18

  Significant reductions in the 

flammability of standard electrolyte have be attained through the use of Triphenyl 

phosphate (TPP) and Dimethyl methylphosphonate (DMMP) incorporation with 

comparable cycling performance to standard electrolyte. 
8,9, 11-18

 

Anode SEI film stability issues with the incorporation of some FR additives 

have been encountered including poor capacity retention and poor low temperature 
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performance. Various groups have as a result investigated the benefits offered 

through the parallel addition of SEI film forming additives including vinylene 

carbonate (VC), and lithium bis(oxalato)borate (LiBOB). 
7,8, 12-14, 19

 

The practical commercial implementation of Si anodes has been wrought with 

challenges relating to the enormous volume changes (3-4 fold) which take place 

during cycling.
3
 The enormous volume changes which take place with repeated 

cell charging and discharging results in substantial mechanical stress both upon the 

Si-current collector interface as well as internal stresses to the Si alloy structure. 

This stress can lead to loss of electrical contact between the current collector and 

bulk Si active material as well as the loss of electrical contact between the 

individual Si particles. 
3,20

 

Continual breakdown and subsequent reformation of the protective solid 

electrolyte interphase (SEI) layer occurs as a result of the massive surface area 

changes during Si anode cycling. This continuous SEI formation process leads to 

large irreversible initial capacity loss, poor cycling stability, and shorter overall 

cell life. Many research groups have centered efforts on decreasing Si particle size 

via the use of thin-films Si anodes as well as through the use of Si-active and Si-

inactive composite materials so as to moderate/alleviate the effects of Si 

expansion. 
4,20-21

 The use of inactive conductive carbon black in Si composite 

materials has received interest due to their cushioning towards the active Si 

volume expansion as well as improving the overall electrical conductivity of the 

active material structure. 
3,21
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The development of a suitable binder for Si anodes has also received attention 

as its role predicated on the maintaining electrical conductivity throughout the 

electrode. Standard poly(vinylidene fluoride) (PVDF) binder is known not to be 

effective towards accommodating the internal stresses inherent to Si volume 

expansion during repeated cycling. Thus, several groups have studied the use of 

alternative binders to further aid in mitigation of the internal stresses associated 

with Si volume expansion. Both sodium carboxymethyl cellulose (Na-CMC) and 

poly(acrylic acid) (PAA) have garnered interest due to their superior adhesion 

qualities. 
22,23

 In addition, various groups have reported the cycling benefits 

offered through the use of fluoroethylene carbonate (FEC) as an additive for Si 

anodes. 
4, 23-25

 

The focus of many investigations has been FR cosolvent/additive incorporation 

into standard Li-ion electrolyte in an effort to enhance safety through reduced 

flammability without sacrificing electrochemical performance.  Simultaneously, 

there has been a push towards the development of Si composite anodes so as to 

produce a practical high capacity anode alternative for high power Li-ion battery 

applications.  This investigation centers on the electrochemical performance of Si-

nanoparticle anodes cycled with TPP and DMMP containing electrolytes combined 

with SEI film stabilizing FEC additive.  
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Experimental 

Battery grade ethylene carbonate (EC), ethyl methyl carbonate (EMC), and 

dimethyl carbonate (DMC), and lithium hexafluorophosphate (LiPF6) were obtained 

from BASF. Standard 1.2 M LiPF6 (EC/EMC) 3:7 (vol.%) electrolyte was obtained 

from BASF and utilized without additional purification. Battery grade fluoroethylene 

carbonate (FEC) was also acquired from BASF. Dimethyl methyl phosphonate 

(DMMP) was purchased from Sigma-Aldrich and subsequently dried with sodium 

hydride and molecular sieves prior to purification via vacuum distillation. The purity 

of DMMP was confirmed via gas chromatography with mass selective detection (GC-

MS). Triphenyl phosphate (TPP) was obtained from Thermo Fisher Scientific with a 

purity of 99%. FR electrolyte solutions with FEC were prepared with a constant 

concentration of EC and LiPF6. FR co-solvent as well as FEC introduction 

corresponded with a decrease in EMC concentration. 

Si electrodes were prepared using Si ≤50nm nanopowder purchased from Alfa 

Aesar. PAA (Avg. Mw ≈ 470 000) was obtained from Sigma-Aldrich. Na-CMC (Avg. 

Mw ≈ 700 000) and Carbon black powder (Super C-65) were also obtained from 

Timcal. The Silicon, Super C, and a 1.5wt% of PAA-CMC (50:50, w/w) solution in 

water were mixed in an Agate mortar with pestle for 2h &30 mins. During grinding, 

≈3 ml of water was added to control the viscosity. The resultant slurry was spread on 

15 µm of Cu foil with a 110 µm doctor blade. The electrode was left to dry in the air at 

room temperature for 2 hr and then dried under vacuum at room temperature 

overnight. After drying overnight, the electrodes have a thickness of ≈12micron. The 

electrodes were then punched to a disk shape with a 12.7 mm diameter. The punched 
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electrodes were dried again in a vacuum oven at 110°C for 12 hrs. All electrodes 

contained approximately 60% Si, 20% of Carbon black (Super C), and 20% of PAA-

CMC binder at a ratio of 1:1.  

Cells were cycled at constant-current charge and constant voltage between 1.5 V 

and 0.05 V using an Arbin BT4010 battery cycler at 60 °F (16 °C).  The coin cell 

cycling protocol followed a schedule consisting of a C/5 current rate for 50 cycles.  

Coulombic efficiency is defined as the ratio of discharge capacity of the cell to charge 

capacity at a particular cycle. Capacity retention is defined as the ratio of discharge 

capacity at a particular cycle to the recorded maximum discharge capacity. 

 

Results & Discussion 

 The cycling performance ramifications of TPP and DMMP FR cosolvent 

incorporation into standard electrolyte was studied in Si-nanoparticle/Li half cells and 

is shown along with coulombic efficiency in Fig.1. The 1st cycle coulombic 

efficiencies of cells after 50 cycles are shown in Table 2.  

Cells cycled with standard electrolyte show an initial (1
st
) cycle efficiency of 

(88%) and a maximum capacity of (≥ 2800 mAh/g) prior to substantial fade.  The cell 

efficiency is low during the first few cycles (65 - 85 %) but is improved to 95-96 % 

with subsequent cycling. Cells cycled with standard electrolyte with FEC as well as 

those cycled with DMMP and FEC both show similar 1
st
 cycle efficiency, lower 

maximum capacity (≥ 2600 mAh/g), and substantially improved capacity retention 

(74% and 66% after 50 cycles) with nominal cycling efficiencies of (95-97%) and (97-
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98%) respectively.  Cells cycled with electrolyte containing TPP and FEC have the 

lowest 1
st
 cycle efficiency (74-75%), but highest maximum capacity (≥3000 mAh/g). 

In addition, cells with TPP and FEC have good cycling efficiency, 97%, and capacity 

retention, 63 %, after 50 cycles. Some of the initial efficiency differences can be 

attributed to the Li metal counter electrode..  

Overall, the results indicate that cycling of Si-nanoparticle electrodes with 

electrolytes containing FR cosolvent and FEC have comparable performance to cells 

cycled using standard electrolyte with FEC.  

 

Conclusions 

 The cycling performance of Si-nanoparticle anodes with electrolytes 

containing FR co-solvents TPP and DMMP and SEI stabilizing co-solvent FEC have 

been investigated. Si/Li half cells cycled with standard electrolyte have substantial 

capacity fade over the first 50 cycles, 39 % capacity retention.  The use of FEC as a 

SEI film stabilizer significantly improves the cycling stability.  A capacity retention of 

74% is observed after 50 cycles. Cells cycled with DMMP and FEC containing 

electrolyte show comparable capacity retentions, 66%, and  first cycle efficiency, 64 

%.  Cells cycled with TPP and FEC containing electrolyte also have similar capacity 

retention, 63%, and greater maximum capacity (3000 mAh/g). In conclusion, 

incorporation of FR co-solvents TPP and DMMP into Si-nanoparticle electrodes 

coupled with the use of SEI stabilizing FEC can provide comparable cycling 

performances to standard electrolytes at levels known to offer FR benefit. 
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  Electrolyte Composition 

1 Standard 1.0M LiPF6 EC/EMC (3:7) vol.% 

2 10% FEC 1.0M LiPF6 EC/EMC/FEC (3:6:1) wt.% 

3 

 
 

10% TPP w/ 10% 
FEC 1.0M LiPF6 EC/EMC/TPP/FEC (3:5:1:1) wt.% 

4 
10% DMMP w/ 

10% FEC 
1.0M LiPF6 EC/EMC/DMMP/FEC (3:5:1:1) 

wt.% 
 

Table 4-1. Electrolyte blend compositions 
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Electrolyte 

Initial (1st 
Cycle) 

Efficiency 
Capacity Retention-

50th Cycle 

Std. 88 39 
Std.w/ 10% FEC 83 74 

10% TPP w/ 10% FEC 74 63 
10% DMMP w/ 10% FEC 88 66 

 

Table 4-2. 1st Cycle Efficiency & Capacity Retention after 50 

cycles for cells using FR electrolyte with FEC additive 
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Figure 4- 1. Cycling Performance of Si/Li half cells utilizing Std. 1.2M LiPF6 

(EC/EMC) (3:7) vol.%, Std. with 10% FEC, 10% TPP with 10% FEC, 10% 

DMMP with 10%FEC. 
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Figure 4- 2. Discharge profiles for Si-nanoparticle/Li cells on the 50
th

 cycle 

with and without FR+FEC electrolyte. 
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