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Quantum effects in the spin dynamics of the linear
Heisenberg antiferromagnet

Gerhard Miiller? and Hans Beck?®

Institute for Theoretical Physics, University of Basel, Basel, Switzerland

Jill C. Bonner® ©
University of Rhode Island, Kingston, R.I. 02881

We present an approximate analytic expression for the dynamical spin correlation function of the § = 1/2
linear Heisenberg antiferromagnet at T = 0. The basis for our approach is that in zero field the spectrum
is dominated by a double continuum [in (q,w)-space] of triplet spin wave excitations. The § = 1/2
integrated intensity agrees very well with recent neutron scattering results on CPC, L.mlike ~the:
corresponding classical intensity. Moreover, the S = 1/2 spectral weight function shows increasing
asymmetry as q—, a quantum effect, observable in more recent neutron scattering data. In non-zero
magnetic field, there exist two, partly overlapping, double continua, each giving rise to a peak situated at
the lower boundary. The (zz component of) spectral weight function therefore has a double-peaked
structure, as observed experimentally. Theory and experiment are in apparent agreement concerning the
energy difference between the peaks.

PACS numbers: 75.40.Fa, 75.30.Ds, 75.10.Jm

1. INTRODUCTION 2. DISPERSION SPECTRA
Spin dynamical theoriesl of quasi-one-dimensional . Fig. 1 i? a sketch Of the‘dm“ina“t lov'z-lying excit-
magnetic systems have relied heavily on the classical ations of antiferromagnetic Heisenberg chains as a func-

(spin S = =) Heisenberg linear chain. A very good reason Fion of wave-vector q in zero-field. The dashed curve
for this is that the classical model is exactly solvable, is the well-known Anderson spin-wave (equivalent to

for both the static thermodynamic properties and the classical § = =) disversion relation, given by E(q) =
correlation functions, in zero applied magnetic fieldz, . 11 X s

and reliable and very comprehensive numerical calcula- J]sm qi » for a Hamiltonian H = Jiz_jl Sl'§1+1' For the
tions are available for non-zero applied field3. How- case S = 1/2, on the other hand, the des Cloizeaux and

ever, there has recently been a growing appreciation of
the importance of quantum effects at very low tempera- i 12

tures, especially now that experimental techniques are E) (@) = 1 |sin q|™" form the lower boundary of a triplet
sufficiently refined to allow reliable investigation of
such subtleties %, Unfortunately, the S = 1/2 (extreme
quantum limit) Heisenberg linear chain remains an in-
tractable analytic problem as far as finite temperature
thermodynamic properties and spin correlation functions

Pearson triplet excitations whose dispersion relation is

spin~wave double continuum (SWDC) in (q,w)~space. The
upper boundary may be calculated exactly by an extension
of dCP techniques to be E,(q) = mJ|sinq/2|13>15 oOur finite
chain calculations show t%at all the states of the SWDC
- sketched in Fig. 1, have non-zero spectral weight, in ac~

a;e concerned>. Extensive numer;'Li?; st\:\dles exist for cordance with earlier sum rule calculations of Hohenberg
the static propsrtles.of the 5 = 1/2_Heisenberg chain and Brinkman'®, preliminary finite chain calculationsl®,
and also for S 2. 1 Heisenberg chains’. However, little

an approximate semi-classical calculationl® and a dynami~
cal Hartree-Fock calculationl?. This distinction between
the excitations which are dominant for S = © and S = 1/2
has important consequences for the low temperature dyn-
amical correlation function S(g,w), which is the space-
time Fourier transform of the unequal time spin-spin cor~

reliable information is available on the spin-spin cor-
relations, and hence the spin dynamics, of non-classical
chains. This report surveys a recent attack on the

S = 1/2 antiferromagnetic problem using a combination

of theoretical techniques. Our information is derived
from (a) exact finite chain calculations on systems of
up to 10 spins; (b) exact selection rules which show

which classes of states have non-zero matrix elements G = ﬁ/2 triplet
with the ground state (and hence contribute to the spin AN double
dynamics); (c) from exact sum rules; and (d) from both w = continuum

exact and approximate dispersion curves. We feature an
analytic expression for the dynamical correlation function E /f-LT
in (q,w)-space derived using the above information. Our Wy dcp
expression is not exact since it violates exact sum rules
(albeit by a small amount), but it yields good agreement

with the few known exact results for the S = 1/2 chain. ] / - Anderson
Further our study reveals an unexpected richness and com- “wW S . P -~ -~

plexity of behavior which must be taken into account in e ~ ', \~\
attempting a fully rigorous treatiment. Tt allows for ] Y >
the first quantitative interpretation of recent neutron ! cv, v
scattering experiments in zero field® and a field of 70 0] ™ 2

kOe”. The quantum effects observed in a non-zero applied Fig. 1 The dominant low-lying excitations with

magnetic field are particularly striking. We hope to
extend this approach to quantum chains with s > 1/2, classical chain (dashed curve) and the S =
motivated by recent neutron scattering experiments show- 1/2 quantum chain (double continuum, shown
ing an anomalous feature of the excitatigns of the $=5/2 shaded.

linear chain TMMC in a field of 70 kQe

non-zero spectral weight for the Anderson
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7 Fig. 3 Two, partly overlapping, double continua with
/r T w = E/RT a common upper boundary, for a field of H =
Wilg) @ (q) ©,(g) 1/2 H The origination of the double peak
9 9 z ; crit
in the spectral weight is shown superimposed.

Fig. 2 The spectral weight function, S(q,w) vs.
w at very low temperature for the classical
chain (narrow symmetric peak) and the quantum
chain (broader asymmetric structure).

(b) are greater by unity. The existence of two continua
for H> 0 is corroborated by our finite chain calculations,
and by studies based on work by Niemeijer on the exactly
> > solvable XY modell®. 71¢ should be noted that recent an-
relation function <S£(t)-S£.(0)>. Tt has been shown that alytic work by Ishimura angoshiba, which extends the dCP
in the classical case, all the spectral weight is concen~ calculations to non-zero H , is incomplete. The

trated at the Anderson frequency, as sketched in Fig. 2. Ishimura-Shiba calculation is indicated by the hatched

(The narrow peak becomes a,delta function as T - 0). For 1line in Fig. 3.
the case of S = 1/2, the bulk of the spectral weight oc-

curs at the lower boundary, El(q)’ but a tail persists
to the upper boundary E,(q), also sketched in Fig. 2.
This feature will be discussed more specifically in sec-

4. EXPERIMENTAL COMPARISONS

Our analytical expression for S:WDC(q,w), that part
of the complete dynamical correlatioh function which or-

tion 4.
iginates from the SWDC, is
1
3. SELECTION RULES S::Dc(q,m) = Alw?~(73/2)% sin4q] “0{w-(rJ/2)sin q}
. 1
Finite chain calculations >, corroborated by exact x0{nJsin q/2-w}, w

analytic workl , reveal the existence of a second double
continuum for S = 1/2 and zero field. This is a singlet where A is a constant. Exact sum rules exist for the

(8 = 0) continuum, which becomes degenerate with the susceptibility, energy, and integrated intensity. If the
S = 1 SWDC in the thermodynamic limit, i.e. in this limit, above approximate expression (1) is substituted into the
each state has a four-fold degeneracy. It is thus import- sum rule integrals, values for A are obtained which dif-
ant to know which states have non-zero matrix elements fer somewhat from each other, but suggest a "best value"
with the ground state and therefore possess non-zero of about 2. The reason is that we neglect some triplet
spectral weight. (For the classical chain, no such prob~ states which exist outside the SWDC, and are very diffi-
lem exists: only the Anderson states carry spectral weight, cult to characterize analytically. They have very small
as noted above.) The situation becomes more complicated but finite spectral weight in the thermodynamic limit.
when a field H is applied, since the ground state is no Neglecting these states does not significantly affect the
longer a singlet, Fortunately, we have proved exact sel- physics of the problem. Current experiment is quite in-
ection rules which give a general answer to this problem. sensitive to the exact value of A. At T = 0, expression
1f IA> are the eigenvectors of the Hamiltonian, the (1) has a divergence at E;j(q), the lower boundary of the

spin correlation functions involve matrix elements like

<x]s%(q)|A'>; and <Afsi(q)lk'>, where the vector operator

|
- -~ - classical {
good quantum numbers wave-vector k; z component of the 5 S =1/2 |
total spin §%; and the total spin S [S(S+1)]. Selection | Luttinger ,
rules on k tell us that <|SH(q)|> = 0 unless q = k' - k, o _ |
where k and k' are the wave-vectors of the states [}> and | - 10
[A'>. A selection rule relevant to the z component of 4 0 b
the dynamical correlation function, $%2{q,w) is: I (q) / :
<|SZ(q)[> = 0 unless the eigenstates |A> and |A"> have !
identical $% values. For the transverse component, 34
+ . . +- . T (n/2) 7}
57 (q,w), the relevant selection rule is <|s*q)|> =0 [
unless the $% values differ by *1. For the total spin we ;o
have the important result that <|S”(q)l> vanishes (a) un- 3
less the S values of the constituent states differ by O 21 //

or 1, and (b) if both component states have S = 0, i.e.
are singlets. An important corollary of this total spin
selection rule is that in zero field the states of the
singlet SWDC carry no spegtral weight; neither do low- >
lying states with § > 2 12, The only states which con-~

tribute are those of the triplet SWDC sketched in Fig. 1. T
In non-zero H we have the novel result that two, partly Fo) W w
overlapping continua contribute, as sketched in Fig. 3.
The two continua contain states which have the same SZ
values as the (field-dependent) ground state, but whose
S values are either (a) the same as the ground state or

g(q) E /%-iglgi' The eigenstate |A> is characterized by

Fig- 4 Integrated intensity vs. wavevector is shown for
three theoretical models. The curves are norm-
alized to unity at q = /2,
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SWDC, and a tail out to the upper boundary E,(q), where
there is a cut-off. Thermal effects will produce the
smeared-out version sketched in Fig. 2. The asymmetry
pictured in Fig. 2 is not observable for small q, but
becomes pronounced as q >~ 7. This is a purely quantum
effect which has now been observed experimentally.

A second quantity of experimental interest is the
integrated intensity defined by

1
Izz(q) = 5}‘{)dw S (2)

zz
Three theoretical calculations for Izz(g) are shown in
Fig. 4. They are the classical result,® a calculation
based on the S 1/2 cgntinuum lattice (Luttinger) model
of Luther and Peschel? , and a result based on our approx-
imate analytic expression (1). All curves are normalized
to unity at q n/2. The classical curve diverges as
(n-q)~1 as q -+ 77, whereas our curve 1,7 ~(q) diverges
more weakly as Iin(ﬂ—q)i. In Fig. 5, we make comparison
with experimental results of Endoh et al.®., The experi-
mental data points lie consistently below the classical
curve, but are in quantitative agreement with our S=1/2
result out to q v 0.8m. For still larger q, the situa-
tion is indeterminate because of the large error bars on

the data.
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ref. 8. The data points fit our quantum
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either curve and are not shown).
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Fig. 5

Finally, we discuss the important implicatioms of
the H > 0 partly overlapping SWDC sketched in Fig. 3.
Each continuum will have a T = 0 divergence at its lower
boundary, and a tail out to the common upper boundary.
For low temperatures the two divergences will broaden out
to give a double peak structure indicated in Fig. 3. We
therefore predict that low temperature neutron scattering
will reveal double peak structure except at q = T where
the lower boundaries meet. Again, this is a dramatic
quantum effect: The corresponding classical Heisenberg
chain in a field behaves quite differently®. This double
peak structure is ingeed observed in experiments on CPC
in a field of 70 kOe”. It should be noted, however, that
our calculation is for Szz(q,w), the longitudinal compon-
ent of the dynamical correlation functiom. In zero field
szz(q,w) and the transverse component Si(q,w) are identi-
cal, but close to the antiferromagnetic critical field,
the transverse componsnt becomes dominant. The experi-
ment under discussion’ appears to relate to S7(q,w)» @

quantity we are currently calculating. However, since

7406 J. Appl. Phys., Vol. 50, No. 11, November 1 979

70 kOe is a small fraction of the CPC critical field of
about 400 kOe, we do not expect szz(q’w) and si(q,m) to
differ significantly, and hence we can reasonably make
comparison with experiment. Let us consider the theor-
etical continuum boundaries corresponding to a real field
of 70 kOe. At the experimental value of the wave-vector

q the difference between the two lower boundaries, corres-
ponding to the difference in energy between the double
peaks, is 25% of the energy to the higher peak. This
gives most encouraging agreement with experiment (Fig. 9

of ref. 9) wh%ch also corresponds to 25%. Preliminary
results for §7(q,w) indicate the existence of yet a third
peak which may not be readily observable at this relative-
ly low field.

It would be interesting to repeat the neutronexperi-
ment with a different orientation of the CPC crystal, and
to perform similar experiments on a crystal with a much
lower critical field, e.g. a-CuN3al.

We are grateful for extensive and valuable discus-
sions with Gen Shirane and John Axe, and, particularly,
with Tan Heilman who helped supply both data and com-
mentary.
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