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ABSTRACT 

The electroencephalogram (EEG) is broadly used for research of brain activities and 

diagnosis of brain diseases and disorders. Although the EEG provides good temporal 

resolution, millisecond or less, it does not provide very good spatial resolution. There 

are two main reasons for the poor spatial resolution, (1) the blurring effects of the head 

volume conductor, and (2) poor signal to noise ratio. The surface Laplacian of the 

potential distribution was found to increase the spatial resolution. Several potential 

interpolation based methods were previously developed to estimate the surface 

Laplacian. However, these methods are generally complicated in terms of computation, 

which limits their real-time applications.  Previously a special electrode, the tripolar 

concentric ring electrode (TCRE), was developed and proven to be a much simpler 

approach to estimate the surface Laplacian while achieving significantly better signal 

to noise ratio and approximation to the surface Laplacian. In the first part of the 

dissertation work, computer simulations comparing spatial resolution between 

conventional EEG disc electrode sensors and TCRE Laplacian sensors were 

performed. For verification of the computer simulations visual evoked stimulus 

experiments were performed to acquire visual evoked potentials (VEPs) from healthy 

human subjects. Analysis of the computer simulation results shows that the TCRE 

Laplacian sensors can provide approximately a ten-fold improvement in spatial 

resolution and pass signals from specific volumes. Placing TCRE sensors near the 

brain region of interest should allow passage of the wanted signals and reject distant 



interference signals.  It was also shown that the TCRE VEPs appeared to separate 

sources better than disc electrode VEPs. In the second part, a tripolar EEG based 

automatic seizure detection algorithm was developed for rats, the paramters of the 

detector was optimized based on the recorded data. According to this algorithm,  a 

Matlab based real-time detector was implimented and tested. In the last part of the 

dissertation, a prototype of FPGA based automatic seizure detector was  Described, 

which has the ability to detect signal from many more channels real-time. An multi-

channel EEG monitor system was also described.  
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CHAPTER 1:  INTRODUCTION 

 

1.1 Electroencephalography 

Electroencephalography (EEG) measures voltages from the neural activity of the 

brain. As a noninvasive method with high temporal resolution, EEG has clinical 

benefits in the diagnosis of brain related diseases and is useful in research. However, 

EEG suffers from poor spatial resolution due to the blurring effects primarily from 

different conductivities of the volume conductor [1].  

To improve the spatial resolution the surface Laplacian, which is the second 

spatial derivative of the potential distribution on a surface, has been applied to EEG [1, 

2]. The surface Laplacian is a high pass spatial filter, which sharpens the blurred 

potential distribution on the surface [2] and produces an image proportional to the 

cortical potentials.  

There are generally two approaches to obtain the surface Laplacian. The first 

approach, referred to as the global surface Laplacian, is based on the construction of 

the potential interpolation equations on the surface [3]. The potentials from 

conventional disc electrodes have been utilized for the interpolation approach. The 

second derivative of the interpolation equations gives the global surface Laplacian. 

One of the major advantages of the global surface Laplacian is that it can encompass 

all points on the surface with a limited number of electrodes. A drawback of the global 

surface Laplacian is that the second derivative applied to the potential interpolation 
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equations may not always be a valid estimate of the surface Lapclacian, it may 

produce distorted results [4, 5, 6, 7].  

The second approach is the local surface Laplacian. Instead of applying the 

derivative to the global interpolation equations, the local surface Laplacian method 

approximates the surface Laplacian based on potentials from nearby electrodes. A 

typical example is Hjorth’s [8] five point method, where the local surface Laplacian is 

obtained by calculating the difference of the potential on the electrode and the average 

potential on its neighboring four electrodes. The local surface Laplacian method does 

not rely on the second derivative of the interpolation equations, but it also has some 

drawbacks: 1) when the nearby electrodes are too far away, which is usually the case 

with the 10-20 system configuration, the resulting local surface Laplacian might not be 

a good approximation of the surface Laplacian [6], 2) the local surface Laplacian can 

only be estimated on the locations of electrodes but not from the edge electrodes. 

Although conventional disc electrodes could be used for this approach, there would 

still be the same limitations present such as poor spatial resolution and signal to noise 

ratio.  

Previously Besio et al. developed a new EEG electrode structure, the tripolar 

concentric ring electrode (TCRE) [9]. The TCRE is made up of two concentric metal 

rings and a metal central disc layout on a flat printed circuit board (PCB). Both a 

conventional electrode and TCRE are shown in Figure 1. Due to this special structure, 

a linear combination of the potential from the three elements of TCREs directly forms 

the local surface Laplacian of the potential distribution [9]. We compared the TCREs 

with the conventional disc electrodes in both computer simulations and real EEG 
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recordings. The results show that the TCREs are superior to conventional EEG 

electrodes on the surface Lapalcian estimation and spatial resolution.  

  

 

 Figure 1 Disc electrode (left) and tripolar concentric ring electrode (right) 
  

1.2 Epilepsy Seizure Detection 

Epilepsy affects about 50 million people worldwide, and nearly 80% of them are 

living in developing countries. Anti-epileptic drugs have been successfully used to 

treat some patients. According to recent studies, up to 70% of the newly diagnosed 

children and adults with epilepsy can be successfully treated with anti-epileptic drugs. 

However, this implies that these drugs are not effective in about 30% of the patients. 
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In addition, the side effects of these drugs may reduce the quality of life of the patients. 

Surgery is another approach employed for epilepsy treatment, but it includes risks. 

Moreover, due to the relatively high cost of the two approaches above, about 75% of 

the patients in developing countries may not even receive treatment [10].  

As a possible alternative, physical stimulation approaches have been gaining 

interest. Among these approaches, the implantable electrical stimulation approaches 

such as vagus nerve stimulation (VNS) [11], deep brain stimulation (DBS) [12] and 

responsive neurostimulation (RNS) [13], have been widely studied recently. Moreover, 

the VNS has even been approved by FDA in 2005 as a treatment for medication-

resistant depression. Meanwhile, noninvasive stimulation methods have also been 

developed, such as transcranial direct current stimulation (tDCS) [14], and repetitive 

transcranial magnetic stimulation (rTMS) [15].  

Detection of epilepsy is a necessary stage prior to epilepsy treatment. 

Generally, this is done through visual examination of recorded EEG signals by neural-

physiologists or neurologists. However, there are several drawbacks: first, it’s a time 

consuming process, especially for long-term EEG recordings; second, the cost is 

relatively high; third, it’s not convenient, since patients have to stay in the hospital 

during the detection. Consequently, developing automatic epileptic seizure detectors 

becomes attractive. To the best of our knowledge, most of the automatic epileptic 

seizure detection methods are based on Electroencephalography (EEG).  

There are mainly two approaches [16] [17]: time domain analysis and spectrum 

domain analysis. Time domain analysis mainly focuses on spike detection. A spike 

was defined by Gloor [18] as a triangle wave that is distinguished from the 
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background signal, and has an amplitude at least twice that of the previous 5s of 

background activities of any EEG channel, and with a duration of at most 200 ms. 

Algorithms such as mimetic, linear predictive and neural networks [19] are mostly 

employed for spike detection for epilepsy. For the frequency domain,  most works 

focused on detecting specific features related to seizures. Fast Fourier transform [20], 

time-frequency analysis [21], wavelet transforms [22], and nonlinear based analysis 

[23] are the most used methods.   
Through the use of the high quality EEG signals recorded with TCREs, we 

developed a real-time automatic seizure detection algorithm based on the cumulative 

sum (CUSUM) detector [24]. The parameters of the detector were optimized by 

analyzing the recorded data from previous animal experiments. Due to the special 

structure, the TCREs have also shown the ability to perform focal electrical 

stimulations. Unlike the normal electrical stimulation via conventional disc electrodes 

that is usually applied across the head, the electrical stimulation via a TCRE is 

conducted between the outer ring and the central disc. Therefore, the stimulation 

current is focused on a small volume right underneath the TCRE. This type of 

electrical stimulations is called transcranial focal electrical stimulation (TFS). 

Previously we have reported the promising experiments applying TFS on rats, the 

results showed that TFS significantly reduced the highly synchronized brain activity 

within the beta and gamma bands at the early stages of PTZ-induced seizure 

development, also the number of rats survived after TFS significantly increased [25].  

The combination of TCREs, automatic seizure detector, and TFS  forms a closed loop 

seizure controller.  
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We also implemented the real-time seizure detector with automatic TFS 

triggering based on a laptop personal computer running our Matlab software control 

algorithm for a small number of channels [26]. Animal experiments were performed to 

verifying this detector.  

1.3 Hardware Implementation of the Seizure Detector  

We showed that the personal computer and Matlab based automatic seizure 

detector is suitable for rats [26]. But our ultimate goal is to develop an automatic 

seizure detector and controller for humans. The common EEG recording system for 

humans can be 20, 32, 64 or even 128 channels. Threfore, the seizure detector needs to 

have the ability to process the data from 20 or more channels. For practicality, we 

want the detector to be portable, so that patients can carry it with them. To meet these 

requirements above, we developed a field programmable gate array (FPGA) based 

embedded EEG recording and signal processing system which can be used as an 

automatic seizure detection system. Also, we further extended the design with a USB 

interface and the driver and application software in a PC to form a complete EEG 

recording system.  

1.4 EEG recording system  

 
The first human EEG signal was recorded by German physiologist and psychiatrist 

Hans Berger in 1924 using a galvanometer [27]. Albert Grass built the first 

commercial EEG systems, called Grass Model 1 in 1935 [27]. The Grass Model 1 was 

a three differential channel system built using vacuum tubes. With ever improving 
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electronics technologies, EEG systems with more and more channels have become 

commercially available. A 16-channel system, Grass model III, was introduced at 

1946. The transistor, which was invented in Bell Labs in 1947, made significant 

contributions to EEG system development. The systems designed with transistors were 

more reliable and stable with high gain while consuming lower power and space.  

Franklin Offner built the first transistor based EEG recording system in the 1950s [27]. 

Computer based EEG recording systems have become very common in the recent two 

decades with the rapid development of digital techniques. The analog EEG signal is 

digitized after amplification and transmitted to a microprocessor for further processing 

or storing. Digital techniques also provide EEG recording systems with new 

capabilities, such as long term EEG monitoring. Digital signal processing techniques 

have also been widely applied to EEG signals for brain related disease diagnosis. The 

emphasis of each EEG recording system design has been application specific, such as 

seizure detection or sleep monitoring.  
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CHAPTER 2: THE COMPARISON OF TRIPOLAR CONCENTRIC 

RING ELECTRODES TO CONVENTIONAL DISC ELECTRODES 

 

This chapter presents a local surface Laplacian that overcomes the disadvantage 

of previous local surface Laplacian approachs by employing the TCRE introduced by 

Besio et al. [9]. Instead of utilizing nearby electrodes to estimate the surface Laplacian, 

the three elements of a single TCRE are used to calculate the surface Laplacian. To 

illustrate the advantages of the local surface Laplacian method by TCRE, the global 

surface Laplacian and local surface Laplacian are compared using a four layer 

concentric inhomogeneous spherical head model [28]. In the comparison, the global 

surface Laplacian estimation is based on the spherical spline interpolation method 

introduced by Perrin [3], while the local surface Laplacian estimation is based on the 

TCRE Laplacian algorithm [9]. Noise is added to the simulations to make the results 

more realistic. 

2.1 Local Surface Laplacian Estimation Based On TCRE 

The TCRE is shown in Figure 2. The electrode is made of three elements: outer ring, 

middle ring, and the central disc. The tripolar Laplacian is given by the combination of 

the potentials from the three elements of the TCRE [9]: 

( ) ( )
2

16
_

3
m d o dV V V V

Surface Laplacian
R

× − − −
= −

                                                (2.1) 
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In equation (2.1), dV  denotes the potential from the central disc, mV  denotes the 

potential from the middle ring, oV  denotes the potential from the outer ring and R  is 

the radius of the middle ring.  

 

 

 

 

 

 
 
 
Figure 2 Tripolar concentric ring electrode (TCRE) sensor  

  

In the real TCRE EEG recording (tEEG), a TCRE is connected to two amplifier 

channels: the disc is connected to the negative inputs of both channels, the middle ring 

and outer ring are connected to the positive inputs and then the signals are amplified 

and digitized and combined as in equation (2.1).  

As previously mentioned, the local surface Laplacian usually suffers from the 

estimation made from the combination of the potentials of several nearby electrodes, 

thus the result may not be accurate if the density of the electrodes recording locations 

is too low and the electrodes are far apart. However, the TCRE overcomes this 

problem since each TCRE measures the surface Laplacian at its location. Further the 

surface Laplacian distribution can be easily calculated by interpolating the surface 

Laplacian from the Laplacian measured at the TCRE locations, thus the second 

shortcoming can also be improved.  
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2.2 Global Surface Laplacian Estimation Based On Spherical Spline 

Interpolation 

The spherical spline interpolation method was introduced by Perrin et al. [3]. 

Perrin models the head as the surface of a sphere, which is not exactly the same as the 

shape of the human head, but approximates the head for comparison. The spherical 

model is commonly used in both research and clinical situations [29]. The equations 

described by Perrin et al. for the spherical spline interpolation are: 

 

( )
( )0 n

1 1

1 2 1( ) cos( , ) .
4 1

N

i mm
i n

nV c c
n nπ

∞

= =

+
= +

+
∑ ∑  p ir r r

                                      (2.2) 
Where N is the number of electrodes, m is the order of the spline interpolation, r  is 
the vector of the location where the potential is interpolated, ir  is the vector of the 
location of the thi  electrode, np  is the thn degree Legendre polynomial. The 
parameters vector C  is the solutions of equations (2.3) and (2.4): 
 

0 ,GC Tc Z+ =                                                                                                                                  (2.4) 

' 0.T C =                                                                                                                     (2.5) 
Where ( )' 1,1,...,1T = , 1 2' ( , ,..., )NC c c c= , ( )1 2' , ,..., NZ z z z= , 

( ) ( )( )cos( , )ijG g g= = ir r G, ( )
( )

( )
n=1

1 2 1
4 1 mm

ng x x
n nπ

∞ +
=

+
∑ np . 

The surface Laplacian operator in the spherical coordinates system is defined as: 
 

2

2 2 2

1 1sin
sin sinsurf r r

θ
θ θ θ θ φ2

∂ ∂ ∂⎛ ⎞Δ = +⎜ ⎟∂ ∂ ∂⎝ ⎠                                               (2.6) 
 
Applying equation (2.6) to equation (2.2) gives the surface Laplacian of the spherical 

interpolation:  

( )
( )12 1

1 1

1 2 1( ) cos( , )
4 1

N

surf i mm
i n

nV c
r n nπ

∞

−−
= =

+
Δ = − ×

+
∑ ∑ np ir r r

                                         (2.7) 



 

 11

 
The truncated singular value decomposition method was applied to solve the inverse 

problem of the ill-posed matrix in equations (2.4) and (2.5) [30]. 

2.3 The Four-layer Spherical Head Model and the Analytical Surface 

Laplacian 

 Figure 3 shows a four-layer concentric inhomogeneous spherical model [28] to 

represent the human head. The four layers represent brain, cerebrospinal fluid, skull, 

and scalp. The corresponding radii of the layers are: 7.9cm, 8.1cm, 8.5cm and 8.8cm; 

the conductivities of the layers are: 3.3×10-3 S/cm, 10.0×10-3 S/cm, 3.3×10-3 S/cm, 

4.2×10-5 S/cm, 3.3×10-3 S/cm, respectively. Current dipoles, described later, are 

employed to model the brain activity.  

 

 Figure 3 Four layer concentric inhomogeneous spherical head model  
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The potentials on the surface of the model due to a current dipole located at the z axis 

inside the brain pointing to x, y, z directions are given by the following equations [28]:  

( ) ( ) ( )4 2 11 1

2
14

2 1 coscos ,
4

nn
nx

x
n

n f cd PPV
R n

θφ
πσ

+−∞

=

+
=

Γ∑
                                            (2.8) 

( ) ( ) ( )4 2 11 1

2
14

sin 2 1 cos
,

4

nn
y n

y
n

P n f cd P
V

R n
φ θ

πσ

+−∞

=

+
=

Γ∑
                                              (2.9) 

( ) ( ) ( )4 2 11 1

2
14

2 1 cos
.

4

nn
nz

z
n

n f cd PPV
R n

θ
πσ

+−∞

=

+
=

Γ∑
                                               (2.10) 

Where  

( )( )( ){ ( ) ( )}
( ) ( )( ) }{ ( )

( )( ) ( )( ){ }
( ) ( ){ }

2 1 2 1 2 1
1 2 1 2

2 1 2 1
3 3

2 1 2 1
1 2 2 1 2

2 1
3 3 3

1 1 2

2 2 3

3 3 4
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1 1 1 1
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1 ,

/ ,
/ ,
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n
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b k k n k n c k n n k
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k
k
k

σ σ
σ σ
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+ +

+

Γ = − − + + + + × + +
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=

 

Applying the surface Laplacian operator equation (2.6) to equations (2.8), (2.9) and 

(2.10), the analytical surface Laplacian is given by:  

( ) ( ){ ( ) ( )
1

4 2 11 1
2 2 2

14
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( ) ( ) ( )({ ( ) )
( ) ( ) ( )( )}

21 2
2 3

2
1

1cos cos 1 cos sin 1 cos
sin

cos 1 1 sin ,

surf n n

n

P P n n n
R

P n n n

θ θ θ θ θ
θ

θ θ+

Δ = + − +

+ + − +
             

and   

( ) ( ) ( )2

1
cos cos .surf n n

n n
P P

R
θ θ

+
Δ = −

 By rotating the coordinate system, the analytical potential and surface Laplacian 

imposed by a dipole at an arbitrary location in the brain area can be computed 

according to equations (2.8) – (2.13).  

2.4 Computer Simulation Methods 

The computer simulation was conducted to compare the global spline surface 

Laplacian and the local TCRE surface Laplacian to the analytical Laplacian. To model 

the activities of the brain cortex area, ten dipoles with eccentricities of around 0.89 

were utilized, which are listed in Table 1. The locations of the dipoles were modeled 

in the visual cortex area of the brain to compare the simulation results to those of 

actual visual evoked potential (VEP) recording experiments that we conducted. The 

moments of the first five dipoles had a radial direction, and the remaining five dipoles 

were at the same locations, but with a tangential direction. Table 1 lists all of the ten 

dipoles. In each simulation, one of the dipoles listed was selected as the signal source.  
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Table 1 Locations and the moments of the source dipoles 
 

Dipole # X (cm) Y (cm) Z (cm) Moment 
1 4.3 -5.3 4 RUD 
2 6 -3 4 RUD 
3 5 -4.6 4.1 RUD 
4 -2.3 -4.4 6 RUD 
5 -2.2 4.6 6 RUD 
6 4.3 -5.3 4 TUD 
7 6 -3 4 TUD 
8 5 -4.6 4.1 TUD 
9 -2.3 -4.4 6 TUD 
10 -2.2 4.6 6 TUD 

 

To simulate the potential recorded on the elements of the TCREs, we assume that 

there are ‘sampling points’ uniformly distributed on the surface of the electrode 

elements. The potential of all “sample points” on each specific element was calculated 

and the average of all the sample points for each specific element was considered the 

potential for that specific element of the TCREs. To determine the number of 

‘sampling points’ necessary for stable calculations we examined the effect of the 

‘sampling points’ density on the averaged potential. The higher the density of 

uniformly distributed ‘sampling points’, the closer the averaged potential is to the real 

potential. In our initial analysis we incrementally increased the density of ‘sampling 

points’ on the TCRE and compared the averaged potential. When the difference in 

potential due to adding more points was less than 0.1 percent we stopped adding 

‘sampling points’. For the conventional disc electrodes, we assumed its diameter was 

the same with that of the outer ring of the TCREs. We used the same process to find 

the ‘sampling points’, for the conventional disc electrode.  
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Three different noise conditions and four different electrodes configurations 

were considered in the simulation. The noise conditions were: (1) no additive noise, (2) 

with white Gaussian noise, and (3) with dipole noise (simulating brain activity not 

considered the brain source of interest). An environment without noise is not practical, 

but this study is still valuable as a base to reveal the effect of different types of noise 

to the surface Laplacian estimation methods. White Gaussian noise (WGN) was 

employed to simulate the noise from the environment and EEG recording equipment. 

For the conventional disc electrode, 20% WGN was added to the calculated potential 

on each electrode; for TCREs, 20% of the WGN was added separately to 

( )m dV V− and ( )o dV V− , since they physically are amplified with two separate circuits, 

as described in the previous section. The WGN level is defined as the ratio of the 

standard deviation of WGN and the standard deviation of the potential, to which the 

noise is added, over all the electrodes [31]. Moreover, the brain activity interference 

from the deep part of the brain was modeled as a noise dipole with eccentricity around 

0.85. The four electrodes configurations are: (1) 19-electrodes, (2) 32-electrodes, (3) 

64-electrodes, and (4) 128-electrodes. The 19-electrodes were placed at the standard 

10-20 system locations. The 32-electrodes, 64-electrodes, and 128-electrodes locations 

were selected from the 5-5 system [32]. The global spline surface Laplacian and the 

local TCRE surface Laplacian were calculated at the locations of the electrodes and 

then compared to the analytical surface Laplacian using the correlation coefficient.  

All the statistical analysis was performed using Design-Expert software (Stat-

Ease Inc., Minneapolis, MN, USA). Full factorial design of analysis of variance 

(ANOVA) was used with four categorical factors [33]. The first factor (A) was the 
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type of the electrode presented at two levels corresponding to conventional disc 

electrodes and tripolar concentric ring electrodes. The second factor (B) was the 

number of electrodes presented at four levels corresponding to 19, 32, 64, and 128 

electrodes. The third factor (C) was the presence and type of noise presented at four 

levels corresponding to no noise, presence of white Gaussian noise (WGN), presence 

of a noise dipole, and presence of both WGN and the noise dipole. Finally, the fourth 

factor (D) was the dipole location presented at ten levels corresponding to 10 signal 

dipole locations from Table 1. The response variable was the correlation coefficient of 

the simulated surface Laplacian and the analytical surface Laplacian calculated for 

each of the 2*4*4*10 = 320 combinations of levels of four factors.  

 

2.5   Computer Simulation Results 

The correlation coefficients of the TCRE surface Laplacian and disc spline 

Laplacian to analytical surface Laplacian without any added noise are listed in Table 2. 

The averaged value and the standard deviation of the correlation coefficient in each 

column are listed at the third and second rows from the bottom of the table 

respectively.  

Table 3 lists the correlation coefficient of the TCRE surface Laplacian and disc 

spline Laplacian to analytical surface Laplacian with 20 percent WGN added.  

Table 4 shows the correlation coefficient of the TCRE surface Laplacian and disc 

spline Laplacian to the analytical surface Laplacian with the presence of a noise dipole. 

As we mentioned above, the electrical activity in the deeper brain was considered as 
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another type of noise. This type of noise was also modeled as dipoles, but with smaller 

eccentricities, which means the brain source of the dipole is closer to the center of the 

head. In every simulation performed with this type of noise, a noise dipole with unit 

moment was randomly selected with the eccentricity of approximately 0.85.  

In the last set of simulations, we considered both the 20 percent WGN and the 

noise dipoles and the results are listed in Table 5. Table 5 shows our most realistic 

simulation results.  Correlation coefficient data obtained in this simulation for 320 

combinations of factor levels is summarized in Table 6 (averaged for ten dipole 

locations). 

The full factorial design of our study is presented in Table 6. We used the Box-

Cox procedure to select the optimal power transformation improving the spread of 

studentized residuals [33]. 

The effect of factors A, B, C, and D on the correlation coefficient was assessed 

along with the effect of all possible two- and three-factor interactions. The effect of 

the four-factor interaction ABCD could not be evaluated. The ANOVA results suggest 

that all the factors and all of the assessed interactions have statistically significant 

effects in the model (d.f. = 238, F = 17.6, p < 0.0001) for the optimal power 

transformation of 2.81 determined using the Box-Cox procedure. The effects of the 

main factors were: A (d.f. = 1, F = 2736.5, p < 0.0001), B (d.f. = 3, F = 120.1, p < 

0.0001), C (d.f. = 3, F = 34.7, p < 0.0001), and D (d.f. = 9, F = 10.3, p < 0.0001). 

The ANOVA results show that, in particular, for the case of the factor A the 

tripolar Laplacian is significantly better than the spline Laplacian at approximating the 

analytic Laplacian. 
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A potential limitation of the current full factorial design is that we could not 

assess the effect of interaction of all four factors. Without replications including this 

interaction made the model over-specified with all the degrees of freedom being in the 

model and none assigned to the residual (error). On the other hand, adding replications 

to the design would be of limited value since all of the factor levels, except for the two 

levels of factor C involving stochastic WGN, are deterministic in nature so replicating 

the simulation for most level combinations would have yielded the same results. For 

the same reason randomization of the simulation run order would have been of limited 

value as well in our case even though in other cases it may help midigate the effect of 

nuisance factors [33]. Other assumptions of the ANOVA including normality, 

homogeneity of variance, and independence of observations were confirmed ensuring 

the validity of the analysis with no studentized residuals being outliers, i.e. falling 

outside the [-3, 3] range [33]. 
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Table 2 Correlation in noiseless situation 

 
 

19 
electrodes 

32 
electrodes 

64 
electrodes 

128 
electrodes 

Electrodes 
Config. 

Source 
Dipole # T S T S T S T S 

1 0.998 0.543 0.993 0.402 0.998 0.895 0.996 0.957
2 0.999 0.647 0.999 0.787 0.999 0.875 0.995 0.885
3 0.997 0.723 0.993 0.749 0.982 0.852 0.971 0.896
4 0.993 0.516 0.993 0.585 0.999 0.880 0.998 0.966
5 0.990 0.634 0.999 0.877 0.998 0.936 0.994 0.969
6 0.998 0.756 0.985 0.787 0.981 0.805 0.985 0.965
7 0.996 0.756 0.997 0.741 0.997 0.893 0.951 0.911
8 0.999 0.633 0.992 0.792 0.986 0.865 0.912 0.895
9 0.935 0.277 0.867 0.430 0.993 0.588 0.932 0.662

10 0.999 0.392 0.999 0.515 0.999 0.649 0.997 0.774
 
 
 

 
 
 
 

Table 3 Correlation coefficient with the presence of white Gaussian noise 
 
 

   
 
 

 

19 
electrodes 

32 
electrodes 

64 
electrodes 

128 
electrodes 

Electrodes 
Config. 

Source  
Dipole # T S T S T S T S 

        1 0.963 0.573 0.944 0.360 0.956 0.684 0.96 0.710
        2 0.947 0.206 0.967 0.620 0.960 0.708 0.95 0.732

3 0.968 0.718 0.961 0.725 0.930 0.703 0.96 0.805
4 0.968 0.465 0.971 0.515 0.958 0.760 0.96 0.808

        5 0.959 0.682 0.961 0.679 0.958 0.741 0.95 0.799
        6 0.953 0.688 0.966 0.700 0.973 0.712 0.96 0.689
        7 0.962 0.502 0.969 0.587 0.959 0.742 0.96 0.696
        8 0.978 0.181 0.967 0.530 0.978 0.645 0.97 0.713
        9 0.983 0.540 0.963 0.594 0.978 0.645 0.96 0.647

        10 0.964 0.243 0.961 0.719 0.965 0.749 0.96 0.911
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Table 4 Correlation coefficient with the presence of brain dipole noise 
 

 
 
 
 
 
Table 5 Correlation coefficient with the presence of white Gaussian noise and dipole noise  
 

 
 
 
 
 
 

19 
electrodes 

32 
electrodes 

64 
electrodes 

128 
electrodes 

Electrodes 
Config. 

Source  
Dipole # T S T S T S T S 

        1 0.782 0.209 0.840 0.199 0.880 0.882 0.99 0.959
        2 0.676 0.035 0.968 0.776 0.969 0.875 0.97 0.959
        3 0.999 0.794 0.986 0.885 0.953 0.842 0.99 0.950
        4 0.883 0.284 0.871 0.493 0.994 0.837 0.99 0.946
        5 0.715 0.552 0.990 0.653 0.927 0.784 0.97 0.787
        6 0.937 0.714 0.882 0.751 0.991 0.784 0.99 0.920
        7 0.982 0.675 0.992 0.630 0.987 0.849 0.98 0.915
        8 0.993 0.111 0.987 0.819 0.981 0.920 0.99 0.914
        9 0.959 0.696 0.735 0.519 0.977 0.604 0.99 0.920

        10 0.916 0.589 0.980 0.469 0.887 0.568 0.97 0.806

19 
electrodes 

32 
electrodes 

64 
electrodes 

128 
electrodes 

Electrodes 
Config. 

Source  
Dipole # T S T S T S T S 

        1 0.913 0.542 0.924 0.745 0.959 0.689 0.95 0.752
        2 0.938 0.200 0.965 0.678 0.957 0.814 0.96 0.806

3 0.968 0.727 0.965 0.832 0.943 0.743 0.96 0.756
4 0.953 0.404 0.845 0.575 0.961 0.757 0.96 0.776

        5 0.961 0.663 0.941 0.598 0.922 0.691 0.94 0.650
        6 0.926 0.607 0.914 0.691 0.950 0.713 0.96 0.741
        7 0.942 0.600 0.962 0.709 0.976 0.841 0.96 0.878
        8 0.976 0.224 0.958 0.647 0.974 0.695 0.96 0.678
        9 0.923 0.484 0.965 0.638 0.958 0.743 0.95 0.714
        10 0.974 0.296 0.946 0.662 0.948 0.638 0.93 0.857
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Table  6 Full factorial design of analysis of variance and obtained response variable 
 

 
Categorical factors Group averages 

for 10 levels of 
factor D (signal 
dipole location) 

A: Type of the 
electrode 

B: 
Number 

of 
electrodes

C: Presence 
and type of 

noise 

Correlation between 
the simulated and the 

analytical surface 
Laplacians (mean ± 
standard deviation) 

1 Conventional disc 19 No noise 0.5882±0.1581 
2 TCRE 19 No noise 0.9908±0.0196 
3 Conventional disc 32 No noise 0.6669±0.1693 
4 TCRE 32 No noise 0.9823±0.0406 
5 Conventional disc 64 No noise 0.8242±0.1141 
6 TCRE 64 No noise 0.9937±0.0073 
7 Conventional disc 128 No noise 0.8885±0.0989 
8 TCRE 128 No noise 0.9737±0.0311 
9 Conventional disc 19 WGN 0.4801±0.2041 

10 TCRE 19 WGN 0.9649±0.0104 
11 Conventional disc 32 WGN 0.6035±0.1138 
12 TCRE 32 WGN 0.9634±0.0074 
13 Conventional disc 64 WGN 0.7095±0.0139 
14 TCRE 64 WGN 0.9619±0.0411 
15 Conventional disc 128 WGN 0.7515±0.0783 
16 TCRE 128 WGN 0.9633±0.0050 
17 Conventional disc 19 Noise dipole 0.4662±0.2787 
18 TCRE 19 Noise dipole 0.8846±0.1186 
19 Conventional disc 32 Noise dipole 0.6199±0.2052 
20 TCRE 32 Noise dipole 0.9236±0.0877 
21 Conventional disc 64 Noise dipole 0.7950±0.1177 
22 TCRE 64 Noise dipole 0.9549±0.0424 
23 Conventional disc 128 Noise dipole 0.9082±0.0904 
24 TCRE 128 Noise dipole 0.9877±0.1334 
25 Conventional disc 19 WGN + dipole 0.4752±0.0224 
26 TCRE 19 WGN + dipole 0.9480±0.1864 
27 Conventional disc 32 WGN + dipole 0.6780±0.0738 
28 TCRE 32 WGN + dipole 0.9390±0.0376 
29 Conventional disc 64 WGN + dipole 0.7329±0.0156 
30 TCRE 64 WGN + dipole 0.9551±0.0611 
31 Conventional disc 128 WGN + dipole 0.7614±0.0881 
32 TCRE 128 WGN + dipole 0.9580±0.0097 
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2.6 Visual Evoked Surface Potential (VEP) Recording Experiment Setup 

 
We recorded from 15 selected locations on the scalp over the occipital lobe 

visual cortex area from the standard 10-5 system with the TCREs, the locattions of the 

electrodes are shown in Table 7. A reference electrode and a ground electrode were 

placed on the forehead of the subjects. Before the recording, the scalp was first 

abraided with Nuprep, a mild abrasive cleanser, and then Ten-20 electrode paste was 

used to match impedances between the TCRE and the scalp. The impedances were 

measured and any TCREs with impedances above 5 Kohms were attached again. The 

TCREs were connected to the preamplifiers we developed, A Grass Technologies 

Comet AS40 amplifier and digitizer (Natus Medical, Grass Technologies West 

Warwick RI)  was cascaded.. A PS60/LED photic stimulator was controlled by the 

Comet AS40. The pass-band of the filter was set from 1.0 Hz to 70 Hz and a sampling 

rate of 200 samples per second was used. The frequency of the PS60/LED photic 

stimulator was 2.0 Hz. The subjects were seated in a comfortable chair with their eyes 

approximately 4.0 cm from the photic stimulator. For each subject, we recorded about 

two-and-a-half minutes of EEG signals. There was approximately 30 seconds of 

baseline EEG, with no photic stimulation, and then approximately two minutes with 

the 2.0 Hz photic stimulation. The photic trigger signal was also recorded to 

synchronize epochs during ensemble averaging.  

The analysis of the recorded EEG signals varied depending on the type of 

signals recorded. We used the outer ring of the TCRE as a disc electrode emulation 

(eEEG). Recorded data was segmented with the peaks of the LED control pulses. We 
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utilized about 200 segments for every subject. The first 150 ms of data for each 

segement was then ensemble averaged to obtain the visual evoked potential (VEP). 

The peak value of the VEP signal  on each electrode was employed  for surface 

Laplacian mapping. For the eEEG from the outer ring of the TCREs, the spline 

interpolation and surface Laplacian methods discussed above were applied to calculate 

the spline surface Laplacian and map them to the surface of the spherical head model 

over the occipital lobe visual cortex area. For the TCRE EEG surface Laplacian, we 

simply applied the interpolation algorithm to map the recorded Laplacian values to the 

corresponding surface. The Matlab code for the surface Laplacian mapping is in 

Appendix A.    

Table 7 Normalized Locations of the electrodes in the experiment 
(X,Y,Z are coordinates of the simulation) 

 
Locations # X (cm) Y (cm) Z (cm) 

CP5 -0.896 -0.338 0.284 
P3 -0.567 -0.677 0.469 
Pz 0.000 -0.714 0.699 
P4 0.566 -0.677 0.469 

CP6 0.896 -0.338 0.284 
P5 -0.741 -0.635 0.213 
P6 0.741 -0.635 0.214 
P7 -0.804 -0.586 -0.088 

PO7 -0.584 -0.807 -0.070 
PO3h -0.287 -0.910 0.298 
POz 0.000 -0.929 0.368 

PO4h 0.286 -0.910 0.298 
P8 0.804 -0.587 -0.088 
O1 -0.307 -0.949 -0.047 
O2 0.307 -0.949 -0.047 
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2.7 Visual Evoked Surface Potential (VEP) Recording Experiment Results 

 From Figure 4 we can see that the TCRE Laplacian sensor was able to separate 

VEP sources. In Figure 4A, of the spline Laplacian map from disc electrodes, in the 

top central area there is a red and orange area (marked with an arrow). In the same 

area of Figure 4B we can see the TCRE Laplacian sensor map shows that there were 

two distinct sources. Panel C and D of Figure 4 shows the normalized grand-averaged 

EEG VEPs and tEEG VEPs that these maps were made with. From Figure 4C and D 

we can see that there is a positive going wave at approximately 100 ms after the photic 

stimulation pulse. 

 
 
Figure 4  (A) Spline Laplacian VEP map, (B) tripolar Laplacian VEP map, and (C) the 
normalized grand-averaged EEG VEP signals from each channel, (D) the normalized 
grand-averaged tEEG VEP signals from each channel. 
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2.8 Disscusion of the Spatial Resolution Comparison 

 The computer simulation results show that with an increase in the number of 

electrodes, the spline surface Laplacian estimation has also been improved, while the 

TCRE surface Laplacian is not sensitive to the number of electrodes. The spline 

surface Laplacian estimation relies on the potential recorded on every electrode to 

optimize the interpolation parameters, therefore the more sensors leads to a better 

estimation of the parameters. On the other hand, each TCRE measures the surface 

Laplacian independently, as a result, the tripolar surface Laplacian does not rely on the 

number of sensors. After comparing the correlation coefficients in Table 2, it is 

apparent that at least up to 128 sensors, the tripolar surface Laplacian still outperforms 

the spline surface Laplacian.  

The comparison of Table 2 and Table 3 shows that with the added 20 percent WGN 

the correlation coefficient of the spline surface Laplacian to the analytical surface 

Laplacian decreased by over 0.15 in the worst cases. In contrast, the correlation 

coefficient of the TCRE surface Laplacian to the analytical surface Laplacian only 

decreased less than 0.04 in all cases. The TCRE performed relatively constant 

regardless of the different number of sensors, while the performance of the 

conventional disc sensors dropped dramatically with the decreasing number of sensors. 

The results also indicate that the spline interpolation algorithm is more sensitive to 

random noise compared to the TCRE Laplacian algorithm.  

Table 4 shows the results with the presence of the deep brain activity noise, which 

was also modeled as dipoles with smaller eccentricities. Both the spline surface 

Laplacian and TCRE surface Laplacian were affected by brain source dipole noise. 
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But in most cases the TCRE surface Laplacian still outperforms the spline surface 

Laplacian by 0.05 or more in terms of the correlation coefficient. Also, even though 

the statistical analysis for the 128-electrode configuration indicates that there is no 

significant difference in the spline surface Laplacian and TCRE surface Laplacian, in 

most cases the TCRE surface Laplacian still outperforms the spline surface Laplacian 

by 0.018 to 0.165. In real experiments it would usually be known from physiology 

what areas of the brain the signals should be coming from and those sensors could be 

preferentially treated while other locations could be less important. 

In the last computer simulation, both 20 percent WGN and the dipole noise were 

added and the results are presented in Table 5. This simulation is the most realistic of 

our simulations. The results shown in Table 5 suggest that the TCRE surface 

Laplacian has at least two significant advantages compared to the spline surface 

Laplacian. First, the TCRE surface Laplacian works nearly the same with different 

numbers of electrodes (from 19 electrodes to 128 electrodes); second, the TCRE 

surface Laplacian is stable to different noise dipoles, which is due to its small half 

sensitivity volume (HSV), or, in other words, local recording characteristic.  

In the simulation, the eccentricities of signal dipoles were set at around 0.9. This 

eccentricity was used since we were mainly interested in the visual cortex area of the 

brain. In a previous study [34], the eccentricities of the dipoles were usually set at 0.85 

or smaller. We want to mention that the eccentricity of the dipole has considerable 

impact to the Laplacian estimation. Generally, the smaller the eccentricities the better 

performance of the spline and tripolar Laplacian estimation. In addition, the relative 

location of the dipole to the sensors is also an important factor regarding the Laplacian 
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estimation. We observed in the simulation that if the dipole was close enough to one 

of the sensors, there would be a large difference between the analytical and the 

estimated Laplacian. This holds for both spline and the tipolar surface Laplacian 

estimation. 

The VEP experiments showed that we can acquire VEP signals from humans. 

Beyond the acquisition we were able to see separate sources in the TCRE Laplacian 

maps that were not separated in the spline Laplacian maps, which is shown in Figure 4. 

It should be noted that we are not certain where the sources are in the visual cortex 

however, Fig. 4A and B are indicative of the other subjects as well. 

2.9 Conclusion  

From the computer simulations there is a significant improvement in 

estimation of the Laplacian using TCRE Laplacian sensors compared to disc 

electrodes and the spline Laplacian. The human experiments verified that we can 

record VEP signals using TCREs and that the tEEG signals showed two sources while 

the EEG signals showed only one source.  
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CHAPTER 3: THE DEVELOPMENT OF AUTOMATIC EPILEPSY 

SEIZURE DETECTION ALGORITHMS ON RATS 

 

3.1 Introduction of the Seizure Detection 

As we described in the first chapter, we have shown the effectiveness of TFS to 

control seizures in rats [25].  However, we waited until we observed the first strong 

behavioral change elicited from the convulsants, a myoclonic jerk (MJ), before we 

turned the TFS on manually. Observing our electrographic data from rats before and 

during seizures we hypothesized that the tEEG signal could be used to automatically 

trigger the TFS to control seizures. In reality we do not want to develop an automatic 

seizure control system for rats but took this opportunity to prove that a seizure 

warning, and or control, system could be developed utilizing the TCRE and TFS 

technologies. 

In the previous chapter we introduced a unique electrode, the TCRE, and showed 

that the TCRE outperforms the conventional disc electrode in terms of surface 

Laplacian estimation. The TCRE has been proven to have several advantages 

compared to conventional disc EEG, such as better spatial resolution, higher signal to 

noise ratio, and less mutual information between nearby electrodes [35]. Due to the 

special structure, the TCRE also has shown the ability to perform focal electrical 

stimulations. Unlike the normal electrical stimulation via conventional disc electrodes 

that is usually applied across the head, the electrical stimulation via a TCRE is 



 

 29

conducted between the outer ring and the central disc. Therefore, the stimulation 

current is focused on a small volume right underneath the TCRE. We call this type of 

electrical stimulations transcranial focal electrical stimulation (TFS). Beyond the focal 

stimulation the signal acquisition advantages suggest that the TCREs may have 

benefits for EEG based epileptic seizure detection. In this chapter, we present a real 

time automatic seizure detection system that was tested on rats.  

3.2 Methods of Developing and Optimizeing the Automatic Seizure 

Detector 

The TCREs signals were used to monitor brain activity and when a seizure was 

detected the TFS was triggered. To develop an efficient detector, we analyzed the 

recorded TCREs EEG (tEEG) signals from 5 rats, (the details of which are given 

below).  In the tEEG signals we found a very stable pattern in the band of 0 to 100 Hz. 

The power spectral density of the  seizure signals was higher than the non-seizure 

signal, which is shown in Figure 5. From Figure 5, the seizure and non-seizure 

situation is clearly separated. Figure 5 also suggests that seizures are usually 

accompanied by a significant change in the on-going electrical activity of the brain 

and therefore the power spectral change detectors are appropriate for seizure detection. 

However, in some more complicated situations, the EEG signal can be corrupted with 

noise, which makes the determination of the seizure a challenge.  To make the detector 

more stable in noisy situations, we independently detected the power spectral density 

change in several sub-bands. The 1-100 Hz bandwidth is historically divided into  
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  Figure 5 Power spectral density of seizure and non-seizure signal 
 
several sub-bands in EEG research: Delta (0.3-4Hz), Theta (4-8Hz), Alpha (8-13Hz), 

Beta I (13-20Hz), Beta II (20-36Hz), Gamma (36-59Hz) and high Gamma (59-100Hz), 

which are shown in Figure 6.  We employed this division of the 1-100 Hz bandwidth, 

except that we set the high Gamma band starting from 61 Hz instead of 5 9Hz to avoid 

the 60 Hz power line interference. We applied an independent detector for each of the 

sub-bands, and combined the detection results from all the sub-bands to make a 

decision about whether there was a real seizure. The cumulative sum (CUSUM) 

detector [36] was employed for real-time detection of the power spectral change for 

each sub-band.  

0.3-4Hz

Delta

4-8Hz 8-13Hz 13-20Hz 20-36Hz 36-59Hz 59-100Hz

Theta Alpha Beta I Beta II Gamma High Gamma

 

Figure 6 Sub-bands in EEG research 
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The CUSUM detector is an abrupt change detection algorithm. It determines 

whether a parameter θ  in a probability density function (PDF) has changed. That is, to 

determine between two hypothesis:
 0H  :

0θ θ=  and 
1H  :

1θ θ≠ . Let 
0

pθ and 
1

pθ denote the 

PDF before and after the change, respectively. Let 
ky  denote the thk sample of the data 

sequence (i.e. EEG segment). The basic CUSUM decision function is 

1

0

1

( )
max( ln ,0)

( )
k

k k
k

p y
g g

p y
θ

θ
−= +                            (3.1) 

min{ : }a kt k g h= ≥                                                          (3.2) 

where h  is a threshold. Here, 
at  is the stopping time, when the detector identifies a 

change and raises an alarm. Each time when 
kg h≥ , the CUSUM detector restarts by 

setting 0kg =  and a new round of detection begins. 

 When 
0

pθ  is a Gaussian process with mean 0μ , 
1

pθ is a Gaussian process with 

mean 1μ , and both have variance 2σ . and equation (3.1) detects a mean change and 

becomes 

1 0max( ( ),0)k k kg g y sμ−= + − −                                                      (3.3) 

Seizure and non-seizure data was recorded and analyzed to optimize the 

parameters for the CUSUM detector. The hardware connection for the signal 

recording is shown in Figure 7. Four TCREs were placed on the head of the rats, 

among which a1, a2 and b are signal electrodes, c was used as a reference electrode. A 

multiplexer were employed to switch these electrodes to pre-amp (Pre-Amp), 

stimulator (Stim) or impedance meter (Imp-Meter). On the signal channels, tEEG 

signals were pre-amplified (gain 100 and 0.3 Hz high pass filter) with a custom built 
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preamplifier and then amplified using a Grass Model NR2 Neurological Research 

System with AC amplifiers at a gain of 1,000, bandwidth of 1.0–100 Hz, and with the 

60 Hz notch filter on. Finally the signals were digitized at 16 bits and 256 samples per 

second (SPS)with a Measurement Computing USB-2537. Approximately 24 hours 

before the induction of seizures, an adult male 220~320g Sprague-Dawley rat was 

given a combination of 80 mg/kg of ketamine and 12 mg/kg xylazine for anesthesia. 

The scalp was shaved and prepared with NuPrep abrasive gel. Four TCREs were 

applied to the scalp using Ten-20 conductive paste and adhered with Teet’s dental 

acrylic at the locations shown on Figure 7. On the following afternoon the rats were 

placed in a transparent plastic cage and the electrodes were connected via a 

commutator and cables. The skin-to-electrode impedance was measured to ensure that 

the impedance for the outer ring and the central disc of electrode (b) was less than 10 

KΩ. The tEEG and video recording were then started. For the pentylenetetrazole (PTZ) 

treated group, after five minutes of baseline tEEG recording a mixture of PTZ and 

distilled water was administered (55 mg/kg, ip), then the seizure detection recording 

started. The recording lasted 30 minutes for each rat, and 5 rats were utilized for data 

collection.  

 

 
 
  Figure 7 Hardware connection of the data acquisition system  
 

 To initialize the detector we used a one-second long non-overlapping Hanning 

window (256 samples) to segment the baseline tEEG signals. Then the power 

Multiplexer

Amp  

Imp Meter 
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spectrum was calculated using the fast Fourier transform (FFT) with the “fft” 

command in Matlab (Mathworks, Natic MA). The spectrum was divided into sub-

bands that we described above. For each sub-band the spectrum was summed over all 

frequencies of that sub-band and was normalized by the average baseline spectrum. 

The baseline data from five rats was used to determine 0μ  and the threshold value 

h  of the CUSUM detector. 0μ  is the baseline sub-band spectrum average. The value of  

h  is determined by the equation: βμ += 0h x, where x  is the standard deviation of the 

sub-band spectrum, β is the value determined by analysis of the recorded data. And s 

controls the sensitivity of the detector. We tested β from 0 to 10 in 0.1 increments and 

found that β= 0 provided the best seizure detection rate for the 5 controls. Parameter s 

was determined by adjusting s from 0 to 1000, in increments of 100, maximizing the 

true positive (TP) and minimizing false positive (FP) rates. To increase the likelihood 

that we discriminated seizure from movement artifact we implemented a two-of-three 

‘seizure’ epoch smoothing algorithm: the third epoch was considered the seizure onset 

if two epochs in three consecutive epoches were marked by the CUSUM detector for 

power change. For each sub-band of the seizure data, we applied a CUSUM detector 

to detect the sudden power change. Table 8 shows the optimized parameters and 

detection results for each sub-band. According to the table, the Delta band (0.3-4Hz) 

and Theta band (4-8Hz) were the two most reliable sub-bands as seizure indicators.  

 The real-time automatic seizure detection algorithm was implemented with 

Matlab. In the implementation, Matlab interacts with the data acquisition hardware 

(Measurement Computing USB-2537) through a device driver that was embedded in 

Matlab. For initialization, the hardware was configured to sample 6 channels at 256 
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SPS. In the recording, a timer callback function was triggered every second to retrieve 

data of 1536 samples, which is for 256 samples per channel and 6 channels, from the 

data acquisition hardware. Figure 8 shows a diagram of the procedure which is 

described below.  The retrieved data was further processed by the following steps: first, 

the data of the two channels from the same electrode was combined according to the 

formula (2.1), which forms three tEEG data series; second, the Hanning window was 

applied to the three data series; third, FFT transform was applied to the three data 

series; fourth, the spectrum sub-band power was utilized to optimize the parameters of 

the CUSUM detector if in: the (1) baseline session, or (2) passed to the CUSUM 

detector for sudden change detection if in the detection session; fifth, once the seizure 

activity was detected, an alarm was triggered, so that we can manually applied the 

TFS to the rat under seizure detection.  

 

3.3 Real Experimental Testing Resutls  

Figure 9 shows typical processed data for a TFS-treated rat. Trace #1 is the 

tEEG from electrode (b) in Figure 7. Traces #2 and #3 are the relative power and 

seizure detector output for the Delta band, respectively. Traces #4 and #5 are the 

relative power and seizure detector output for the Theta band. In Traces #3 and Traces 

#5, detection results are denoted by values ‘0’ and ‘1’, where ‘0’ means no seizure was 

detected, ‘1’ means seizure was detected. The two of three smoothing algorithm, 

which was described previously, was employed for the final detection decision. The 

vertical dashed line shows the time when the seizure was detected. In this experiment, 

the first myoclonic jerk was observed at approximately 2 minutes and 10 seconds. The 
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averaged performance of the automatic seizure detector is listed in table 9.   

 
Table 8 Parameters for CUSUM detector and results 

 
Ra
t 

Band   s start 
epoch 

0-4Hz          0.0701 0.2102 0.1 7 
4-8Hz 0.0371 0.1112 0.1 6 
8-13Hz 0.0239 0.0718 0.15 8 
13-20Hz 0.0362 0.1086 0.1 13 
20-36Hz 0.023 0.069 0.3 ND 
36-59Hz 0.0241 0.0724 0.3 ND 

 
 
 
1 

61-100Hz 0.1139 0.3417 0.1 4 
0-4Hz 0.1652 0.4955 0.1 19 
4-8Hz 0.1010 0.3030 0.1 19 
8-13Hz 0.0914 0.2742 0.15 21 
13-20Hz 0.0553 0.1658 0.1 22 
20-36Hz 0.0404 0.1211 0.3 ND 
36-59Hz 0.0730 0.2190 0.3 ND 

 
 
 
2 

61-100Hz 0.2121 0.6363 0.1 24 
0-4Hz 0.1389 0.4168 0.1 6 
4-8Hz 0.1198 0.3595 0.1 ND 
8-13Hz 0.0688 0.2063 0.15 ND 
13-20Hz 0.0455 0.1365 0.1 ND 
20-36Hz 0.0722 0.2165 0.3 ND 
36-59Hz 0.0742 0.2226 0.3 ND 

 
 
 
3 

61-100Hz 0.1386 0.4157 0.1 ND 
0-4Hz 0.0362 0.1085 0.1 12 
4-8Hz 0.0492 0.1476 0.1 5 
8-13Hz 0.0430 0.1289 0.15 5 
13-20Hz 0.0388 0.1165 0.1 11 
20-36Hz 0.0376 0.1127 0.3 12 
36-59Hz 0.0371 0.1112 0.3 12 

 
 
4 
 

61-100Hz 0.1165 0.3495 0.1 4 
0-4Hz 0.1044 0.3131 0.1 13 
4-8Hz 0.0984 0.2951 0.1 17 
8-13Hz 0.0820 0.2460 0.15 ND 
13-20Hz 0.0784 0.2353 0.1 15 
20-36Hz 0.0680 0.2041 0.3 ND 
36-59Hz 0.0789 0.2368 0.3 ND 

 
 
 
5 

61-100Hz 0.1400 0.4199 0.1 ND 
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  Figure 8 Diagram of seizure detection procedure with Matlab 
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Figure 9 Automatic seizure detection result 
 

Table 9  Performance of automatic seizure detector 
 

 Accuracy (%) Sensitivity (%) Specificity (%) 

CUSUM 74.47 23.06 91.9 

 

3.4 Discussion  

We were able to ‘train’ our CUSUM detector (i.e., to select the s parameters) using 

the control rat data and apply those parameters to test the detector on data that were 

not used for training (the generalization property of the CUSUM algorithm). The 
0μ  

and h  parameters were chosen from the baseline TCRE EEG for each rat via specific 

algorithms removing user bias of the selection. The detector determined the seizure 

onset in the TFS-Treated rats, on average, 79 sec. (STD 43.12 sec.) prior to the first 

myoclonic jerk.  
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Much work has been performed in the field of seizure detection [36, 37, 38, 39]. 

For our experiments we have a special case where we know when the convulsant is 

given after a baseline period. We do not need to resolve long periods of baseline 

activity vs. seizure activity. For these experiments we were only interested in 

determining when the TCRE EEG showed increased activity due to the PTZ. We did 

not need to discriminate False Positives, ‘seizure’ during baseline, only during a short 

period post PTZ. The rest of the data is known ‘seizure’ data and therefore we only 

had to discriminate True Positive and False Negative (no ‘seizure’ during ‘seizure’).  

Although using combinations of bands may be more robust for detection our data 

suggest that the Delta power in the on-going EEG may be most informative in this 

regard. This suggestion needs further confirmation in subsequent studies. 

 

3.5 Conclusion 

The CUSUM algorithm, in conjunction with TCRE EEG, correctly detects 

seizure activity from the Delta power changes in advance of the early behavioral 

manifestations of a seizure (such as MJs). Therefore, this algorithm can be used as a 

control signal to automatically trigger TFS with the goal to prevent seizure 

development. 
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CHAPTER 4: EEG RECORDING SYSTEM AND REAL TIME 

AUTOMATIC SEIZURE DETECTOR  

 

4.1 Introduction 

 In the previous chapter we introduced a real time seizure detection algorithm 

for rats. We also implemented this algorithm in “real-time” with Matlab running on a 

Dell D630 laptop. The experiment showed that this detector works very well for the 

rat experiments. However, several drawbacks existed in the seizure detection system 

described above. First, the central processing unit usage of the laptop was reaching 

100% while performing the real-time control with just three TCREs. Meeting the real-

time signal processing requirements for multi-channel EEG seizure detection for 

humans, considering that human EEG recording typical utilizes 20, 32,  64, or even 

128 channels, would be beyond the abilities of the laptop. Second, the use of the PC in 

the closed-loop system increases the system cost and limits the portability of the 

system. Third, the seizure detector generated an alarm for when to turn the TFS on but 

the TFS was actually turned on by a person, which introduced some delay between the 

seizure detection and the application of the TFS.  

To overcome the disadvantages listed above, we developed a new FPGA platform 

to run the real-time seizure control on. This system will automatically detect the 

seizure activities and apply the TFS, which forms a portable closed-loop automatic 

seizure control system, as shown in Figure 10. Moreover, the hardware can also be 
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used for a multi-channel human tEEG recording and real-time signal processing and 

display system.  

  
           

 
Figure 10 FPGA-based closed-loop seizure control system 

 
 

4.2 Methods 

The automatic seizure detector and EEG monitoring system contains several 

hardware and software subsystems. These subsystems include A-to-D converters 

(ADC), FPGA embedded controller and digital signal processor, USB interface, USB 

driver under Windows operating system, application software for signal display and 

data storing. The development of these subsystems is desribed in the following 

sections.  
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4.2.1 System Considerations 

An EEG system records the potential on the scalp caused by the electrical 

activities from the brain. The EEG recordings for humans usually uses 20  to 128 

channels and electrodes. A typical raw human EEG signal has an amplitude between 

1μV to 10 mV, which indicates that the EEG signal is weak and has a high dynamic 

range. The tEEG signals are even weaker and have been reported to be hundreds of 

nanovolts [35]. The typical bandwidth of EEG recording is between 0.5 Hz to 70 Hz. 

Recently researches have shown that there are EEG activities in higher bands, with the 

frequency as high as 500 Hz [40, 41]. It seems that the wider band EEG signal 

recording and analysis will be the trend in the future. There are several other issues of 

EEG signals that must be accounted for, such as the high bias voltage caused by the 

half-cell effects. These are mainly dealt with in the analog domain by signal 

conditioning techniques, and not discussed here.  

 As we mentioned in the previous chapter, there are generally two approaches 

for seizure detection [16, 17], one is spike analysis based on time domain EEG signals, 

the other is spectral analysis based on the spectral domain of the EEG signal. We 

employed the second approach, spectral analysis, to develop our epilepsy seizure 

detector. This was since our earlier work showed that the spectral analysis was more 

robust in noisy environments such as movement artifacts and mains interference. 

These requirements forced us to perform the spectral analysis in real-time in the 

frequency domain and formed the basis for our new system design.  

 To digitize the tEEG signal with high dynamic range a high resolution ADC is 

desired. Having multi-channel capability of the ADC is also beneficial, since the 
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capacity of the system is as many as 128 or even 256 channels. Thus we began work 

on implementing the analog front end, ADS1299, from Texas Instruments. The 

ADS1299 has 8 differential channels of programmable gain instrumentation amplifiers, 

and a 24-bit, 8-channel delta-sigma ADC, with daisy-chain port that supports 

cascading multiple chips as an ADC system with 128 channels or more. For automatic 

seizure detection, the up to 128 channels of data has to be transformed to the spectral 

domain in real-time. Two platforms, FPGA and graphics processing unit (GPU) are 

suitable for this task. However, the FPGA has more resources for communicating with 

other devices, such as communicating with ADC and USB interfaces. Thus, we used 

an FPGA as the ADS1299 controller, digital signal processing, and communication 

core.  

We used an ALTERA DE-2 evaluation board with the Cyclone IV serial 

FPGA. The estimated data recording rate of the ADCs is about 13 MB per second, so 

the USB 2.0 interface, which provides a maximum data transferring rate over 30MB/s, 

fits the estimated data rate. On the PC side, a USB driver was developed for real-time 

data acquisition from the USB interface to save the data in a temporary buffer in the 

Windows kernel. The application software was developed to fetch the data from the 

data buffer in the Windows kernel and save the data to the hard disk and also display it 

on the screen. Figure 11 shows the high level structure of the system.  
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Figure 11 System structure 
 

4.2.2 Hardware Connection 

The ADS1299 is an 8-channel ADC and programmable gain preamplifier. To 

build a data acquisition system with more than 8 channels, multiple ADS1299s need to 

be connected with the daisy-chain configuration [42], and then connected to the FPGA 

through a serial peripheral interface (SPI) port, which is shown in Figure 12.  
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Figure 12 Daisy-chain connection of multiple ADCs 
 

With this connection, the analog to digitized data is available from the DOUT 

pin to the DAISY_IN pin, and sent out to FPGA through the DOUT pin of the first 

ADC, which is Device 1 in Figure 12. The timing for the data reading cycle is shown 

in Figure 13 [42].  

 

  Figure 13 Daisy-chain ADCs data reading timing 
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4.2.3 FPGA Logic Structure 

 The FPGA plays two roles in our system. First, the FPGA acquires and 

transmits the data from the ADS1299 to the computer for storage. On one side, it 

communicates with the ADCs through the SPI port. The FPGA must configure and 

acquire data from the ADCs and the FPGA must also pack the data according to the 

USB frame format. On the other side, the FPGA monitors the IN and OUT FIFOs of 

the USB interface. When the OUT FIFO signifies that it is not empty, the FPGA reads 

the data from this FIFO; or if the IN FIFO is not full, and there is data stored in FPGA, 

then the FPGA will write a data frame to the IN FIFO. Second, the real-time seizure 

detector runs in the FPGA. Figure 14 shows the logic structure we have progrmmed 

into the FPGA. There are three clock rates (time domains) needed for our design that 

were programmed into the FPGA. The SPI interface module to the ADCs runs on a 4 

MHz clock, it is responsible for communicating with the ADCs through the SPI port. 

The seizure detection part, which includes the FFT processor and the CUSUM 

detector, runs on an 80 MHz clock. The USB controller interface runs on a 50 MHz 

clock. The FIFOs are placed between the time domains for cross time domain data 

transmission. 
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Figure 14 Logic structure in ALTERA Cyclone IV FPGA 
 

4.2.4 Multi-Channel FFT Processor Design 

 
The multi-channel FFT processor is designed to transfer the recorded tEEG signal 

to the spectral domain. According to the seizure detection algorithm we developed, 

each time one second of data is recorded it is transferred to the spectral domain by the 

FPGA FFT algorithm. A commonly used sampling rate of the EEG recording is 250 

Hz, therefore the data length of the FFT processor was set to 256. Due to the limit of 

the resources in the FPGA, an FFT processor needs to be applied to multiple channels. 
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The data width of the input stage of the FFT processor is 24-bits, which is determined 

by the output data width of the ADCs.  

As mentioned above the FFT processor runs at a much faster clock than the clock 

of the data input rate. There are two reasons that make the data processing speed of the 

FFT processor the bottleneck of the seizure detector which is why it is run at a much 

faster clock rate than the other two processes. First, even though the FFT significantly 

reduces the computational complexity of the discrete Fourier transform (DFT), it still 

requires a large amount of multiplications and additions. An N-point FFT with 

complex inputs needs 22 logN N  real multiplications and 22 logN N  real additions. In 

our case, N is 256, then for each 256 samples there are 4096 multiplications and 4096 

additions, which mean that for each  sample, there are 16 multiplications and 16 

additions needed. Second, the hardware resources, such as embedded multipliers, are 

limited in the FPGA, so the same hardware resources in the FPGA  have to be applied 

to data from multiple chaneels. 

As a result, the pipeline multi-channel interleaving structure was employed to 

overcome these problems. There are mainly four pipeline FFT structures: radix-2 

multi-path delay commutator (R2MDC), radix-2 single-path delay feedback (R2SDF), 

radix-4 multi-path delay commutator (R4MDC) and radix-4 single-path delay 

feedback (R4SDF), all are shown in Figure 15. Due to existence of the feedback loop, 

which complicates the pipelining of the butterfly multipliers [43], the single-path 

delay feedback structures are not suitable for high throughput rate FFT processors. 

The radix-4 butterfly multipliers significantly reduce the number of stages of the 

pipeline structure, which helps to minimize the delay from the input to the output. 
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However, as we may see in Figure 16, the radix-4 butterfly multiplier is much more 

complicated than the radix-2 butterfly multiplier. This may not be a problem for very 

large scale integration (VLSI), but the resources in the FPGA are pre-placed and 

limited, so the complicated structure introduces significant routing delay, which limits 

the highest clock frequency on which the logic can run. For these reasons, we 

employed the radix-2 multi-path delay commutator structure to build the multi-

channel FFT processor. The interleaving method was employed to perform the FFT 

process on data from multiple channels. This method is implemented by making two 

changes on the single channel radix-2 multi-path delay commutator structure: (1) 

increase the number of the registers connected to the controllers by N times, and (2) 

change the controller blocks to reuse every parameter for N times. Figure 17 shows the 

structure of the interleaving radix-2 multi-path delay commutator for the N-channel 

FFT transform. The multipliers utilized in the butterflies are further pipelined to 

ensure the 80 MHz clock rate. Since we utilized the fixed-point data format in the 

computation, bit growth was considered to preserve the precision and avoid overflow.  

However, there are two computations in the butterfly multiplier that may cause bit 

growth. First, the data width must grow 1 bit in the add/subtract stage of the butterfly 

multiplier. Second, the multiplication of the sinesoid value and the input data may 

cause an extra bit growth. The bit growth at , the multiplication of the sinesoid value 

only needs to be considered once in all the FFT stages [44]. To accommodate for the 

worst case bit growth, the width of the output of the first butterfly multiplier increases 

by 2 bits, the width of the output of all the following butterfly multipliers increase by 1 

bit.  The bit increasing consideration is shown in Figure 18.  
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Figure 15 Four typical pipeline FFT structures: R2MDC, R2SDF, R4MDC, R4SDF
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Figure 16 Radix-2 (left) and Radix-4 (right) DIF butterfly multipliers 
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Figure 17 16-point R2MDC with interleaving for N channels 

 

 
 
 Figure 18 Eight stage Radix-2 FFT bit consideration 
 

        Each stage of the FFT is built with a controller, a butterfly multiplier and a 

parameter module, as shown in Figure 19.  The controller works as a router that directs 

the data and parameters to the input of the butterfly multiplier at the right time by 

controlling two shift buffers and the address signal for the parameter module. A 

round-back counter was implemented in the router. By setting the maximum value of 

of the round-back counter to N the controller can be adjusted to work for an N-channel 

FFT processor.  The butterfly multiplier computes the multiply-add value: A BC+ , 

where A  and  B  are full scale complex numbers, and C  is a normalized unit complex 

number. There are two approaches to implement the butterfly multiplier. The first 

approach, referred to as the CORDIC method, takes advantage of the multiplier of a 

full scale complex number and a normalized unit complex number, which is actually a 

rotation of the full scale complex number. The advantage of this approach is that it 

only takes bit shift and add, so it saves the hardware multiplier resource, but the 

complicated structure makes it hard for pipelining. The second approach, however, 
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employs the normal multiplication and addition to implement the butterfly multiplier. 

The parameters in the second approach are pre-computed and stored in the chip. This 

method, of course, cost more hardware multiplication resources, but the structure is 

straightforward. We employed the second method in our design. For each multiplier 

we utilized four multipliers and two adders.  The multipliers were further pipelined to 

maximize the clock rate of the  FFT processor.  

 

  Figure 19 Detailed structure of an FFT Stage 

 

4.2.5 CUSUM Detector Design 

 According to the seizure detection algorithm we developed, there are two main 

tasks. The initial task is started at the beginning for training the CUSUM detector on 

non-seizure data. In this task, the spectral data from the FFT processor is cumulatively 

averaged. At the end of this task, the average value is loaded for the CUSUM detector. 

The second task is the seizure detection task. During the seizure detection, the 

CUSUM detector continuously monitors the power spectrum of the interested bands, 

and in real-time triggers the stimulator if specific features are detected, and updates 
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the parameters according to the current power spectrum. The two tasks perform 

different procedures, and are therefore implemented with two different modules. 

Figure 20 shows the top level modules of the CUSUM detector. 

Power  Spectral 
Band Selector

CUSUM Initial 
Module

CUSUM 
Detection ModuleChannel Selector

From FFT 
Processor Parameters

To 
Stimulator 

Trigger  
    

Figure 20 Structure of the CUSUM detector 
 

The spectral data output from the FFT processor is pre-processed by the power 

spectral band selector, which basically computes the relative power of the specific 

bands that are determined in the training task. Since we employed the interleaving 

structure for the FFT processor, the power spectrum for different channels arrives at 

the CUSUM detector one by one. Also, we are only interested in certain band(s) of the 

spectrum. Therefore, a single CUSUM detector is sufficient for monitoring all the 

channels. In the EEG recordings, it is common to find some channels that are 

corrupted with artifacts; this is usually due to the bad placement of electrodes or loss 
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of contact over time. These channels should be excluded from the detector, since the 

signal from these channels can mislead the detector. We implemented the “Channel 

Selector” module in the CUSUM detector that was used to disable the corrupted 

channels. This “Channel Selector” is implemented as a bit map, in which every 

channel has a corresponding bit. Value ‘1’ on a bit means the data from corresponding 

channel would be sent to the CUSUM detector, otherwise the data from the 

correponding channel would be discarded.  The bit map can be configured through our 

application software.  

 

4.2.6 Software Design 

 Software was developed to initialize and transfer a data stream from the FPGA 

to the hard disk in the Laptop with a transfer rate up to 30 MB per second. There are 

three parts to this software: embedded firmware for the Cypress CY7C68053A USB 

controller, USB device driver for the Windows kernel, and application software for 

Windows user space. The dark blocks in Figure 21 are the three parts we developed.  

In our design, the Cypress CY7C68053A USB controller was configured as a 

slave first-in first-out (FIFO) register module. With this configuration, the USB 

controller works as a pair of passive FIFOs. One transfers data from the FPGA to the 

PC, the other transfers data from the PC to the FPGA, as shown in Figure 22. The 

USB protocol is executed by the hardware implemented in the USB controller chip. 

The embedded software was developed to configure the registers for the USB protocol 

execution during the initialization stage. Table 11 lists all the registers and the 

configuration values for correctly configuring the USB controller to slave FIFO mode. 
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       Figure 21 Firmware, driver and application software stack structure  
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   Figure 22 Slave FIFO mode of the Cypress CY7C68053A 
 
 
Table 10 Register configurations of the Cypress CY7C68053A for slave FIFO code 
 

OEA 0x03 
IFCONFIG 0x03 
REVCTL 0x03 
EP1OUTCFG 0x20 
EP1INCFG 0x20 
EP4CFG 0x20 
EP8CFG 0x20 
EP2CFG 0xE2 
EP6CFG 0xA0 
EP4CFG 0x00 
EP8CFG 0x00 
PINFLAGSAB 0x00 
PINFLAGSCD 0x00 
FIFOPINPOLAR 0x00 
EP2FIFOPFH 0x90 
EP2FIFOPFL 0x00 
EP2FIFOCFG 0x0C 
EP2AUTOINLENH 0x02 
EP2AUTOINLENL 0x00 

  
 

On the PC side, the USB host controller driver and the USB core driver are 

provided with the Windows operating system. These two drivers handle almost all the 

USB protocol affairs, as well as communicate with the device hardware, which is the 

Cypress CY7C68053A USB controller in our case. The main part we developed at the 

driver level is the USB device driver. As shown in Fig. 5.11, the USB device driver 

works as a bridge between the USB core driver and the application software. On one 
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hand, the USB device driver continuously sends data read requests to the USB core 

driver, once the request is responded to, it saves the data to a buffer. On the other hand, 

the USB device driver implements several methods for the application software to 

fetch data, the USB interface information or send commands down to the FPGA.   

The USB device driver is developed based on the Windows Driver Foundation 

(WDF). The WDF is a new driver model for the Windows operating system that is 

based on Windows Driver Model (WDM). In other words, the WDF framework 

encapsulates the WDM framework, and exposes a much more user-friendly interface 

for driver developers. Specifically, the WDF implements a set of default power 

management callback functions which deals with all the plug and play and power 

issues very well.  

Even with the support of WDF framework, there are still two challenges for 

developing the USB device driver. First, the USB device driver has to read the data 

from the FIFO of the Cypress CY7C68053A USB controller immediately when it is 

available. Second, the buffer in the USB device driver is accessible for both the saving 

and fetching routine that run asynchronously, so a mechanism is needed to prevent the 

buffer from being accessed by the two routines at the same time while still 

maintaining the high speed data transfer. The first challenge is addressed by a 

mechanism called continuous reader. The idea is that we always maintain two or three 

data read requests so that while one request is returned with some data for processing, 

there is still a pending request for new data. There are several synchronization 

approaches, such as “Critical Section” or “Spine Lock”, which can guarantee only one 

routine accessing the buffer at any single time by blocking the other routine that is 
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trying to access the buffer. But simply applying these approaches will decrease the 

performance of the driver in terms of data transfer rate. For instance: if a data read 

routine for the application software obtained the access to the buffer, and started to 

copy data, the read completion routine has to wait for the copy procedure to finish 

before it can access the buffer and save the data. Therefore, we employed the circular 

buffer structure that stores the data in the kernel. This structure allows us to avoid the 

synchronization problem. Two pointers are utilized in the circular buffer, one pointer 

points to the start block of circular buffer, the other pointer points to the end block of 

the circular buffer. The read completion routine is responsible for updating the end 

pointer, while the read routing for the application software updates the start pointer. 

The pointers round back to the minimum address of the buffer once they reach the 

maximum address. If the start pointer catches up to the end pointer, the buffer is empty; 

otherwise if the end pointer catches up to the start pointer, the buffer is full. If the end 

pointer further overlaps the start pointer, data in the buffer is corrupted. The overlap 

detector triggers an alarm to the application software about this serious problem. 

However, it’s the application software’s responsibility to prevent the circular buffer 

from becoming full. The depth of the buffer is calculated according to the current 

sampling rate andthe number of recording channels. Three endpoints were 

implemented in the driver: default control endpoint, input endpoint and output 

endpoint, as shown in Figure 23. The control endpoint is the utilized to USB interface 

information retrieval. The input endpoint is employed to transfer data from the 

hardware to the Windows USB driver. The output endpoint is used to send data from 

the driver to the hardware. The structure of the driver is shown in Figure 24. 
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Figure 23 Endpoints of the driver and thevirtual connection to the dardware 
 

As we mentioned above, our application software is responsible for retrieving the 

data from the USB device driver without any loss. A precise timer is desired to finish 

this task. Thus, we employed the timer-queue timer, which is mostly applied in the 

multimedia field. According to our testing on the Windows XP operation system, the 

timer-queue timer can give a quite constant interval of 1.1 ms with the jitter less than 

0.01 ms. In our application, the timer-queue timer triggers a timer call back function 

every 1.1 ms to retrieve data from the buffer of the USB device driver. According to 

the two tasks of the applications software, the retrieved data is sent to two buffers in 
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the user space. First, the data is sent to a ping-pong buffer. Every 30 seconds, an extra 

thread is created to write the data in one memory block of the ping-pong buffer to the 

hard disk, and in the next 30 seconds the coming data will be sent to the other memory 

block. Second, the data is also sent to a buffer in the signal display module. In our 

signal display module, data is processed and mapped to the pixels on the screen. The 

procedure flow chart of the application software is shown in Figure 25. 

I/O Control

Read

Continuous Reader

I/O Queue

Write

Read 
Completion

To Lower Level Driver

From Lower Level 
Driver

Overlap
Detector

Circular Buffer

Start Pointer

End Pointer

 
    
   Figure 24 Structure of the USB device driver 
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Figure 25 Procedure flow chart of the application software 
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4.3 Results 

An 8-channel 256-point FFT processor and a 64-channel 256-point FFT processor 

were synthesized for the target Cyclone IV E FPGA with Altera Quatus II software。

The synthesis results are shown in Figure 26 and Figure 27. To give a comparison, 

even though it’s not a fair comparison, the synthesis results of the standard single 

channel 256-point fixed bit-width (24-bit) intellectual property (IP) core library from 

Altera Corporation is shown in Figure 28.  

 
  

Figure 26 synthesis summary of an 8-channel FFT processor 
  

The main synthesis results are summarized in Table 11. Our 8-channel and 64-

channel FFTs consume approximately 35% more of the logic elements compared to 

the standard single channel FFT core. Considering we process 7 or 63 more channels 

of data, and only consume 35% more logic elements, this is quite an efficient 

implementation.  The increase in resources is due to the hardware resources being re-

used for every channel. However, we can clearly see that the memory bits consumed is 

increasing with the increasing number of channels. These memory bits are consumed 
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 Figure 27 synthesis summary of a 64-channel FFT processor 
 
 

 
  
Figure 28 synthesis summary of a standard single channel FFT IP core 

 
by the shift registers in our FFT processors.  

The 8-channel and 64-channel FFT processors utilize 128 9-bit embedded 

multipliers, while the standard single channel FFT core utilizes only 48 9-bit 

embedded multipliers. There are two reasons that make this difference. First, the 

standard single channel FFT  core keeps a 24-bit data width for all the stages, while 
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our FFT processors employed a data width increasing algorithm to achieve a better 

transform precision, which is shown in Figure 18. Second, the standard single channel 

FFT  core re-used the multipliers in each butterfly. Re-using the multipliers would 

actually slow down our implementation of the FFT. 

For the three FFT processors, we used the same Synopsys design constraints 

(SDC) file, which requires a clock rate of 200 MHz. The synthesis results show that 

the maximum clock rate of the standard single channel FFT IP core, the 8-channel 

FFT processor and the 64-channel FFT processor is 206 MHz, 156 MHz and 101 MHz, 

respectively. As we can see, the maximum clock rate decreases with the increasing of 

the number of channels. The reason for this is that more embedded memory blocks are 

involved with more channels, which eventually increases the length of the wire 

connections. The wire delay from the wire connection is the main constraint on the 

maximum clock rate. The 101 MHz maximum clock rate guarantees that the 64-

channel FFT processor can run safely at a lower clock rate, such as 50 MHz as we 

desire. To improve the resource consumption performance, we may lower the 

maximum clock restraint to 80 MHz, which will give the synthesizer more space to 

optimize the resource consumption.  

Table 11 Summary of the synthesis results for the three FFT processors 
 
 Logic 

Elements 
Consumption

Total 
Memory Bits 
Consumption 

Embedded 
Multipliers 
Consumption 

Maximum 
Clock Rate 

8-channel 
FFT Processor 

9415 251,492 128 156MHz 

64-channel 
FFT Processor 

9715 1,771,424 128 101MHz 

 Single Channel 
FFT IP Core 

7007 13,795 48 206MHz 
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 We tested the FFTs by using a combination of several sinusoid signals. The 

sinusoids with different frequencies were generated using Matlab and stored in a data 

file that was sent to the multi-channel FFT processor. In Figure 23, the top panel 

shows the floating –point FFT transform results from Maltab with the command “fft”,  

while the bottom panel shows the FFT transform results from our fixed-point FFT 

processor with the same input. The relative square mean error between them is 

6.2632e-005.  

     
Figure 29 FFT transfer results of  Matlab (top) fft command and our FFT processor  
 
  The FPGA controller and digital signal processing module, the USB interface, 

Windows USB driver and application software were first tested and verified 

separately. The EEG monitoring system was also tested with a 128-channel 

configuration with simulated data in the FPGA. An 8-channel configuration was also 

tested with a real ECG recording. Further animal experiments are needed to test the 

seizure detector in a real environment.  
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4.4 Discussion 

 A distinct automatic seizure detector was developed to solve the special 

problem we met in the animal experiments. We emphazied the multi-channel, up to 

128 channels, digital signal processing ability of the detector, a series of digital signal 

processing functional units were developed for this purpose. Thus, the system has the 

potential to be applied to real-time human seizure detection with up to 128 EEG 

channels, while most of the existing seizure detection systems only work for far fewer 

channels [44].  

 Accompanied with the automatic seizure detection system, we also developed 

a multi-channel EEG monitoring system. There are many commercial EEG monitoring 

systems on the market, such as Grass Comet and Aura EEG monitering systems, 

g.USB serial EEG monitoring systems. But these systems only allow the user to 

access the EEG data in the software level, while our system allows us to access and 

process the data at the hardware level, which significantly improves the real-time 

signal processing ability. With our system, we can implement and test many more 

applications which might not be pratical if we use the commercial systems.   

 

4.5 Conclusion 

 An EEG automatic seizure detection system for rats, or any being, was 

implemented in an FPGA based embedded system.  An EEG monitoring system was 

also developed. Both systems have the advantage of real-time signal processing ability 

for large numbers of channels.  
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CHAPTER 5: FUTURE WORK 

5.1 Resistor Inductor Capacitor (RLC) Model of TCRE Recording 

With the special tripolar structure, the TCRE has different characteristics in 

terms of the interaction with paste and the scalp. To help fully understand this type of 

electrode, a passive RLC network model may be built to mimic the recording behavior 

of the TCRE, as shown in Figure 30. 

 
TCREPaste

Scalp

Input Output

Model

 
 
  Figure 30 RLC model of EEG recording with TCRE 
 
  

A possible approach to build the RLC structure is to place a current source at 

the location of the cortex area of a head model, vary the frequency of the source then 

measure the simulated output from the TCRE. The RLC model may be built according 

to the source frequency and magnitude curve.  

 



 

 67

5.2 Optimized TCRE Preamplifier Development  

 The precise passive circuit model for the TCRE should give the ability to 

design a preamplifier with optimization of the noise and cross talk rejection. The 

input-referred voltage noise of a low noise instrumentation amplifier is typically 

50 nV/ Hz  (with the gain 100, 0-100 Hz band), and the input-referred current noise is 

typically at 1 pA/ Hz , the noise model of the instrumentation amplifier is shown in 

Figure 31 [45]. The input-referred voltage noise is directly added to the input signal, 

while the input-referred current noise is coupled into the circuit by producing the 

corresponding voltage on the signal conditioning circuit and the sensor circuit, which 

is shown in Figure 32.  

With the circuit models shown below in Figure 32, the noise of the 

preamplifier can be quantized easily by hand calculation or PSPICE simulation. 

Proper usage of this noise quantization method should greatly help to design a low 

noise preamplifier for the TCRE. 
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Figure 31 Noise model of the instrumentation amplifier 
 
 

NpINnI

 
 

Figure 32 Current noise source coupled to the preamplifier circuit 
 

 Another important issue in the development of the preamplifier for the TCRE, 

or generally for EEG electrodes, is that the crosstalk among channels must be rejected. 

Crosstalk is the signal from one channel that creates an undesired signal on the other 

channels. For EEG applications, this phenomenon will directly decrease the spatial 
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resolution of the recording. To lessen or avoid the crosstalk, some attention should be 

paid when laying out the printed circuit board (PCB) for the preamplifier. The 

common ground connection for the power supply lines, which is shown in Figure 33, 

must be prohibited. A star-connection, also shown in Figure 33, is a better alternative, 

while separate ground and power planes are mostly needed.  

 

 Figure 33 Common ground connection (left) and star connection (right) 
 

5.3 Need for a More Portable Automatic Seizure Detection and Alarm 

System  

 Our automatic seizure detection system can be applied to human seizure 

detection with a proper real time human seizure detection algorithm. A compact 

system with fewer channels may be valuable for remote seizure detection of patients 

with epilepsy. Some patients have seizures only once per month or even less, which 

means they can live a normal life most of the time, but need an alarm once the 

occasional seizure happens.  In this case, only a few channels may be needed if the 

epilepileptic area of the brain can be pre-determined by neurologists. Based on these 

conditions, a compact 8 channel, or less, automatic seizure detector and alarm system 

may be developed as shown in Figure 34. It is similar to the seizure detection system 
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we developed, except for two differences. First, the human seizure detection algorithm 

should be implemented in the FPGA; second, a WIFI (or other wireless) module 

should be implemented for remote communication. The whole system can be placed 

on a single PCB with the area of 5 cm by 5 cm. The system would be continuously 

monitoring the EEG of the patients, if no seizure is detected, the WIFI module is off, if 

there is some seizure activity detected, an alarm will be sent to the patient, and through 

the WIFI module to the hospital, and the recorded EEG signal will also be transmitted 

out though the WIFI module. On the other side, a network driver and application 

software should be developed based on a PC to communicate with the embedded 

system to receive the alarm and the transmitted EEG signal. These are some of the 

possible directions that need to be investigated for future applications of the TCREs. 

 

 
 

Figure 34 Compact 8-channel seizure detection and alarm system 
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APPENDIXES 

APPENDEX A: Matlab Code for VEP Data Processing 

 

clear all
close all 
clc 
  
  
[data(:,1),data(:,2),data(:,3),data(:,4),data(:,5),data(:,6),dat
a(:,7),data(:,8),... 
 
data(:,9),data(:,10),data(:,11),data(:,12),data(:,13),data(:,14)
,data(:,15),data(:,16),... 
 
data(:,17),data(:,18),data(:,19),data(:,20),data(:,21),data(:,22
),data(:,23),data(:,24),... 
 
data(:,25),data(:,26),data(:,27),data(:,28),data(:,29),data(:,30
),data(:,31),data(:,32), data(:,33)... 
 ] =textread('LED2Hz15Hzstimulation_LinDu.txt','%f %f %f %f %f 
%f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f 
%f %f %f %f %f %f %f'); 
  
  
N = size(data(:,30),1); 
  
% for i = 1:30 
%     for j = 1:N 
%         if abs(data(j,i)) >= 100 
%             data(j,i) = 0; 
%         end 
%     end 
% end 
%  
% for i = 32:33 
%     for j = 1:N 
%         if abs(data(j,i)) >= 100 
%             data(j,i) = 0; 
%         end 
%     end 
% end 
  
  
i=3e4; 
k=0; 
while(i<N) 
 if data(i,31) > -700 
     i=i+1; 



 

 76

 

elseif data(i,31) > data(i+1,31)
     i=i+1; 
 else  
     k=k+1; 
     segment(k,1)=i; 
     i=i+10; 
 end 
end 
  
  
vep_data = zeros(61,33); 
for i = 1:100 
    for j = 0:60 
        k = segment(i,1) + j; 
         
        for ch=1:33 
            vep_data(j+1,ch) = vep_data(j+1,ch) + data(k,ch); 
        end 
    end 
end 
  
for j = 0:60 
   for ch=1:33 
    vep_data(j+1,ch) = vep_data(j+1,ch)/61; 
   end 
end 
  
%%% normalize the outer ring VEP and tripolar VEP separately 
vep_data_tri = zeros(61,15); 
vep_data_outer = zeros(61,15); 
  
vep_data_tri(:,1) = vep_data(:, 1);  % Cp5 
vep_data_tri(:,2) = vep_data(:, 3);  % P3 
vep_data_tri(:,3) = vep_data(:, 17); % Pz 
vep_data_tri(:,4) = vep_data(:, 4); % P4 
vep_data_tri(:,5) = vep_data(:, 9); % CP6 
vep_data_tri(:,6) = vep_data(:, 10); % P5 
vep_data_tri(:,7) = vep_data(:, 11); % P6 
vep_data_tri(:,8) = vep_data(:, 19); % P7 
vep_data_tri(:,9) = vep_data(:, 12); % Po7 
vep_data_tri(:,10) = vep_data(:, 16); % Po3 
vep_data_tri(:,11) = vep_data(:, 32); % Poz 
vep_data_tri(:,12) = vep_data(:, 23); % Po4 
vep_data_tri(:,13) = vep_data(:, 25); % P8 
vep_data_tri(:,14) = vep_data(:, 27); % O1 
vep_data_tri(:,15) = vep_data(:, 29); % O2 
  
vep_data_outer(:,1) = vep_data(:, 2);  % Cp5 
vep_data_outer(:,2) = vep_data(:, 5);  % P3 
vep_data_outer(:,3) = vep_data(:, 6); % Pz 
vep_data_outer(:,4) = vep_data(:, 7); % P4 
vep_data_outer(:,5) = vep_data(:, 18); % CP6 
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vep_data_outer(:,6) = vep_data(:, 8); % P5
vep_data_outer(:,7) = vep_data(:, 13); % P6 
vep_data_outer(:,8) = vep_data(:, 14); % P7 
vep_data_outer(:,9) = vep_data(:, 15); % Po7 
vep_data_outer(:,10) = vep_data(:, 20); % Po3 
vep_data_outer(:,11) = vep_data(:, 33); % Poz 
vep_data_outer(:,12) = vep_data(:, 24); % Po4 
vep_data_outer(:,13) = vep_data(:, 26); % P8 
vep_data_outer(:,14) = vep_data(:, 28); % O1 
vep_data_outer(:,15) = vep_data(:, 30); % O2 
  
max_vep_data_tri = max(max(abs(vep_data_tri))); 
max_vep_data_outer = max(max(abs(vep_data_outer))); 
  
  
vep_data_tri = vep_data_tri/max_vep_data_tri; 
vep_data_outer = vep_data_outer/max_vep_data_outer; 
  
figure(2) 
  
plot(vep_data_tri, 'r'); 
hold on 
plot(vep_data_outer, 'k'); 
axis([1 61 -2 2]) 
hold off 
figure(1) 
C=0:1:60; 
C=C*200/61; 
plot(C, abs(fft(vep_data(:,3)))) 
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APPENDEX B: USB Interface Debugger Source Code 

// USB_DialogDlg.cpp : implementation file 

// 

 

 

#include "stdafx.h" 

#include "USB_Dialog.h" 

#include "USB_DialogDlg.h" 

#include <setupapi.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <conio.h> 

#include <winioctl.h> 

#include <Windows.h> 

#include <Mmsystem.h> 

#include "usb100.h" 

#include "usbscan.h" 

#include <mmsystem.h> 

#ifdef _DEBUG 

#define new DEBUG_NEW 

#endif 

 

 

// CAboutDlg dialog used for App About 

 

class CAboutDlg : public CDialog 

{ 

public: 

 CAboutDlg(); 

 

// Dialog Data 

 enum { IDD = IDD_ABOUTBOX }; 

 

 protected: 

 virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV support 

 

// Implementation 

protected: 

 DECLARE_MESSAGE_MAP() 

}; 

 

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD) 

{ 

} 

 

void CAboutDlg::DoDataExchange(CDataExchange* pDX) 

{ 

 CDialog::DoDataExchange(pDX); 

} 

 

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog) 

()
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END_MESSAGE_MAP() 

 

 

// CUSB_DialogDlg dialog 

 

 

CUSB_DialogDlg::CUSB_DialogDlg(CWnd* pParent /*=NULL*/) 

 : CDialog(CUSB_DialogDlg::IDD, pParent) 

{ 

 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME); 

     

 rcv_data_cnt = 0; 

 frame_mark_pre_flag = true; 

 frame_mark_pre_flag = false; 

     

} 

 

void CUSB_DialogDlg::DoDataExchange(CDataExchange* pDX) 

{ 

 CDialog::DoDataExchange(pDX); 

} 

 

BEGIN_MESSAGE_MAP(CUSB_DialogDlg, CDialog) 

 ON_WM_SYSCOMMAND() 

 ON_WM_PAINT() 

 ON_WM_QUERYDRAGICON() 

 ON_BN_CLICKED(IDC_CONFIGINFO, &CUSB_DialogDlg::OnBnClickedConfiginfo) 

 ON_BN_CLICKED(IDC_INFERFACEINFO, &CUSB_DialogDlg::OnBnClickedInferfaceinfo) 

 ON_BN_CLICKED(IDC_ENDPOINTSINFO, &CUSB_DialogDlg::OnBnClickedEndpointsinfo) 

 ON_BN_CLICKED(IDC_SWITCH, &CUSB_DialogDlg::OnBnClickedSwitch) 

 ON_BN_CLICKED(IDC_BulkTest, &CUSB_DialogDlg::OnBnClickedBulktest) 

 ON_EN_CHANGE(IDC_BULKIN, &CUSB_DialogDlg::OnEnChangeBulkin) 

 ON_BN_CLICKED(IDC_LEDBARREAD, &CUSB_DialogDlg::OnBnClickedLedbarread) 

 ON_BN_CLICKED(IDC_LEDBARSET, &CUSB_DialogDlg::OnBnClickedLedbarset) 

 ON_BN_CLICKED(IDC_7LEDREAD, &CUSB_DialogDlg::OnBnClicked7ledread) 

 ON_BN_CLICKED(IDC_7LEDSET, &CUSB_DialogDlg::OnBnClicked7ledset) 

 ON_BN_CLICKED(IDC_SPEEDTEST, &CUSB_DialogDlg::OnBnClickedSpeedtest) 

 ON_BN_CLICKED(IDC_STOPSPEEDTEST, &CUSB_DialogDlg::OnBnClickedStopspeedtest) 

 ON_BN_CLICKED(IDC_BULKREAD, &CUSB_DialogDlg::OnBnClickedBulkread) 

 ON_BN_CLICKED(IDC_BULKWRITE, &CUSB_DialogDlg::OnBnClickedBulkwrite) 

 ON_BN_CLICKED(IDC_BufStatus, &CUSB_DialogDlg::OnBnClickedBufstatus) 

 ON_BN_CLICKED(IDC_StTimer, &CUSB_DialogDlg::OnBnClickedSttimer) 

 ON_BN_CLICKED(IDC_StopTimer, &CUSB_DialogDlg::OnBnClickedStoptimer) 

 ON_BN_CLICKED(IDC_start1msres, &CUSB_DialogDlg::OnBnClickedstart1msres) 

 ON_BN_CLICKED(IDC_end1msres, &CUSB_DialogDlg::OnBnClickedend1msres) 

 ON_BN_CLICKED(IDC_BUFFERREAD, &CUSB_DialogDlg::OnBnClickedBufferread) 

 ON_BN_CLICKED(Datatest_Start, &CUSB_DialogDlg::OnBnClickedStart) 

 ON_BN_CLICKED(Datatest_End, &CUSB_DialogDlg::OnBnClickedEnd) 

 ON_WM_TIMER() 

END_MESSAGE_MAP() 

 

 

// CUSB_DialogDlg message handlers 
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 ON_BN_CLICKED(Datatest_End, &CUSB_DialogDlg::OnBnClickedEnd) 

 ON_WM_TIMER() 

END_MESSAGE_MAP() 

 

 

// CUSB_DialogDlg message handlers 

 

BOOL CUSB_DialogDlg::OnInitDialog() 

{ 

 CDialog::OnInitDialog(); 

 

 // Add "About..." menu item to system menu. 

 

 // IDM_ABOUTBOX must be in the system command range. 

 ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX); 

 ASSERT(IDM_ABOUTBOX < 0xF000); 

 

 CMenu* pSysMenu = GetSystemMenu(FALSE); 

 if (pSysMenu != NULL) 

 { 

  CString strAboutMenu; 

  strAboutMenu.LoadString(IDS_ABOUTBOX); 

  if (!strAboutMenu.IsEmpty()) 

  { 

   pSysMenu->AppendMenu(MF_SEPARATOR); 

   pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu); 

  } 

 } 

 

 // Set the icon for this dialog.  The framework does this automatically 

 //  when the application's main window is not a dialog 

 SetIcon(m_hIcon, TRUE);   // Set big icon 

 SetIcon(m_hIcon, FALSE);  // Set small icon 

 

 // TODO: Add extra initialization here 

 CTime ctime=CTime::GetCurrentTime(); 

 CString str; 

 str.Format(_T("USB Driver Testing Started at: %d-%2d-%2d %02d:%02d 

\r\n"),ctime.GetYear(),ctime.GetMonth(),ctime.GetDay(),ctime.GetHour(),ctime.GetMinut

e()); 

 //str.Format(_T("USB Driver Testing Started at: %b \r\n"),ctime.GetMonth()); 

 GetDlgItem(IDC_Display)->SetWindowText(str); 

    str.ReleaseBuffer(); 

 

 return TRUE;  // return TRUE  unless you set the focus to a control 

} 

 

void CUSB_DialogDlg::OnSysCommand(UINT nID, LPARAM lParam) 

{ 

 if ((nID & 0xFFF0) == IDM_ABOUTBOX) 

 { 

  CAboutDlg dlgAbout; 

  dlgAbout.DoModal(); 

 } 
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 else 

 { 

  CDialog::OnSysCommand(nID, lParam); 

 } 

} 

 

// If you add a minimize button to your dialog, you will need the code below 

//  to draw the icon.  For MFC applications using the document/view model, 

//  this is automatically done for you by the framework. 

 

void CUSB_DialogDlg::OnPaint() 

{ 

 if (IsIconic()) 

 { 

  CPaintDC dc(this); // device context for painting 

 

  SendMessage(WM_ICONERASEBKGND, 

reinterpret_cast<WPARAM>(dc.GetSafeHdc()), 0); 

 

  // Center icon in client rectangle 

  int cxIcon = GetSystemMetrics(SM_CXICON); 

  int cyIcon = GetSystemMetrics(SM_CYICON); 

  CRect rect; 

  GetClientRect(&rect); 

  int x = (rect.Width() - cxIcon + 1) / 2; 

  int y = (rect.Height() - cyIcon + 1) / 2; 

 

  // Draw the icon 

  dc.DrawIcon(x, y, m_hIcon); 

 } 

 else 

 { 

  CDialog::OnPaint(); 

 } 

} 

 

 

 

PSP_DEVICE_INTERFACE_DETAIL_DATA  CUSB_DialogDlg::GetDevicePath(LPGUID InterfaceGuid) 

{ 

  

    HDEVINFO HardwareDeviceInfo; 

    SP_DEVICE_INTERFACE_DATA DeviceInterfaceData; 

    PSP_DEVICE_INTERFACE_DETAIL_DATA DeviceInterfaceDetailData = NULL; 

    ULONG Length, RequiredLength = 0; 

    BOOL bResult; 

    

    HardwareDeviceInfo = SetupDiGetClassDevs( 

                             InterfaceGuid, 

                             NULL, 

                             NULL, 

                             (DIGCF_PRESENT | DIGCF_DEVICEINTERFACE)); 

 

    if (HardwareDeviceInfo == INVALID_HANDLE_VALUE) { 
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 // send this notification unless you override the CDialog::OnInitDialog() 

 // function and call CRichEditCtrl().SetEventMask() 

 // with the ENM_CHANGE flag ORed into the mask. 

 

 // TODO:  Add your control notification handler code here 

} 

 

CScrollBar* CUSB_DialogDlg::GetScrollBarCtrl(int nBar) const 

{ 

 // TODO: Add your specialized code here and/or call the base class 

     

 return CDialog::GetScrollBarCtrl(nBar); 

} 

 

 

PSP_DEVICE_INTERFACE_DETAIL_DATA  CUSB_DialogDlg::GetDevicePath(LPGUID InterfaceGuid) 

{ 

  

    HDEVINFO HardwareDeviceInfo; 

    SP_DEVICE_INTERFACE_DATA DeviceInterfaceData; 

    PSP_DEVICE_INTERFACE_DETAIL_DATA DeviceInterfaceDetailData = NULL; 

    ULONG Length, RequiredLength = 0; 

    BOOL bResult; 

    

    HardwareDeviceInfo = SetupDiGetClassDevs( 

                             InterfaceGuid, 

                             NULL, 

                             NULL, 

                             (DIGCF_PRESENT | DIGCF_DEVICEINTERFACE)); 

 

    if (HardwareDeviceInfo == INVALID_HANDLE_VALUE) { 

        printf("SetupDiGetClassDevs failed!\n"); 

        exit(1); 

    } 

    

    DeviceInterfaceData.cbSize = sizeof(SP_DEVICE_INTERFACE_DATA); 

 

    bResult = SetupDiEnumDeviceInterfaces(HardwareDeviceInfo, 

                                              0, 

                                              InterfaceGuid, 

                                              0, 

                                              &DeviceInterfaceData); 

 

    if (bResult == FALSE) { 

        printf("SetupDiEnumDeviceInterfaces failed.\n"); 

 

        SetupDiDestroyDeviceInfoList(HardwareDeviceInfo); 

        exit(1); 

    } 

 

 

    SetupDiGetDeviceInterfaceDetail( 

        HardwareDeviceInfo, 

        &DeviceInterfaceData, 
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        NULL, 

        0, 

        &RequiredLength, 

        NULL 

        ); 

 

    DeviceInterfaceDetailData = (PSP_DEVICE_INTERFACE_DETAIL_DATA) 

LocalAlloc(LMEM_FIXED, RequiredLength); 

 

    if (DeviceInterfaceDetailData == NULL) { 

        SetupDiDestroyDeviceInfoList(HardwareDeviceInfo); 

        printf("Failed to allocate memory.\n"); 

        exit(1); 

    } 

 

    DeviceInterfaceDetailData->cbSize = sizeof(SP_DEVICE_INTERFACE_DETAIL_DATA); 

 

    Length = RequiredLength; 

 

    bResult = SetupDiGetDeviceInterfaceDetail( 

                  HardwareDeviceInfo, 

                  &DeviceInterfaceData, 

                  DeviceInterfaceDetailData, 

                  Length, 

                  &RequiredLength, 

                  NULL); 

 

    if (bResult == FALSE) { 

        printf("Error in SetupDiGetDeviceInterfaceDetail\n"); 

 

        SetupDiDestroyDeviceInfoList(HardwareDeviceInfo); 

        LocalFree(DeviceInterfaceDetailData); 

        exit(1); 

    } 

  // AfxMessageBox(DeviceInterfaceDetailData->DevicePath); 

    return DeviceInterfaceDetailData; 

} 

 

 

void CUSB_DialogDlg::OnBnClickedDirection() 

{ 

 // TODO: Add your control notification handler code here 

 

 CString str, str_pre; 

  

 PSP_DEVICE_INTERFACE_DETAIL_DATA  DeviceInfo=GetDevicePath((LPGUID)& 

USBSample_DEVINTERFACE_GUID); 

 GetDlgItem(IDC_Display)->GetWindowText(str_pre); 

 str.Format(_T("%s \r\n"),DeviceInfo->DevicePath); 

 str=str_pre+_T("\r\nDriver Direction: \r\n")+str; 

    GetDlgItem(IDC_Display)->SetWindowText(str); 

 

 str.ReleaseBuffer(); 

 str_pre.ReleaseBuffer(); 
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} 

 

void CUSB_DialogDlg::OnBnClickedDeviceinfo() 

{ 

 // TODO: Add your control notification handler code here 

 CString str, str_pre; 

  

 PSP_DEVICE_INTERFACE_DETAIL_DATA  DeviceInfo=GetDevicePath((LPGUID)& 

USBSample_DEVINTERFACE_GUID); 

    HANDLE hDevice = CreateFile(DeviceInfo->DevicePath, 

                         GENERIC_READ|GENERIC_WRITE, 

                         FILE_SHARE_READ | FILE_SHARE_WRITE, 

                         NULL, 

                         OPEN_EXISTING, 

                         0, 

                         NULL ); 

 if (hDevice == INVALID_HANDLE_VALUE) { 

  printf("ERROR opening device: (%0x) returned from CreateFile\n", 

GetLastError()); 

    } 

     

 USB_DEVICE_DESCRIPTOR  UsbDeviceDescriptor; 

 DWORD junk; 

  

 if (!DeviceIoControl(hDevice, 

       USBSample_IOCTL_801, 

       NULL, 

       0, 

       (LPVOID) &UsbDeviceDescriptor, 

       18, 

       &junk, 

       (LPOVERLAPPED) NULL) 

    ) 

 { 

  printf("ERROR: DeviceIoControl returns %0x.\n", GetLastError()); 

  exit(1); 

 } 

 

  GetDlgItem(IDC_Display)->GetWindowText(str_pre); 

  str.Format(_T("\r\nUSB DEVICE DESCRIPTOR\r\nbLength: %d \r\nbDescriptorType: 

%d \r\nbcdUSB: %d \r\nbDeviceClass: %d \r\nbDeviceSubClass: %d\r\nbDeviceProtocol: %d 

\r\nbMaxPacketSize0: %d \r\nidVendor: %d \r\nidProduct: %d \r\nbcdDevice: %d 

\r\niManufacturer: %d \r\niProduct: %d \r\niSerialNumber: %d \r\nbNumConfigurations: 

%d \r\n"), 

  UsbDeviceDescriptor.bLength,UsbDeviceDescriptor.bDescriptorType, 

UsbDeviceDescriptor.bcdUSB,UsbDeviceDescriptor.bDeviceClass,  

  UsbDeviceDescriptor.bDeviceSubClass, 

UsbDeviceDescriptor.bDeviceProtocol, UsbDeviceDescriptor.bMaxPacketSize0,  

  UsbDeviceDescriptor.idVendor, UsbDeviceDescriptor.idProduct, 

UsbDeviceDescriptor.bcdDevice, UsbDeviceDescriptor.iManufacturer, 

UsbDeviceDescriptor.iProduct,  

  UsbDeviceDescriptor.iSerialNumber, 

UsbDeviceDescriptor.bNumConfigurations); 
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 str=str_pre+str; 

    GetDlgItem(IDC_Display)->SetWindowText(str); 

 

 str.ReleaseBuffer(); 

 str_pre.ReleaseBuffer(); 

} 

 

 

void CUSB_DialogDlg::OnBnClickedClear() 

{ 

 // TODO: Add your control notification handler code here 

 CTime ctime=CTime::GetCurrentTime(); 

 CString str; 

 str.Format(_T("USB Driver Testing Started at: %d-%2d-%2d %02d:%02d 

\r\n"),ctime.GetYear(),ctime.GetMonth(),ctime.GetDay(),ctime.GetHour(),ctime.GetMinut

e()); 

 GetDlgItem(IDC_Display)->SetWindowText(str); 

    str.ReleaseBuffer(); 

} 

 

void CUSB_DialogDlg::OnBnClickedConfiginfo() 

{ 

 // TODO: Add your control notification handler code here 

 CString str, str_pre; 

 PUSB_CONFIGURATION_DESCRIPTOR P_UsbConfigDescriptor; 

 P_UsbConfigDescriptor = (PUSB_CONFIGURATION_DESCRIPTOR) 

LocalAlloc(LMEM_FIXED, 100); 

 PSP_DEVICE_INTERFACE_DETAIL_DATA  DeviceInfo=GetDevicePath((LPGUID)& 

USBSample_DEVINTERFACE_GUID); 

    HANDLE hDevice = CreateFile(DeviceInfo->DevicePath, 

                         GENERIC_READ|GENERIC_WRITE, 

                         FILE_SHARE_READ | FILE_SHARE_WRITE, 

                         NULL, 

                         OPEN_EXISTING, 

                         0, 

                         NULL ); 

 if (hDevice == INVALID_HANDLE_VALUE) { 

  printf("ERROR opening device: (%0x) returned from CreateFile\n", 

GetLastError()); 

    } 

     

 

 DWORD junk; 

  

 if (!DeviceIoControl(hDevice, 

       USBSample_IOCTL_802, 

       NULL, 

       0, 

       (LPVOID) P_UsbConfigDescriptor, 

       100, 

       &junk, 

       (LPOVERLAPPED) NULL) 

    ) 

 { 
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  printf("ERROR: DeviceIoControl returns %0x.\n", GetLastError()); 

  exit(1); 

 } 

 

    GetDlgItem(IDC_Display)->GetWindowText(str_pre); 

 str.Format(_T("\r\nUSB CONFIGURATION DESCRIPTOR\r\nbLength: %d 

\r\nbDescriptorType: %d \r\nwTotalLength: %d \r\nbNumInterfaces: %d 

\r\nbConfigurationValue: %d \r\niConfiguration: %d \r\nbmAttributes: %d \r\nMaxPower: 

%d \r\n") 

  ,P_UsbConfigDescriptor->bLength,P_UsbConfigDescriptor-

>bDescriptorType,P_UsbConfigDescriptor->wTotalLength,P_UsbConfigDescriptor-

>bNumInterfaces,P_UsbConfigDescriptor->bConfigurationValue,P_UsbConfigDescriptor-

>iConfiguration 

  ,P_UsbConfigDescriptor->bmAttributes,P_UsbConfigDescriptor-

>MaxPower); 

    str=str_pre+str; 

    GetDlgItem(IDC_Display)->SetWindowText(str); 

     

 LocalFree(P_UsbConfigDescriptor); 

 str.ReleaseBuffer(); 

 str_pre.ReleaseBuffer(); 

} 

 

void CUSB_DialogDlg::OnBnClickedInferfaceinfo() 

{ 

 // TODO: Add your control notification handler code here 

 CString str, str_pre; 

 PUSB_CONFIGURATION_DESCRIPTOR    P_UsbConfigDescriptor; 

 PUSB_INTERFACE_DESCRIPTOR     P_UsbInterfaceDescriptor; 

 P_UsbConfigDescriptor = (PUSB_CONFIGURATION_DESCRIPTOR) 

LocalAlloc(LMEM_FIXED, 100); 

 PSP_DEVICE_INTERFACE_DETAIL_DATA  DeviceInfo=GetDevicePath((LPGUID)& 

USBSample_DEVINTERFACE_GUID); 

    HANDLE hDevice = CreateFile(DeviceInfo->DevicePath, 

                         GENERIC_READ|GENERIC_WRITE, 

                         FILE_SHARE_READ | FILE_SHARE_WRITE, 

                         NULL, 

                         OPEN_EXISTING, 

                         0, 

                         NULL ); 

 if (hDevice == INVALID_HANDLE_VALUE) { 

  printf("ERROR opening device: (%0x) returned from CreateFile\n", 

GetLastError()); 

    } 

     

 

 DWORD junk; 

  

 if (!DeviceIoControl(hDevice, 

       USBSample_IOCTL_802, 

       NULL, 

       0, 

       (LPVOID) P_UsbConfigDescriptor, 

       100, 
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       &junk, 

       (LPOVERLAPPED) NULL) 

    ) 

 { 

  printf("ERROR: DeviceIoControl returns %0x.\n", GetLastError()); 

  exit(1); 

 } 

 

 P_UsbInterfaceDescriptor=(PUSB_INTERFACE_DESCRIPTOR) ( (UCHAR 

*)P_UsbConfigDescriptor+P_UsbConfigDescriptor->bLength); 

 

    GetDlgItem(IDC_Display)->GetWindowText(str_pre); 

 str.Format(_T("\r\nUSB INTERFACE DESCRIPTOR\r\nbLength: %d 

\r\nbDescriptorType: %d \r\nbInterfaceNumber: %d \r\nbAlternateSetting: %d 

\r\nbNumEndpoints: %d \r\nbInterfaceClass: %d \r\nbInterfaceSubClass: %d 

\r\nbInterfaceProtocol: %d \r\niInterface: %d \r\n"), 

  P_UsbInterfaceDescriptor->bLength,P_UsbInterfaceDescriptor-

>bDescriptorType,P_UsbInterfaceDescriptor->bInterfaceNumber, 

P_UsbInterfaceDescriptor->bAlternateSetting, P_UsbInterfaceDescriptor->bNumEndpoints, 

  P_UsbInterfaceDescriptor->bInterfaceClass,P_UsbInterfaceDescriptor-

>bInterfaceSubClass,P_UsbInterfaceDescriptor-

>bInterfaceProtocol,P_UsbInterfaceDescriptor->iInterface); 

    str=str_pre+str; 

    GetDlgItem(IDC_Display)->SetWindowText(str); 

     

 LocalFree(P_UsbConfigDescriptor); 

 str.ReleaseBuffer(); 

 str_pre.ReleaseBuffer(); 

} 

 

void CUSB_DialogDlg::OnBnClickedEndpointsinfo() 

{ 

 // TODO: Add your control notification handler code here 

 int i; 

 CString str, str_pre; 

 PUSB_CONFIGURATION_DESCRIPTOR    P_UsbConfigDescriptor; 

 PUSB_ENDPOINT_DESCRIPTOR     P_UsbEndpointDescriptor; 

 P_UsbConfigDescriptor = (PUSB_CONFIGURATION_DESCRIPTOR) 

LocalAlloc(LMEM_FIXED, 100); 

 PSP_DEVICE_INTERFACE_DETAIL_DATA  DeviceInfo=GetDevicePath((LPGUID)& 

USBSample_DEVINTERFACE_GUID); 

    HANDLE hDevice = CreateFile(DeviceInfo->DevicePath, 

                         GENERIC_READ|GENERIC_WRITE, 

                         FILE_SHARE_READ | FILE_SHARE_WRITE, 

                         NULL, 

                         OPEN_EXISTING, 

                         0, 

                         NULL ); 

 if (hDevice == INVALID_HANDLE_VALUE) { 

  printf("ERROR opening device: (%0x) returned from CreateFile\n", 

GetLastError()); 

    } 
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 DWORD junk; 

  

 if (!DeviceIoControl(hDevice, 

       USBSample_IOCTL_802, 

       NULL, 

       0, 

       (LPVOID) P_UsbConfigDescriptor, 

       100, 

       &junk, 

       (LPOVERLAPPED) NULL) 

    ) 

 { 

  printf("ERROR: DeviceIoControl returns %0x.\n", GetLastError()); 

  exit(1); 

 } 

 

 for(i=0;i<2;i++){ 

  P_UsbEndpointDescriptor=(PUSB_ENDPOINT_DESCRIPTOR) ( (UCHAR 

*)P_UsbConfigDescriptor+9+9+7*i); 

 

  GetDlgItem(IDC_Display)->GetWindowText(str_pre); 

  str.Format(_T("\r\nUSB ENDPOINT DESCRIPTOR\r\nbLength: %d 

\r\nbDescriptorType: %d \r\nbEndpointAddress: %d \r\nbmAttributes: %d 

\r\nwMaxPacketSize: %d \r\nbInterval: %d \r\n"), 

   P_UsbEndpointDescriptor->bLength,P_UsbEndpointDescriptor-

>bDescriptorType,P_UsbEndpointDescriptor->bEndpointAddress, P_UsbEndpointDescriptor-

>bmAttributes, P_UsbEndpointDescriptor->wMaxPacketSize, P_UsbEndpointDescriptor-

>bInterval); 

  str=str_pre+str; 

  GetDlgItem(IDC_Display)->SetWindowText(str); 

 } 

  LocalFree(P_UsbConfigDescriptor); 

  str.ReleaseBuffer(); 

  str_pre.ReleaseBuffer(); 

} 

 

 

 

void CUSB_DialogDlg::OnBnClickedSwitch() 

{ 

 // TODO: Add your control notification handler code here 

 UCHAR * buffer; 

 CString str, str_pre; 

 PSP_DEVICE_INTERFACE_DETAIL_DATA  DeviceInfo=GetDevicePath((LPGUID)& 

USBSample_DEVINTERFACE_GUID); 

 buffer = (UCHAR *) LocalAlloc(LMEM_FIXED, 1); 

 

    HANDLE hDevice = CreateFile(DeviceInfo->DevicePath, 

                         GENERIC_READ|GENERIC_WRITE, 

                         FILE_SHARE_READ | FILE_SHARE_WRITE, 

                         NULL, 

                         OPEN_EXISTING, 

                         0, 
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                         NULL ); 

 if (hDevice == INVALID_HANDLE_VALUE) { 

  printf("ERROR opening device: (%0x) returned from CreateFile\n", 

GetLastError()); 

    } 

     

 

 DWORD junk; 

  

 if (!DeviceIoControl(hDevice, 

       USBSample_IOCTL_803, 

       NULL, 

       0, 

       (LPVOID) buffer, 

       1, 

       &junk, 

       (LPOVERLAPPED) NULL) 

    ) 

 { 

  printf("ERROR: DeviceIoControl returns %0x.\n", GetLastError()); 

 // exit(1); 

 } 

  

 GetDlgItem(IDC_Display)->GetWindowText(str_pre); 

  

 str.Format(_T("\r\nSWITCH STATUS: 0'x%x \r\n"),*buffer); 

 str=str_pre+str; 

 GetDlgItem(IDC_Display)->SetWindowText(str); 

 

 LocalFree(buffer); 

 str.ReleaseBuffer(); 

 str_pre.ReleaseBuffer(); 

} 

 

 

void CUSB_DialogDlg::OnBnClickedBulktest() 

{ 

 // TODO: Add your control notification handler code here 

 //wchar_t * input_buffer; 

 wchar_t * output_buffer; 

 int i; 

 CString str, str_pre,str_buf, str_temp, str_combine; 

 CString   send_context, received_context;  

 PSP_DEVICE_INTERFACE_DETAIL_DATA  DeviceInfo=GetDevicePath((LPGUID)& 

USBSample_DEVINTERFACE_GUID); 

  

    HANDLE hDevice = CreateFile(DeviceInfo->DevicePath, 

                         GENERIC_READ|GENERIC_WRITE, 

                         FILE_SHARE_READ | FILE_SHARE_WRITE, 

                         NULL, 

                         OPEN_EXISTING, 

                         0, 

                         NULL ); 

 if (hDevice == INVALID_HANDLE_VALUE) { 
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  printf("ERROR opening device: (%0x) returned from CreateFile\n", 

GetLastError()); 

    } 

     

 

  

    GetDlgItemText(IDC_BULKIN,send_context);  

 if (send_context.GetLength()==0) return; 

 

    output_buffer = (wchar_t *) LocalAlloc(LMEM_FIXED, 2*send_context.GetLength()); 

 

 DWORD junk; 

 if (!DeviceIoControl(hDevice, 

       USBSample_IOCTL_804, 

       send_context.GetBuffer(), 

       2*send_context.GetLength(), 

       (LPVOID) output_buffer, 

       2*send_context.GetLength(), 

       &junk, 

       (LPOVERLAPPED) NULL) 

    ) 

 { 

  printf("ERROR: DeviceIoControl returns %0x.\n", GetLastError()); 

 // exit(1); 

 } 

    

 wchar_t   *test= send_context.GetBuffer(); 

 

 for(i=0;i<send_context.GetLength();i++){ 

  str_temp.Format(_T("%c"),*(output_buffer+i)); 

        str_combine=str_combine+str_temp; 

 } 

     

 str.Format(_T("\r\nBULK TRANSACTION LETTERS: %s \r\n"),str_combine); 

 GetDlgItem(IDC_Display)->GetWindowText(str_pre); 

 str=str_pre+str; 

 GetDlgItem(IDC_Display)->SetWindowText(str); 

     

 send_context.ReleaseBuffer(); 

 LocalFree(output_buffer); 

 str_buf.ReleaseBuffer(); 

 str.ReleaseBuffer(); 

 str_pre.ReleaseBuffer(); 

} 

 

 

void CUSB_DialogDlg::OnEnChangeBulkin() 

{ 

 // TODO:  If this is a RICHEDIT control, the control will not 

 // send this notification unless you override the CDialog::OnInitDialog() 

 // function and call CRichEditCtrl().SetEventMask() 

 // with the ENM_CHANGE flag ORed into the mask. 
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 // TODO:  Add your control notification handler code here 

 

} 

 

 

void CUSB_DialogDlg::OnBnClickedLedbarread() 

{ 

 // TODO: Add your control notification handler code here 

    UCHAR * buffer; 

 UCHAR a,b; 

 CString str, str_pre; 

 PSP_DEVICE_INTERFACE_DETAIL_DATA  DeviceInfo=GetDevicePath((LPGUID)& 

USBSample_DEVINTERFACE_GUID); 

 buffer = (UCHAR *) LocalAlloc(LMEM_FIXED, 1); 

 

    HANDLE hDevice = CreateFile(DeviceInfo->DevicePath, 

                         GENERIC_READ|GENERIC_WRITE, 

                         FILE_SHARE_READ | FILE_SHARE_WRITE, 

                         NULL, 

                         OPEN_EXISTING, 

                         0, 

                         NULL ); 

 if (hDevice == INVALID_HANDLE_VALUE) { 

  printf("ERROR opening device: (%0x) returned from CreateFile\n", 

GetLastError()); 

  exit(1); 

    } 

     

 

 DWORD junk; 

  

 if (!DeviceIoControl(hDevice, 

       USBSample_IOCTL_805, 

       NULL, 

       0, 

       (LPVOID) buffer, 

       1, 

       &junk, 

       (LPOVERLAPPED) NULL) 

    ) 

 { 

  printf("ERROR: DeviceIoControl returns %0x.\n", GetLastError()); 

 // exit(1); 

 } 

  

 GetDlgItem(IDC_Display)->GetWindowText(str_pre); 

  

 a=*buffer; 

 

    b=(a>>5)|(a<<3); 

 str.Format(_T("\r\nLED BAR STATUS: 0'x%x \r\n"),b); 

 str=str_pre+str; 

 GetDlgItem(IDC_Display)->SetWindowText(str); 
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 LocalFree(buffer); 

 str.ReleaseBuffer(); 

 str_pre.ReleaseBuffer(); 

} 

 

 

void CUSB_DialogDlg::OnBnClickedLedbarset() 

{ 

 // TODO: Add your control notification handler code here   

 UCHAR a; 

 CString str, str_pre; 

 CButton    *pButton; 

 PSP_DEVICE_INTERFACE_DETAIL_DATA  DeviceInfo=GetDevicePath((LPGUID)& 

USBSample_DEVINTERFACE_GUID); 

   

    a=0; 

 pButton = (CButton *)GetDlgItem(IDC_CHECK1);   

    a+= 32*pButton->GetCheck();  

 

 pButton = (CButton *)GetDlgItem(IDC_CHECK2);   

    a+= 64*pButton->GetCheck();  

 

 pButton = (CButton *)GetDlgItem(IDC_CHECK3);   

    a+= 128*pButton->GetCheck();  

 

 pButton = (CButton *)GetDlgItem(IDC_CHECK4);   

    a+= pButton->GetCheck();  

 

 pButton = (CButton *)GetDlgItem(IDC_CHECK5);   

    a+= 2*pButton->GetCheck();  

 

 pButton = (CButton *)GetDlgItem(IDC_CHECK6);   

    a+= 4*pButton->GetCheck();  

 

 pButton = (CButton *)GetDlgItem(IDC_CHECK7);   

    a+= 8*pButton->GetCheck();  

 

 pButton = (CButton *)GetDlgItem(IDC_CHECK8);   

    a+= 16*pButton->GetCheck();  

 

    HANDLE hDevice = CreateFile(DeviceInfo->DevicePath, 

                         GENERIC_READ|GENERIC_WRITE, 

                         FILE_SHARE_READ | FILE_SHARE_WRITE, 

                         NULL, 

                         OPEN_EXISTING, 

                         0, 

                         NULL ); 

 if (hDevice == INVALID_HANDLE_VALUE) { 

  printf("ERROR opening device: (%0x) returned from CreateFile\n", 

GetLastError()); 

  exit(1); 

    } 
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 DWORD junk; 

 

 //a=170; 

  

 if (!DeviceIoControl(hDevice, 

       USBSample_IOCTL_806, 

       &a, 

       1, 

       NULL, 

       0, 

       &junk, 

       (LPOVERLAPPED) NULL) 

    ) 

 { 

  printf("ERROR: DeviceIoControl returns %0x.\n", GetLastError()); 

 // exit(1); 

 } 

  

 GetDlgItem(IDC_Display)->GetWindowText(str_pre); 

 

 str.Format(_T("\r\nSET LED BAR SUCCESS. \r\n")); 

 str=str_pre+str; 

 GetDlgItem(IDC_Display)->SetWindowText(str); 

 

// LocalFree(buffer); 

 str.ReleaseBuffer(); 

 str_pre.ReleaseBuffer(); 

} 

 

void CUSB_DialogDlg::OnBnClicked7ledread() 

{ 

 // TODO: Add your control notification handler code here 

    UCHAR * buffer; 

 UCHAR a,b; 

 CString str, str_pre; 

 PSP_DEVICE_INTERFACE_DETAIL_DATA  DeviceInfo=GetDevicePath((LPGUID)& 

USBSample_DEVINTERFACE_GUID); 

 buffer = (UCHAR *) LocalAlloc(LMEM_FIXED, 1); 

 

    HANDLE hDevice = CreateFile(DeviceInfo->DevicePath, 

                         GENERIC_READ|GENERIC_WRITE, 

                         FILE_SHARE_READ | FILE_SHARE_WRITE, 

                         NULL, 

                         OPEN_EXISTING, 

                         0, 

                         NULL ); 

 if (hDevice == INVALID_HANDLE_VALUE) { 

  printf("ERROR opening device: (%0x) returned from CreateFile\n", 

GetLastError()); 

  exit(1); 

    } 
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 DWORD junk; 

  

 if (!DeviceIoControl(hDevice, 

       USBSample_IOCTL_807, 

       NULL, 

       0, 

       (LPVOID) buffer, 

       1, 

       &junk, 

       (LPOVERLAPPED) NULL) 

    ) 

 { 

  printf("ERROR: DeviceIoControl returns %0x.\n", GetLastError()); 

 // exit(1); 

 } 

  

 GetDlgItem(IDC_Display)->GetWindowText(str_pre); 

  

 a=*buffer; 

 

    b=(a>>5)|(a<<3); 

 str.Format(_T("\r\nLED BAR STATUS: 0'x%x \r\n"),b); 

 str=str_pre+str; 

 GetDlgItem(IDC_Display)->SetWindowText(str); 

 

 LocalFree(buffer); 

 str.ReleaseBuffer(); 

 str_pre.ReleaseBuffer(); 

} 

 

void CUSB_DialogDlg::OnBnClickedt() 

{ 

 // TODO: Add your control notification handler code here 

  UCHAR a; 

 CString str, str_pre; 

 CButton    *pButton; 

 PSP_DEVICE_INTERFACE_DETAIL_DATA  DeviceInfo=GetDevicePath((LPGUID)& 

USBSample_DEVINTERFACE_GUID); 

   

    a=0; 

 pButton = (CButton *)GetDlgItem(IDC_CHECK9);   

    a+= 0x01*pButton->GetCheck();  

 

 pButton = (CButton *)GetDlgItem(IDC_CHECK10);   

    a+= 0x40*pButton->GetCheck();  

 

 pButton = (CButton *)GetDlgItem(IDC_CHECK11);   

    a+= 0x02*pButton->GetCheck();  

 

 pButton = (CButton *)GetDlgItem(IDC_CHECK12);   
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    a+= 0x20*pButton->GetCheck();  

 

 pButton = (CButton *)GetDlgItem(IDC_CHECK13);   

    a+= 0x10*pButton->GetCheck();  

 

 pButton = (CButton *)GetDlgItem(IDC_CHECK14);   

    a+= 0x04*pButton->GetCheck();  

 

 pButton = (CButton *)GetDlgItem(IDC_CHECK15);   

    a+= 0x80*pButton->GetCheck();  

 

 pButton = (CButton *)GetDlgItem(IDC_RADIO9);   

    a+= 0x08*pButton->GetCheck();  

 

    HANDLE hDevice = CreateFile(DeviceInfo->DevicePath, 

                         GENERIC_READ|GENERIC_WRITE, 

                         FILE_SHARE_READ | FILE_SHARE_WRITE, 

                         NULL, 

                         OPEN_EXISTING, 

                         0, 

                         NULL ); 

 if (hDevice == INVALID_HANDLE_VALUE) { 

  printf("ERROR opening device: (%0x) returned from CreateFile\n", 

GetLastError()); 

  exit(1); 

    } 

     

 

 DWORD junk; 

  

 if (!DeviceIoControl(hDevice, 

       USBSample_IOCTL_808, 

       &a, 

       1, 

       NULL, 

       0, 

       &junk, 

       (LPOVERLAPPED) NULL) 

    ) 

 { 

  printf("ERROR: DeviceIoControl returns %0x.\n", GetLastError()); 

 // exit(1); 

 } 

 

// LocalFree(buffer); 

 str.ReleaseBuffer(); 

 str_pre.ReleaseBuffer(); 

} 

 

 

HANDLE m_timerHandle=NULL; 

HANDLE hDevice_speed; 

PSP_DEVICE_INTERFACE_DETAIL_DATA  DeviceInfo_speed; 
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char data_send[512],data_rcv[512]; 

short a=1; 

LARGE_INTEGER lpFrequency, test_start, test_end; 

DWORD send_counter; 

 

VOID CALLBACK TimerProc(PVOID lpParam, BOOLEAN TimerOrWaitFired) 

{   

    DWORD junk; 

     

 ////////////// BULK trans //////////// 

    if (!DeviceIoControl( hDevice_speed, 

        USBSample_IOCTL_804, 

        data_send, 

        512, 

        data_rcv, 

        512, 

        &junk, 

        (LPOVERLAPPED) NULL) 

    ) 

 { 

  printf("ERROR: DeviceIoControl returns %0x.\n", GetLastError()); 

 // exit(1); 

 } 

  

    ///////////////////////////////////// 

 

    

   if (a==128) 

        a=1; 

   else a=a*2; 

   if (!DeviceIoControl( hDevice_speed, 

       USBSample_IOCTL_806, 

       &a, 

       1, 

       NULL, 

       0, 

       &junk, 

       (LPOVERLAPPED) NULL) 

    ) 

 { 

  //   return 0; 

 } 

    

    send_counter++; 

 

 if(send_counter==1)  QueryPerformanceCounter(&test_start); 

    QueryPerformanceCounter(&test_end); 

 

} 

void CUSB_DialogDlg::OnBnClickedSpeedtest() 

{ 

 // TODO: Add your control notification handler code here 

  DeviceInfo_speed=GetDevicePath((LPGUID)& USBSample_DEVINTERFACE_GUID); 
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  hDevice_speed = CreateFile(DeviceInfo_speed->DevicePath, 

                         GENERIC_READ|GENERIC_WRITE, 

                         FILE_SHARE_READ | FILE_SHARE_WRITE, 

                         NULL, 

                         OPEN_EXISTING, 

                         0, 

                         NULL ); 

 if (hDevice_speed == INVALID_HANDLE_VALUE) { 

  printf("ERROR opening device: (%0x) returned from CreateFile\n", 

GetLastError()); 

    } 

   

  

 

    send_counter=0; 

 DWORD elTime=5; 

   if(!CreateTimerQueueTimer( 

  &m_timerHandle, 

  NULL, 

  TimerProc, 

  //&hDevice, 

  this, 

  0, 

  elTime, 

  WT_EXECUTEINTIMERTHREAD)) 

 { 

        ; 

 } 

} 

 

void CUSB_DialogDlg::OnBnClickedStopspeedtest() 

{ 

 // TODO: Add your control notification handler code here 

 QueryPerformanceFrequency(&lpFrequency); 

 

    if(m_timerHandle!=NULL) 

 { 

  DeleteTimerQueueTimer(NULL, 

         m_timerHandle, 

         NULL 

            ); 

 } 

 

     

 DWORD time_spend = (test_end.QuadPart-

test_start.QuadPart)/lpFrequency.QuadPart; 

 DWORD transfer_speed=send_counter/time_spend; 

 CString str, str_pre; 

 

 GetDlgItem(IDC_Display)->GetWindowText(str_pre); 

 

 str.Format(_T("\r\nPacket Transfered: %d\r\n"), send_counter); 

 str_pre=str_pre+str; 



 

 98

 

 

  

 str.Format(_T("\r\nTime Spend(sec): %d\r\n"), time_spend); 

 str_pre=str_pre+str; 

    str.Format(_T("\r\nAverage Transfer Speed(packet/sec): %d\r\n"), transfer_speed); 

 str=str_pre+str; 

 GetDlgItem(IDC_Display)->SetWindowText(str); 

 

// LocalFree(buffer); 

 str.ReleaseBuffer(); 

 str_pre.ReleaseBuffer(); 

  

} 

 

 

#define  Num 512 

void CUSB_DialogDlg::OnBnClickedBulkread() // read one byte from endpoint of the USB 

{ 

 // TODO: Add your control notification handler code here 

// char * output_buffer; 

 CString str, str_pre, str_temp1, str_temp2;; 

 

 PSP_DEVICE_INTERFACE_DETAIL_DATA  DeviceInfo=GetDevicePath((LPGUID)& 

USBSample_DEVINTERFACE_GUID); 

  

    HANDLE hDevice = CreateFile(DeviceInfo->DevicePath, 

                         GENERIC_READ|GENERIC_WRITE, 

                         FILE_SHARE_READ | FILE_SHARE_WRITE, 

                         NULL, 

                         OPEN_EXISTING, 

                         0, 

                         NULL ); 

 if (hDevice == INVALID_HANDLE_VALUE) { 

  printf("ERROR opening device: (%0x) returned from CreateFile\n", 

GetLastError()); 

    } 

     

 

    //data_buffer = (char*) LocalAlloc(LMEM_FIXED, 512); 

  

    unsigned char rec_letter[Num]; 

 DWORD junk; 

 if (!DeviceIoControl(hDevice, 

       USBSample_IOCTL_811, 

       NULL, 

       0, 

       &rec_letter, 

       Num, 

       &junk, 

       (LPOVERLAPPED) NULL) 

    ) 

 { 

  printf("ERROR: DeviceIoControl returns %0x.\n", GetLastError()); 

 // exit(1); 



 

 99

 

 } 

    

 int i; 

 

  

 unsigned int temp1, temp2; 

 wchar_t  display_letter[Num*3]; 

 for(i=0;i<Num; i++) 

 {   

    temp1=rec_letter[i]&0x0F; 

    temp2=rec_letter[i]>>4; 

 

    if(temp1 <= 9 && temp1 >= 0) temp1=temp1+48; 

    else if(temp1 <= 15 && temp1 >= 10) temp1=temp1+55; 

       //else if(str_in.GetAt(i) <= 102  && str_in.GetAt(i) >= 97) 

temp=str_in.GetAt(i)-87; 

    else return; 

 

    if(temp2 <= 9 && temp2 >= 0) temp2=temp2+48; 

    else if(temp2 <= 15 && temp2 >= 10) temp2=temp2+55; 

       else return; 

 

       display_letter[3*i]=temp2; 

    display_letter[3*i+1]=temp1; 

    display_letter[3*i+2]=' ';   

 } 

     

 //str.Empty(); 

 for(i=0;i<Num*3; i++) 

 { 

       str_temp1.Format(_T("%c"),display_letter[i]); 

    str_temp2 = str_temp2 + str_temp1; 

 } 

  

 //str_temp.Format(_T("%c"),display_letter[i]); 

    str.Format(_T("\r\nReceived data: %s \r\n"),str_temp2); 

 

 GetDlgItem(IDC_Display)->GetWindowText(str_pre); 

 str=str_pre+str; 

 GetDlgItem(IDC_Display)->SetWindowText(str); 

 

 //LocalFree(output_buffer); 

 str.ReleaseBuffer(); 

 str_pre.ReleaseBuffer(); 

} 

 

void CUSB_DialogDlg::OnBnClickedBulkwrite() 

{ 

 // TODO: Add your control notification handler code here 

// wchar_t * output_buffer; 

 int i; 

 unsigned char letter_in[512], temp; 

 CString str_in, str, str_pre,str_buf, str_temp, str_combine; 

 CString   send_context, received_context;  
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 PSP_DEVICE_INTERFACE_DETAIL_DATA  DeviceInfo=GetDevicePath((LPGUID)& 

USBSample_DEVINTERFACE_GUID); 

  

    HANDLE hDevice = CreateFile(DeviceInfo->DevicePath, 

                         GENERIC_READ|GENERIC_WRITE, 

                         FILE_SHARE_READ | FILE_SHARE_WRITE, 

                         NULL, 

                         OPEN_EXISTING, 

                         0, 

                         NULL ); 

 if (hDevice == INVALID_HANDLE_VALUE) { 

  printf("ERROR opening device: (%0x) returned from CreateFile\n", 

GetLastError()); 

    } 

     

    for(i=0;i<512;i++){ 

      letter_in[i]=0; 

   } 

 //   output_buffer = (wchar_t *) LocalAlloc(LMEM_FIXED, 2*send_context.GetLength()); 

   GetDlgItem(IDC_BULKIN)->GetWindowText(str_in); 

   int atext1 = str_in.GetAt(0); 

   int atext2 = str_in.GetAt(1); 

   int atext3 = str_in.GetAt(2); 

   int atext4 = str_in.GetAt(3); 

   int ttt = str_in.GetLength(); 

   if(str_in.GetLength() == 0) return; 

   else if((str_in.GetLength()%2) != 0) return; 

   bool high4_flag = TRUE; 

   int index=0; 

   for(i=0;i<str_in.GetLength();i++){ 

 

    if(str_in.GetAt(i) <= 57 && str_in.GetAt(i) >= 48) temp=str_in.GetAt(i)-

48; 

    else if(str_in.GetAt(i) <= 70 && str_in.GetAt(i) >= 65) 

temp=str_in.GetAt(i)-55; 

       else if(str_in.GetAt(i) <= 102  && str_in.GetAt(i) >= 97) 

temp=str_in.GetAt(i)-87; 

    else return; 

 

    if (high4_flag == TRUE){ 

       letter_in[index] = (temp<<4); 

    high4_flag =FALSE; 

    } 

    else{ 

       letter_in[index] += temp; 

    high4_flag =TRUE; 

    index ++; 

    } 

 

   }  

 

   int send_text0=letter_in[0]; 

   int send_text1=letter_in[1]; 

   int send_text2=letter_in[2]; 
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int send_text3=letter_in[3]; 

   int send_text4=letter_in[4]; 

   int send_text5=letter_in[5]; 

   int send_text6=letter_in[6]; 

   int send_text7=letter_in[7]; 

   int send_text8=letter_in[8]; 

   int send_text9=letter_in[9]; 

 

 DWORD junk; 

 if (!DeviceIoControl(hDevice, 

       USBSample_IOCTL_809, 

       &letter_in, 

       512, 

       NULL, 

       0, 

       &junk, 

       (LPOVERLAPPED) NULL) 

    ) 

 { 

  printf("ERROR: DeviceIoControl returns %0x.\n", GetLastError()); 

 // exit(1); 

 } 

 

     

 str.Format(_T("\r\nSent data: %c \r\n"),letter_in); 

 GetDlgItem(IDC_Display)->GetWindowText(str_pre); 

 str=str_pre+str; 

 GetDlgItem(IDC_Display)->SetWindowText(str); 

     

 send_context.ReleaseBuffer(); 

// LocalFree(output_buffer); 

 str_buf.ReleaseBuffer(); 

 str.ReleaseBuffer(); 

 str_pre.ReleaseBuffer(); 

} 

 

void CUSB_DialogDlg::OnBnClickedBufstatus() 

{ 

 // TODO: Add your control notification handler code here 

 char * output_buffer; 

 CString str, str_pre, str_temp1, str_temp2;; 

 

 PSP_DEVICE_INTERFACE_DETAIL_DATA  DeviceInfo=GetDevicePath((LPGUID)& 

USBSample_DEVINTERFACE_GUID); 

  

    HANDLE hDevice = CreateFile(DeviceInfo->DevicePath, 

                         GENERIC_READ|GENERIC_WRITE, 

                         FILE_SHARE_READ | FILE_SHARE_WRITE, 

                         NULL, 

                         OPEN_EXISTING, 

                         0, 

                         NULL ); 

 if (hDevice == INVALID_HANDLE_VALUE) { 

  printf("ERROR opening device: (%0x) returned from CreateFile\n", 
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GetLastError()); 

    } 

     

 

    //data_buffer = (char*) LocalAlloc(LMEM_FIXED, 512); 

    //unsigned char rec_letter[1]; 

 int rec_letter[1]; 

 DWORD junk; 

 if (!DeviceIoControl(hDevice, 

       USBSample_IOCTL_812, 

       NULL, 

       0, 

       &rec_letter, 

       4, 

       &junk, 

       (LPOVERLAPPED) NULL) 

    ) 

 { 

  printf("ERROR: DeviceIoControl returns %0x.\n", GetLastError()); 

 // exit(1); 

 } 

  

 int test0 = rec_letter[0]; 

    str.Format(_T("\r\nBuffer Status: %d\r\n"),rec_letter[0]); 

 

 GetDlgItem(IDC_Display)->GetWindowText(str_pre); 

 str=str_pre+str; 

 GetDlgItem(IDC_Display)->SetWindowText(str); 

 

 //LocalFree(output_buffer); 

 str.ReleaseBuffer(); 

 str_pre.ReleaseBuffer(); 

} 

 

void CUSB_DialogDlg::OnBnClickedSttimer() 

{ 

 // TODO: Add your control notification handler code here 

 PSP_DEVICE_INTERFACE_DETAIL_DATA  DeviceInfo=GetDevicePath((LPGUID)& 

USBSample_DEVINTERFACE_GUID); 

 

 HANDLE hDevice = CreateFile(DeviceInfo->DevicePath, 

                         GENERIC_READ|GENERIC_WRITE, 

                         FILE_SHARE_READ | FILE_SHARE_WRITE, 

                         NULL, 

                         OPEN_EXISTING, 

                         0, 

                         NULL ); 

 if (hDevice == INVALID_HANDLE_VALUE) { 

  printf("ERROR opening device: (%0x) returned from CreateFile\n", 

GetLastError()); 

    } 

 

 DWORD junk; 

 if (!DeviceIoControl(hDevice, 
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       USBSample_IOCTL_813, 

       NULL, 

       0, 

       NULL, 

       0, 

       &junk, 

       (LPOVERLAPPED) NULL) 

    ) 

 { 

  printf("ERROR: DeviceIoControl returns %0x.\n", GetLastError()); 

 // exit(1); 

 } 

 

} 

 

void CUSB_DialogDlg::OnBnClickedStoptimer() 

{ 

 // TODO: Add your control notification handler code here 

 PSP_DEVICE_INTERFACE_DETAIL_DATA  DeviceInfo=GetDevicePath((LPGUID)& 

USBSample_DEVINTERFACE_GUID); 

 

 HANDLE hDevice = CreateFile(DeviceInfo->DevicePath, 

                         GENERIC_READ|GENERIC_WRITE, 

                         FILE_SHARE_READ | FILE_SHARE_WRITE, 

                         NULL, 

                         OPEN_EXISTING, 

                         0, 

                         NULL ); 

 if (hDevice == INVALID_HANDLE_VALUE) { 

  printf("ERROR opening device: (%0x) returned from CreateFile\n", 

GetLastError()); 

    } 

 

 DWORD junk; 

 if (!DeviceIoControl(hDevice, 

       USBSample_IOCTL_814, 

       NULL, 

       0, 

       NULL, 

       0, 

       &junk, 

       (LPOVERLAPPED) NULL) 

    ) 

 { 

  printf("ERROR: DeviceIoControl returns %0x.\n", GetLastError()); 

 // exit(1); 

 } 

} 

 

void CUSB_DialogDlg::OnBnClickedstart1msres() 

{ 

 // TODO: Add your control notification handler code here 

 timeBeginPeriod(1); 

} 
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void CUSB_DialogDlg::OnBnClickedend1msres() 

{ 

 // TODO: Add your control notification handler code here 

 timeEndPeriod(1); 

} 

 

void CUSB_DialogDlg::OnBnClickedBufferread() 

{ 

 // TODO: Add your control notification handler code here 

 CString str, str_pre; 

 unsigned char data_buffer[512*128]; 

 DWORD nNumberOfBytesToRead = 512*128; 

 DWORD lpNumberOfBytesRead; 

 int i,k; 

     

 PSP_DEVICE_INTERFACE_DETAIL_DATA  DeviceInfo=GetDevicePath((LPGUID)& 

USBSample_DEVINTERFACE_GUID); 

 

 HANDLE hDevice = CreateFile(DeviceInfo->DevicePath, 

                         GENERIC_READ|GENERIC_WRITE, 

                         FILE_SHARE_READ | FILE_SHARE_WRITE, 

                         NULL, 

                         OPEN_EXISTING, 

                         0, 

                         NULL ); 

 if (hDevice == INVALID_HANDLE_VALUE) { 

  printf("ERROR opening device: (%0x) returned from CreateFile\n", 

GetLastError()); 

    } 

 

    ReadFile( 

     hDevice, 

     data_buffer, 

     nNumberOfBytesToRead, 

     &lpNumberOfBytesRead, 

     NULL 

    ); 

  

    int test0 = nNumberOfBytesToRead; 

    int test1 = lpNumberOfBytesRead; 

 

    int Num_Frame = lpNumberOfBytesRead/512; 

 

 unsigned int temp1, temp2; 

 wchar_t  display_letter[Num*3]; 

 for(k=0;k<Num_Frame;k++) 

 {    

  CString  str_temp1, str_temp2, str_data, str_num; 

  for(i=0;i<Num; i++) 

  {   

    temp1=data_buffer[i+512*k]&0x0F; 

    temp2=data_buffer[i+512*k]>>4; 

 

    if(temp1 <= 9 && temp1 >= 0) temp1=temp1+48; 
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     else if(temp1 <= 15 && temp1 >= 10) temp1=temp1+55; 

     //else if(str_in.GetAt(i) <= 102  && str_in.GetAt(i) >= 97) 

temp=str_in.GetAt(i)-87; 

     else return; 

 

     if(temp2 <= 9 && temp2 >= 0) temp2=temp2+48; 

     else if(temp2 <= 15 && temp2 >= 10) temp2=temp2+55; 

     else return; 

 

     display_letter[3*i]=temp2; 

     display_letter[3*i+1]=temp1; 

     display_letter[3*i+2]=' ';   

  } 

     

  //str.Empty(); 

  for(i=0;i<Num*3; i++) 

  { 

     str_temp1.Format(_T("%c"),display_letter[i]); 

     str_temp2 = str_temp2 + str_temp1; 

  } 

         

        str_num.Format(_T("\r\nReceived data frame %d: \r\n"),k); 

  str_data.Format(_T("\r\n%s %s \r\n"),str_num,str_temp2); 

 

  str=str+str_data; 

 

  str_temp1.ReleaseBuffer(); 

  str_temp2.ReleaseBuffer(); 

  str_data.ReleaseBuffer(); 

  str_num.ReleaseBuffer(); 

 }    

     GetDlgItem(IDC_Display)->GetWindowText(str_pre); 

     str=str_pre+str; 

  GetDlgItem(IDC_Display)->SetWindowText(str); 

 //LocalFree(output_buffer); 

 str.ReleaseBuffer(); 

 str_pre.ReleaseBuffer(); 

  

     

 

  

} 

 

 

VOID CALLBACK TimerProc_DataTest(PVOID lpParam, BOOLEAN TimerOrWaitFired) 

{   

    

 DWORD junk, lpNumberOfBytesRead; 

 int i,j; 

    int frame_rcvd; 

    unsigned char temp[512*128]; 

 

     

 ////////////// BULK read ////////////  
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DeviceInfo=CUSB_DialogDlg::GetDevicePath((LPGUID)& USBSample_DEVINTERFACE_GUID); 

 

 HANDLE hDevice = CreateFile(((CUSB_DialogDlg*)lpParam)->DeviceInfo_timer-

>DevicePath, 

                         GENERIC_READ|GENERIC_WRITE, 

                         FILE_SHARE_READ | FILE_SHARE_WRITE, 

                         NULL, 

                         OPEN_EXISTING, 

                         0, 

                         NULL ); 

 if (hDevice == INVALID_HANDLE_VALUE) { 

  printf("ERROR opening device: (%0x) returned from CreateFile\n", 

GetLastError()); 

    } 

 

 ReadFile( 

     hDevice, 

              &temp, 

              512*128, 

     &lpNumberOfBytesRead, 

     NULL 

   ); 

 

 frame_rcvd = lpNumberOfBytesRead/512; // count the received frames 

 

 // retrieve frame mark 

    int num_frame = 17; 

    int test1 = temp[512*0+24*5]; 

 int test2 = temp[512*0+24*6]; 

 int test3 = temp[512*0+24*7]; 

 int test4 = temp[512*0+24*17+4]; 

  

 for(i=0;i<frame_rcvd;i++) 

 {    

  for(j=0;j<4;j++) 

  { 

   //((CUSB_DialogDlg*)lpParam)->frame_mark_cur = 

temp[512*i+24*num_frame]*(2^24); 

   int test5 = temp[512*i+24*num_frame+0]; 

   int test6 = temp[512*i+24*num_frame+1]; 

   int test7 = temp[512*i+24*num_frame+2]; 

   int test8 = temp[512*i+24*num_frame+3]; 

             

      ((CUSB_DialogDlg*)lpParam)->frame_mark_cur[0] =  

temp[512*i+24*num_frame+0]; 

   ((CUSB_DialogDlg*)lpParam)->frame_mark_cur[1] =  

temp[512*i+24*num_frame+1]; 

   ((CUSB_DialogDlg*)lpParam)->frame_mark_cur[2] =  

temp[512*i+24*num_frame+2]; 

   ((CUSB_DialogDlg*)lpParam)->frame_mark_cur[3] =  

temp[512*i+24*num_frame+3]; 

  } 

      

  ((CUSB_DialogDlg*)lpParam)->Diff0.Add(((CUSB_DialogDlg*)lpParam)-
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>frame_mark_cur[0]); 

  ((CUSB_DialogDlg*)lpParam)->Diff1.Add(((CUSB_DialogDlg*)lpParam)-

>frame_mark_cur[1]); 

  ((CUSB_DialogDlg*)lpParam)->Diff2.Add(((CUSB_DialogDlg*)lpParam)-

>frame_mark_cur[2]); 

  ((CUSB_DialogDlg*)lpParam)->Diff3.Add(((CUSB_DialogDlg*)lpParam)-

>frame_mark_cur[3]); 

 

  if(i == frame_rcvd-1) 

   ((CUSB_DialogDlg*)lpParam)->Diff_End_Flag.Add(true); 

  else 

   ((CUSB_DialogDlg*)lpParam)->Diff_End_Flag.Add(false); 

 

  DWORD test5 = ((CUSB_DialogDlg*)lpParam)->frame_mark_cur[3]; 

  int test9=0; 

 }    

 

  ((CUSB_DialogDlg*)lpParam)->frame_mark_pre_flag 

= !((CUSB_DialogDlg*)lpParam)->frame_mark_pre_flag; 

  

  ((CUSB_DialogDlg*)lpParam)->Diff_CNT ++; 

 

} 

 

 

 

void CUSB_DialogDlg::OnBnClickedStart() 

{ 

 // TODO: Add your control notification handler code here 

 

    DeviceInfo_timer=GetDevicePath((LPGUID)& USBSample_DEVINTERFACE_GUID); 

 

    Diff_CNT = 0; 

    Diff0.RemoveAll(); 

 Diff1.RemoveAll(); 

 Diff2.RemoveAll(); 

 Diff3.RemoveAll(); 

 Diff_End_Flag.RemoveAll(); 

// Diff0.SetSize(1000,1000); 

 timeBeginPeriod(1); 

 DWORD elTime=1; //ms 

   if(!CreateTimerQueueTimer( 

  &m_timerHandle, 

  NULL, 

  TimerProc_DataTest, 

  //&hDevice, 

  this, 

  0, 

  elTime, 

  WT_EXECUTEINTIMERTHREAD)) 

 { 

       int a =0 ; 

 } 

 

    return; 

} 

 

void CUSB_DialogDlg::OnBnClickedEnd() 

{ 

 // TODO: Add your control notification handler code here 

 

 DeleteTimerQueueTimer(NULL, 

                    m_timerHandle, 

        INVALID_HANDLE_VALUE  

        ); 

    timeEndPeriod(1); 

 

 CString str,str_temp, str_pre; 

 

 for(DWORD i =0; i< Diff0.GetSize(); ++i) 

 { 

    str_temp.Format(_T("%d"),Diff0.GetAt(i)); 

    str = str + str_temp; 

 

    str_temp.Format(_T("  %d"),Diff1.GetAt(i)); 

    str = str + str_temp; 

 

    str_temp.Format(_T("  %d"),Diff2.GetAt(i)); 

    str = str + str_temp; 

 

    str_temp.Format(_T("  %d\r\n"),Diff3.GetAt(i)); 

    str = str + str_temp; 

 

    if(Diff_End_Flag.GetAt(i) == true) 

    { 

     

str_temp.Format(_T("%s\r\n"),_T("++++++++++++++++++++++++++++++++++++")); 

     str = str + str_temp; 

    } 

          

 

 } 

 

 GetDlgItem(IDC_Display)->GetWindowText(str_pre); 

 str=str_pre+str; 

 GetDlgItem(IDC_Display)->SetWindowText(str); 

 

 str.ReleaseBuffer(); 

 str_pre.ReleaseBuffer(); 

 

} 

 

void CUSB_DialogDlg::OnTimer(UINT_PTR nIDEvent) 

{ 

 // TODO: Add your message handler code here and/or call default 

 CDialog::OnTimer(nIDEvent); 

} 
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