
University of Rhode Island University of Rhode Island

DigitalCommons@URI DigitalCommons@URI

Open Access Dissertations

2013

A Comparison of Tripolar Concentric Ring Electrodes to Disc A Comparison of Tripolar Concentric Ring Electrodes to Disc

Electrodes and an EEG Real-Time Seizure Detector Design Electrodes and an EEG Real-Time Seizure Detector Design

Xiang Liu
University of Rhode Island, xiang_liu@my.uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss

Terms of Use
All rights reserved under copyright.

Recommended Citation Recommended Citation
Liu, Xiang, "A Comparison of Tripolar Concentric Ring Electrodes to Disc Electrodes and an EEG Real-Time
Seizure Detector Design" (2013). Open Access Dissertations. Paper 69.
https://digitalcommons.uri.edu/oa_diss/69

This Dissertation is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open
Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please
contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/oa_diss
https://digitalcommons.uri.edu/oa_diss?utm_source=digitalcommons.uri.edu%2Foa_diss%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/oa_diss/69?utm_source=digitalcommons.uri.edu%2Foa_diss%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu

A COMPARISON OF TRIPOLAR CONCENTRIC RING

ELECTRODES TO DISC ELECTRODES AND AN EEG

REAL-TIME SEIZURE DETECTOR DESIGN

BY

XIANG LIU

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

ELECTRICAL ENGINEERING

UNIVERSITY OF RHODE ISLAND

2013

DOCTOR OF PHILOSOPHY DISSERTATION

OF

XIANG LIU

APPROVED:

Thesis Committee:

Major Professor Walter G. Besio

 Ying Sun

 Zongqin Zhang

 Nasser H. Zawia

 DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND
2013

ABSTRACT

The electroencephalogram (EEG) is broadly used for research of brain activities and

diagnosis of brain diseases and disorders. Although the EEG provides good temporal

resolution, millisecond or less, it does not provide very good spatial resolution. There

are two main reasons for the poor spatial resolution, (1) the blurring effects of the head

volume conductor, and (2) poor signal to noise ratio. The surface Laplacian of the

potential distribution was found to increase the spatial resolution. Several potential

interpolation based methods were previously developed to estimate the surface

Laplacian. However, these methods are generally complicated in terms of computation,

which limits their real-time applications. Previously a special electrode, the tripolar

concentric ring electrode (TCRE), was developed and proven to be a much simpler

approach to estimate the surface Laplacian while achieving significantly better signal

to noise ratio and approximation to the surface Laplacian. In the first part of the

dissertation work, computer simulations comparing spatial resolution between

conventional EEG disc electrode sensors and TCRE Laplacian sensors were

performed. For verification of the computer simulations visual evoked stimulus

experiments were performed to acquire visual evoked potentials (VEPs) from healthy

human subjects. Analysis of the computer simulation results shows that the TCRE

Laplacian sensors can provide approximately a ten-fold improvement in spatial

resolution and pass signals from specific volumes. Placing TCRE sensors near the

brain region of interest should allow passage of the wanted signals and reject distant

interference signals. It was also shown that the TCRE VEPs appeared to separate

sources better than disc electrode VEPs. In the second part, a tripolar EEG based

automatic seizure detection algorithm was developed for rats, the paramters of the

detector was optimized based on the recorded data. According to this algorithm, a

Matlab based real-time detector was implimented and tested. In the last part of the

dissertation, a prototype of FPGA based automatic seizure detector was Described,

which has the ability to detect signal from many more channels real-time. An multi-

channel EEG monitor system was also described.

iv

ACKNOWLEDGMENTS

I would like to express the deepest appreciation to my advisor, Dr. Walter

Besio, who has the attitude and the substance of a genius: he continually and

convincingly conveyed a spirit of adventure in regard to research and scholarship.

Without his guidance and persistent help this dissertation would not have been

possible.

I would like to thank my committee chair Dr. Jyh-Hone Wang, my committee

members Dr. Ying Sun, Dr. Zongqin Zhang and Dr. Resit Sendag for serving as my

committee members and providing valuable ideas and suggestions for my dissertation.

I would also like to express my appreciation to Dr. Kanthaiah Koka, Dr. Oleksandr

Makeyev, Samuel Mucio, Dr. Hiram Luna-Munguía, Dr. Gabriela Rogel-Salazar,

Yacine Boudria, Amal Feltane and Zhenghan Zhu for their help on my research during

my Ph. D study.

 Finally, I would like to express my appreciation and love to my wife Liling

Wang, my parents Xinhua Liu and Heping Wang. Without their continuous support

and encouragement, I won’t be able to finish my research and dissertation.

v

TABLE OF CONTENTS

ABSTRACT …………………………………………………………………………...ii

ACKNOWLEDGEMENTS …………………………………………………………..iv

TABLE OF CONTENTS ……………………………………………………………...v

LIST OF TABLES……………………………... …………………………………...viii

LIST OF FIGURES……………………………... …………………………………...ix

CHAPTER 1: INTRODUCTION ... 1

1.1 Electroencephalography...1

1.2 Epilepsy Seizure Detection ...3

1.3 Hardware Implementation of the Seizure Detector...6

1.4 EEG recording system ...6

CHAPTER 2: THE COMPARISON OF TRIPOLAR CONCENTRIC RING

ELECTRODES TO CONVENTIONAL DISC ELECTRODES............................. 8

2.1 Local Surface Laplacian Estimation Based On TCRE ...8

2.2 Global Surface Laplacian Estimation Based On Spherical Spline Interpolation..............10

2.3 The Four‐layer Spherical Head Model and the Analytical Surface Laplacian11

2.4 Computer Simulation Methods ..13

2.5 Computer Simulation Results ...16

2.6 Visual Evoked Surface Potential (VEP) Recording Experiment Setup........................22

2.7 Visual Evoked Surface Potential (VEP) Recording Experiment Results...........................24

2.8 Disscusion of the Spatial Resolution Comparison ..25

2.9 Conclusion...27

vi

CHAPTER 3: THE DEVELOPMENT OF AUTOMATIC EPILEPSY SEIZURE

DETECTION ALGORITHMS ON RATS .. 28

3.1 Introduction of the Seizure Detection ..28

3.2 Methods of Developing and Optimizeing the Automatic Seizure Detector29

3.3 Real Experimental Testing Resutls..34

3.4 Discussion ...37

3.5 Conclusion...38

CHAPTER 4: EEG RECORDING SYSTEM AND REAL TIME AUTOMATIC

SEIZURE DETECTOR ... 39

4.1 Introduction ..39

4.2 Methods..40

4.2.1 System Considerations ..41

4.2.2 Hardware Connection..43

4.2.3 FPGA Logic Structure ...45

4.2.4 Multi‐Channel FFT Processor Design ...46

4.2.5 CUSUM Detector Design..51

4.2.6 Software Design...53

4.3 Results...61

4.4 Discussion ...65

4.5 Conclusion...65

CHAPTER 5: FUTURE WORK.. 66

5.1 Resistor Inductor Capacitor (RLC) Model of TCRE Recording ...66

5.2 Optimized TCRE Preamplifier Development...67

5.3 Need for a More Portable Automatic Seizure Detection and Alarm System69

REFERENCES ... 71

vii

APPENDIXES ... 75

APPENDEX A: Matlab Code for VEP Data Processing ...75

APPENDEX B: USB Interface Debugger Source Code..78

BIBLIOGRAPHY.. 109

viii

LIST OF TABLES

TABLE PAGE

Table 1 Locations and the moments of the source dipoles 14

Table 2 Correlation in noiseless situation .. 19

Table 3 Correlation coefficient with the presence of white Gaussian noise 19

Table 4 Correlation coefficient with the presence of brain dipole noise 20

Table 5 Correlation coefficient with the presence of white Gaussian noise and

dipole noise .. 20

 Table 6 Full factorial design of analysis of variance and obtained response variable

 ……………………………………………………………………………………...21

Table 7 Normalized Locations of the electrodes in the experiment......................... 23

Table 8 Parameters for CUSUM detector and results.. 35

Table 9 Performance of automatic seizure detector.. 37

Table 10 Register configurations of the Cypress CY7C68053A for slave FIFO

code .. 55

Table 11 Summary of the synthesis results for the three FFT processors 63

ix

LIST OF FIGURES

TABLE PAGE

Figure 1 Disc electrode (left) and tripolar concentric ring electrode (right).............. 3

Figure 2 Tripolar concentric ring electrode (TCRE) sensor 9

Figure 3 Four layer concentric inhomogeneous spherical head model.................... 11

Figure 4 (A) Spline Laplacian VEP map, (B) tripolar Laplacian VEP map, and

(C) the normalized grand-averaged EEG VEP signals from each channel, (D) the

normalized grand-averaged tEEG VEP signals from each channel......................... 24

Figure 5 Power spectral density of seizure and non-seizure signal 30

Figure 6 Sub-bands in EEG research ... 30

Figure 7 Hardware connection of the data acquisition system 32

Figure 8 Diagram of seizure detection procedure with Matlab................................ 36

Figure 9 Automatic seizure detection result... 37

Figure 10 FPGA-based closed-loop seizure control system 40

Figure 11 System structure... 43

Figure 12 Daisy-chain connection of multiple ADCs.. 44

Figure 13 Daisy-chain ADCs data reading timing... 44

Figure 14 Logic structure in ALTERA Cyclone IV FPGA 46

x

Figure 15 Four typical pipeline FFT structures: R2MDC, R2SDF, R4MDC,

R4SDF.. 49

Figure 16 Radix-2 (left) and Radix-4 (right) DIF butterfly multipliers 49

Figure 17 16-point R2MDC with interleaving for N channels 50

Figure 18 Eight stage Radix-2 FFT bit consideration.. 50

Figure 19 Detailed structure of an FFT Stage.. 51

Figure 20 Structure of the CUSUM detector ... 52

Figure 21 Firmware, driver and application software stack structure...................... 54

Figure 22 Slave FIFO mode of the Cypress CY7C68053A..................................... 55

Figure 23 Endpoints of the driver and thevirtual connection to the dardware......... 58

Figure 24 Structure of the USB device driver.. 59

Figure 25 Procedure flow chart of the application software 60

Figure 26 synthesis summary of an 8-channel FFT processor................................. 61

Figure 27 synthesis summary of a 64-channel FFT processor................................. 62

Figure 28 synthesis summary of a standard single channel FFT IP core................. 62

Figure 29 FFT transfer results of Matlab (top) fft command and our FFT

processor .. 64

Figure 30 RLC model of EEG recording with TCRE.. 66

Figure 31 Noise model of the instrumentation amplifier ... 68

Figure 32 Current noise source coupled to the preamplifier circuit......................... 68

Figure 33 Common ground connection (left) and star connection (right) 69

xi

Figure 34 Compact 8-channel seizure detection and alarm system 70

 1

CHAPTER 1: INTRODUCTION

1.1 Electroencephalography

Electroencephalography (EEG) measures voltages from the neural activity of the

brain. As a noninvasive method with high temporal resolution, EEG has clinical

benefits in the diagnosis of brain related diseases and is useful in research. However,

EEG suffers from poor spatial resolution due to the blurring effects primarily from

different conductivities of the volume conductor [1].

To improve the spatial resolution the surface Laplacian, which is the second

spatial derivative of the potential distribution on a surface, has been applied to EEG [1,

2]. The surface Laplacian is a high pass spatial filter, which sharpens the blurred

potential distribution on the surface [2] and produces an image proportional to the

cortical potentials.

There are generally two approaches to obtain the surface Laplacian. The first

approach, referred to as the global surface Laplacian, is based on the construction of

the potential interpolation equations on the surface [3]. The potentials from

conventional disc electrodes have been utilized for the interpolation approach. The

second derivative of the interpolation equations gives the global surface Laplacian.

One of the major advantages of the global surface Laplacian is that it can encompass

all points on the surface with a limited number of electrodes. A drawback of the global

surface Laplacian is that the second derivative applied to the potential interpolation

 2

equations may not always be a valid estimate of the surface Lapclacian, it may

produce distorted results [4, 5, 6, 7].

The second approach is the local surface Laplacian. Instead of applying the

derivative to the global interpolation equations, the local surface Laplacian method

approximates the surface Laplacian based on potentials from nearby electrodes. A

typical example is Hjorth’s [8] five point method, where the local surface Laplacian is

obtained by calculating the difference of the potential on the electrode and the average

potential on its neighboring four electrodes. The local surface Laplacian method does

not rely on the second derivative of the interpolation equations, but it also has some

drawbacks: 1) when the nearby electrodes are too far away, which is usually the case

with the 10-20 system configuration, the resulting local surface Laplacian might not be

a good approximation of the surface Laplacian [6], 2) the local surface Laplacian can

only be estimated on the locations of electrodes but not from the edge electrodes.

Although conventional disc electrodes could be used for this approach, there would

still be the same limitations present such as poor spatial resolution and signal to noise

ratio.

Previously Besio et al. developed a new EEG electrode structure, the tripolar

concentric ring electrode (TCRE) [9]. The TCRE is made up of two concentric metal

rings and a metal central disc layout on a flat printed circuit board (PCB). Both a

conventional electrode and TCRE are shown in Figure 1. Due to this special structure,

a linear combination of the potential from the three elements of TCREs directly forms

the local surface Laplacian of the potential distribution [9]. We compared the TCREs

with the conventional disc electrodes in both computer simulations and real EEG

 3

recordings. The results show that the TCREs are superior to conventional EEG

electrodes on the surface Lapalcian estimation and spatial resolution.

 Figure 1 Disc electrode (left) and tripolar concentric ring electrode (right)

1.2 Epilepsy Seizure Detection

Epilepsy affects about 50 million people worldwide, and nearly 80% of them are

living in developing countries. Anti-epileptic drugs have been successfully used to

treat some patients. According to recent studies, up to 70% of the newly diagnosed

children and adults with epilepsy can be successfully treated with anti-epileptic drugs.

However, this implies that these drugs are not effective in about 30% of the patients.

 4

In addition, the side effects of these drugs may reduce the quality of life of the patients.

Surgery is another approach employed for epilepsy treatment, but it includes risks.

Moreover, due to the relatively high cost of the two approaches above, about 75% of

the patients in developing countries may not even receive treatment [10].

As a possible alternative, physical stimulation approaches have been gaining

interest. Among these approaches, the implantable electrical stimulation approaches

such as vagus nerve stimulation (VNS) [11], deep brain stimulation (DBS) [12] and

responsive neurostimulation (RNS) [13], have been widely studied recently. Moreover,

the VNS has even been approved by FDA in 2005 as a treatment for medication-

resistant depression. Meanwhile, noninvasive stimulation methods have also been

developed, such as transcranial direct current stimulation (tDCS) [14], and repetitive

transcranial magnetic stimulation (rTMS) [15].

Detection of epilepsy is a necessary stage prior to epilepsy treatment.

Generally, this is done through visual examination of recorded EEG signals by neural-

physiologists or neurologists. However, there are several drawbacks: first, it’s a time

consuming process, especially for long-term EEG recordings; second, the cost is

relatively high; third, it’s not convenient, since patients have to stay in the hospital

during the detection. Consequently, developing automatic epileptic seizure detectors

becomes attractive. To the best of our knowledge, most of the automatic epileptic

seizure detection methods are based on Electroencephalography (EEG).

There are mainly two approaches [16] [17]: time domain analysis and spectrum

domain analysis. Time domain analysis mainly focuses on spike detection. A spike

was defined by Gloor [18] as a triangle wave that is distinguished from the

 5

background signal, and has an amplitude at least twice that of the previous 5s of

background activities of any EEG channel, and with a duration of at most 200 ms.

Algorithms such as mimetic, linear predictive and neural networks [19] are mostly

employed for spike detection for epilepsy. For the frequency domain, most works

focused on detecting specific features related to seizures. Fast Fourier transform [20],

time-frequency analysis [21], wavelet transforms [22], and nonlinear based analysis

[23] are the most used methods.
Through the use of the high quality EEG signals recorded with TCREs, we

developed a real-time automatic seizure detection algorithm based on the cumulative

sum (CUSUM) detector [24]. The parameters of the detector were optimized by

analyzing the recorded data from previous animal experiments. Due to the special

structure, the TCREs have also shown the ability to perform focal electrical

stimulations. Unlike the normal electrical stimulation via conventional disc electrodes

that is usually applied across the head, the electrical stimulation via a TCRE is

conducted between the outer ring and the central disc. Therefore, the stimulation

current is focused on a small volume right underneath the TCRE. This type of

electrical stimulations is called transcranial focal electrical stimulation (TFS).

Previously we have reported the promising experiments applying TFS on rats, the

results showed that TFS significantly reduced the highly synchronized brain activity

within the beta and gamma bands at the early stages of PTZ-induced seizure

development, also the number of rats survived after TFS significantly increased [25].

The combination of TCREs, automatic seizure detector, and TFS forms a closed loop

seizure controller.

 6

We also implemented the real-time seizure detector with automatic TFS

triggering based on a laptop personal computer running our Matlab software control

algorithm for a small number of channels [26]. Animal experiments were performed to

verifying this detector.

1.3 Hardware Implementation of the Seizure Detector

We showed that the personal computer and Matlab based automatic seizure

detector is suitable for rats [26]. But our ultimate goal is to develop an automatic

seizure detector and controller for humans. The common EEG recording system for

humans can be 20, 32, 64 or even 128 channels. Threfore, the seizure detector needs to

have the ability to process the data from 20 or more channels. For practicality, we

want the detector to be portable, so that patients can carry it with them. To meet these

requirements above, we developed a field programmable gate array (FPGA) based

embedded EEG recording and signal processing system which can be used as an

automatic seizure detection system. Also, we further extended the design with a USB

interface and the driver and application software in a PC to form a complete EEG

recording system.

1.4 EEG recording system

The first human EEG signal was recorded by German physiologist and psychiatrist

Hans Berger in 1924 using a galvanometer [27]. Albert Grass built the first

commercial EEG systems, called Grass Model 1 in 1935 [27]. The Grass Model 1 was

a three differential channel system built using vacuum tubes. With ever improving

 7

electronics technologies, EEG systems with more and more channels have become

commercially available. A 16-channel system, Grass model III, was introduced at

1946. The transistor, which was invented in Bell Labs in 1947, made significant

contributions to EEG system development. The systems designed with transistors were

more reliable and stable with high gain while consuming lower power and space.

Franklin Offner built the first transistor based EEG recording system in the 1950s [27].

Computer based EEG recording systems have become very common in the recent two

decades with the rapid development of digital techniques. The analog EEG signal is

digitized after amplification and transmitted to a microprocessor for further processing

or storing. Digital techniques also provide EEG recording systems with new

capabilities, such as long term EEG monitoring. Digital signal processing techniques

have also been widely applied to EEG signals for brain related disease diagnosis. The

emphasis of each EEG recording system design has been application specific, such as

seizure detection or sleep monitoring.

 8

CHAPTER 2: THE COMPARISON OF TRIPOLAR CONCENTRIC

RING ELECTRODES TO CONVENTIONAL DISC ELECTRODES

This chapter presents a local surface Laplacian that overcomes the disadvantage

of previous local surface Laplacian approachs by employing the TCRE introduced by

Besio et al. [9]. Instead of utilizing nearby electrodes to estimate the surface Laplacian,

the three elements of a single TCRE are used to calculate the surface Laplacian. To

illustrate the advantages of the local surface Laplacian method by TCRE, the global

surface Laplacian and local surface Laplacian are compared using a four layer

concentric inhomogeneous spherical head model [28]. In the comparison, the global

surface Laplacian estimation is based on the spherical spline interpolation method

introduced by Perrin [3], while the local surface Laplacian estimation is based on the

TCRE Laplacian algorithm [9]. Noise is added to the simulations to make the results

more realistic.

2.1 Local Surface Laplacian Estimation Based On TCRE

The TCRE is shown in Figure 2. The electrode is made of three elements: outer ring,

middle ring, and the central disc. The tripolar Laplacian is given by the combination of

the potentials from the three elements of the TCRE [9]:

() ()
2

16
_

3
m d o dV V V V

Surface Laplacian
R

× − − −
= −

 (2.1)

 9

In equation (2.1), dV denotes the potential from the central disc, mV denotes the

potential from the middle ring, oV denotes the potential from the outer ring and R is

the radius of the middle ring.

Figure 2 Tripolar concentric ring electrode (TCRE) sensor

In the real TCRE EEG recording (tEEG), a TCRE is connected to two amplifier

channels: the disc is connected to the negative inputs of both channels, the middle ring

and outer ring are connected to the positive inputs and then the signals are amplified

and digitized and combined as in equation (2.1).

As previously mentioned, the local surface Laplacian usually suffers from the

estimation made from the combination of the potentials of several nearby electrodes,

thus the result may not be accurate if the density of the electrodes recording locations

is too low and the electrodes are far apart. However, the TCRE overcomes this

problem since each TCRE measures the surface Laplacian at its location. Further the

surface Laplacian distribution can be easily calculated by interpolating the surface

Laplacian from the Laplacian measured at the TCRE locations, thus the second

shortcoming can also be improved.

 10

2.2 Global Surface Laplacian Estimation Based On Spherical Spline

Interpolation

The spherical spline interpolation method was introduced by Perrin et al. [3].

Perrin models the head as the surface of a sphere, which is not exactly the same as the

shape of the human head, but approximates the head for comparison. The spherical

model is commonly used in both research and clinical situations [29]. The equations

described by Perrin et al. for the spherical spline interpolation are:

()
()0 n

1 1

1 2 1() cos(,) .
4 1

N

i mm
i n

nV c c
n nπ

∞

= =

+
= +

+
∑ ∑ p ir r r

 (2.2)
Where N is the number of electrodes, m is the order of the spline interpolation, r is
the vector of the location where the potential is interpolated, ir is the vector of the
location of the thi electrode, np is the thn degree Legendre polynomial. The
parameters vector C is the solutions of equations (2.3) and (2.4):

0 ,GC Tc Z+ = (2.4)

' 0.T C = (2.5)
Where ()' 1,1,...,1T = , 1 2' (, ,...,)NC c c c= , ()1 2' , ,..., NZ z z z= ,

() ()()cos(,)ijG g g= = ir r G, ()
()

()
n=1

1 2 1
4 1 mm

ng x x
n nπ

∞ +
=

+
∑ np .

The surface Laplacian operator in the spherical coordinates system is defined as:

2

2 2 2

1 1sin
sin sinsurf r r

θ
θ θ θ θ φ2

∂ ∂ ∂⎛ ⎞Δ = +⎜ ⎟∂ ∂ ∂⎝ ⎠ (2.6)

Applying equation (2.6) to equation (2.2) gives the surface Laplacian of the spherical

interpolation:

()
()12 1

1 1

1 2 1() cos(,)
4 1

N

surf i mm
i n

nV c
r n nπ

∞

−−
= =

+
Δ = − ×

+
∑ ∑ np ir r r

 (2.7)

 11

The truncated singular value decomposition method was applied to solve the inverse

problem of the ill-posed matrix in equations (2.4) and (2.5) [30].

2.3 The Four-layer Spherical Head Model and the Analytical Surface

Laplacian

 Figure 3 shows a four-layer concentric inhomogeneous spherical model [28] to

represent the human head. The four layers represent brain, cerebrospinal fluid, skull,

and scalp. The corresponding radii of the layers are: 7.9cm, 8.1cm, 8.5cm and 8.8cm;

the conductivities of the layers are: 3.3×10-3 S/cm, 10.0×10-3 S/cm, 3.3×10-3 S/cm,

4.2×10-5 S/cm, 3.3×10-3 S/cm, respectively. Current dipoles, described later, are

employed to model the brain activity.

 Figure 3 Four layer concentric inhomogeneous spherical head model

 12

The potentials on the surface of the model due to a current dipole located at the z axis

inside the brain pointing to x, y, z directions are given by the following equations [28]:

() () ()4 2 11 1

2
14

2 1 coscos ,
4

nn
nx

x
n

n f cd PPV
R n

θφ
πσ

+−∞

=

+
=

Γ∑
 (2.8)

() () ()4 2 11 1

2
14

sin 2 1 cos
,

4

nn
y n

y
n

P n f cd P
V

R n
φ θ

πσ

+−∞

=

+
=

Γ∑
 (2.9)

() () ()4 2 11 1

2
14

2 1 cos
.

4

nn
nz

z
n

n f cd PPV
R n

θ
πσ

+−∞

=

+
=

Γ∑
 (2.10)

Where

()()(){ () ()}
() ()() }{ ()

()() ()(){ }
() (){ }

2 1 2 1 2 1
1 2 1 2

2 1 2 1
3 3

2 1 2 1
1 2 2 1 2

2 1
3 3 3

1 1 2

2 2 3

3 3 4

1 1 1 1 1

1 1 1 1

1 1 1

1 ,

/ ,
/ ,
/ .

n n n

n n

n n

n

d b n k k n C k n n k n n

k n n n k d n c

b k k n k n c k n n k

n k k n k n d

k
k
k

σ σ
σ σ
σ σ

+ + +

+ +

+ +

+

Γ = − − + + + + × + +

× + + + + − + + ×

× − + + + + + −

× − + + +

=
=
=

Applying the surface Laplacian operator equation (2.6) to equations (2.8), (2.9) and

(2.10), the analytical surface Laplacian is given by:

() (){ () ()
1

4 2 11 1
2 2 2

14

coscos 1 2 1 cos ,
4 sin

n nnx
surf x surf n

n

PPV n f cd P
R n R

θφ θ
πσ θ

∞
+−

=

⎫⎛ ⎞⎪Δ = × + × − +Δ⎜ ⎟⎬⎜ ⎟Γ ⎪⎝ ⎠⎭
∑

(2.11)

() () () ()
1

4 2 11 1
2 2 2

14

sin cos1 2 1 cos ,
4 sin

ny nn
surf y surf n

n

P P
V n f cd P

R n R
φ θ

θ
πσ θ

∞
+−

=

⎧ ⎫⎛ ⎞⎪ ⎪Δ = × + − +Δ⎜ ⎟⎨ ⎬⎜ ⎟Γ ⎪ ⎪⎝ ⎠⎩ ⎭
∑

(2.12)

 13

() () (){ }4 2 11 1
2

14

1 2 1 cos .
4

nnz
surf z surf n

n

PV n f cd P
R n

θ
πσ

∞
+−

=

Δ = × + Δ
Γ∑

(2.13)

Where

() () ()({ ())
() () ()()}

21 2
2 3

2
1

1cos cos 1 cos sin 1 cos
sin

cos 1 1 sin ,

surf n n

n

P P n n n
R

P n n n

θ θ θ θ θ
θ

θ θ+

Δ = + − +

+ + − +

and

() () ()2

1
cos cos .surf n n

n n
P P

R
θ θ

+
Δ = −

 By rotating the coordinate system, the analytical potential and surface Laplacian

imposed by a dipole at an arbitrary location in the brain area can be computed

according to equations (2.8) – (2.13).

2.4 Computer Simulation Methods

The computer simulation was conducted to compare the global spline surface

Laplacian and the local TCRE surface Laplacian to the analytical Laplacian. To model

the activities of the brain cortex area, ten dipoles with eccentricities of around 0.89

were utilized, which are listed in Table 1. The locations of the dipoles were modeled

in the visual cortex area of the brain to compare the simulation results to those of

actual visual evoked potential (VEP) recording experiments that we conducted. The

moments of the first five dipoles had a radial direction, and the remaining five dipoles

were at the same locations, but with a tangential direction. Table 1 lists all of the ten

dipoles. In each simulation, one of the dipoles listed was selected as the signal source.

 14

Table 1 Locations and the moments of the source dipoles

Dipole # X (cm) Y (cm) Z (cm) Moment
1 4.3 -5.3 4 RUD
2 6 -3 4 RUD
3 5 -4.6 4.1 RUD
4 -2.3 -4.4 6 RUD
5 -2.2 4.6 6 RUD
6 4.3 -5.3 4 TUD
7 6 -3 4 TUD
8 5 -4.6 4.1 TUD
9 -2.3 -4.4 6 TUD
10 -2.2 4.6 6 TUD

To simulate the potential recorded on the elements of the TCREs, we assume that

there are ‘sampling points’ uniformly distributed on the surface of the electrode

elements. The potential of all “sample points” on each specific element was calculated

and the average of all the sample points for each specific element was considered the

potential for that specific element of the TCREs. To determine the number of

‘sampling points’ necessary for stable calculations we examined the effect of the

‘sampling points’ density on the averaged potential. The higher the density of

uniformly distributed ‘sampling points’, the closer the averaged potential is to the real

potential. In our initial analysis we incrementally increased the density of ‘sampling

points’ on the TCRE and compared the averaged potential. When the difference in

potential due to adding more points was less than 0.1 percent we stopped adding

‘sampling points’. For the conventional disc electrodes, we assumed its diameter was

the same with that of the outer ring of the TCREs. We used the same process to find

the ‘sampling points’, for the conventional disc electrode.

 15

Three different noise conditions and four different electrodes configurations

were considered in the simulation. The noise conditions were: (1) no additive noise, (2)

with white Gaussian noise, and (3) with dipole noise (simulating brain activity not

considered the brain source of interest). An environment without noise is not practical,

but this study is still valuable as a base to reveal the effect of different types of noise

to the surface Laplacian estimation methods. White Gaussian noise (WGN) was

employed to simulate the noise from the environment and EEG recording equipment.

For the conventional disc electrode, 20% WGN was added to the calculated potential

on each electrode; for TCREs, 20% of the WGN was added separately to

()m dV V− and ()o dV V− , since they physically are amplified with two separate circuits,

as described in the previous section. The WGN level is defined as the ratio of the

standard deviation of WGN and the standard deviation of the potential, to which the

noise is added, over all the electrodes [31]. Moreover, the brain activity interference

from the deep part of the brain was modeled as a noise dipole with eccentricity around

0.85. The four electrodes configurations are: (1) 19-electrodes, (2) 32-electrodes, (3)

64-electrodes, and (4) 128-electrodes. The 19-electrodes were placed at the standard

10-20 system locations. The 32-electrodes, 64-electrodes, and 128-electrodes locations

were selected from the 5-5 system [32]. The global spline surface Laplacian and the

local TCRE surface Laplacian were calculated at the locations of the electrodes and

then compared to the analytical surface Laplacian using the correlation coefficient.

All the statistical analysis was performed using Design-Expert software (Stat-

Ease Inc., Minneapolis, MN, USA). Full factorial design of analysis of variance

(ANOVA) was used with four categorical factors [33]. The first factor (A) was the

 16

type of the electrode presented at two levels corresponding to conventional disc

electrodes and tripolar concentric ring electrodes. The second factor (B) was the

number of electrodes presented at four levels corresponding to 19, 32, 64, and 128

electrodes. The third factor (C) was the presence and type of noise presented at four

levels corresponding to no noise, presence of white Gaussian noise (WGN), presence

of a noise dipole, and presence of both WGN and the noise dipole. Finally, the fourth

factor (D) was the dipole location presented at ten levels corresponding to 10 signal

dipole locations from Table 1. The response variable was the correlation coefficient of

the simulated surface Laplacian and the analytical surface Laplacian calculated for

each of the 2*4*4*10 = 320 combinations of levels of four factors.

2.5 Computer Simulation Results

The correlation coefficients of the TCRE surface Laplacian and disc spline

Laplacian to analytical surface Laplacian without any added noise are listed in Table 2.

The averaged value and the standard deviation of the correlation coefficient in each

column are listed at the third and second rows from the bottom of the table

respectively.

Table 3 lists the correlation coefficient of the TCRE surface Laplacian and disc

spline Laplacian to analytical surface Laplacian with 20 percent WGN added.

Table 4 shows the correlation coefficient of the TCRE surface Laplacian and disc

spline Laplacian to the analytical surface Laplacian with the presence of a noise dipole.

As we mentioned above, the electrical activity in the deeper brain was considered as

 17

another type of noise. This type of noise was also modeled as dipoles, but with smaller

eccentricities, which means the brain source of the dipole is closer to the center of the

head. In every simulation performed with this type of noise, a noise dipole with unit

moment was randomly selected with the eccentricity of approximately 0.85.

In the last set of simulations, we considered both the 20 percent WGN and the

noise dipoles and the results are listed in Table 5. Table 5 shows our most realistic

simulation results. Correlation coefficient data obtained in this simulation for 320

combinations of factor levels is summarized in Table 6 (averaged for ten dipole

locations).

The full factorial design of our study is presented in Table 6. We used the Box-

Cox procedure to select the optimal power transformation improving the spread of

studentized residuals [33].

The effect of factors A, B, C, and D on the correlation coefficient was assessed

along with the effect of all possible two- and three-factor interactions. The effect of

the four-factor interaction ABCD could not be evaluated. The ANOVA results suggest

that all the factors and all of the assessed interactions have statistically significant

effects in the model (d.f. = 238, F = 17.6, p < 0.0001) for the optimal power

transformation of 2.81 determined using the Box-Cox procedure. The effects of the

main factors were: A (d.f. = 1, F = 2736.5, p < 0.0001), B (d.f. = 3, F = 120.1, p <

0.0001), C (d.f. = 3, F = 34.7, p < 0.0001), and D (d.f. = 9, F = 10.3, p < 0.0001).

The ANOVA results show that, in particular, for the case of the factor A the

tripolar Laplacian is significantly better than the spline Laplacian at approximating the

analytic Laplacian.

 18

A potential limitation of the current full factorial design is that we could not

assess the effect of interaction of all four factors. Without replications including this

interaction made the model over-specified with all the degrees of freedom being in the

model and none assigned to the residual (error). On the other hand, adding replications

to the design would be of limited value since all of the factor levels, except for the two

levels of factor C involving stochastic WGN, are deterministic in nature so replicating

the simulation for most level combinations would have yielded the same results. For

the same reason randomization of the simulation run order would have been of limited

value as well in our case even though in other cases it may help midigate the effect of

nuisance factors [33]. Other assumptions of the ANOVA including normality,

homogeneity of variance, and independence of observations were confirmed ensuring

the validity of the analysis with no studentized residuals being outliers, i.e. falling

outside the [-3, 3] range [33].

 19

Table 2 Correlation in noiseless situation

19
electrodes

32
electrodes

64
electrodes

128
electrodes

Electrodes
Config.

Source
Dipole # T S T S T S T S

1 0.998 0.543 0.993 0.402 0.998 0.895 0.996 0.957
2 0.999 0.647 0.999 0.787 0.999 0.875 0.995 0.885
3 0.997 0.723 0.993 0.749 0.982 0.852 0.971 0.896
4 0.993 0.516 0.993 0.585 0.999 0.880 0.998 0.966
5 0.990 0.634 0.999 0.877 0.998 0.936 0.994 0.969
6 0.998 0.756 0.985 0.787 0.981 0.805 0.985 0.965
7 0.996 0.756 0.997 0.741 0.997 0.893 0.951 0.911
8 0.999 0.633 0.992 0.792 0.986 0.865 0.912 0.895
9 0.935 0.277 0.867 0.430 0.993 0.588 0.932 0.662

10 0.999 0.392 0.999 0.515 0.999 0.649 0.997 0.774

Table 3 Correlation coefficient with the presence of white Gaussian noise

19
electrodes

32
electrodes

64
electrodes

128
electrodes

Electrodes
Config.

Source
Dipole # T S T S T S T S

 1 0.963 0.573 0.944 0.360 0.956 0.684 0.96 0.710
 2 0.947 0.206 0.967 0.620 0.960 0.708 0.95 0.732

3 0.968 0.718 0.961 0.725 0.930 0.703 0.96 0.805
4 0.968 0.465 0.971 0.515 0.958 0.760 0.96 0.808

 5 0.959 0.682 0.961 0.679 0.958 0.741 0.95 0.799
 6 0.953 0.688 0.966 0.700 0.973 0.712 0.96 0.689
 7 0.962 0.502 0.969 0.587 0.959 0.742 0.96 0.696
 8 0.978 0.181 0.967 0.530 0.978 0.645 0.97 0.713
 9 0.983 0.540 0.963 0.594 0.978 0.645 0.96 0.647

 10 0.964 0.243 0.961 0.719 0.965 0.749 0.96 0.911

 20

Table 4 Correlation coefficient with the presence of brain dipole noise

Table 5 Correlation coefficient with the presence of white Gaussian noise and dipole noise

19
electrodes

32
electrodes

64
electrodes

128
electrodes

Electrodes
Config.

Source
Dipole # T S T S T S T S

 1 0.782 0.209 0.840 0.199 0.880 0.882 0.99 0.959
 2 0.676 0.035 0.968 0.776 0.969 0.875 0.97 0.959
 3 0.999 0.794 0.986 0.885 0.953 0.842 0.99 0.950
 4 0.883 0.284 0.871 0.493 0.994 0.837 0.99 0.946
 5 0.715 0.552 0.990 0.653 0.927 0.784 0.97 0.787
 6 0.937 0.714 0.882 0.751 0.991 0.784 0.99 0.920
 7 0.982 0.675 0.992 0.630 0.987 0.849 0.98 0.915
 8 0.993 0.111 0.987 0.819 0.981 0.920 0.99 0.914
 9 0.959 0.696 0.735 0.519 0.977 0.604 0.99 0.920

 10 0.916 0.589 0.980 0.469 0.887 0.568 0.97 0.806

19
electrodes

32
electrodes

64
electrodes

128
electrodes

Electrodes
Config.

Source
Dipole # T S T S T S T S

 1 0.913 0.542 0.924 0.745 0.959 0.689 0.95 0.752
 2 0.938 0.200 0.965 0.678 0.957 0.814 0.96 0.806

3 0.968 0.727 0.965 0.832 0.943 0.743 0.96 0.756
4 0.953 0.404 0.845 0.575 0.961 0.757 0.96 0.776

 5 0.961 0.663 0.941 0.598 0.922 0.691 0.94 0.650
 6 0.926 0.607 0.914 0.691 0.950 0.713 0.96 0.741
 7 0.942 0.600 0.962 0.709 0.976 0.841 0.96 0.878
 8 0.976 0.224 0.958 0.647 0.974 0.695 0.96 0.678
 9 0.923 0.484 0.965 0.638 0.958 0.743 0.95 0.714
 10 0.974 0.296 0.946 0.662 0.948 0.638 0.93 0.857

 21

Table 6 Full factorial design of analysis of variance and obtained response variable

Categorical factors Group averages

for 10 levels of
factor D (signal
dipole location)

A: Type of the
electrode

B:
Number

of
electrodes

C: Presence
and type of

noise

Correlation between
the simulated and the

analytical surface
Laplacians (mean ±
standard deviation)

1 Conventional disc 19 No noise 0.5882±0.1581
2 TCRE 19 No noise 0.9908±0.0196
3 Conventional disc 32 No noise 0.6669±0.1693
4 TCRE 32 No noise 0.9823±0.0406
5 Conventional disc 64 No noise 0.8242±0.1141
6 TCRE 64 No noise 0.9937±0.0073
7 Conventional disc 128 No noise 0.8885±0.0989
8 TCRE 128 No noise 0.9737±0.0311
9 Conventional disc 19 WGN 0.4801±0.2041

10 TCRE 19 WGN 0.9649±0.0104
11 Conventional disc 32 WGN 0.6035±0.1138
12 TCRE 32 WGN 0.9634±0.0074
13 Conventional disc 64 WGN 0.7095±0.0139
14 TCRE 64 WGN 0.9619±0.0411
15 Conventional disc 128 WGN 0.7515±0.0783
16 TCRE 128 WGN 0.9633±0.0050
17 Conventional disc 19 Noise dipole 0.4662±0.2787
18 TCRE 19 Noise dipole 0.8846±0.1186
19 Conventional disc 32 Noise dipole 0.6199±0.2052
20 TCRE 32 Noise dipole 0.9236±0.0877
21 Conventional disc 64 Noise dipole 0.7950±0.1177
22 TCRE 64 Noise dipole 0.9549±0.0424
23 Conventional disc 128 Noise dipole 0.9082±0.0904
24 TCRE 128 Noise dipole 0.9877±0.1334
25 Conventional disc 19 WGN + dipole 0.4752±0.0224
26 TCRE 19 WGN + dipole 0.9480±0.1864
27 Conventional disc 32 WGN + dipole 0.6780±0.0738
28 TCRE 32 WGN + dipole 0.9390±0.0376
29 Conventional disc 64 WGN + dipole 0.7329±0.0156
30 TCRE 64 WGN + dipole 0.9551±0.0611
31 Conventional disc 128 WGN + dipole 0.7614±0.0881
32 TCRE 128 WGN + dipole 0.9580±0.0097

 22

2.6 Visual Evoked Surface Potential (VEP) Recording Experiment Setup

We recorded from 15 selected locations on the scalp over the occipital lobe

visual cortex area from the standard 10-5 system with the TCREs, the locattions of the

electrodes are shown in Table 7. A reference electrode and a ground electrode were

placed on the forehead of the subjects. Before the recording, the scalp was first

abraided with Nuprep, a mild abrasive cleanser, and then Ten-20 electrode paste was

used to match impedances between the TCRE and the scalp. The impedances were

measured and any TCREs with impedances above 5 Kohms were attached again. The

TCREs were connected to the preamplifiers we developed, A Grass Technologies

Comet AS40 amplifier and digitizer (Natus Medical, Grass Technologies West

Warwick RI) was cascaded.. A PS60/LED photic stimulator was controlled by the

Comet AS40. The pass-band of the filter was set from 1.0 Hz to 70 Hz and a sampling

rate of 200 samples per second was used. The frequency of the PS60/LED photic

stimulator was 2.0 Hz. The subjects were seated in a comfortable chair with their eyes

approximately 4.0 cm from the photic stimulator. For each subject, we recorded about

two-and-a-half minutes of EEG signals. There was approximately 30 seconds of

baseline EEG, with no photic stimulation, and then approximately two minutes with

the 2.0 Hz photic stimulation. The photic trigger signal was also recorded to

synchronize epochs during ensemble averaging.

The analysis of the recorded EEG signals varied depending on the type of

signals recorded. We used the outer ring of the TCRE as a disc electrode emulation

(eEEG). Recorded data was segmented with the peaks of the LED control pulses. We

 23

utilized about 200 segments for every subject. The first 150 ms of data for each

segement was then ensemble averaged to obtain the visual evoked potential (VEP).

The peak value of the VEP signal on each electrode was employed for surface

Laplacian mapping. For the eEEG from the outer ring of the TCREs, the spline

interpolation and surface Laplacian methods discussed above were applied to calculate

the spline surface Laplacian and map them to the surface of the spherical head model

over the occipital lobe visual cortex area. For the TCRE EEG surface Laplacian, we

simply applied the interpolation algorithm to map the recorded Laplacian values to the

corresponding surface. The Matlab code for the surface Laplacian mapping is in

Appendix A.

Table 7 Normalized Locations of the electrodes in the experiment
(X,Y,Z are coordinates of the simulation)

Locations # X (cm) Y (cm) Z (cm)

CP5 -0.896 -0.338 0.284
P3 -0.567 -0.677 0.469
Pz 0.000 -0.714 0.699
P4 0.566 -0.677 0.469

CP6 0.896 -0.338 0.284
P5 -0.741 -0.635 0.213
P6 0.741 -0.635 0.214
P7 -0.804 -0.586 -0.088

PO7 -0.584 -0.807 -0.070
PO3h -0.287 -0.910 0.298
POz 0.000 -0.929 0.368

PO4h 0.286 -0.910 0.298
P8 0.804 -0.587 -0.088
O1 -0.307 -0.949 -0.047
O2 0.307 -0.949 -0.047

 24

2.7 Visual Evoked Surface Potential (VEP) Recording Experiment Results

 From Figure 4 we can see that the TCRE Laplacian sensor was able to separate

VEP sources. In Figure 4A, of the spline Laplacian map from disc electrodes, in the

top central area there is a red and orange area (marked with an arrow). In the same

area of Figure 4B we can see the TCRE Laplacian sensor map shows that there were

two distinct sources. Panel C and D of Figure 4 shows the normalized grand-averaged

EEG VEPs and tEEG VEPs that these maps were made with. From Figure 4C and D

we can see that there is a positive going wave at approximately 100 ms after the photic

stimulation pulse.

Figure 4 (A) Spline Laplacian VEP map, (B) tripolar Laplacian VEP map, and (C) the
normalized grand-averaged EEG VEP signals from each channel, (D) the normalized
grand-averaged tEEG VEP signals from each channel.

 25

2.8 Disscusion of the Spatial Resolution Comparison

 The computer simulation results show that with an increase in the number of

electrodes, the spline surface Laplacian estimation has also been improved, while the

TCRE surface Laplacian is not sensitive to the number of electrodes. The spline

surface Laplacian estimation relies on the potential recorded on every electrode to

optimize the interpolation parameters, therefore the more sensors leads to a better

estimation of the parameters. On the other hand, each TCRE measures the surface

Laplacian independently, as a result, the tripolar surface Laplacian does not rely on the

number of sensors. After comparing the correlation coefficients in Table 2, it is

apparent that at least up to 128 sensors, the tripolar surface Laplacian still outperforms

the spline surface Laplacian.

The comparison of Table 2 and Table 3 shows that with the added 20 percent WGN

the correlation coefficient of the spline surface Laplacian to the analytical surface

Laplacian decreased by over 0.15 in the worst cases. In contrast, the correlation

coefficient of the TCRE surface Laplacian to the analytical surface Laplacian only

decreased less than 0.04 in all cases. The TCRE performed relatively constant

regardless of the different number of sensors, while the performance of the

conventional disc sensors dropped dramatically with the decreasing number of sensors.

The results also indicate that the spline interpolation algorithm is more sensitive to

random noise compared to the TCRE Laplacian algorithm.

Table 4 shows the results with the presence of the deep brain activity noise, which

was also modeled as dipoles with smaller eccentricities. Both the spline surface

Laplacian and TCRE surface Laplacian were affected by brain source dipole noise.

 26

But in most cases the TCRE surface Laplacian still outperforms the spline surface

Laplacian by 0.05 or more in terms of the correlation coefficient. Also, even though

the statistical analysis for the 128-electrode configuration indicates that there is no

significant difference in the spline surface Laplacian and TCRE surface Laplacian, in

most cases the TCRE surface Laplacian still outperforms the spline surface Laplacian

by 0.018 to 0.165. In real experiments it would usually be known from physiology

what areas of the brain the signals should be coming from and those sensors could be

preferentially treated while other locations could be less important.

In the last computer simulation, both 20 percent WGN and the dipole noise were

added and the results are presented in Table 5. This simulation is the most realistic of

our simulations. The results shown in Table 5 suggest that the TCRE surface

Laplacian has at least two significant advantages compared to the spline surface

Laplacian. First, the TCRE surface Laplacian works nearly the same with different

numbers of electrodes (from 19 electrodes to 128 electrodes); second, the TCRE

surface Laplacian is stable to different noise dipoles, which is due to its small half

sensitivity volume (HSV), or, in other words, local recording characteristic.

In the simulation, the eccentricities of signal dipoles were set at around 0.9. This

eccentricity was used since we were mainly interested in the visual cortex area of the

brain. In a previous study [34], the eccentricities of the dipoles were usually set at 0.85

or smaller. We want to mention that the eccentricity of the dipole has considerable

impact to the Laplacian estimation. Generally, the smaller the eccentricities the better

performance of the spline and tripolar Laplacian estimation. In addition, the relative

location of the dipole to the sensors is also an important factor regarding the Laplacian

 27

estimation. We observed in the simulation that if the dipole was close enough to one

of the sensors, there would be a large difference between the analytical and the

estimated Laplacian. This holds for both spline and the tipolar surface Laplacian

estimation.

The VEP experiments showed that we can acquire VEP signals from humans.

Beyond the acquisition we were able to see separate sources in the TCRE Laplacian

maps that were not separated in the spline Laplacian maps, which is shown in Figure 4.

It should be noted that we are not certain where the sources are in the visual cortex

however, Fig. 4A and B are indicative of the other subjects as well.

2.9 Conclusion

From the computer simulations there is a significant improvement in

estimation of the Laplacian using TCRE Laplacian sensors compared to disc

electrodes and the spline Laplacian. The human experiments verified that we can

record VEP signals using TCREs and that the tEEG signals showed two sources while

the EEG signals showed only one source.

 28

CHAPTER 3: THE DEVELOPMENT OF AUTOMATIC EPILEPSY

SEIZURE DETECTION ALGORITHMS ON RATS

3.1 Introduction of the Seizure Detection

As we described in the first chapter, we have shown the effectiveness of TFS to

control seizures in rats [25]. However, we waited until we observed the first strong

behavioral change elicited from the convulsants, a myoclonic jerk (MJ), before we

turned the TFS on manually. Observing our electrographic data from rats before and

during seizures we hypothesized that the tEEG signal could be used to automatically

trigger the TFS to control seizures. In reality we do not want to develop an automatic

seizure control system for rats but took this opportunity to prove that a seizure

warning, and or control, system could be developed utilizing the TCRE and TFS

technologies.

In the previous chapter we introduced a unique electrode, the TCRE, and showed

that the TCRE outperforms the conventional disc electrode in terms of surface

Laplacian estimation. The TCRE has been proven to have several advantages

compared to conventional disc EEG, such as better spatial resolution, higher signal to

noise ratio, and less mutual information between nearby electrodes [35]. Due to the

special structure, the TCRE also has shown the ability to perform focal electrical

stimulations. Unlike the normal electrical stimulation via conventional disc electrodes

that is usually applied across the head, the electrical stimulation via a TCRE is

 29

conducted between the outer ring and the central disc. Therefore, the stimulation

current is focused on a small volume right underneath the TCRE. We call this type of

electrical stimulations transcranial focal electrical stimulation (TFS). Beyond the focal

stimulation the signal acquisition advantages suggest that the TCREs may have

benefits for EEG based epileptic seizure detection. In this chapter, we present a real

time automatic seizure detection system that was tested on rats.

3.2 Methods of Developing and Optimizeing the Automatic Seizure

Detector

The TCREs signals were used to monitor brain activity and when a seizure was

detected the TFS was triggered. To develop an efficient detector, we analyzed the

recorded TCREs EEG (tEEG) signals from 5 rats, (the details of which are given

below). In the tEEG signals we found a very stable pattern in the band of 0 to 100 Hz.

The power spectral density of the seizure signals was higher than the non-seizure

signal, which is shown in Figure 5. From Figure 5, the seizure and non-seizure

situation is clearly separated. Figure 5 also suggests that seizures are usually

accompanied by a significant change in the on-going electrical activity of the brain

and therefore the power spectral change detectors are appropriate for seizure detection.

However, in some more complicated situations, the EEG signal can be corrupted with

noise, which makes the determination of the seizure a challenge. To make the detector

more stable in noisy situations, we independently detected the power spectral density

change in several sub-bands. The 1-100 Hz bandwidth is historically divided into

 30

 Figure 5 Power spectral density of seizure and non-seizure signal

several sub-bands in EEG research: Delta (0.3-4Hz), Theta (4-8Hz), Alpha (8-13Hz),

Beta I (13-20Hz), Beta II (20-36Hz), Gamma (36-59Hz) and high Gamma (59-100Hz),

which are shown in Figure 6. We employed this division of the 1-100 Hz bandwidth,

except that we set the high Gamma band starting from 61 Hz instead of 5 9Hz to avoid

the 60 Hz power line interference. We applied an independent detector for each of the

sub-bands, and combined the detection results from all the sub-bands to make a

decision about whether there was a real seizure. The cumulative sum (CUSUM)

detector [36] was employed for real-time detection of the power spectral change for

each sub-band.

0.3-4Hz

Delta

4-8Hz 8-13Hz 13-20Hz 20-36Hz 36-59Hz 59-100Hz

Theta Alpha Beta I Beta II Gamma High Gamma

Figure 6 Sub-bands in EEG research

 31

The CUSUM detector is an abrupt change detection algorithm. It determines

whether a parameter θ in a probability density function (PDF) has changed. That is, to

determine between two hypothesis:
 0H :

0θ θ= and
1H :

1θ θ≠ . Let
0

pθ and
1

pθ denote the

PDF before and after the change, respectively. Let
ky denote the thk sample of the data

sequence (i.e. EEG segment). The basic CUSUM decision function is

1

0

1

()
max(ln ,0)

()
k

k k
k

p y
g g

p y
θ

θ
−= + (3.1)

min{ : }a kt k g h= ≥ (3.2)

where h is a threshold. Here,
at is the stopping time, when the detector identifies a

change and raises an alarm. Each time when
kg h≥ , the CUSUM detector restarts by

setting 0kg = and a new round of detection begins.

 When
0

pθ is a Gaussian process with mean 0μ ,
1

pθ is a Gaussian process with

mean 1μ , and both have variance 2σ . and equation (3.1) detects a mean change and

becomes

1 0max((),0)k k kg g y sμ−= + − − (3.3)

Seizure and non-seizure data was recorded and analyzed to optimize the

parameters for the CUSUM detector. The hardware connection for the signal

recording is shown in Figure 7. Four TCREs were placed on the head of the rats,

among which a1, a2 and b are signal electrodes, c was used as a reference electrode. A

multiplexer were employed to switch these electrodes to pre-amp (Pre-Amp),

stimulator (Stim) or impedance meter (Imp-Meter). On the signal channels, tEEG

signals were pre-amplified (gain 100 and 0.3 Hz high pass filter) with a custom built

 32

preamplifier and then amplified using a Grass Model NR2 Neurological Research

System with AC amplifiers at a gain of 1,000, bandwidth of 1.0–100 Hz, and with the

60 Hz notch filter on. Finally the signals were digitized at 16 bits and 256 samples per

second (SPS)with a Measurement Computing USB-2537. Approximately 24 hours

before the induction of seizures, an adult male 220~320g Sprague-Dawley rat was

given a combination of 80 mg/kg of ketamine and 12 mg/kg xylazine for anesthesia.

The scalp was shaved and prepared with NuPrep abrasive gel. Four TCREs were

applied to the scalp using Ten-20 conductive paste and adhered with Teet’s dental

acrylic at the locations shown on Figure 7. On the following afternoon the rats were

placed in a transparent plastic cage and the electrodes were connected via a

commutator and cables. The skin-to-electrode impedance was measured to ensure that

the impedance for the outer ring and the central disc of electrode (b) was less than 10

KΩ. The tEEG and video recording were then started. For the pentylenetetrazole (PTZ)

treated group, after five minutes of baseline tEEG recording a mixture of PTZ and

distilled water was administered (55 mg/kg, ip), then the seizure detection recording

started. The recording lasted 30 minutes for each rat, and 5 rats were utilized for data

collection.

 Figure 7 Hardware connection of the data acquisition system

 To initialize the detector we used a one-second long non-overlapping Hanning

window (256 samples) to segment the baseline tEEG signals. Then the power

Multiplexer

Amp

Imp Meter

Stim

Pre-Amp

a1 c
b

a2

 33

spectrum was calculated using the fast Fourier transform (FFT) with the “fft”

command in Matlab (Mathworks, Natic MA). The spectrum was divided into sub-

bands that we described above. For each sub-band the spectrum was summed over all

frequencies of that sub-band and was normalized by the average baseline spectrum.

The baseline data from five rats was used to determine 0μ and the threshold value

h of the CUSUM detector. 0μ is the baseline sub-band spectrum average. The value of

h is determined by the equation: βμ += 0h x, where x is the standard deviation of the

sub-band spectrum, β is the value determined by analysis of the recorded data. And s

controls the sensitivity of the detector. We tested β from 0 to 10 in 0.1 increments and

found that β= 0 provided the best seizure detection rate for the 5 controls. Parameter s

was determined by adjusting s from 0 to 1000, in increments of 100, maximizing the

true positive (TP) and minimizing false positive (FP) rates. To increase the likelihood

that we discriminated seizure from movement artifact we implemented a two-of-three

‘seizure’ epoch smoothing algorithm: the third epoch was considered the seizure onset

if two epochs in three consecutive epoches were marked by the CUSUM detector for

power change. For each sub-band of the seizure data, we applied a CUSUM detector

to detect the sudden power change. Table 8 shows the optimized parameters and

detection results for each sub-band. According to the table, the Delta band (0.3-4Hz)

and Theta band (4-8Hz) were the two most reliable sub-bands as seizure indicators.

 The real-time automatic seizure detection algorithm was implemented with

Matlab. In the implementation, Matlab interacts with the data acquisition hardware

(Measurement Computing USB-2537) through a device driver that was embedded in

Matlab. For initialization, the hardware was configured to sample 6 channels at 256

 34

SPS. In the recording, a timer callback function was triggered every second to retrieve

data of 1536 samples, which is for 256 samples per channel and 6 channels, from the

data acquisition hardware. Figure 8 shows a diagram of the procedure which is

described below. The retrieved data was further processed by the following steps: first,

the data of the two channels from the same electrode was combined according to the

formula (2.1), which forms three tEEG data series; second, the Hanning window was

applied to the three data series; third, FFT transform was applied to the three data

series; fourth, the spectrum sub-band power was utilized to optimize the parameters of

the CUSUM detector if in: the (1) baseline session, or (2) passed to the CUSUM

detector for sudden change detection if in the detection session; fifth, once the seizure

activity was detected, an alarm was triggered, so that we can manually applied the

TFS to the rat under seizure detection.

3.3 Real Experimental Testing Resutls

Figure 9 shows typical processed data for a TFS-treated rat. Trace #1 is the

tEEG from electrode (b) in Figure 7. Traces #2 and #3 are the relative power and

seizure detector output for the Delta band, respectively. Traces #4 and #5 are the

relative power and seizure detector output for the Theta band. In Traces #3 and Traces

#5, detection results are denoted by values ‘0’ and ‘1’, where ‘0’ means no seizure was

detected, ‘1’ means seizure was detected. The two of three smoothing algorithm,

which was described previously, was employed for the final detection decision. The

vertical dashed line shows the time when the seizure was detected. In this experiment,

the first myoclonic jerk was observed at approximately 2 minutes and 10 seconds. The

 35

averaged performance of the automatic seizure detector is listed in table 9.

Table 8 Parameters for CUSUM detector and results

Ra
t

Band s start
epoch

0-4Hz 0.0701 0.2102 0.1 7
4-8Hz 0.0371 0.1112 0.1 6
8-13Hz 0.0239 0.0718 0.15 8
13-20Hz 0.0362 0.1086 0.1 13
20-36Hz 0.023 0.069 0.3 ND
36-59Hz 0.0241 0.0724 0.3 ND

1

61-100Hz 0.1139 0.3417 0.1 4
0-4Hz 0.1652 0.4955 0.1 19
4-8Hz 0.1010 0.3030 0.1 19
8-13Hz 0.0914 0.2742 0.15 21
13-20Hz 0.0553 0.1658 0.1 22
20-36Hz 0.0404 0.1211 0.3 ND
36-59Hz 0.0730 0.2190 0.3 ND

2

61-100Hz 0.2121 0.6363 0.1 24
0-4Hz 0.1389 0.4168 0.1 6
4-8Hz 0.1198 0.3595 0.1 ND
8-13Hz 0.0688 0.2063 0.15 ND
13-20Hz 0.0455 0.1365 0.1 ND
20-36Hz 0.0722 0.2165 0.3 ND
36-59Hz 0.0742 0.2226 0.3 ND

3

61-100Hz 0.1386 0.4157 0.1 ND
0-4Hz 0.0362 0.1085 0.1 12
4-8Hz 0.0492 0.1476 0.1 5
8-13Hz 0.0430 0.1289 0.15 5
13-20Hz 0.0388 0.1165 0.1 11
20-36Hz 0.0376 0.1127 0.3 12
36-59Hz 0.0371 0.1112 0.3 12

4

61-100Hz 0.1165 0.3495 0.1 4
0-4Hz 0.1044 0.3131 0.1 13
4-8Hz 0.0984 0.2951 0.1 17
8-13Hz 0.0820 0.2460 0.15 ND
13-20Hz 0.0784 0.2353 0.1 15
20-36Hz 0.0680 0.2041 0.3 ND
36-59Hz 0.0789 0.2368 0.3 ND

5

61-100Hz 0.1400 0.4199 0.1 ND

 36

Configure
Hardware

Retrieve one
second’s
EEG Data

Form Tripolar
EEG data

Apply Hanning
Window

Apply FFT
Transform

Optimize
Parameters

CUSUM
Detection

Compute the
sub-bands

power

Initial
Session

Y N

 Figure 8 Diagram of seizure detection procedure with Matlab

 37

Figure 9 Automatic seizure detection result

Table 9 Performance of automatic seizure detector

 Accuracy (%) Sensitivity (%) Specificity (%)

CUSUM 74.47 23.06 91.9

3.4 Discussion

We were able to ‘train’ our CUSUM detector (i.e., to select the s parameters) using

the control rat data and apply those parameters to test the detector on data that were

not used for training (the generalization property of the CUSUM algorithm). The
0μ

and h parameters were chosen from the baseline TCRE EEG for each rat via specific

algorithms removing user bias of the selection. The detector determined the seizure

onset in the TFS-Treated rats, on average, 79 sec. (STD 43.12 sec.) prior to the first

myoclonic jerk.

 38

Much work has been performed in the field of seizure detection [36, 37, 38, 39].

For our experiments we have a special case where we know when the convulsant is

given after a baseline period. We do not need to resolve long periods of baseline

activity vs. seizure activity. For these experiments we were only interested in

determining when the TCRE EEG showed increased activity due to the PTZ. We did

not need to discriminate False Positives, ‘seizure’ during baseline, only during a short

period post PTZ. The rest of the data is known ‘seizure’ data and therefore we only

had to discriminate True Positive and False Negative (no ‘seizure’ during ‘seizure’).

Although using combinations of bands may be more robust for detection our data

suggest that the Delta power in the on-going EEG may be most informative in this

regard. This suggestion needs further confirmation in subsequent studies.

3.5 Conclusion

The CUSUM algorithm, in conjunction with TCRE EEG, correctly detects

seizure activity from the Delta power changes in advance of the early behavioral

manifestations of a seizure (such as MJs). Therefore, this algorithm can be used as a

control signal to automatically trigger TFS with the goal to prevent seizure

development.

 39

CHAPTER 4: EEG RECORDING SYSTEM AND REAL TIME

AUTOMATIC SEIZURE DETECTOR

4.1 Introduction

 In the previous chapter we introduced a real time seizure detection algorithm

for rats. We also implemented this algorithm in “real-time” with Matlab running on a

Dell D630 laptop. The experiment showed that this detector works very well for the

rat experiments. However, several drawbacks existed in the seizure detection system

described above. First, the central processing unit usage of the laptop was reaching

100% while performing the real-time control with just three TCREs. Meeting the real-

time signal processing requirements for multi-channel EEG seizure detection for

humans, considering that human EEG recording typical utilizes 20, 32, 64, or even

128 channels, would be beyond the abilities of the laptop. Second, the use of the PC in

the closed-loop system increases the system cost and limits the portability of the

system. Third, the seizure detector generated an alarm for when to turn the TFS on but

the TFS was actually turned on by a person, which introduced some delay between the

seizure detection and the application of the TFS.

To overcome the disadvantages listed above, we developed a new FPGA platform

to run the real-time seizure control on. This system will automatically detect the

seizure activities and apply the TFS, which forms a portable closed-loop automatic

seizure control system, as shown in Figure 10. Moreover, the hardware can also be

 40

used for a multi-channel human tEEG recording and real-time signal processing and

display system.

Figure 10 FPGA-based closed-loop seizure control system

4.2 Methods

The automatic seizure detector and EEG monitoring system contains several

hardware and software subsystems. These subsystems include A-to-D converters

(ADC), FPGA embedded controller and digital signal processor, USB interface, USB

driver under Windows operating system, application software for signal display and

data storing. The development of these subsystems is desribed in the following

sections.

 41

4.2.1 System Considerations

An EEG system records the potential on the scalp caused by the electrical

activities from the brain. The EEG recordings for humans usually uses 20 to 128

channels and electrodes. A typical raw human EEG signal has an amplitude between

1μV to 10 mV, which indicates that the EEG signal is weak and has a high dynamic

range. The tEEG signals are even weaker and have been reported to be hundreds of

nanovolts [35]. The typical bandwidth of EEG recording is between 0.5 Hz to 70 Hz.

Recently researches have shown that there are EEG activities in higher bands, with the

frequency as high as 500 Hz [40, 41]. It seems that the wider band EEG signal

recording and analysis will be the trend in the future. There are several other issues of

EEG signals that must be accounted for, such as the high bias voltage caused by the

half-cell effects. These are mainly dealt with in the analog domain by signal

conditioning techniques, and not discussed here.

 As we mentioned in the previous chapter, there are generally two approaches

for seizure detection [16, 17], one is spike analysis based on time domain EEG signals,

the other is spectral analysis based on the spectral domain of the EEG signal. We

employed the second approach, spectral analysis, to develop our epilepsy seizure

detector. This was since our earlier work showed that the spectral analysis was more

robust in noisy environments such as movement artifacts and mains interference.

These requirements forced us to perform the spectral analysis in real-time in the

frequency domain and formed the basis for our new system design.

 To digitize the tEEG signal with high dynamic range a high resolution ADC is

desired. Having multi-channel capability of the ADC is also beneficial, since the

 42

capacity of the system is as many as 128 or even 256 channels. Thus we began work

on implementing the analog front end, ADS1299, from Texas Instruments. The

ADS1299 has 8 differential channels of programmable gain instrumentation amplifiers,

and a 24-bit, 8-channel delta-sigma ADC, with daisy-chain port that supports

cascading multiple chips as an ADC system with 128 channels or more. For automatic

seizure detection, the up to 128 channels of data has to be transformed to the spectral

domain in real-time. Two platforms, FPGA and graphics processing unit (GPU) are

suitable for this task. However, the FPGA has more resources for communicating with

other devices, such as communicating with ADC and USB interfaces. Thus, we used

an FPGA as the ADS1299 controller, digital signal processing, and communication

core.

We used an ALTERA DE-2 evaluation board with the Cyclone IV serial

FPGA. The estimated data recording rate of the ADCs is about 13 MB per second, so

the USB 2.0 interface, which provides a maximum data transferring rate over 30MB/s,

fits the estimated data rate. On the PC side, a USB driver was developed for real-time

data acquisition from the USB interface to save the data in a temporary buffer in the

Windows kernel. The application software was developed to fetch the data from the

data buffer in the Windows kernel and save the data to the hard disk and also display it

on the screen. Figure 11 shows the high level structure of the system.

 43

Figure 11 System structure

4.2.2 Hardware Connection

The ADS1299 is an 8-channel ADC and programmable gain preamplifier. To

build a data acquisition system with more than 8 channels, multiple ADS1299s need to

be connected with the daisy-chain configuration [42], and then connected to the FPGA

through a serial peripheral interface (SPI) port, which is shown in Figure 12.

 44

Figure 12 Daisy-chain connection of multiple ADCs

With this connection, the analog to digitized data is available from the DOUT

pin to the DAISY_IN pin, and sent out to FPGA through the DOUT pin of the first

ADC, which is Device 1 in Figure 12. The timing for the data reading cycle is shown

in Figure 13 [42].

 Figure 13 Daisy-chain ADCs data reading timing

 45

4.2.3 FPGA Logic Structure

 The FPGA plays two roles in our system. First, the FPGA acquires and

transmits the data from the ADS1299 to the computer for storage. On one side, it

communicates with the ADCs through the SPI port. The FPGA must configure and

acquire data from the ADCs and the FPGA must also pack the data according to the

USB frame format. On the other side, the FPGA monitors the IN and OUT FIFOs of

the USB interface. When the OUT FIFO signifies that it is not empty, the FPGA reads

the data from this FIFO; or if the IN FIFO is not full, and there is data stored in FPGA,

then the FPGA will write a data frame to the IN FIFO. Second, the real-time seizure

detector runs in the FPGA. Figure 14 shows the logic structure we have progrmmed

into the FPGA. There are three clock rates (time domains) needed for our design that

were programmed into the FPGA. The SPI interface module to the ADCs runs on a 4

MHz clock, it is responsible for communicating with the ADCs through the SPI port.

The seizure detection part, which includes the FFT processor and the CUSUM

detector, runs on an 80 MHz clock. The USB controller interface runs on a 50 MHz

clock. The FIFOs are placed between the time domains for cross time domain data

transmission.

 46

SPI
Interface
To/From

ADC

USB
Interface
To/From

USB
Contoller

DATA
PACKING

FFT
PROCESSOR

COMMAND
FIFO

CUSUM
DETECTOR

USB_DATA_FIFO

COMMAND
DECODER

FFT_DATA_FIFO

Stimulator
Trigger

Figure 14 Logic structure in ALTERA Cyclone IV FPGA

4.2.4 Multi-Channel FFT Processor Design

The multi-channel FFT processor is designed to transfer the recorded tEEG signal

to the spectral domain. According to the seizure detection algorithm we developed,

each time one second of data is recorded it is transferred to the spectral domain by the

FPGA FFT algorithm. A commonly used sampling rate of the EEG recording is 250

Hz, therefore the data length of the FFT processor was set to 256. Due to the limit of

the resources in the FPGA, an FFT processor needs to be applied to multiple channels.

 47

The data width of the input stage of the FFT processor is 24-bits, which is determined

by the output data width of the ADCs.

As mentioned above the FFT processor runs at a much faster clock than the clock

of the data input rate. There are two reasons that make the data processing speed of the

FFT processor the bottleneck of the seizure detector which is why it is run at a much

faster clock rate than the other two processes. First, even though the FFT significantly

reduces the computational complexity of the discrete Fourier transform (DFT), it still

requires a large amount of multiplications and additions. An N-point FFT with

complex inputs needs 22 logN N real multiplications and 22 logN N real additions. In

our case, N is 256, then for each 256 samples there are 4096 multiplications and 4096

additions, which mean that for each sample, there are 16 multiplications and 16

additions needed. Second, the hardware resources, such as embedded multipliers, are

limited in the FPGA, so the same hardware resources in the FPGA have to be applied

to data from multiple chaneels.

As a result, the pipeline multi-channel interleaving structure was employed to

overcome these problems. There are mainly four pipeline FFT structures: radix-2

multi-path delay commutator (R2MDC), radix-2 single-path delay feedback (R2SDF),

radix-4 multi-path delay commutator (R4MDC) and radix-4 single-path delay

feedback (R4SDF), all are shown in Figure 15. Due to existence of the feedback loop,

which complicates the pipelining of the butterfly multipliers [43], the single-path

delay feedback structures are not suitable for high throughput rate FFT processors.

The radix-4 butterfly multipliers significantly reduce the number of stages of the

pipeline structure, which helps to minimize the delay from the input to the output.

 48

However, as we may see in Figure 16, the radix-4 butterfly multiplier is much more

complicated than the radix-2 butterfly multiplier. This may not be a problem for very

large scale integration (VLSI), but the resources in the FPGA are pre-placed and

limited, so the complicated structure introduces significant routing delay, which limits

the highest clock frequency on which the logic can run. For these reasons, we

employed the radix-2 multi-path delay commutator structure to build the multi-

channel FFT processor. The interleaving method was employed to perform the FFT

process on data from multiple channels. This method is implemented by making two

changes on the single channel radix-2 multi-path delay commutator structure: (1)

increase the number of the registers connected to the controllers by N times, and (2)

change the controller blocks to reuse every parameter for N times. Figure 17 shows the

structure of the interleaving radix-2 multi-path delay commutator for the N-channel

FFT transform. The multipliers utilized in the butterflies are further pipelined to

ensure the 80 MHz clock rate. Since we utilized the fixed-point data format in the

computation, bit growth was considered to preserve the precision and avoid overflow.

However, there are two computations in the butterfly multiplier that may cause bit

growth. First, the data width must grow 1 bit in the add/subtract stage of the butterfly

multiplier. Second, the multiplication of the sinesoid value and the input data may

cause an extra bit growth. The bit growth at , the multiplication of the sinesoid value

only needs to be considered once in all the FFT stages [44]. To accommodate for the

worst case bit growth, the width of the output of the first butterfly multiplier increases

by 2 bits, the width of the output of all the following butterfly multipliers increase by 1

bit. The bit increasing consideration is shown in Figure 18.

 49

C

8

BF

4

C

4

CBF BFC BF

2

2

1

1

8

BF

4

BFBFBF

2 1

3x64

BF

3x16

BF

3x4

BF

3x1

BF

C4

192
128
64 BF 16

32
48

C4

48
32
16 BF 4

8
12

C4

12
8
4 BF 1

2
3

C4

3
2
1 BF

R2SDF

R2MDC

R4MDC

R4SDF

Figure 15 Four typical pipeline FFT structures: R2MDC, R2SDF, R4MDC, R4SDF

i
NW

0
NW

q
NW

2q
NW

3q
NW

Figure 16 Radix-2 (left) and Radix-4 (right) DIF butterfly multipliers

 50

Figure 17 16-point R2MDC with interleaving for N channels

 Figure 18 Eight stage Radix-2 FFT bit consideration

 Each stage of the FFT is built with a controller, a butterfly multiplier and a

parameter module, as shown in Figure 19. The controller works as a router that directs

the data and parameters to the input of the butterfly multiplier at the right time by

controlling two shift buffers and the address signal for the parameter module. A

round-back counter was implemented in the router. By setting the maximum value of

of the round-back counter to N the controller can be adjusted to work for an N-channel

FFT processor. The butterfly multiplier computes the multiply-add value: A BC+ ,

where A and B are full scale complex numbers, and C is a normalized unit complex

number. There are two approaches to implement the butterfly multiplier. The first

approach, referred to as the CORDIC method, takes advantage of the multiplier of a

full scale complex number and a normalized unit complex number, which is actually a

rotation of the full scale complex number. The advantage of this approach is that it

only takes bit shift and add, so it saves the hardware multiplier resource, but the

complicated structure makes it hard for pipelining. The second approach, however,

 51

employs the normal multiplication and addition to implement the butterfly multiplier.

The parameters in the second approach are pre-computed and stored in the chip. This

method, of course, cost more hardware multiplication resources, but the structure is

straightforward. We employed the second method in our design. For each multiplier

we utilized four multipliers and two adders. The multipliers were further pipelined to

maximize the clock rate of the FFT processor.

 Figure 19 Detailed structure of an FFT Stage

4.2.5 CUSUM Detector Design

 According to the seizure detection algorithm we developed, there are two main

tasks. The initial task is started at the beginning for training the CUSUM detector on

non-seizure data. In this task, the spectral data from the FFT processor is cumulatively

averaged. At the end of this task, the average value is loaded for the CUSUM detector.

The second task is the seizure detection task. During the seizure detection, the

CUSUM detector continuously monitors the power spectrum of the interested bands,

and in real-time triggers the stimulator if specific features are detected, and updates

 52

the parameters according to the current power spectrum. The two tasks perform

different procedures, and are therefore implemented with two different modules.

Figure 20 shows the top level modules of the CUSUM detector.

Power Spectral
Band Selector

CUSUM Initial
Module

CUSUM
Detection ModuleChannel Selector

From FFT
Processor Parameters

To
Stimulator

Trigger

Figure 20 Structure of the CUSUM detector

The spectral data output from the FFT processor is pre-processed by the power

spectral band selector, which basically computes the relative power of the specific

bands that are determined in the training task. Since we employed the interleaving

structure for the FFT processor, the power spectrum for different channels arrives at

the CUSUM detector one by one. Also, we are only interested in certain band(s) of the

spectrum. Therefore, a single CUSUM detector is sufficient for monitoring all the

channels. In the EEG recordings, it is common to find some channels that are

corrupted with artifacts; this is usually due to the bad placement of electrodes or loss

 53

of contact over time. These channels should be excluded from the detector, since the

signal from these channels can mislead the detector. We implemented the “Channel

Selector” module in the CUSUM detector that was used to disable the corrupted

channels. This “Channel Selector” is implemented as a bit map, in which every

channel has a corresponding bit. Value ‘1’ on a bit means the data from corresponding

channel would be sent to the CUSUM detector, otherwise the data from the

correponding channel would be discarded. The bit map can be configured through our

application software.

4.2.6 Software Design

 Software was developed to initialize and transfer a data stream from the FPGA

to the hard disk in the Laptop with a transfer rate up to 30 MB per second. There are

three parts to this software: embedded firmware for the Cypress CY7C68053A USB

controller, USB device driver for the Windows kernel, and application software for

Windows user space. The dark blocks in Figure 21 are the three parts we developed.

In our design, the Cypress CY7C68053A USB controller was configured as a

slave first-in first-out (FIFO) register module. With this configuration, the USB

controller works as a pair of passive FIFOs. One transfers data from the FPGA to the

PC, the other transfers data from the PC to the FPGA, as shown in Figure 22. The

USB protocol is executed by the hardware implemented in the USB controller chip.

The embedded software was developed to configure the registers for the USB protocol

execution during the initialization stage. Table 11 lists all the registers and the

configuration values for correctly configuring the USB controller to slave FIFO mode.

 54

USB
Host

Controller
Driver

Cypress
CY7C68053A

Windows
Kernel

USB
Core

Driver

USB
Device
Driver

Block Char ...

USB Cable

Application
Software

Windows
User Space

Embedded Firmware

USB Protocol Layer

 Figure 21 Firmware, driver and application software stack structure

 55

 Figure 22 Slave FIFO mode of the Cypress CY7C68053A

Table 10 Register configurations of the Cypress CY7C68053A for slave FIFO code

OEA 0x03
IFCONFIG 0x03
REVCTL 0x03
EP1OUTCFG 0x20
EP1INCFG 0x20
EP4CFG 0x20
EP8CFG 0x20
EP2CFG 0xE2
EP6CFG 0xA0
EP4CFG 0x00
EP8CFG 0x00
PINFLAGSAB 0x00
PINFLAGSCD 0x00
FIFOPINPOLAR 0x00
EP2FIFOPFH 0x90
EP2FIFOPFL 0x00
EP2FIFOCFG 0x0C
EP2AUTOINLENH 0x02
EP2AUTOINLENL 0x00

On the PC side, the USB host controller driver and the USB core driver are

provided with the Windows operating system. These two drivers handle almost all the

USB protocol affairs, as well as communicate with the device hardware, which is the

Cypress CY7C68053A USB controller in our case. The main part we developed at the

driver level is the USB device driver. As shown in Fig. 5.11, the USB device driver

works as a bridge between the USB core driver and the application software. On one

 56

hand, the USB device driver continuously sends data read requests to the USB core

driver, once the request is responded to, it saves the data to a buffer. On the other hand,

the USB device driver implements several methods for the application software to

fetch data, the USB interface information or send commands down to the FPGA.

The USB device driver is developed based on the Windows Driver Foundation

(WDF). The WDF is a new driver model for the Windows operating system that is

based on Windows Driver Model (WDM). In other words, the WDF framework

encapsulates the WDM framework, and exposes a much more user-friendly interface

for driver developers. Specifically, the WDF implements a set of default power

management callback functions which deals with all the plug and play and power

issues very well.

Even with the support of WDF framework, there are still two challenges for

developing the USB device driver. First, the USB device driver has to read the data

from the FIFO of the Cypress CY7C68053A USB controller immediately when it is

available. Second, the buffer in the USB device driver is accessible for both the saving

and fetching routine that run asynchronously, so a mechanism is needed to prevent the

buffer from being accessed by the two routines at the same time while still

maintaining the high speed data transfer. The first challenge is addressed by a

mechanism called continuous reader. The idea is that we always maintain two or three

data read requests so that while one request is returned with some data for processing,

there is still a pending request for new data. There are several synchronization

approaches, such as “Critical Section” or “Spine Lock”, which can guarantee only one

routine accessing the buffer at any single time by blocking the other routine that is

 57

trying to access the buffer. But simply applying these approaches will decrease the

performance of the driver in terms of data transfer rate. For instance: if a data read

routine for the application software obtained the access to the buffer, and started to

copy data, the read completion routine has to wait for the copy procedure to finish

before it can access the buffer and save the data. Therefore, we employed the circular

buffer structure that stores the data in the kernel. This structure allows us to avoid the

synchronization problem. Two pointers are utilized in the circular buffer, one pointer

points to the start block of circular buffer, the other pointer points to the end block of

the circular buffer. The read completion routine is responsible for updating the end

pointer, while the read routing for the application software updates the start pointer.

The pointers round back to the minimum address of the buffer once they reach the

maximum address. If the start pointer catches up to the end pointer, the buffer is empty;

otherwise if the end pointer catches up to the start pointer, the buffer is full. If the end

pointer further overlaps the start pointer, data in the buffer is corrupted. The overlap

detector triggers an alarm to the application software about this serious problem.

However, it’s the application software’s responsibility to prevent the circular buffer

from becoming full. The depth of the buffer is calculated according to the current

sampling rate andthe number of recording channels. Three endpoints were

implemented in the driver: default control endpoint, input endpoint and output

endpoint, as shown in Figure 23. The control endpoint is the utilized to USB interface

information retrieval. The input endpoint is employed to transfer data from the

hardware to the Windows USB driver. The output endpoint is used to send data from

the driver to the hardware. The structure of the driver is shown in Figure 24.

 58

Figure 23 Endpoints of the driver and thevirtual connection to the dardware

As we mentioned above, our application software is responsible for retrieving the

data from the USB device driver without any loss. A precise timer is desired to finish

this task. Thus, we employed the timer-queue timer, which is mostly applied in the

multimedia field. According to our testing on the Windows XP operation system, the

timer-queue timer can give a quite constant interval of 1.1 ms with the jitter less than

0.01 ms. In our application, the timer-queue timer triggers a timer call back function

every 1.1 ms to retrieve data from the buffer of the USB device driver. According to

the two tasks of the applications software, the retrieved data is sent to two buffers in

 59

the user space. First, the data is sent to a ping-pong buffer. Every 30 seconds, an extra

thread is created to write the data in one memory block of the ping-pong buffer to the

hard disk, and in the next 30 seconds the coming data will be sent to the other memory

block. Second, the data is also sent to a buffer in the signal display module. In our

signal display module, data is processed and mapped to the pixels on the screen. The

procedure flow chart of the application software is shown in Figure 25.

I/O Control

Read

Continuous Reader

I/O Queue

Write

Read
Completion

To Lower Level Driver

From Lower Level
Driver

Overlap
Detector

Circular Buffer

Start Pointer

End Pointer

 Figure 24 Structure of the USB device driver

 60

Figure 25 Procedure flow chart of the application software

 61

4.3 Results

An 8-channel 256-point FFT processor and a 64-channel 256-point FFT processor

were synthesized for the target Cyclone IV E FPGA with Altera Quatus II software。

The synthesis results are shown in Figure 26 and Figure 27. To give a comparison,

even though it’s not a fair comparison, the synthesis results of the standard single

channel 256-point fixed bit-width (24-bit) intellectual property (IP) core library from

Altera Corporation is shown in Figure 28.

Figure 26 synthesis summary of an 8-channel FFT processor

The main synthesis results are summarized in Table 11. Our 8-channel and 64-

channel FFTs consume approximately 35% more of the logic elements compared to

the standard single channel FFT core. Considering we process 7 or 63 more channels

of data, and only consume 35% more logic elements, this is quite an efficient

implementation. The increase in resources is due to the hardware resources being re-

used for every channel. However, we can clearly see that the memory bits consumed is

increasing with the increasing number of channels. These memory bits are consumed

 62

 Figure 27 synthesis summary of a 64-channel FFT processor

Figure 28 synthesis summary of a standard single channel FFT IP core

by the shift registers in our FFT processors.

The 8-channel and 64-channel FFT processors utilize 128 9-bit embedded

multipliers, while the standard single channel FFT core utilizes only 48 9-bit

embedded multipliers. There are two reasons that make this difference. First, the

standard single channel FFT core keeps a 24-bit data width for all the stages, while

 63

our FFT processors employed a data width increasing algorithm to achieve a better

transform precision, which is shown in Figure 18. Second, the standard single channel

FFT core re-used the multipliers in each butterfly. Re-using the multipliers would

actually slow down our implementation of the FFT.

For the three FFT processors, we used the same Synopsys design constraints

(SDC) file, which requires a clock rate of 200 MHz. The synthesis results show that

the maximum clock rate of the standard single channel FFT IP core, the 8-channel

FFT processor and the 64-channel FFT processor is 206 MHz, 156 MHz and 101 MHz,

respectively. As we can see, the maximum clock rate decreases with the increasing of

the number of channels. The reason for this is that more embedded memory blocks are

involved with more channels, which eventually increases the length of the wire

connections. The wire delay from the wire connection is the main constraint on the

maximum clock rate. The 101 MHz maximum clock rate guarantees that the 64-

channel FFT processor can run safely at a lower clock rate, such as 50 MHz as we

desire. To improve the resource consumption performance, we may lower the

maximum clock restraint to 80 MHz, which will give the synthesizer more space to

optimize the resource consumption.

Table 11 Summary of the synthesis results for the three FFT processors

 Logic

Elements
Consumption

Total
Memory Bits
Consumption

Embedded
Multipliers
Consumption

Maximum
Clock Rate

8-channel
FFT Processor

9415 251,492 128 156MHz

64-channel
FFT Processor

9715 1,771,424 128 101MHz

 Single Channel
FFT IP Core

7007 13,795 48 206MHz

 64

 We tested the FFTs by using a combination of several sinusoid signals. The

sinusoids with different frequencies were generated using Matlab and stored in a data

file that was sent to the multi-channel FFT processor. In Figure 23, the top panel

shows the floating –point FFT transform results from Maltab with the command “fft”,

while the bottom panel shows the FFT transform results from our fixed-point FFT

processor with the same input. The relative square mean error between them is

6.2632e-005.

Figure 29 FFT transfer results of Matlab (top) fft command and our FFT processor

 The FPGA controller and digital signal processing module, the USB interface,

Windows USB driver and application software were first tested and verified

separately. The EEG monitoring system was also tested with a 128-channel

configuration with simulated data in the FPGA. An 8-channel configuration was also

tested with a real ECG recording. Further animal experiments are needed to test the

seizure detector in a real environment.

 65

4.4 Discussion

 A distinct automatic seizure detector was developed to solve the special

problem we met in the animal experiments. We emphazied the multi-channel, up to

128 channels, digital signal processing ability of the detector, a series of digital signal

processing functional units were developed for this purpose. Thus, the system has the

potential to be applied to real-time human seizure detection with up to 128 EEG

channels, while most of the existing seizure detection systems only work for far fewer

channels [44].

 Accompanied with the automatic seizure detection system, we also developed

a multi-channel EEG monitoring system. There are many commercial EEG monitoring

systems on the market, such as Grass Comet and Aura EEG monitering systems,

g.USB serial EEG monitoring systems. But these systems only allow the user to

access the EEG data in the software level, while our system allows us to access and

process the data at the hardware level, which significantly improves the real-time

signal processing ability. With our system, we can implement and test many more

applications which might not be pratical if we use the commercial systems.

4.5 Conclusion

 An EEG automatic seizure detection system for rats, or any being, was

implemented in an FPGA based embedded system. An EEG monitoring system was

also developed. Both systems have the advantage of real-time signal processing ability

for large numbers of channels.

 66

CHAPTER 5: FUTURE WORK

5.1 Resistor Inductor Capacitor (RLC) Model of TCRE Recording

With the special tripolar structure, the TCRE has different characteristics in

terms of the interaction with paste and the scalp. To help fully understand this type of

electrode, a passive RLC network model may be built to mimic the recording behavior

of the TCRE, as shown in Figure 30.

TCREPaste

Scalp

Input Output

Model

 Figure 30 RLC model of EEG recording with TCRE

A possible approach to build the RLC structure is to place a current source at

the location of the cortex area of a head model, vary the frequency of the source then

measure the simulated output from the TCRE. The RLC model may be built according

to the source frequency and magnitude curve.

 67

5.2 Optimized TCRE Preamplifier Development

 The precise passive circuit model for the TCRE should give the ability to

design a preamplifier with optimization of the noise and cross talk rejection. The

input-referred voltage noise of a low noise instrumentation amplifier is typically

50 nV/ Hz (with the gain 100, 0-100 Hz band), and the input-referred current noise is

typically at 1 pA/ Hz , the noise model of the instrumentation amplifier is shown in

Figure 31 [45]. The input-referred voltage noise is directly added to the input signal,

while the input-referred current noise is coupled into the circuit by producing the

corresponding voltage on the signal conditioning circuit and the sensor circuit, which

is shown in Figure 32.

With the circuit models shown below in Figure 32, the noise of the

preamplifier can be quantized easily by hand calculation or PSPICE simulation.

Proper usage of this noise quantization method should greatly help to design a low

noise preamplifier for the TCRE.

 68

NpINnI

nV

Figure 31 Noise model of the instrumentation amplifier

NpINnI

Figure 32 Current noise source coupled to the preamplifier circuit

 Another important issue in the development of the preamplifier for the TCRE,

or generally for EEG electrodes, is that the crosstalk among channels must be rejected.

Crosstalk is the signal from one channel that creates an undesired signal on the other

channels. For EEG applications, this phenomenon will directly decrease the spatial

 69

resolution of the recording. To lessen or avoid the crosstalk, some attention should be

paid when laying out the printed circuit board (PCB) for the preamplifier. The

common ground connection for the power supply lines, which is shown in Figure 33,

must be prohibited. A star-connection, also shown in Figure 33, is a better alternative,

while separate ground and power planes are mostly needed.

 Figure 33 Common ground connection (left) and star connection (right)

5.3 Need for a More Portable Automatic Seizure Detection and Alarm

System

 Our automatic seizure detection system can be applied to human seizure

detection with a proper real time human seizure detection algorithm. A compact

system with fewer channels may be valuable for remote seizure detection of patients

with epilepsy. Some patients have seizures only once per month or even less, which

means they can live a normal life most of the time, but need an alarm once the

occasional seizure happens. In this case, only a few channels may be needed if the

epilepileptic area of the brain can be pre-determined by neurologists. Based on these

conditions, a compact 8 channel, or less, automatic seizure detector and alarm system

may be developed as shown in Figure 34. It is similar to the seizure detection system

 70

we developed, except for two differences. First, the human seizure detection algorithm

should be implemented in the FPGA; second, a WIFI (or other wireless) module

should be implemented for remote communication. The whole system can be placed

on a single PCB with the area of 5 cm by 5 cm. The system would be continuously

monitoring the EEG of the patients, if no seizure is detected, the WIFI module is off, if

there is some seizure activity detected, an alarm will be sent to the patient, and through

the WIFI module to the hospital, and the recorded EEG signal will also be transmitted

out though the WIFI module. On the other side, a network driver and application

software should be developed based on a PC to communicate with the embedded

system to receive the alarm and the transmitted EEG signal. These are some of the

possible directions that need to be investigated for future applications of the TCREs.

Figure 34 Compact 8-channel seizure detection and alarm system

 71

REFERENCES

[1] Nunez P. L., Silberstein R. B., Cadiush P. J., Wijesinghe J., Westdorp A. F., and
Srinivasan R., “A theoretical and experimental study of high resolution EEG based
on surface Laplacians and cortical imaging,” Electroencephalography and Clinical
Neurophysiology vol. 90, pp. 40-57, 1994.

[2] He B., “Brain electrical source imaging: scalp laplacian mapping and cortical

imaging,” Crit. Rev. Biomed. Eng., vol. 27, pp. 149–188, 1999.

[3] Perrin F., Pernier J., Bertrand O. and Echallier J. F., “Spherical splines for scalp

potential and current density mapping,” Electroencephalography and Clinical
Neurophysiology 72: 184-1987, 1989.

[4] Biggins C., Fein G., Raz J. and Amir A., “Artifactually high coherences results

from using spherical spline computation of scalp current density,” Electroenceph.
and Clin. Neurophysiol., 79: 413-419, 1991.

[5] Fein G., Raz J., and Turetsky B., “Brain electrical activity: the promise of new

technologies,” In: S. Zakhari and E. Witt (Eds.)., Imaging in Alcohol Research.
Proc. of a Workshop on Imaging in Alcohol Research, Wild Dunes, SC, 9–11: 49-
78, 1991.

[6] Le J., Menon V., and Gevins A., “Local estimate of surface Laplacian derivation

on a realistically shaped scalp surface and its performance on noisy data,”
Electroencephalography and Clinical Neurophysiology., 92: 433-441, 1994.

[7] Wang K., and Befleiter H., “Local polynomial estimate of surface Laplacian,”

Brain Topograpgy, Vol 12, Issue 1, 19-29, 1999.

[8] Hjorth B., “An on-line transformation of EEG scalp potentials into orthogonal

source derivations,” Electroencephalography and Clinical Neurophysiology, Vol..
39,526-530, 1975.

[9] Besio W., Koka K., Aakula R., Dai W., “Tri-polar Concentric Ring Electrode

Development for Laplacian Electroencephalography,” IEEE Trans BME, Vol. 53,
No. 5, pp. 926-933, 2006.

[10] World Health Organization (WHO).

http://www.who.int/mediacentre/factsheets/fs999/en/. Accessed on May 14, 2013.

[11] Groves D. A., Brown V. J., “Vagal nerve stimulation: A review of its

applications and potential mechanisms that mediate its clinical effects,” Neurosci
Biobehav. Rev., 29(3): 493-500, 2005.

 72

[12] Kringelbach M. L., Jenkinson N., Owen S. L. and Aziz T. Z., “Translational
principles of deep brain stimulation,” Nat. Rev. Neurosci., 8(8): 623-635, 2007.

[13] Gigante P. R., Gooman R. R., “Responsive neurostimulation for the treatment

of epilepsy,” Neurosurg. Clin. N Am., 22(4): 477-480, 2011.

[14] Utz K. S., Dimova V., Oppenländer K. and Kerkhoff G., “Eectrified minds:

transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation
(GVS) as methods of non-invasive brain stimulation in neuropsychology--a
review of current data and future implications,” Neuropsychologia., 48(10): 2789-
2810, 2010.

[15] Barker A. T., Jalinous R. and Freeston I. L., “Non-Invasive Magnetic

Stimulation of Human Motor Cortex,” Lancet, 1(8437): 1106-1107, 1985.

[16] Bédard M., Agid Y. , Chouinard S. , Fahn S., Korczyn A. and Lesperace P.,

“Mental and Behavioral Dysfunction in Movement Disorders,” Humana Press,
2003.

[17] Stevanovic D., “Epilepsy - Histological, Electroencephalographic and

Psychological Aspects,” Intech Press, 2012.

[18] Gloor P., “Contributions of electroencephalography and electrocorticography in

the neurosurgical treatment of the epilepsies,” Adv Neurol, 8:59–105, 1975.

[19] Wilson S., Emerson R., “Spike detection: a review and comparison of

algorithms,” Clin Neurophysiol. 2002 Dec, 113(12):1873-81.

[20] Polat K., Gunes S., “Classification of epileptiform EEG using a hybrid system

based on decision tree classifier and fast Fourier transform,” Applied
Mathematics and Computation, 187(2), 1017–1026, 2007.

[21] Tzallas A. T., Tsipouras M. G., Fotiadis D. I., “Epileptic seizure detection in

EEGs using time-frequency analysis,” IEEE Trans Inf Technol Biomed, 13(5),
703-710, 2009.

[22] Ocak H., “Automatic detection of epileptic seizures in EEG using discrete

wavelet transform and approximate entropy,” Expert Systems with Applications,
36(2), 2027–2036, 2009.

[23] Quyen M. L. V., Martinerie J., Baulac M., Varela F., “Anticipating epileptic

seizures in real time by a non-linear analysis of similarity between EEG
recordings,” Neuroreport, Jul 13, 10(10):2149-55, 1999.

[24] Basseville M. and Nikiforov I. V., “Detection of abrupt changes: Theory and

Application,” Prentice Hall Press, 1993.

 73

[25] Besio W., Makeyev O., Medvedev A., Gale K., “Effects of transcranial focal

stimulation via tripolar concentric ring electrodes on pentylenetetrazole-induced
seizures in rats”, Epilepsy Research, Jan, 2013.

[26] Makeyev O., Liu X., Luna-Munguía H., Rogel-Salazar G., Mucio-Ramirez

S., Liu Y., Sun Y. L., Kay S. M. and Besio W. G., “Toward a noninvasive
automatic seizure control system in rats with transcranial focal stimulations via
tripolar concentric ring electrodes,” IEEE Trans. Neural Syst. Rehabil Eng.,
20(4): 422-431, 2012.

[27] Collura T., “History and evaluation of electroencephalographic instruments and

techniques,” J. Clin Neurophysiol., 10(4):476-504, 1993.

[28] Cuffin B. N., and Cohen D., “Comparison of the magnetoencephalogram and

electroencephalogram,” Electroencephalography and Clinical Neurophysiology,
47, 132-146, 1979.

[29] Tandonnet C., Burle B., Hasbroucq T., Vidal F., “Spatial enhancement of EEG

traces by surface Laplacian estimation: comparison between local and global
methods,” Clin. Neurophysiol. , 116(1):18-24, 2005.

[30] Hansen P., “The truncated SVD as a method of regularization,” BIT Numerical

Mathematics, Vol. 27, Issue 4, 534-553, 1987.

[31] He B., Yao D., Lian J., and Wu D., “An Equivalent Current Source Model and

Laplacian Weighted Minimum Norm Current Estimates of Brain Electrical
Activity,” IEEE Trans. BME, Vol. 49, No. 4, 2002.

[32] Oostenveld R., Praamstra P., “The five percent electrode system for high-

resolution EEG and ERP measurements,” Clinical Neurophysiol, 112(4): 713-
719, 2001.

[33] Montgomery D.C., “Design and analysis of experiments, Wiley,” Hoboken, 2004.

[34] He B., Wang Y., and Wu D., “Estimating cortical potentials from scalp EEGs in

a realistically shaped inhomogeneous head model by means of the boundary
element method,” IEEE Trans. BME, Vol. 46, No. 10, 1999:713-719, 2001.

[35] Koka K., Besio W., "Improvement of spatial selectivity and decrease of mutual

information of tripolar concentric ring electrodes," J. Neuroscience Methods,
165(2): 216-222, 2007.

[36] Bragin A., Wilson C. L., Fields T., Fried I. and Engel Jr J., “Analysis of seizure

onset on the basis of wideband EEG recordings, ” Epilepsia 46 59–63, 2005.

 74

[37] Gotman J., “Automatic detection of seizures and spikes, ” Journal of Clinical
Neurophysiology, 16:130–140, 1999.

[38] Chander R., Urrestarrazu E. and Gotman J., “Automatic detection of high

frequency oscillations in human intracerebral EEGs,” Epilepsia 47 (4) 37, 2006.

[39] Gotman J., “Automatic recognition of epileptic seizures in the EEG,”

Electroencephalography and Clinical Neurophysiology, 54:530-540, 1982.

[40] Urrestarazu E., Chander R., Dubeau F., Gotman J., “Interictal high-frequency

oscillations (100-500 Hz) in the intracerebral EEG of epileptic patients,” Brain.,
130:2354-66, 2007.

[41] Worrell G., “High-frequency oscillations recorded on scalp EEG,” Epilepsy

Curr., 12(2): 57-58, 2012.

[42] Texas Instruments, “Low-Noise, 8-Channel, 24-Bit Analog Front-End for

Biopotential Measurements,” 2012.

[43] Parhi K., “VLSI Digital Signal Processing Systems: Design and

Implementation,” Wiley-Interscience Press, 1999.

[44] Chandler D., Bisasky J., Stanislaus J. and Mohsenin T., “Real-time multi-

channel seizure detection and analysis hardware, ” Biomedical Circuits and
Systems Conference 2011, 41-44, 2011.

[45] Kester W., “Practical design techniques for sensor signal conditioning,” Prentice

Hall Press, 1999.

 75

APPENDIXES

APPENDEX A: Matlab Code for VEP Data Processing

clear all
close all
clc

[data(:,1),data(:,2),data(:,3),data(:,4),data(:,5),data(:,6),dat
a(:,7),data(:,8),...

data(:,9),data(:,10),data(:,11),data(:,12),data(:,13),data(:,14)
,data(:,15),data(:,16),...

data(:,17),data(:,18),data(:,19),data(:,20),data(:,21),data(:,22
),data(:,23),data(:,24),...

data(:,25),data(:,26),data(:,27),data(:,28),data(:,29),data(:,30
),data(:,31),data(:,32), data(:,33)...
] =textread('LED2Hz15Hzstimulation_LinDu.txt','%f %f %f %f %f
%f
%f %f %f %f %f %f %f');

N = size(data(:,30),1);

% for i = 1:30
% for j = 1:N
% if abs(data(j,i)) >= 100
% data(j,i) = 0;
% end
% end
% end
%
% for i = 32:33
% for j = 1:N
% if abs(data(j,i)) >= 100
% data(j,i) = 0;
% end
% end
% end

i=3e4;
k=0;
while(i<N)
 if data(i,31) > -700
 i=i+1;

 76

elseif data(i,31) > data(i+1,31)
 i=i+1;
 else
 k=k+1;
 segment(k,1)=i;
 i=i+10;
 end
end

vep_data = zeros(61,33);
for i = 1:100
 for j = 0:60
 k = segment(i,1) + j;

 for ch=1:33
 vep_data(j+1,ch) = vep_data(j+1,ch) + data(k,ch);
 end
 end
end

for j = 0:60
 for ch=1:33
 vep_data(j+1,ch) = vep_data(j+1,ch)/61;
 end
end

%%% normalize the outer ring VEP and tripolar VEP separately
vep_data_tri = zeros(61,15);
vep_data_outer = zeros(61,15);

vep_data_tri(:,1) = vep_data(:, 1); % Cp5
vep_data_tri(:,2) = vep_data(:, 3); % P3
vep_data_tri(:,3) = vep_data(:, 17); % Pz
vep_data_tri(:,4) = vep_data(:, 4); % P4
vep_data_tri(:,5) = vep_data(:, 9); % CP6
vep_data_tri(:,6) = vep_data(:, 10); % P5
vep_data_tri(:,7) = vep_data(:, 11); % P6
vep_data_tri(:,8) = vep_data(:, 19); % P7
vep_data_tri(:,9) = vep_data(:, 12); % Po7
vep_data_tri(:,10) = vep_data(:, 16); % Po3
vep_data_tri(:,11) = vep_data(:, 32); % Poz
vep_data_tri(:,12) = vep_data(:, 23); % Po4
vep_data_tri(:,13) = vep_data(:, 25); % P8
vep_data_tri(:,14) = vep_data(:, 27); % O1
vep_data_tri(:,15) = vep_data(:, 29); % O2

vep_data_outer(:,1) = vep_data(:, 2); % Cp5
vep_data_outer(:,2) = vep_data(:, 5); % P3
vep_data_outer(:,3) = vep_data(:, 6); % Pz
vep_data_outer(:,4) = vep_data(:, 7); % P4
vep_data_outer(:,5) = vep_data(:, 18); % CP6

 77

vep_data_outer(:,6) = vep_data(:, 8); % P5
vep_data_outer(:,7) = vep_data(:, 13); % P6
vep_data_outer(:,8) = vep_data(:, 14); % P7
vep_data_outer(:,9) = vep_data(:, 15); % Po7
vep_data_outer(:,10) = vep_data(:, 20); % Po3
vep_data_outer(:,11) = vep_data(:, 33); % Poz
vep_data_outer(:,12) = vep_data(:, 24); % Po4
vep_data_outer(:,13) = vep_data(:, 26); % P8
vep_data_outer(:,14) = vep_data(:, 28); % O1
vep_data_outer(:,15) = vep_data(:, 30); % O2

max_vep_data_tri = max(max(abs(vep_data_tri)));
max_vep_data_outer = max(max(abs(vep_data_outer)));

vep_data_tri = vep_data_tri/max_vep_data_tri;
vep_data_outer = vep_data_outer/max_vep_data_outer;

figure(2)

plot(vep_data_tri, 'r');
hold on
plot(vep_data_outer, 'k');
axis([1 61 -2 2])
hold off
figure(1)
C=0:1:60;
C=C*200/61;
plot(C, abs(fft(vep_data(:,3))))

 78

APPENDEX B: USB Interface Debugger Source Code

// USB_DialogDlg.cpp : implementation file

//

#include "stdafx.h"

#include "USB_Dialog.h"

#include "USB_DialogDlg.h"

#include <setupapi.h>

#include <stdio.h>

#include <stdlib.h>

#include <conio.h>

#include <winioctl.h>

#include <Windows.h>

#include <Mmsystem.h>

#include "usb100.h"

#include "usbscan.h"

#include <mmsystem.h>

#ifdef _DEBUG

#define new DEBUG_NEW

#endif

// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog

{

public:

 CAboutDlg();

// Dialog Data

 enum { IDD = IDD_ABOUTBOX };

 protected:

 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support

// Implementation

protected:

 DECLARE_MESSAGE_MAP()

};

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)

{

}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)

{

 CDialog::DoDataExchange(pDX);

}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)

()

 79

END_MESSAGE_MAP()

// CUSB_DialogDlg dialog

CUSB_DialogDlg::CUSB_DialogDlg(CWnd* pParent /*=NULL*/)

 : CDialog(CUSB_DialogDlg::IDD, pParent)

{

 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);

 rcv_data_cnt = 0;

 frame_mark_pre_flag = true;

 frame_mark_pre_flag = false;

}

void CUSB_DialogDlg::DoDataExchange(CDataExchange* pDX)

{

 CDialog::DoDataExchange(pDX);

}

BEGIN_MESSAGE_MAP(CUSB_DialogDlg, CDialog)

 ON_WM_SYSCOMMAND()

 ON_WM_PAINT()

 ON_WM_QUERYDRAGICON()

 ON_BN_CLICKED(IDC_CONFIGINFO, &CUSB_DialogDlg::OnBnClickedConfiginfo)

 ON_BN_CLICKED(IDC_INFERFACEINFO, &CUSB_DialogDlg::OnBnClickedInferfaceinfo)

 ON_BN_CLICKED(IDC_ENDPOINTSINFO, &CUSB_DialogDlg::OnBnClickedEndpointsinfo)

 ON_BN_CLICKED(IDC_SWITCH, &CUSB_DialogDlg::OnBnClickedSwitch)

 ON_BN_CLICKED(IDC_BulkTest, &CUSB_DialogDlg::OnBnClickedBulktest)

 ON_EN_CHANGE(IDC_BULKIN, &CUSB_DialogDlg::OnEnChangeBulkin)

 ON_BN_CLICKED(IDC_LEDBARREAD, &CUSB_DialogDlg::OnBnClickedLedbarread)

 ON_BN_CLICKED(IDC_LEDBARSET, &CUSB_DialogDlg::OnBnClickedLedbarset)

 ON_BN_CLICKED(IDC_7LEDREAD, &CUSB_DialogDlg::OnBnClicked7ledread)

 ON_BN_CLICKED(IDC_7LEDSET, &CUSB_DialogDlg::OnBnClicked7ledset)

 ON_BN_CLICKED(IDC_SPEEDTEST, &CUSB_DialogDlg::OnBnClickedSpeedtest)

 ON_BN_CLICKED(IDC_STOPSPEEDTEST, &CUSB_DialogDlg::OnBnClickedStopspeedtest)

 ON_BN_CLICKED(IDC_BULKREAD, &CUSB_DialogDlg::OnBnClickedBulkread)

 ON_BN_CLICKED(IDC_BULKWRITE, &CUSB_DialogDlg::OnBnClickedBulkwrite)

 ON_BN_CLICKED(IDC_BufStatus, &CUSB_DialogDlg::OnBnClickedBufstatus)

 ON_BN_CLICKED(IDC_StTimer, &CUSB_DialogDlg::OnBnClickedSttimer)

 ON_BN_CLICKED(IDC_StopTimer, &CUSB_DialogDlg::OnBnClickedStoptimer)

 ON_BN_CLICKED(IDC_start1msres, &CUSB_DialogDlg::OnBnClickedstart1msres)

 ON_BN_CLICKED(IDC_end1msres, &CUSB_DialogDlg::OnBnClickedend1msres)

 ON_BN_CLICKED(IDC_BUFFERREAD, &CUSB_DialogDlg::OnBnClickedBufferread)

 ON_BN_CLICKED(Datatest_Start, &CUSB_DialogDlg::OnBnClickedStart)

 ON_BN_CLICKED(Datatest_End, &CUSB_DialogDlg::OnBnClickedEnd)

 ON_WM_TIMER()

END_MESSAGE_MAP()

// CUSB_DialogDlg message handlers

 80

 ON_BN_CLICKED(Datatest_End, &CUSB_DialogDlg::OnBnClickedEnd)

 ON_WM_TIMER()

END_MESSAGE_MAP()

// CUSB_DialogDlg message handlers

BOOL CUSB_DialogDlg::OnInitDialog()

{

 CDialog::OnInitDialog();

 // Add "About..." menu item to system menu.

 // IDM_ABOUTBOX must be in the system command range.

 ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);

 ASSERT(IDM_ABOUTBOX < 0xF000);

 CMenu* pSysMenu = GetSystemMenu(FALSE);

 if (pSysMenu != NULL)

 {

 CString strAboutMenu;

 strAboutMenu.LoadString(IDS_ABOUTBOX);

 if (!strAboutMenu.IsEmpty())

 {

 pSysMenu->AppendMenu(MF_SEPARATOR);

 pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);

 }

 }

 // Set the icon for this dialog. The framework does this automatically

 // when the application's main window is not a dialog

 SetIcon(m_hIcon, TRUE); // Set big icon

 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here

 CTime ctime=CTime::GetCurrentTime();

 CString str;

 str.Format(_T("USB Driver Testing Started at: %d-%2d-%2d %02d:%02d

\r\n"),ctime.GetYear(),ctime.GetMonth(),ctime.GetDay(),ctime.GetHour(),ctime.GetMinut

e());

 //str.Format(_T("USB Driver Testing Started at: %b \r\n"),ctime.GetMonth());

 GetDlgItem(IDC_Display)->SetWindowText(str);

 str.ReleaseBuffer();

 return TRUE; // return TRUE unless you set the focus to a control

}

void CUSB_DialogDlg::OnSysCommand(UINT nID, LPARAM lParam)

{

 if ((nID & 0xFFF0) == IDM_ABOUTBOX)

 {

 CAboutDlg dlgAbout;

 dlgAbout.DoModal();

 }

 81

 else

 {

 CDialog::OnSysCommand(nID, lParam);

 }

}

// If you add a minimize button to your dialog, you will need the code below

// to draw the icon. For MFC applications using the document/view model,

// this is automatically done for you by the framework.

void CUSB_DialogDlg::OnPaint()

{

 if (IsIconic())

 {

 CPaintDC dc(this); // device context for painting

 SendMessage(WM_ICONERASEBKGND,

reinterpret_cast<WPARAM>(dc.GetSafeHdc()), 0);

 // Center icon in client rectangle

 int cxIcon = GetSystemMetrics(SM_CXICON);

 int cyIcon = GetSystemMetrics(SM_CYICON);

 CRect rect;

 GetClientRect(&rect);

 int x = (rect.Width() - cxIcon + 1) / 2;

 int y = (rect.Height() - cyIcon + 1) / 2;

 // Draw the icon

 dc.DrawIcon(x, y, m_hIcon);

 }

 else

 {

 CDialog::OnPaint();

 }

}

PSP_DEVICE_INTERFACE_DETAIL_DATA CUSB_DialogDlg::GetDevicePath(LPGUID InterfaceGuid)

{

 HDEVINFO HardwareDeviceInfo;

 SP_DEVICE_INTERFACE_DATA DeviceInterfaceData;

 PSP_DEVICE_INTERFACE_DETAIL_DATA DeviceInterfaceDetailData = NULL;

 ULONG Length, RequiredLength = 0;

 BOOL bResult;

 HardwareDeviceInfo = SetupDiGetClassDevs(

 InterfaceGuid,

 NULL,

 NULL,

 (DIGCF_PRESENT | DIGCF_DEVICEINTERFACE));

 if (HardwareDeviceInfo == INVALID_HANDLE_VALUE) {

 82

 // send this notification unless you override the CDialog::OnInitDialog()

 // function and call CRichEditCtrl().SetEventMask()

 // with the ENM_CHANGE flag ORed into the mask.

 // TODO: Add your control notification handler code here

}

CScrollBar* CUSB_DialogDlg::GetScrollBarCtrl(int nBar) const

{

 // TODO: Add your specialized code here and/or call the base class

 return CDialog::GetScrollBarCtrl(nBar);

}

PSP_DEVICE_INTERFACE_DETAIL_DATA CUSB_DialogDlg::GetDevicePath(LPGUID InterfaceGuid)

{

 HDEVINFO HardwareDeviceInfo;

 SP_DEVICE_INTERFACE_DATA DeviceInterfaceData;

 PSP_DEVICE_INTERFACE_DETAIL_DATA DeviceInterfaceDetailData = NULL;

 ULONG Length, RequiredLength = 0;

 BOOL bResult;

 HardwareDeviceInfo = SetupDiGetClassDevs(

 InterfaceGuid,

 NULL,

 NULL,

 (DIGCF_PRESENT | DIGCF_DEVICEINTERFACE));

 if (HardwareDeviceInfo == INVALID_HANDLE_VALUE) {

 printf("SetupDiGetClassDevs failed!\n");

 exit(1);

 }

 DeviceInterfaceData.cbSize = sizeof(SP_DEVICE_INTERFACE_DATA);

 bResult = SetupDiEnumDeviceInterfaces(HardwareDeviceInfo,

 0,

 InterfaceGuid,

 0,

 &DeviceInterfaceData);

 if (bResult == FALSE) {

 printf("SetupDiEnumDeviceInterfaces failed.\n");

 SetupDiDestroyDeviceInfoList(HardwareDeviceInfo);

 exit(1);

 }

 SetupDiGetDeviceInterfaceDetail(

 HardwareDeviceInfo,

 &DeviceInterfaceData,

 83

 NULL,

 0,

 &RequiredLength,

 NULL

);

 DeviceInterfaceDetailData = (PSP_DEVICE_INTERFACE_DETAIL_DATA)

LocalAlloc(LMEM_FIXED, RequiredLength);

 if (DeviceInterfaceDetailData == NULL) {

 SetupDiDestroyDeviceInfoList(HardwareDeviceInfo);

 printf("Failed to allocate memory.\n");

 exit(1);

 }

 DeviceInterfaceDetailData->cbSize = sizeof(SP_DEVICE_INTERFACE_DETAIL_DATA);

 Length = RequiredLength;

 bResult = SetupDiGetDeviceInterfaceDetail(

 HardwareDeviceInfo,

 &DeviceInterfaceData,

 DeviceInterfaceDetailData,

 Length,

 &RequiredLength,

 NULL);

 if (bResult == FALSE) {

 printf("Error in SetupDiGetDeviceInterfaceDetail\n");

 SetupDiDestroyDeviceInfoList(HardwareDeviceInfo);

 LocalFree(DeviceInterfaceDetailData);

 exit(1);

 }

 // AfxMessageBox(DeviceInterfaceDetailData->DevicePath);

 return DeviceInterfaceDetailData;

}

void CUSB_DialogDlg::OnBnClickedDirection()

{

 // TODO: Add your control notification handler code here

 CString str, str_pre;

 PSP_DEVICE_INTERFACE_DETAIL_DATA DeviceInfo=GetDevicePath((LPGUID)&

USBSample_DEVINTERFACE_GUID);

 GetDlgItem(IDC_Display)->GetWindowText(str_pre);

 str.Format(_T("%s \r\n"),DeviceInfo->DevicePath);

 str=str_pre+_T("\r\nDriver Direction: \r\n")+str;

 GetDlgItem(IDC_Display)->SetWindowText(str);

 str.ReleaseBuffer();

 str_pre.ReleaseBuffer();

 84

}

void CUSB_DialogDlg::OnBnClickedDeviceinfo()

{

 // TODO: Add your control notification handler code here

 CString str, str_pre;

 PSP_DEVICE_INTERFACE_DETAIL_DATA DeviceInfo=GetDevicePath((LPGUID)&

USBSample_DEVINTERFACE_GUID);

 HANDLE hDevice = CreateFile(DeviceInfo->DevicePath,

 GENERIC_READ|GENERIC_WRITE,

 FILE_SHARE_READ | FILE_SHARE_WRITE,

 NULL,

 OPEN_EXISTING,

 0,

 NULL);

 if (hDevice == INVALID_HANDLE_VALUE) {

 printf("ERROR opening device: (%0x) returned from CreateFile\n",

GetLastError());

 }

 USB_DEVICE_DESCRIPTOR UsbDeviceDescriptor;

 DWORD junk;

 if (!DeviceIoControl(hDevice,

 USBSample_IOCTL_801,

 NULL,

 0,

 (LPVOID) &UsbDeviceDescriptor,

 18,

 &junk,

 (LPOVERLAPPED) NULL)

)

 {

 printf("ERROR: DeviceIoControl returns %0x.\n", GetLastError());

 exit(1);

 }

 GetDlgItem(IDC_Display)->GetWindowText(str_pre);

 str.Format(_T("\r\nUSB DEVICE DESCRIPTOR\r\nbLength: %d \r\nbDescriptorType:

%d \r\nbcdUSB: %d \r\nbDeviceClass: %d \r\nbDeviceSubClass: %d\r\nbDeviceProtocol: %d

\r\nbMaxPacketSize0: %d \r\nidVendor: %d \r\nidProduct: %d \r\nbcdDevice: %d

\r\niManufacturer: %d \r\niProduct: %d \r\niSerialNumber: %d \r\nbNumConfigurations:

%d \r\n"),

 UsbDeviceDescriptor.bLength,UsbDeviceDescriptor.bDescriptorType,

UsbDeviceDescriptor.bcdUSB,UsbDeviceDescriptor.bDeviceClass,

 UsbDeviceDescriptor.bDeviceSubClass,

UsbDeviceDescriptor.bDeviceProtocol, UsbDeviceDescriptor.bMaxPacketSize0,

 UsbDeviceDescriptor.idVendor, UsbDeviceDescriptor.idProduct,

UsbDeviceDescriptor.bcdDevice, UsbDeviceDescriptor.iManufacturer,

UsbDeviceDescriptor.iProduct,

 UsbDeviceDescriptor.iSerialNumber,

UsbDeviceDescriptor.bNumConfigurations);

 85

 str=str_pre+str;

 GetDlgItem(IDC_Display)->SetWindowText(str);

 str.ReleaseBuffer();

 str_pre.ReleaseBuffer();

}

void CUSB_DialogDlg::OnBnClickedClear()

{

 // TODO: Add your control notification handler code here

 CTime ctime=CTime::GetCurrentTime();

 CString str;

 str.Format(_T("USB Driver Testing Started at: %d-%2d-%2d %02d:%02d

\r\n"),ctime.GetYear(),ctime.GetMonth(),ctime.GetDay(),ctime.GetHour(),ctime.GetMinut

e());

 GetDlgItem(IDC_Display)->SetWindowText(str);

 str.ReleaseBuffer();

}

void CUSB_DialogDlg::OnBnClickedConfiginfo()

{

 // TODO: Add your control notification handler code here

 CString str, str_pre;

 PUSB_CONFIGURATION_DESCRIPTOR P_UsbConfigDescriptor;

 P_UsbConfigDescriptor = (PUSB_CONFIGURATION_DESCRIPTOR)

LocalAlloc(LMEM_FIXED, 100);

 PSP_DEVICE_INTERFACE_DETAIL_DATA DeviceInfo=GetDevicePath((LPGUID)&

USBSample_DEVINTERFACE_GUID);

 HANDLE hDevice = CreateFile(DeviceInfo->DevicePath,

 GENERIC_READ|GENERIC_WRITE,

 FILE_SHARE_READ | FILE_SHARE_WRITE,

 NULL,

 OPEN_EXISTING,

 0,

 NULL);

 if (hDevice == INVALID_HANDLE_VALUE) {

 printf("ERROR opening device: (%0x) returned from CreateFile\n",

GetLastError());

 }

 DWORD junk;

 if (!DeviceIoControl(hDevice,

 USBSample_IOCTL_802,

 NULL,

 0,

 (LPVOID) P_UsbConfigDescriptor,

 100,

 &junk,

 (LPOVERLAPPED) NULL)

)

 {

 86

 printf("ERROR: DeviceIoControl returns %0x.\n", GetLastError());

 exit(1);

 }

 GetDlgItem(IDC_Display)->GetWindowText(str_pre);

 str.Format(_T("\r\nUSB CONFIGURATION DESCRIPTOR\r\nbLength: %d

\r\nbDescriptorType: %d \r\nwTotalLength: %d \r\nbNumInterfaces: %d

\r\nbConfigurationValue: %d \r\niConfiguration: %d \r\nbmAttributes: %d \r\nMaxPower:

%d \r\n")

 ,P_UsbConfigDescriptor->bLength,P_UsbConfigDescriptor-

>bDescriptorType,P_UsbConfigDescriptor->wTotalLength,P_UsbConfigDescriptor-

>bNumInterfaces,P_UsbConfigDescriptor->bConfigurationValue,P_UsbConfigDescriptor-

>iConfiguration

 ,P_UsbConfigDescriptor->bmAttributes,P_UsbConfigDescriptor-

>MaxPower);

 str=str_pre+str;

 GetDlgItem(IDC_Display)->SetWindowText(str);

 LocalFree(P_UsbConfigDescriptor);

 str.ReleaseBuffer();

 str_pre.ReleaseBuffer();

}

void CUSB_DialogDlg::OnBnClickedInferfaceinfo()

{

 // TODO: Add your control notification handler code here

 CString str, str_pre;

 PUSB_CONFIGURATION_DESCRIPTOR P_UsbConfigDescriptor;

 PUSB_INTERFACE_DESCRIPTOR P_UsbInterfaceDescriptor;

 P_UsbConfigDescriptor = (PUSB_CONFIGURATION_DESCRIPTOR)

LocalAlloc(LMEM_FIXED, 100);

 PSP_DEVICE_INTERFACE_DETAIL_DATA DeviceInfo=GetDevicePath((LPGUID)&

USBSample_DEVINTERFACE_GUID);

 HANDLE hDevice = CreateFile(DeviceInfo->DevicePath,

 GENERIC_READ|GENERIC_WRITE,

 FILE_SHARE_READ | FILE_SHARE_WRITE,

 NULL,

 OPEN_EXISTING,

 0,

 NULL);

 if (hDevice == INVALID_HANDLE_VALUE) {

 printf("ERROR opening device: (%0x) returned from CreateFile\n",

GetLastError());

 }

 DWORD junk;

 if (!DeviceIoControl(hDevice,

 USBSample_IOCTL_802,

 NULL,

 0,

 (LPVOID) P_UsbConfigDescriptor,

 100,

 87

 &junk,

 (LPOVERLAPPED) NULL)

)

 {

 printf("ERROR: DeviceIoControl returns %0x.\n", GetLastError());

 exit(1);

 }

 P_UsbInterfaceDescriptor=(PUSB_INTERFACE_DESCRIPTOR) ((UCHAR

*)P_UsbConfigDescriptor+P_UsbConfigDescriptor->bLength);

 GetDlgItem(IDC_Display)->GetWindowText(str_pre);

 str.Format(_T("\r\nUSB INTERFACE DESCRIPTOR\r\nbLength: %d

\r\nbDescriptorType: %d \r\nbInterfaceNumber: %d \r\nbAlternateSetting: %d

\r\nbNumEndpoints: %d \r\nbInterfaceClass: %d \r\nbInterfaceSubClass: %d

\r\nbInterfaceProtocol: %d \r\niInterface: %d \r\n"),

 P_UsbInterfaceDescriptor->bLength,P_UsbInterfaceDescriptor-

>bDescriptorType,P_UsbInterfaceDescriptor->bInterfaceNumber,

P_UsbInterfaceDescriptor->bAlternateSetting, P_UsbInterfaceDescriptor->bNumEndpoints,

 P_UsbInterfaceDescriptor->bInterfaceClass,P_UsbInterfaceDescriptor-

>bInterfaceSubClass,P_UsbInterfaceDescriptor-

>bInterfaceProtocol,P_UsbInterfaceDescriptor->iInterface);

 str=str_pre+str;

 GetDlgItem(IDC_Display)->SetWindowText(str);

 LocalFree(P_UsbConfigDescriptor);

 str.ReleaseBuffer();

 str_pre.ReleaseBuffer();

}

void CUSB_DialogDlg::OnBnClickedEndpointsinfo()

{

 // TODO: Add your control notification handler code here

 int i;

 CString str, str_pre;

 PUSB_CONFIGURATION_DESCRIPTOR P_UsbConfigDescriptor;

 PUSB_ENDPOINT_DESCRIPTOR P_UsbEndpointDescriptor;

 P_UsbConfigDescriptor = (PUSB_CONFIGURATION_DESCRIPTOR)

LocalAlloc(LMEM_FIXED, 100);

 PSP_DEVICE_INTERFACE_DETAIL_DATA DeviceInfo=GetDevicePath((LPGUID)&

USBSample_DEVINTERFACE_GUID);

 HANDLE hDevice = CreateFile(DeviceInfo->DevicePath,

 GENERIC_READ|GENERIC_WRITE,

 FILE_SHARE_READ | FILE_SHARE_WRITE,

 NULL,

 OPEN_EXISTING,

 0,

 NULL);

 if (hDevice == INVALID_HANDLE_VALUE) {

 printf("ERROR opening device: (%0x) returned from CreateFile\n",

GetLastError());

 }

 88

 DWORD junk;

 if (!DeviceIoControl(hDevice,

 USBSample_IOCTL_802,

 NULL,

 0,

 (LPVOID) P_UsbConfigDescriptor,

 100,

 &junk,

 (LPOVERLAPPED) NULL)

)

 {

 printf("ERROR: DeviceIoControl returns %0x.\n", GetLastError());

 exit(1);

 }

 for(i=0;i<2;i++){

 P_UsbEndpointDescriptor=(PUSB_ENDPOINT_DESCRIPTOR) ((UCHAR

*)P_UsbConfigDescriptor+9+9+7*i);

 GetDlgItem(IDC_Display)->GetWindowText(str_pre);

 str.Format(_T("\r\nUSB ENDPOINT DESCRIPTOR\r\nbLength: %d

\r\nbDescriptorType: %d \r\nbEndpointAddress: %d \r\nbmAttributes: %d

\r\nwMaxPacketSize: %d \r\nbInterval: %d \r\n"),

 P_UsbEndpointDescriptor->bLength,P_UsbEndpointDescriptor-

>bDescriptorType,P_UsbEndpointDescriptor->bEndpointAddress, P_UsbEndpointDescriptor-

>bmAttributes, P_UsbEndpointDescriptor->wMaxPacketSize, P_UsbEndpointDescriptor-

>bInterval);

 str=str_pre+str;

 GetDlgItem(IDC_Display)->SetWindowText(str);

 }

 LocalFree(P_UsbConfigDescriptor);

 str.ReleaseBuffer();

 str_pre.ReleaseBuffer();

}

void CUSB_DialogDlg::OnBnClickedSwitch()

{

 // TODO: Add your control notification handler code here

 UCHAR * buffer;

 CString str, str_pre;

 PSP_DEVICE_INTERFACE_DETAIL_DATA DeviceInfo=GetDevicePath((LPGUID)&

USBSample_DEVINTERFACE_GUID);

 buffer = (UCHAR *) LocalAlloc(LMEM_FIXED, 1);

 HANDLE hDevice = CreateFile(DeviceInfo->DevicePath,

 GENERIC_READ|GENERIC_WRITE,

 FILE_SHARE_READ | FILE_SHARE_WRITE,

 NULL,

 OPEN_EXISTING,

 0,

 89

 NULL);

 if (hDevice == INVALID_HANDLE_VALUE) {

 printf("ERROR opening device: (%0x) returned from CreateFile\n",

GetLastError());

 }

 DWORD junk;

 if (!DeviceIoControl(hDevice,

 USBSample_IOCTL_803,

 NULL,

 0,

 (LPVOID) buffer,

 1,

 &junk,

 (LPOVERLAPPED) NULL)

)

 {

 printf("ERROR: DeviceIoControl returns %0x.\n", GetLastError());

 // exit(1);

 }

 GetDlgItem(IDC_Display)->GetWindowText(str_pre);

 str.Format(_T("\r\nSWITCH STATUS: 0'x%x \r\n"),*buffer);

 str=str_pre+str;

 GetDlgItem(IDC_Display)->SetWindowText(str);

 LocalFree(buffer);

 str.ReleaseBuffer();

 str_pre.ReleaseBuffer();

}

void CUSB_DialogDlg::OnBnClickedBulktest()

{

 // TODO: Add your control notification handler code here

 //wchar_t * input_buffer;

 wchar_t * output_buffer;

 int i;

 CString str, str_pre,str_buf, str_temp, str_combine;

 CString send_context, received_context;

 PSP_DEVICE_INTERFACE_DETAIL_DATA DeviceInfo=GetDevicePath((LPGUID)&

USBSample_DEVINTERFACE_GUID);

 HANDLE hDevice = CreateFile(DeviceInfo->DevicePath,

 GENERIC_READ|GENERIC_WRITE,

 FILE_SHARE_READ | FILE_SHARE_WRITE,

 NULL,

 OPEN_EXISTING,

 0,

 NULL);

 if (hDevice == INVALID_HANDLE_VALUE) {

 90

 printf("ERROR opening device: (%0x) returned from CreateFile\n",

GetLastError());

 }

 GetDlgItemText(IDC_BULKIN,send_context);

 if (send_context.GetLength()==0) return;

 output_buffer = (wchar_t *) LocalAlloc(LMEM_FIXED, 2*send_context.GetLength());

 DWORD junk;

 if (!DeviceIoControl(hDevice,

 USBSample_IOCTL_804,

 send_context.GetBuffer(),

 2*send_context.GetLength(),

 (LPVOID) output_buffer,

 2*send_context.GetLength(),

 &junk,

 (LPOVERLAPPED) NULL)

)

 {

 printf("ERROR: DeviceIoControl returns %0x.\n", GetLastError());

 // exit(1);

 }

 wchar_t *test= send_context.GetBuffer();

 for(i=0;i<send_context.GetLength();i++){

 str_temp.Format(_T("%c"),*(output_buffer+i));

 str_combine=str_combine+str_temp;

 }

 str.Format(_T("\r\nBULK TRANSACTION LETTERS: %s \r\n"),str_combine);

 GetDlgItem(IDC_Display)->GetWindowText(str_pre);

 str=str_pre+str;

 GetDlgItem(IDC_Display)->SetWindowText(str);

 send_context.ReleaseBuffer();

 LocalFree(output_buffer);

 str_buf.ReleaseBuffer();

 str.ReleaseBuffer();

 str_pre.ReleaseBuffer();

}

void CUSB_DialogDlg::OnEnChangeBulkin()

{

 // TODO: If this is a RICHEDIT control, the control will not

 // send this notification unless you override the CDialog::OnInitDialog()

 // function and call CRichEditCtrl().SetEventMask()

 // with the ENM_CHANGE flag ORed into the mask.

 91

 // TODO: Add your control notification handler code here

}

void CUSB_DialogDlg::OnBnClickedLedbarread()

{

 // TODO: Add your control notification handler code here

 UCHAR * buffer;

 UCHAR a,b;

 CString str, str_pre;

 PSP_DEVICE_INTERFACE_DETAIL_DATA DeviceInfo=GetDevicePath((LPGUID)&

USBSample_DEVINTERFACE_GUID);

 buffer = (UCHAR *) LocalAlloc(LMEM_FIXED, 1);

 HANDLE hDevice = CreateFile(DeviceInfo->DevicePath,

 GENERIC_READ|GENERIC_WRITE,

 FILE_SHARE_READ | FILE_SHARE_WRITE,

 NULL,

 OPEN_EXISTING,

 0,

 NULL);

 if (hDevice == INVALID_HANDLE_VALUE) {

 printf("ERROR opening device: (%0x) returned from CreateFile\n",

GetLastError());

 exit(1);

 }

 DWORD junk;

 if (!DeviceIoControl(hDevice,

 USBSample_IOCTL_805,

 NULL,

 0,

 (LPVOID) buffer,

 1,

 &junk,

 (LPOVERLAPPED) NULL)

)

 {

 printf("ERROR: DeviceIoControl returns %0x.\n", GetLastError());

 // exit(1);

 }

 GetDlgItem(IDC_Display)->GetWindowText(str_pre);

 a=*buffer;

 b=(a>>5)|(a<<3);

 str.Format(_T("\r\nLED BAR STATUS: 0'x%x \r\n"),b);

 str=str_pre+str;

 GetDlgItem(IDC_Display)->SetWindowText(str);

 92

 LocalFree(buffer);

 str.ReleaseBuffer();

 str_pre.ReleaseBuffer();

}

void CUSB_DialogDlg::OnBnClickedLedbarset()

{

 // TODO: Add your control notification handler code here

 UCHAR a;

 CString str, str_pre;

 CButton *pButton;

 PSP_DEVICE_INTERFACE_DETAIL_DATA DeviceInfo=GetDevicePath((LPGUID)&

USBSample_DEVINTERFACE_GUID);

 a=0;

 pButton = (CButton *)GetDlgItem(IDC_CHECK1);

 a+= 32*pButton->GetCheck();

 pButton = (CButton *)GetDlgItem(IDC_CHECK2);

 a+= 64*pButton->GetCheck();

 pButton = (CButton *)GetDlgItem(IDC_CHECK3);

 a+= 128*pButton->GetCheck();

 pButton = (CButton *)GetDlgItem(IDC_CHECK4);

 a+= pButton->GetCheck();

 pButton = (CButton *)GetDlgItem(IDC_CHECK5);

 a+= 2*pButton->GetCheck();

 pButton = (CButton *)GetDlgItem(IDC_CHECK6);

 a+= 4*pButton->GetCheck();

 pButton = (CButton *)GetDlgItem(IDC_CHECK7);

 a+= 8*pButton->GetCheck();

 pButton = (CButton *)GetDlgItem(IDC_CHECK8);

 a+= 16*pButton->GetCheck();

 HANDLE hDevice = CreateFile(DeviceInfo->DevicePath,

 GENERIC_READ|GENERIC_WRITE,

 FILE_SHARE_READ | FILE_SHARE_WRITE,

 NULL,

 OPEN_EXISTING,

 0,

 NULL);

 if (hDevice == INVALID_HANDLE_VALUE) {

 printf("ERROR opening device: (%0x) returned from CreateFile\n",

GetLastError());

 exit(1);

 }

 93

 DWORD junk;

 //a=170;

 if (!DeviceIoControl(hDevice,

 USBSample_IOCTL_806,

 &a,

 1,

 NULL,

 0,

 &junk,

 (LPOVERLAPPED) NULL)

)

 {

 printf("ERROR: DeviceIoControl returns %0x.\n", GetLastError());

 // exit(1);

 }

 GetDlgItem(IDC_Display)->GetWindowText(str_pre);

 str.Format(_T("\r\nSET LED BAR SUCCESS. \r\n"));

 str=str_pre+str;

 GetDlgItem(IDC_Display)->SetWindowText(str);

// LocalFree(buffer);

 str.ReleaseBuffer();

 str_pre.ReleaseBuffer();

}

void CUSB_DialogDlg::OnBnClicked7ledread()

{

 // TODO: Add your control notification handler code here

 UCHAR * buffer;

 UCHAR a,b;

 CString str, str_pre;

 PSP_DEVICE_INTERFACE_DETAIL_DATA DeviceInfo=GetDevicePath((LPGUID)&

USBSample_DEVINTERFACE_GUID);

 buffer = (UCHAR *) LocalAlloc(LMEM_FIXED, 1);

 HANDLE hDevice = CreateFile(DeviceInfo->DevicePath,

 GENERIC_READ|GENERIC_WRITE,

 FILE_SHARE_READ | FILE_SHARE_WRITE,

 NULL,

 OPEN_EXISTING,

 0,

 NULL);

 if (hDevice == INVALID_HANDLE_VALUE) {

 printf("ERROR opening device: (%0x) returned from CreateFile\n",

GetLastError());

 exit(1);

 }

 94

 DWORD junk;

 if (!DeviceIoControl(hDevice,

 USBSample_IOCTL_807,

 NULL,

 0,

 (LPVOID) buffer,

 1,

 &junk,

 (LPOVERLAPPED) NULL)

)

 {

 printf("ERROR: DeviceIoControl returns %0x.\n", GetLastError());

 // exit(1);

 }

 GetDlgItem(IDC_Display)->GetWindowText(str_pre);

 a=*buffer;

 b=(a>>5)|(a<<3);

 str.Format(_T("\r\nLED BAR STATUS: 0'x%x \r\n"),b);

 str=str_pre+str;

 GetDlgItem(IDC_Display)->SetWindowText(str);

 LocalFree(buffer);

 str.ReleaseBuffer();

 str_pre.ReleaseBuffer();

}

void CUSB_DialogDlg::OnBnClickedt()

{

 // TODO: Add your control notification handler code here

 UCHAR a;

 CString str, str_pre;

 CButton *pButton;

 PSP_DEVICE_INTERFACE_DETAIL_DATA DeviceInfo=GetDevicePath((LPGUID)&

USBSample_DEVINTERFACE_GUID);

 a=0;

 pButton = (CButton *)GetDlgItem(IDC_CHECK9);

 a+= 0x01*pButton->GetCheck();

 pButton = (CButton *)GetDlgItem(IDC_CHECK10);

 a+= 0x40*pButton->GetCheck();

 pButton = (CButton *)GetDlgItem(IDC_CHECK11);

 a+= 0x02*pButton->GetCheck();

 pButton = (CButton *)GetDlgItem(IDC_CHECK12);

 95

 a+= 0x20*pButton->GetCheck();

 pButton = (CButton *)GetDlgItem(IDC_CHECK13);

 a+= 0x10*pButton->GetCheck();

 pButton = (CButton *)GetDlgItem(IDC_CHECK14);

 a+= 0x04*pButton->GetCheck();

 pButton = (CButton *)GetDlgItem(IDC_CHECK15);

 a+= 0x80*pButton->GetCheck();

 pButton = (CButton *)GetDlgItem(IDC_RADIO9);

 a+= 0x08*pButton->GetCheck();

 HANDLE hDevice = CreateFile(DeviceInfo->DevicePath,

 GENERIC_READ|GENERIC_WRITE,

 FILE_SHARE_READ | FILE_SHARE_WRITE,

 NULL,

 OPEN_EXISTING,

 0,

 NULL);

 if (hDevice == INVALID_HANDLE_VALUE) {

 printf("ERROR opening device: (%0x) returned from CreateFile\n",

GetLastError());

 exit(1);

 }

 DWORD junk;

 if (!DeviceIoControl(hDevice,

 USBSample_IOCTL_808,

 &a,

 1,

 NULL,

 0,

 &junk,

 (LPOVERLAPPED) NULL)

)

 {

 printf("ERROR: DeviceIoControl returns %0x.\n", GetLastError());

 // exit(1);

 }

// LocalFree(buffer);

 str.ReleaseBuffer();

 str_pre.ReleaseBuffer();

}

HANDLE m_timerHandle=NULL;

HANDLE hDevice_speed;

PSP_DEVICE_INTERFACE_DETAIL_DATA DeviceInfo_speed;

 96

char data_send[512],data_rcv[512];

short a=1;

LARGE_INTEGER lpFrequency, test_start, test_end;

DWORD send_counter;

VOID CALLBACK TimerProc(PVOID lpParam, BOOLEAN TimerOrWaitFired)

{

 DWORD junk;

 ////////////// BULK trans ////////////

 if (!DeviceIoControl(hDevice_speed,

 USBSample_IOCTL_804,

 data_send,

 512,

 data_rcv,

 512,

 &junk,

 (LPOVERLAPPED) NULL)

)

 {

 printf("ERROR: DeviceIoControl returns %0x.\n", GetLastError());

 // exit(1);

 }

 /////////////////////////////////////

 if (a==128)

 a=1;

 else a=a*2;

 if (!DeviceIoControl(hDevice_speed,

 USBSample_IOCTL_806,

 &a,

 1,

 NULL,

 0,

 &junk,

 (LPOVERLAPPED) NULL)

)

 {

 // return 0;

 }

 send_counter++;

 if(send_counter==1) QueryPerformanceCounter(&test_start);

 QueryPerformanceCounter(&test_end);

}

void CUSB_DialogDlg::OnBnClickedSpeedtest()

{

 // TODO: Add your control notification handler code here

 DeviceInfo_speed=GetDevicePath((LPGUID)& USBSample_DEVINTERFACE_GUID);

 97

 hDevice_speed = CreateFile(DeviceInfo_speed->DevicePath,

 GENERIC_READ|GENERIC_WRITE,

 FILE_SHARE_READ | FILE_SHARE_WRITE,

 NULL,

 OPEN_EXISTING,

 0,

 NULL);

 if (hDevice_speed == INVALID_HANDLE_VALUE) {

 printf("ERROR opening device: (%0x) returned from CreateFile\n",

GetLastError());

 }

 send_counter=0;

 DWORD elTime=5;

 if(!CreateTimerQueueTimer(

 &m_timerHandle,

 NULL,

 TimerProc,

 //&hDevice,

 this,

 0,

 elTime,

 WT_EXECUTEINTIMERTHREAD))

 {

 ;

 }

}

void CUSB_DialogDlg::OnBnClickedStopspeedtest()

{

 // TODO: Add your control notification handler code here

 QueryPerformanceFrequency(&lpFrequency);

 if(m_timerHandle!=NULL)

 {

 DeleteTimerQueueTimer(NULL,

 m_timerHandle,

 NULL

);

 }

 DWORD time_spend = (test_end.QuadPart-

test_start.QuadPart)/lpFrequency.QuadPart;

 DWORD transfer_speed=send_counter/time_spend;

 CString str, str_pre;

 GetDlgItem(IDC_Display)->GetWindowText(str_pre);

 str.Format(_T("\r\nPacket Transfered: %d\r\n"), send_counter);

 str_pre=str_pre+str;

 98

 str.Format(_T("\r\nTime Spend(sec): %d\r\n"), time_spend);

 str_pre=str_pre+str;

 str.Format(_T("\r\nAverage Transfer Speed(packet/sec): %d\r\n"), transfer_speed);

 str=str_pre+str;

 GetDlgItem(IDC_Display)->SetWindowText(str);

// LocalFree(buffer);

 str.ReleaseBuffer();

 str_pre.ReleaseBuffer();

}

#define Num 512

void CUSB_DialogDlg::OnBnClickedBulkread() // read one byte from endpoint of the USB

{

 // TODO: Add your control notification handler code here

// char * output_buffer;

 CString str, str_pre, str_temp1, str_temp2;;

 PSP_DEVICE_INTERFACE_DETAIL_DATA DeviceInfo=GetDevicePath((LPGUID)&

USBSample_DEVINTERFACE_GUID);

 HANDLE hDevice = CreateFile(DeviceInfo->DevicePath,

 GENERIC_READ|GENERIC_WRITE,

 FILE_SHARE_READ | FILE_SHARE_WRITE,

 NULL,

 OPEN_EXISTING,

 0,

 NULL);

 if (hDevice == INVALID_HANDLE_VALUE) {

 printf("ERROR opening device: (%0x) returned from CreateFile\n",

GetLastError());

 }

 //data_buffer = (char*) LocalAlloc(LMEM_FIXED, 512);

 unsigned char rec_letter[Num];

 DWORD junk;

 if (!DeviceIoControl(hDevice,

 USBSample_IOCTL_811,

 NULL,

 0,

 &rec_letter,

 Num,

 &junk,

 (LPOVERLAPPED) NULL)

)

 {

 printf("ERROR: DeviceIoControl returns %0x.\n", GetLastError());

 // exit(1);

 99

 }

 int i;

 unsigned int temp1, temp2;

 wchar_t display_letter[Num*3];

 for(i=0;i<Num; i++)

 {

 temp1=rec_letter[i]&0x0F;

 temp2=rec_letter[i]>>4;

 if(temp1 <= 9 && temp1 >= 0) temp1=temp1+48;

 else if(temp1 <= 15 && temp1 >= 10) temp1=temp1+55;

 //else if(str_in.GetAt(i) <= 102 && str_in.GetAt(i) >= 97)

temp=str_in.GetAt(i)-87;

 else return;

 if(temp2 <= 9 && temp2 >= 0) temp2=temp2+48;

 else if(temp2 <= 15 && temp2 >= 10) temp2=temp2+55;

 else return;

 display_letter[3*i]=temp2;

 display_letter[3*i+1]=temp1;

 display_letter[3*i+2]=' ';

 }

 //str.Empty();

 for(i=0;i<Num*3; i++)

 {

 str_temp1.Format(_T("%c"),display_letter[i]);

 str_temp2 = str_temp2 + str_temp1;

 }

 //str_temp.Format(_T("%c"),display_letter[i]);

 str.Format(_T("\r\nReceived data: %s \r\n"),str_temp2);

 GetDlgItem(IDC_Display)->GetWindowText(str_pre);

 str=str_pre+str;

 GetDlgItem(IDC_Display)->SetWindowText(str);

 //LocalFree(output_buffer);

 str.ReleaseBuffer();

 str_pre.ReleaseBuffer();

}

void CUSB_DialogDlg::OnBnClickedBulkwrite()

{

 // TODO: Add your control notification handler code here

// wchar_t * output_buffer;

 int i;

 unsigned char letter_in[512], temp;

 CString str_in, str, str_pre,str_buf, str_temp, str_combine;

 CString send_context, received_context;

 100

 PSP_DEVICE_INTERFACE_DETAIL_DATA DeviceInfo=GetDevicePath((LPGUID)&

USBSample_DEVINTERFACE_GUID);

 HANDLE hDevice = CreateFile(DeviceInfo->DevicePath,

 GENERIC_READ|GENERIC_WRITE,

 FILE_SHARE_READ | FILE_SHARE_WRITE,

 NULL,

 OPEN_EXISTING,

 0,

 NULL);

 if (hDevice == INVALID_HANDLE_VALUE) {

 printf("ERROR opening device: (%0x) returned from CreateFile\n",

GetLastError());

 }

 for(i=0;i<512;i++){

 letter_in[i]=0;

 }

 // output_buffer = (wchar_t *) LocalAlloc(LMEM_FIXED, 2*send_context.GetLength());

 GetDlgItem(IDC_BULKIN)->GetWindowText(str_in);

 int atext1 = str_in.GetAt(0);

 int atext2 = str_in.GetAt(1);

 int atext3 = str_in.GetAt(2);

 int atext4 = str_in.GetAt(3);

 int ttt = str_in.GetLength();

 if(str_in.GetLength() == 0) return;

 else if((str_in.GetLength()%2) != 0) return;

 bool high4_flag = TRUE;

 int index=0;

 for(i=0;i<str_in.GetLength();i++){

 if(str_in.GetAt(i) <= 57 && str_in.GetAt(i) >= 48) temp=str_in.GetAt(i)-

48;

 else if(str_in.GetAt(i) <= 70 && str_in.GetAt(i) >= 65)

temp=str_in.GetAt(i)-55;

 else if(str_in.GetAt(i) <= 102 && str_in.GetAt(i) >= 97)

temp=str_in.GetAt(i)-87;

 else return;

 if (high4_flag == TRUE){

 letter_in[index] = (temp<<4);

 high4_flag =FALSE;

 }

 else{

 letter_in[index] += temp;

 high4_flag =TRUE;

 index ++;

 }

 }

 int send_text0=letter_in[0];

 int send_text1=letter_in[1];

 int send_text2=letter_in[2];

 101

int send_text3=letter_in[3];

 int send_text4=letter_in[4];

 int send_text5=letter_in[5];

 int send_text6=letter_in[6];

 int send_text7=letter_in[7];

 int send_text8=letter_in[8];

 int send_text9=letter_in[9];

 DWORD junk;

 if (!DeviceIoControl(hDevice,

 USBSample_IOCTL_809,

 &letter_in,

 512,

 NULL,

 0,

 &junk,

 (LPOVERLAPPED) NULL)

)

 {

 printf("ERROR: DeviceIoControl returns %0x.\n", GetLastError());

 // exit(1);

 }

 str.Format(_T("\r\nSent data: %c \r\n"),letter_in);

 GetDlgItem(IDC_Display)->GetWindowText(str_pre);

 str=str_pre+str;

 GetDlgItem(IDC_Display)->SetWindowText(str);

 send_context.ReleaseBuffer();

// LocalFree(output_buffer);

 str_buf.ReleaseBuffer();

 str.ReleaseBuffer();

 str_pre.ReleaseBuffer();

}

void CUSB_DialogDlg::OnBnClickedBufstatus()

{

 // TODO: Add your control notification handler code here

 char * output_buffer;

 CString str, str_pre, str_temp1, str_temp2;;

 PSP_DEVICE_INTERFACE_DETAIL_DATA DeviceInfo=GetDevicePath((LPGUID)&

USBSample_DEVINTERFACE_GUID);

 HANDLE hDevice = CreateFile(DeviceInfo->DevicePath,

 GENERIC_READ|GENERIC_WRITE,

 FILE_SHARE_READ | FILE_SHARE_WRITE,

 NULL,

 OPEN_EXISTING,

 0,

 NULL);

 if (hDevice == INVALID_HANDLE_VALUE) {

 printf("ERROR opening device: (%0x) returned from CreateFile\n",

 102

 103

GetLastError());

 }

 //data_buffer = (char*) LocalAlloc(LMEM_FIXED, 512);

 //unsigned char rec_letter[1];

 int rec_letter[1];

 DWORD junk;

 if (!DeviceIoControl(hDevice,

 USBSample_IOCTL_812,

 NULL,

 0,

 &rec_letter,

 4,

 &junk,

 (LPOVERLAPPED) NULL)

)

 {

 printf("ERROR: DeviceIoControl returns %0x.\n", GetLastError());

 // exit(1);

 }

 int test0 = rec_letter[0];

 str.Format(_T("\r\nBuffer Status: %d\r\n"),rec_letter[0]);

 GetDlgItem(IDC_Display)->GetWindowText(str_pre);

 str=str_pre+str;

 GetDlgItem(IDC_Display)->SetWindowText(str);

 //LocalFree(output_buffer);

 str.ReleaseBuffer();

 str_pre.ReleaseBuffer();

}

void CUSB_DialogDlg::OnBnClickedSttimer()

{

 // TODO: Add your control notification handler code here

 PSP_DEVICE_INTERFACE_DETAIL_DATA DeviceInfo=GetDevicePath((LPGUID)&

USBSample_DEVINTERFACE_GUID);

 HANDLE hDevice = CreateFile(DeviceInfo->DevicePath,

 GENERIC_READ|GENERIC_WRITE,

 FILE_SHARE_READ | FILE_SHARE_WRITE,

 NULL,

 OPEN_EXISTING,

 0,

 NULL);

 if (hDevice == INVALID_HANDLE_VALUE) {

 printf("ERROR opening device: (%0x) returned from CreateFile\n",

GetLastError());

 }

 DWORD junk;

 if (!DeviceIoControl(hDevice,

 104

 USBSample_IOCTL_813,

 NULL,

 0,

 NULL,

 0,

 &junk,

 (LPOVERLAPPED) NULL)

)

 {

 printf("ERROR: DeviceIoControl returns %0x.\n", GetLastError());

 // exit(1);

 }

}

void CUSB_DialogDlg::OnBnClickedStoptimer()

{

 // TODO: Add your control notification handler code here

 PSP_DEVICE_INTERFACE_DETAIL_DATA DeviceInfo=GetDevicePath((LPGUID)&

USBSample_DEVINTERFACE_GUID);

 HANDLE hDevice = CreateFile(DeviceInfo->DevicePath,

 GENERIC_READ|GENERIC_WRITE,

 FILE_SHARE_READ | FILE_SHARE_WRITE,

 NULL,

 OPEN_EXISTING,

 0,

 NULL);

 if (hDevice == INVALID_HANDLE_VALUE) {

 printf("ERROR opening device: (%0x) returned from CreateFile\n",

GetLastError());

 }

 DWORD junk;

 if (!DeviceIoControl(hDevice,

 USBSample_IOCTL_814,

 NULL,

 0,

 NULL,

 0,

 &junk,

 (LPOVERLAPPED) NULL)

)

 {

 printf("ERROR: DeviceIoControl returns %0x.\n", GetLastError());

 // exit(1);

 }

}

void CUSB_DialogDlg::OnBnClickedstart1msres()

{

 // TODO: Add your control notification handler code here

 timeBeginPeriod(1);

}

 105

void CUSB_DialogDlg::OnBnClickedend1msres()

{

 // TODO: Add your control notification handler code here

 timeEndPeriod(1);

}

void CUSB_DialogDlg::OnBnClickedBufferread()

{

 // TODO: Add your control notification handler code here

 CString str, str_pre;

 unsigned char data_buffer[512*128];

 DWORD nNumberOfBytesToRead = 512*128;

 DWORD lpNumberOfBytesRead;

 int i,k;

 PSP_DEVICE_INTERFACE_DETAIL_DATA DeviceInfo=GetDevicePath((LPGUID)&

USBSample_DEVINTERFACE_GUID);

 HANDLE hDevice = CreateFile(DeviceInfo->DevicePath,

 GENERIC_READ|GENERIC_WRITE,

 FILE_SHARE_READ | FILE_SHARE_WRITE,

 NULL,

 OPEN_EXISTING,

 0,

 NULL);

 if (hDevice == INVALID_HANDLE_VALUE) {

 printf("ERROR opening device: (%0x) returned from CreateFile\n",

GetLastError());

 }

 ReadFile(

 hDevice,

 data_buffer,

 nNumberOfBytesToRead,

 &lpNumberOfBytesRead,

 NULL

);

 int test0 = nNumberOfBytesToRead;

 int test1 = lpNumberOfBytesRead;

 int Num_Frame = lpNumberOfBytesRead/512;

 unsigned int temp1, temp2;

 wchar_t display_letter[Num*3];

 for(k=0;k<Num_Frame;k++)

 {

 CString str_temp1, str_temp2, str_data, str_num;

 for(i=0;i<Num; i++)

 {

 temp1=data_buffer[i+512*k]&0x0F;

 temp2=data_buffer[i+512*k]>>4;

 if(temp1 <= 9 && temp1 >= 0) temp1=temp1+48;

 106

 else if(temp1 <= 15 && temp1 >= 10) temp1=temp1+55;

 //else if(str_in.GetAt(i) <= 102 && str_in.GetAt(i) >= 97)

temp=str_in.GetAt(i)-87;

 else return;

 if(temp2 <= 9 && temp2 >= 0) temp2=temp2+48;

 else if(temp2 <= 15 && temp2 >= 10) temp2=temp2+55;

 else return;

 display_letter[3*i]=temp2;

 display_letter[3*i+1]=temp1;

 display_letter[3*i+2]=' ';

 }

 //str.Empty();

 for(i=0;i<Num*3; i++)

 {

 str_temp1.Format(_T("%c"),display_letter[i]);

 str_temp2 = str_temp2 + str_temp1;

 }

 str_num.Format(_T("\r\nReceived data frame %d: \r\n"),k);

 str_data.Format(_T("\r\n%s %s \r\n"),str_num,str_temp2);

 str=str+str_data;

 str_temp1.ReleaseBuffer();

 str_temp2.ReleaseBuffer();

 str_data.ReleaseBuffer();

 str_num.ReleaseBuffer();

 }

 GetDlgItem(IDC_Display)->GetWindowText(str_pre);

 str=str_pre+str;

 GetDlgItem(IDC_Display)->SetWindowText(str);

 //LocalFree(output_buffer);

 str.ReleaseBuffer();

 str_pre.ReleaseBuffer();

}

VOID CALLBACK TimerProc_DataTest(PVOID lpParam, BOOLEAN TimerOrWaitFired)

{

 DWORD junk, lpNumberOfBytesRead;

 int i,j;

 int frame_rcvd;

 unsigned char temp[512*128];

 ////////////// BULK read ////////////

 107

DeviceInfo=CUSB_DialogDlg::GetDevicePath((LPGUID)& USBSample_DEVINTERFACE_GUID);

 HANDLE hDevice = CreateFile(((CUSB_DialogDlg*)lpParam)->DeviceInfo_timer-

>DevicePath,

 GENERIC_READ|GENERIC_WRITE,

 FILE_SHARE_READ | FILE_SHARE_WRITE,

 NULL,

 OPEN_EXISTING,

 0,

 NULL);

 if (hDevice == INVALID_HANDLE_VALUE) {

 printf("ERROR opening device: (%0x) returned from CreateFile\n",

GetLastError());

 }

 ReadFile(

 hDevice,

 &temp,

 512*128,

 &lpNumberOfBytesRead,

 NULL

);

 frame_rcvd = lpNumberOfBytesRead/512; // count the received frames

 // retrieve frame mark

 int num_frame = 17;

 int test1 = temp[512*0+24*5];

 int test2 = temp[512*0+24*6];

 int test3 = temp[512*0+24*7];

 int test4 = temp[512*0+24*17+4];

 for(i=0;i<frame_rcvd;i++)

 {

 for(j=0;j<4;j++)

 {

 //((CUSB_DialogDlg*)lpParam)->frame_mark_cur =

temp[512*i+24*num_frame]*(2^24);

 int test5 = temp[512*i+24*num_frame+0];

 int test6 = temp[512*i+24*num_frame+1];

 int test7 = temp[512*i+24*num_frame+2];

 int test8 = temp[512*i+24*num_frame+3];

 ((CUSB_DialogDlg*)lpParam)->frame_mark_cur[0] =

temp[512*i+24*num_frame+0];

 ((CUSB_DialogDlg*)lpParam)->frame_mark_cur[1] =

temp[512*i+24*num_frame+1];

 ((CUSB_DialogDlg*)lpParam)->frame_mark_cur[2] =

temp[512*i+24*num_frame+2];

 ((CUSB_DialogDlg*)lpParam)->frame_mark_cur[3] =

temp[512*i+24*num_frame+3];

 }

 ((CUSB_DialogDlg*)lpParam)->Diff0.Add(((CUSB_DialogDlg*)lpParam)-

 108

>frame_mark_cur[0]);

 ((CUSB_DialogDlg*)lpParam)->Diff1.Add(((CUSB_DialogDlg*)lpParam)-

>frame_mark_cur[1]);

 ((CUSB_DialogDlg*)lpParam)->Diff2.Add(((CUSB_DialogDlg*)lpParam)-

>frame_mark_cur[2]);

 ((CUSB_DialogDlg*)lpParam)->Diff3.Add(((CUSB_DialogDlg*)lpParam)-

>frame_mark_cur[3]);

 if(i == frame_rcvd-1)

 ((CUSB_DialogDlg*)lpParam)->Diff_End_Flag.Add(true);

 else

 ((CUSB_DialogDlg*)lpParam)->Diff_End_Flag.Add(false);

 DWORD test5 = ((CUSB_DialogDlg*)lpParam)->frame_mark_cur[3];

 int test9=0;

 }

 ((CUSB_DialogDlg*)lpParam)->frame_mark_pre_flag

= !((CUSB_DialogDlg*)lpParam)->frame_mark_pre_flag;

 ((CUSB_DialogDlg*)lpParam)->Diff_CNT ++;

}

void CUSB_DialogDlg::OnBnClickedStart()

{

 // TODO: Add your control notification handler code here

 DeviceInfo_timer=GetDevicePath((LPGUID)& USBSample_DEVINTERFACE_GUID);

 Diff_CNT = 0;

 Diff0.RemoveAll();

 Diff1.RemoveAll();

 Diff2.RemoveAll();

 Diff3.RemoveAll();

 Diff_End_Flag.RemoveAll();

// Diff0.SetSize(1000,1000);

 timeBeginPeriod(1);

 DWORD elTime=1; //ms

 if(!CreateTimerQueueTimer(

 &m_timerHandle,

 NULL,

 TimerProc_DataTest,

 //&hDevice,

 this,

 0,

 elTime,

 WT_EXECUTEINTIMERTHREAD))

 {

 int a =0 ;

 }

 return;

}

void CUSB_DialogDlg::OnBnClickedEnd()

{

 // TODO: Add your control notification handler code here

 DeleteTimerQueueTimer(NULL,

 m_timerHandle,

 INVALID_HANDLE_VALUE

);

 timeEndPeriod(1);

 CString str,str_temp, str_pre;

 for(DWORD i =0; i< Diff0.GetSize(); ++i)

 {

 str_temp.Format(_T("%d"),Diff0.GetAt(i));

 str = str + str_temp;

 str_temp.Format(_T(" %d"),Diff1.GetAt(i));

 str = str + str_temp;

 str_temp.Format(_T(" %d"),Diff2.GetAt(i));

 str = str + str_temp;

 str_temp.Format(_T(" %d\r\n"),Diff3.GetAt(i));

 str = str + str_temp;

 if(Diff_End_Flag.GetAt(i) == true)

 {

str_temp.Format(_T("%s\r\n"),_T("++++++++++++++++++++++++++++++++++++"));

 str = str + str_temp;

 }

 }

 GetDlgItem(IDC_Display)->GetWindowText(str_pre);

 str=str_pre+str;

 GetDlgItem(IDC_Display)->SetWindowText(str);

 str.ReleaseBuffer();

 str_pre.ReleaseBuffer();

}

void CUSB_DialogDlg::OnTimer(UINT_PTR nIDEvent)

{

 // TODO: Add your message handler code here and/or call default

 CDialog::OnTimer(nIDEvent);

}

109

BIBLIOGRAPHY

Barker A. T., Jalinous R. and Freeston I. L., “Non-Invasive Magnetic Stimulation of
Human Motor Cortex,” Lancet, 1(8437): 1106-1107, 1985.

Basseville M. and Nikiforov I. V., “Detection of abrupt changes: Theory and
Application,” Prentice Hall Press, 1993.

Bédard M., Agid Y. , Chouinard S. , Fahn S., Korczyn A. and Lesperace P., “Mental
and Behavioral Dysfunction in Movement Disorders,” Humana Press, 2003.

Besio W., Koka K., Aakula R., Dai W., “Tri-polar Concentric Ring Electrode
Development for Laplacian Electroencephalography,” IEEE Trans BME, Vol. 53, No.
5, pp. 926-933, 2006.

Besio W., Makeyev O., Medvedev A., Gale K., “Effects of transcranial focal
stimulation via tripolar concentric ring electrodes on pentylenetetrazole-induced
seizures in rats”, Epilepsy Research, Jan, 2013.

Biggins C., Fein G., Raz J. and Amir A., “Artifactually high coherences results from
using spherical spline computation of scalp current density,” Electroenceph. and Clin.
Neurophysiol., 79: 413-419, 1991.

Bragin A., Wilson C. L., Fields T., Fried I. and Engel Jr J., “Analysis of seizure onset
on the basis of wideband EEG recordings, ” Epilepsia 46 59–63, 2005.

Chander R., Urrestarrazu E. and Gotman J., “Automatic detection of high frequency
oscillations in human intracerebral EEGs,” Epilepsia 47 (4) 37, 2006.

Chandler D., Bisasky J., Stanislaus J. and Mohsenin T., “Real-time multi-channel
seizure detection and analysis hardware, ” Biomedical Circuits and Systems
Conference 2011, 41-44, 2011.

Collura T., “History and evaluation of electroencephalographic instruments and
techniques,” J. Clin Neurophysiol., 10(4):476-504, 1993.

Cuffin B. N., and Cohen D., “Comparison of the magnetoencephalogram and
electroencephalogram,” Electroencephalography and Clinical Neurophysiology, 47,
132-146, 1979.

Fein G., Raz J., and Turetsky B., “Brain electrical activity: the promise of new
technologies,” In: S. Zakhari and E. Witt (Eds.)., Imaging in Alcohol Research. Proc.
of a Workshop on Imaging in Alcohol Research, Wild Dunes, SC, 9–11: 49-78, 1991.

110

Gigante P. R., Gooman R. R., “Responsive neurostimulation for the treatment
of epilepsy,” Neurosurg. Clin. N Am., 22(4): 477-480, 2011.

Gloor P., “Contributions of electroencephalography and electrocorticography in the
neurosurgical treatment of the epilepsies,” Adv Neurol, 8:59–105, 1975.

Gotman J., “Automatic detection of seizures and spikes, ” Journal of Clinical
Neurophysiology, 16:130–140, 1999.

Gotman J., “Automatic recognition of epileptic seizures in the EEG,”
Electroencephalography and Clinical Neurophysiology, 54:530-540, 1982.

Groves D. A., Brown V. J., “Vagal nerve stimulation: A review of its applications and
potential mechanisms that mediate its clinical effects,” Neurosci Biobehav. Rev.,
29(3): 493-500, 2005.

Hansen P., “The truncated SVD as a method of regularization,” BIT Numerical
Mathematics, Vol. 27, Issue 4, 534-553, 1987.

He B., “Brain electrical source imaging: scalp laplacian mapping and cortical
imaging,” Crit. Rev. Biomed. Eng., vol. 27, pp. 149–188, 1999.

He B., Yao D., Lian J., and Wu D., “An Equivalent Current Source Model and
Laplacian Weighted Minimum Norm Current Estimates of Brain Electrical Activity,”
IEEE Trans. BME, Vol. 49, No. 4, 2002.

He B., Wang Y., and Wu D., “Estimating cortical potentials from scalp EEGs in a
realistically shaped inhomogeneous head model by means of the boundary element
method,” IEEE Trans. BME, Vol. 46, No. 10, 1999:713-719, 2001.

Hjorth B., “An on-line transformation of EEG scalp potentials into orthogonal source
derivations,” Electroencephalography and Clinical Neurophysiology, Vol.. 39,526-530,
1975.

Kester W., “Practical design techniques for sensor signal conditioning,” Prentice Hall
Press, 1999.

Koka K., Besio W., "Improvement of spatial selectivity and decrease of mutual
information of tri polar concentric ring electrodes," J. Neuroscience Methods, 165(2):
216-222, 2007.

Kringelbach M. L., Jenkinson N., Owen S. L. and Aziz T. Z., “Translational principles
of deep brain stimulation,” Nat. Rev. Neurosci., 8(8): 623-635, 2007.

111

Le J., Menon V., and Gevins A., “Local estimate of surface Laplacian derivation on a
realistically shaped scalp surface and its performance on noisy data,”
Electroencephalography and Clinical Neurophysiology., 92: 433-441, 1994.

Makeyev O., Liu X., Luna-Munguía H., Rogel-Salazar G., Mucio-Ramirez S., Liu
Y., Sun Y. L., Kay S. M. and Besio W. G., “Toward a noninvasive automatic seizure
control system in rats with transcranial focal stimulations via tripolar concentric ring
electrodes,” IEEE Trans. Neural Syst. Rehabil Eng., 20(4): 422-431, 2012.

Montgomery D.C., “Design and analysis of experiments, Wiley,” Hoboken, 2004.

Nunez P. L., Silberstein R. B., Cadiush P. J., Wijesinghe J., Westdorp A. F., and
Srinivasan R., “A theoretical and experimental study of high resolution EEG based on
surface Laplacians and cortical imaging,” Electroencephalography and Clinical
Neurophysiology vol. 90, pp. 40-57, 1994.

Ocak H., “Automatic detection of epileptic seizures in EEG using discrete wavelet
transform and approximate entropy,” Expert Systems with Applications, 36(2), 2027–
2036, 2009.

Oostenveld R., Praamstra P., “The five percent electrode system for high-resolution
EEG and ERP measurements,” Clinical Neurophysiol, 112(4): 713-719, 2001.

Parhi K., “VLSI Digital Signal Processing Systems: Design and Implementation,”
Wiley-Interscience Press, 1999.

Perrin F., Pernier J., Bertrand O. and Echallier J. F., “Spherical splines for scalp
potential and current density mapping,” Electroencephalography and Clinical
Neurophysiology 72: 184-1987, 1989.

Polat K., Gunes S., “Classification of epileptiform EEG using a hybrid system based
on decision tree classifier and fast Fourier transform,” Applied Mathematics and
Computation, 187(2), 1017–1026, 2007.

Quyen M. L. V., Martinerie J., Baulac M., Varela F., “Anticipating epileptic seizures
in real time by a non-linear analysis of similarity between EEG recordings,”
Neuroreport, Jul 13, 10(10):2149-55, 1999.

Stevanovic D., “Epilepsy - Histological, Electroencephalographic and
Psychological Aspects,” Intech Press, 2012.

Tandonnet C., Burle B., Hasbroucq T., Vidal F., “Spatial enhancement of EEG traces
by surface Laplacian estimation: comparison between local and global methods,” Clin.
Neurophysiol. , 116(1):18-24, 2005.

112

Texas Instruments, “Low-Noise, 8-Channel, 24-Bit Analog Front-End for Biopotential
Measurements,” 2012.

Tzallas A. T., Tsipouras M. G., Fotiadis D. I., “Epileptic seizure detection in EEGs
using time-frequency analysis,” IEEE Trans Inf Technol Biomed, 13(5), 703-710,
2009.

Urrestarazu E., Chander R., Dubeau F., Gotman J., “Interictal high-frequency
oscillations (100-500 Hz) in the intracerebral EEG of epileptic patients,” Brain.,
130:2354-66, 2007.

Utz K. S., Dimova V., Oppenländer K. and Kerkhoff G., “Eectrified minds:
transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation
(GVS) as methods of non-invasive brain stimulation in neuropsychology--a review of
current data and future implications,” Neuropsychologia., 48(10): 2789-2810, 2010.

Wang K., and Befleiter H., “Local polynomial estimate of surface Laplacian,” Brain
Topograpgy, Vol 12, Issue 1, 19-29, 1999.

Wilson S., Emerson R., “Spike detection: a review and comparison of
algorithms,” Clin Neurophysiol. 2002 Dec, 113(12):1873-81.

World Health Organization (WHO).
http://www.who.int/mediacentre/factsheets/fs999/en/. Accessed on May 14, 2013

Worrell G., “High-frequency oscillations recorded on scalp EEG,” Epilepsy Curr.,
12(2): 57-58, 2012.

	A Comparison of Tripolar Concentric Ring Electrodes to Disc Electrodes and an EEG Real-Time Seizure Detector Design
	Terms of Use
	Recommended Citation

	Microsoft Word - Dissertation_XiangLiu_onlineversion.doc

