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Abstract 1 

 2 

The distribution of mammals is determined by a suite of endogenous and exogenous factors. In 3 

territorial, polygynous species, like tigers (Panthera tigris), males endeavour to center their 4 

space-use around female territories, repelling competitors from these areas. Competition among 5 

males for females leads to increased mortality of both sexes and infanticide of unrelated cubs, 6 

which can lead to population declines. We hypothesized that increased territorial overlap among 7 

adult male tigers and elevated levels of inter and intra-sex competition would be manifest in 8 

populations with male-biased adult sex ratios (ASR). We also assessed whether inter-sex 9 

variation in adult survival or degree of habitat connectivity resulted in skewed ASR. We 10 

evaluated these hypotheses using camera trap data from three tiger populations occupying habitat 11 

patches with varying levels of connectivity and ASRs. Data were analyzed using multi-state 12 

occupancy models, where states were defined as habitat use by one or more male tigers, in sites 13 

with and without female use. As predicted, in populations with male-biased or even ASR, we 14 

found evidence for increased spatial overlap between male tigers, particularly around female 15 

territories. Given parity in adult survival, habitat fragmentation likely caused male-biased ASR. 16 

Our results suggest that the persistence of small tiger populations in habitat patches with male-17 

biased ASR may be especially influenced by behaviour-mediated endogenous demographic 18 

processes that are often overlooked by managers. In habitat fragments with severely skewed 19 

ASR, population recovery of territorial carnivores may require timely supplementation of 20 

individuals to compensate for population losses from intra-specific competition.  21 

Keywords: carnivores; intra-specific competition; fragmentation; multi-state occupancy; sex 22 

ratio; survival  23 

1. Introduction 24 
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Adult sex ratio (ASR, male: female) is an important demographic parameter that influences both 25 

individual behavior and population dynamics (Caswell, 2001; Haridas et al., 2014; Le Galliard et 26 

al., 2005; Székely et al., 2014). Skewed or uneven sex ratios in animal populations can occur for 27 

a variety of reasons, including sex differences in survival due to disproportionate costs of 28 

reproduction for females and sex-biased immigration or emigration by males (Veran and 29 

Beissinger, 2009). It has been hypothesized that ASR in many species may also be an artifact of 30 

intrasexual competition, which can result in increased mortality or dispersal of the sex with 31 

higher frequency in a population (Clutton-Brock et al., 2002; López-Sepulcre et al., 2009). Male-32 

biased sex ratios may result in increased aggression by males towards females, resulting in a 33 

decline in their fecundity and survival with negative effects on population growth and 34 

persistence (Barrientos, 2015; Grayson et al., 2014; Le Galliard et al., 2005). 35 

In polygamous species, adult male territories often encompass the territories of multiple 36 

females. Skewed ASR’s have especially pronounced impact on the behavior and demography of 37 

carnivores—for example, intraspecific predation has been documented in at least 14 large 38 

carnivore species (Polis, 1981).  This typically involves infanticide or killing of younger and 39 

immature animals and cubs by adults, typically on account of territorial disputes, and has been 40 

shown to substantially reduce population size (Polis, 1981).  When first acquiring a female 41 

territory, adult male carnivores are known to seek out and kill non-related juveniles to increase 42 

their reproductive fitness (Barlow et al., 2009; Hrdy, 1979; Persson et al., 2003). Additive 43 

mortality from intraspecific competition and infanticide may be especially detrimental for small 44 

populations of several terrestrial carnivores that are already vulnerable to extinction (Chapron et 45 

al., 2008). 46 
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Large carnivores worldwide face high extinction risks, in part because of their extensive 47 

area requirements, habitat loss and real or perceived conflicts with humans (Ripple et al., 2014).  48 

Tiger (Panthera tigris) populations are especially at risk because of a lucrative illegal global 49 

trade in their pelts and other body parts -- as few as 3900 individuals may now exist in the wild 50 

(WWF 2016) and remnant populations are small -- there are now probably fewer than 20 51 

populations >50 individuals. While the risk of local extinction is primarily driven by illegal 52 

hunting and habitat loss and fragmentation, several endogenous factors may exacerbate 53 

extinction risks of small populations. For example, strong territorial behavior can aggravate the 54 

demographic issues of small and fractured populations. Intraspecific competition and aggression, 55 

especially in areas with male-biased ASR can increase the extinction risks of small populations 56 

(Barlow et al., 2009). Adult male tigers fiercely defend their territories from competing males to 57 

retain access to breeding females (Horev et al., 2012; Sunquist, 1981). If a dominant territorial 58 

male is displaced by a rival, the outcome is often infanticide of the former’s cubs by the later 59 

(Barlow et al., 2009; Smith and McDougal, 1991); this enables females to become receptive 60 

mates more quickly to the new dominant male. The harem size of male tigers and degree to 61 

which breeding males are able to maintain stable territory sizes can profoundly impact 62 

population dynamics and extinction rates (Horev et al., 2012). 63 

Several aspects of the social behavior of tigers, including a polygynous mating system, 64 

territoriality and dispersal, are relevant to demography, behavior and space-use. Female tigers 65 

select territories to secure access to adequate resources to protect and raise young (e.g., sufficient 66 

prey, cover and water), and males compete for territorial dominance of one or more female 67 

territories (Goodrich et al., 2008; Smith, 1993; Smith and McDougal, 1991; Sunquist, 1981). In 68 

South Asia, male tiger territory size is usually >100 km2, while females maintain territories 69 
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between 10-30 km2 (Sunquist, 1981). Dispersal is also typically male-biased: adult females 70 

tolerate their female offspring establishing territories in close proximity to their own, but male 71 

offspring are driven away. Young males in search of new territories often disperse over large 72 

distances and commonly experience aggressive interactions with other males (Reddy et al., 2016; 73 

Smith, 1993). Although published information is sparse, ASR (Males:Females) between 1:2 and 74 

1:3 have generally been reported from South Asia (Majumder et al., 2017; Sunquist, 1981). 75 

Some studies in India,  however, have revealed that densities and sex ratios of adult tigers can 76 

vary widely (Sadhu et al., 2017), and may even be male-biased (Chanchani et al., 2014a).  77 

Considering the social and population biology of tigers raise several questions relevant to 78 

tiger spatial ecology, especially in fragmented landscapes with small populations. Foremost is 79 

whether there is a high potential for intraspecific competition, infanticide and antagonism among 80 

tigers due to high levels of habitat use (i.e., site occupancy) by multiple male tigers, with and 81 

without female tigers. Second, does variation in ASR help understand patterns of fine-scale 82 

habitat use by male tigers, such that we might expect higher potential intraspecific competition in 83 

local populations with male-biased ASR? Lastly, can inter-site variations in ASR for tiger 84 

populations be attributed to sex-biased emigration, limited habitat connectivity, or to differences 85 

in sex-specific adult survival rates?  86 

To evaluate these hypotheses, we analyze an extensive capture-recapture dataset for a 87 

tiger population in the Dudhwa Tiger Reserve (DTR) – a 1,200 km2 protected area within the 88 

Central Terai Landscape (CTL) in North India.  DTR consists of three disjoint protected areas 89 

(subsequently referred to as, ‘sites’). Sites are characterized by strong gradients in tiger density, 90 

habitat connectivity and variation in ASR—ranging from highly connectivity, high density and 91 

female-biased ASR—to isolated, low density and male-biased ASR (Chanchani, 2016). Given 92 
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the polygynous mating-system in tigers, sites with an even sex ratio, or those with more adult 93 

males than females were deemed as having male-biased ASR. We tested the null hypothesis that 94 

the probability of habitat use (fine-scale occupancy) by one or more male tigers would be 95 

similar, regardless of a site’s ASR.  Alternatively, we had two general predictions about the fine-96 

scale space-use by male tigers in sites with male-biased ASR. First, we predicted lower overall 97 

male habitat use, i.e., extensive habitat areas that are distant from female territories will not used 98 

by male tigers  (hypothesis 1 in Table 1). Second, we predicted high competition among males to 99 

secure access to female territories would be manifest in the following space-use patterns: (a) high 100 

male-use of tigers in locations with no female use (specifically along the margins of female 101 

territories; hypotheses 2 and 4, Table 1); and (b) high probability of multiple rather than single 102 

male-use in locations with female-use (hypotheses 3 and 5, Table 1). This is expected because 103 

harem sizes are smaller in areas with male-biased ASR, and multiple males are thus expected to 104 

compete intensively for access to each female (Table 1). Finally, to investigate the factors 105 

contributing to male-biased ASR in sites with limited connectivity, we also assessed if male 106 

distribution was affected by inter-sex differences in movement probabilities (stemming from 107 

differences in dispersal behavior and habitat fragmentation). When adult survival is similar for 108 

both sexes, or when female survival > male survival -- male-biased ASR in populations can be 109 

an artifact of high rates of female emigration, and/or differential male immigration from 110 

surrounding populations (Smith, 1993). 111 

 112 

 113 

 114 

 115 
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 116 

2. Materials and Methods 117 

 118 
 119 
2.1 Description of study area 120 

Dudhwa Tiger Reserve is located in the Terai-Duar savannas and grasslands ecoregion that spans 121 

areas of Nepal, India, Bhutan and Bangladesh (Olson et al., 1998; Fig. 1). DTR is comprised of 122 

Dudhwa National Park (~700 km2), Katerniaghat Wildlife Sanctuary (WLS; ~450 km2) and 123 

Kishanpur WLS (~200 km2), established in 1977, 1975 and 1972 respectively. DTR’s most 124 

productive wildlife habitats, grasslands and wetlands, comprise approximately 18% of the overall 125 

area. Other habitats include dry deciduous Sal (Shorea robusta) forests, and mixed-dry deciduous 126 

forests and teak (Tectonia grandis) plantations. Within India, the last remnant patches of the once-127 

extensive grassland-wetland mosaics that characterize the CTL are now restricted to small areas in 128 

and around DTR. The reserve's management has undergone drastic changes over the past 150 129 

years. Through the 19th century and until about 1960, large forest tracts were exclusive hunting 130 

blocks for India's colonial administrators and Indian royalty. Other areas were intensively managed 131 

to supply high-grade sal (Shorea robusta) timber (Strahorn, 2009). 132 

The three protected areas (PAs) of DTR vary in their degree of connectedness with other 133 

tiger habitats in India and Nepal. Kishanpur Wildlife Sanctuary is embedded within a larger tiger 134 

habitat patch (~1400 km2 Pilibhit forest complex in India) and connected with Shuklaphanta 135 

Wildlife Sanctuary in Nepal, via the Sharda River corridor. Katerniaghat WLS is connected to the 136 

968 km2 Bardia National Park via the 40 km long Khata corridor (along the Karnali River). 137 

Connectivity between Dudhwa National Park and Laljhari and Basanta community forests in Nepal 138 

has been severely degraded due to land use change and expanding human settlements in recent 139 

decades (Chanchani et al., 2014b; Joshi et al., 2016; Kanagaraj et al., 2013). Finally, tiger density 140 
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and ASR in DTR’s three PA’s vary extensively. The highest tiger density (4.66 and 4.92 tigers/ 141 

100 km2) and most female-biased ASR (adult males = 29% of population) were recorded from 142 

Kishanpur WLS in 2013 (Chanchani et al., 2014a; Table 2). In contrast, tiger densities were lower 143 

in Katerniaghat WLS (4.72 and 2.22 tigers/100 km2, (61% and 33% males in 2012 and 2013 144 

respectively) and Dudhwa National Park (1.05 and 1.89  tigers/100 km2, 58% and 47% males in 145 

2012 and 2013) (Jhala et al. 2015; Chanchani 2016; Table 2). There is negligible uncertainty 146 

associated with adult sex-ratios because estimates come from a near-census of the target 147 

populations (Appendix A). 148 

2.2 Camera Trap Sampling 149 

Between November 2011 and June 2013, we conducted extensive camera-trap surveys to 150 

assess the status of tigers in the CTL (Fig. 1). We used a grid-based sampling design and 151 

positioned pairs of cameras at intervals of approximately 2 km within tiger habitats. Camera traps 152 

were placed along forest trails or water courses to maximize detection probability. These surveys 153 

were completed in ≤ 60 days to meet the demographic closure assumption of occupancy and 154 

capture recapture models (Karanth et al., 2002). At each location, cameras were operated from 14-155 

56 days. Overall, 304 locations were sampled with camera traps from November 2011- May 2012, 156 

and 380 locations were sampled from November - June 2013 (Table 2).  157 

 158 

2.3 Data Processing, Model Formulation and Analysis 159 

To evaluate our a priori hypotheses, we fit multi-state occupancy models to our camera 160 

trap data (Nichols et al., 2007). Camera trapping data have been traditionally analyzed in a mark-161 

recapture framework to estimate demographic parameters (such as abundance and survival), but 162 

recent extensions of these methods allow estimates of patch occupancy and species co-occurrence 163 
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(Nichols et al., 2007; O’Connell and Bailey, 2011). We apply multi-state occupancy models to 164 

test hypotheses about tiger distribution in the context of variable habitat connectivity (Johnsingh 165 

et al., 2004; Kanagaraj et al., 2013; Wikramanayake et al., 2004) and ASR within habitat patches 166 

in our study area.  167 

Photo-captured adult tigers were individually identified from photos by three independent 168 

observers and by using pattern recognition software (Hiby et al., 2009). The sex of all tigers was 169 

discernible from the photos which allowed us to assign habitat-use states by sex and individual. We 170 

defined a sampling occasion as a 14-day period corresponding to the duration over which tiger 171 

spray scent (used for territorial marking) remains detectable (Smith et al., 1989). At each camera 172 

trap location and on every sampling occasion, male tiger captures were assigned to one of five 173 

habitat-use states. These states indicated probability of use of locations by single (𝜓) or multiple 174 

(𝜓′) male tigers, in the context of female use (presence/absence) (f; Table 1). Tiger habitat use 175 

states were defined as: State 1, no male use (1 − 𝜓 − 𝜓′); State 2, location use by a single male 176 

and no female use (𝜓 × (1 − 𝑓)); State 3, location use by single male, and any female (𝜓 × 𝑓); 177 

State 4, use of location by multiple males and no female use (𝜓′ × (1 − 𝑓)); and State 5, use by 178 

multiple males, and female use (𝜓′ ×  𝑓). Notations in parentheses are mathematical probability 179 

statements uniquely identifying each state. Multi-state occupancy models allow for state 180 

uncertainty. We accounted for non-detection of male tigers by estimating misclassification 181 

probabilities – for example, we might record the presence of a male tiger during a 14-day occasion 182 

(observe state 2) even though females were also present (true state 3); the probability of this 183 

misclassification is p_3_2 (Fig. 2). We estimated model parameters using a hierarchical Bayesian 184 

multi-state occupancy model (Kery and Schaub, 2012; Royle and Dorazio, 2008). The true (latent) 185 

state of each location (trap station), z, can take on state values equal to 1, 2, 3, 4 or 5, 186 
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corresponding to the five habitat use states. Latent occurrence, z, is modeled by estimating 𝛺𝑖, the 187 

state vector describing the probability that site i is in one of the five states. The observation process 188 

describes how the true state z is linked with the observations, yij , the observed states of tiger habitat 189 

use at site i and occasion j. The conditional relationship between yij and z is described by a 190 

categorical distribution with the θz, representing the observation matrix (Fig. 2).  The elements of 191 

the observation matrix are the probabilities of observing tiger use in each of the five states. 192 

Diagonal elements are the probabilities of correct classification and off-diagonals elements are the 193 

probabilities of misclassification. The probabilities in each row of the observation matrix sum to 1. 194 

Detection probabilities were allowed to vary among survey occasions (2 week-long periods).  195 

Because sex-specific fine-scale habitat use by tigers was unknown, we specified vague 196 

logit normal priors for 𝜓 and  𝜓′ (Fig. 2). The prior for f was modeled using a beta distribution 197 

prior, implying a uniform probability between 0 and 1. We used Dirchlet priors to describe the 198 

distribution of elements within observation array rows (p,n_k: p1_k,, p2_k,  p3_k, p4_k, and p5k), where n 199 

represents the true state of a site and k represents the observed state. The Dirchlet distribution 200 

satisfies the requirement that the elements of each row of the observation array sum to 1 (Hobbs 201 

and Hooten, 2015; Kery and Schaub, 2012).  We fit our Bayesian model using Markov chain 202 

Monte Carlo (MCMC) algorithms implemented in program JAGS (Plummer, 2003) linked to R (R 203 

Development Core Team). We separately analyzed data for three PA’s in DTR in each of the two 204 

survey years, with the exception of Dudhwa National Park, (2012), where the survey period was 205 

short (14 days). Each data-set was fit using three chains (to assess parameter convergence), each 206 

with 100,000 MCMC iterations, and a burn-in value of 10,000.  207 

 208 

2.4 Model Support and Evaluation 209 
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To assess departures from similarity for posterior distributions of estimated parameters 210 

and model support, we used a one-sided test based on Bayesian p values. Specifically, to test 211 

whether a given prediction was supported — for example, that probability of multiple-male 212 

tigers using a location would be higher at sites with male-biased ASR (𝜓’site 2  × fsite2) than in sites 213 

with female-biased ASR (𝜓' site 1 × fsite1) — we derived:  214 

 215 

∑ ((𝑛.𝑚𝑐𝑚𝑐
𝑖=1 ψ’site2 ×  fsite2) - (ψ’site1 × fsite1))>0/ n.mcmc, 216 

 217 

where n.mcmc is the number of MCMC iterations. If the posterior distributions were exactly the 218 

same, we expect a value of 0.5 (i.e., given any value from (𝜓′ × (f))site2  compared to (𝜓′ ×(f))site1  219 

, 50% will be greater). Values >0.5 indicate support for the hypothesis. In a scenario where all 220 

samples in (𝜓′ × (f))site2  > (𝜓′ × (f))site1  , we expected a Bayesian p value of 1.   221 

We assessed model fit via a posterior predictive check where simulated data sets for each 222 

site/year are compared with the original data sets (Gelman and Hill, 2007). We examined 223 

whether the probabilities of the observed data were more extreme relative to the simulated data. 224 

Posterior predictive checks revealed no evidence of lack of fit because test statistics based on the 225 

observed data were not more extreme than test statistics calculated from the simulated data 226 

(Appendix B).  227 

 228 

2.5 Estimating Survival  229 

We used Cormack-Jolly-Seber (CJS) models to estimate apparent annual survival rates for 230 

adult tigers (Lebreton et al., 1992).  We refer to ‘apparent’ survival because mortality cannot be 231 

discriminated from permanent emigration and survival for at least one year (Karanth et al., 2006). 232 
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Data on tiger survival were available from a four-year (2010-2014) capture-recapture data set. To 233 

assemble capture histories for open population models, we used data from two separate sources. 234 

Data for 2012 and 2013 came from our camera trap studies. For the years 2010 and 2014, we 235 

identified individual tigers from published photo databases of individual tigers captured in DTR 236 

(Jhala et al., 2015, 2011). We separately estimated probabilities of apparent survival (Φ) and 237 

recapture probabilities (p) for the three PA’s allowing for Φ and p to be constant, vary by sex or 238 

year, or both.  239 

 240 

 241 

3. Results 242 
  243 
 Over the two-year study period, with a cumulative sampling effort of 18,643 trap-nights, 244 

we photo-captured 62 unique adult tigers (>2 years in age). Of these, 29 (47%) were female and 33 245 

(53%) male (Table 2). We were unable to estimate multi-state occurrence parameters for Dudhwa 246 

National Park in 2012 because a large numbers of locations only had one sampling occasion (14 247 

days).  The relative proportions of tiger records in each of the five states varied across our study 248 

sites.  249 

 We generally found that habitat use in the five different states varied within and among 250 

sites (Figure 3). Notably, the probability habitat went unused by male tigers (State 1; (1- 𝜓 −  𝜓′)) 251 

was as high as 0.65 (medians) at Katerniaghat WLS and 0.56 (median) at Dudhwa NP. The lowest 252 

probability of habitat being unused by male tigers occurred at the site with the highest female-253 

biased sex ratio and habitat connectivity (0.24, median, Kishanpur WLS). As such, we did not find 254 

support for the null hypothesis that habitat use by male tigers would be similar in sites with and 255 

without male-biased ASR (Table 3) Interestingly, the probability of habitat use by a single male 256 
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tiger and no female tigers (State 2; (𝜓 × (1-f)) was fairly similar; parameter uncertainty was 257 

relatively large and thus difficult to provide clear evidence of any differences.  258 

Given a tiger population occurs in relatively good habitat with the necessary resources and 259 

stable territories and social dynamics, we would generally expect that most habitat use could be 260 

described as State 3 (𝜓 × f), a single male tiger with one or more females present. As such, it is 261 

interesting that we found the highest median probabilities of habitat use in State 3 were only 0.38 262 

and 0.4, occurring at Kishapur WLS. However, these probabilities are still higher than those from 263 

the other sites, which had lower habitat connectivity and higher male-biased/even ASR, thus 264 

supporting our hypothesis.. 265 

We found empirical support of potential intraspecific competition, infanticide, and 266 

antagonism among tigers with relatively high habitat use by multiple male tigers with females 267 

(State 5; (𝜓′ ×(f))) or without females (State 4; 𝜓′ ×(1-f)). The probability of a location being in 268 

state 4 or 5 ranged across sites from 0.03 to 0.2 (medians). Furthermore, model estimates also 269 

indicated support for our hypotheses about increased potential for intraspecific competition in sites 270 

with male-biased/even ASR. Median estimates of habitat use in state 4 were 1.5-2 times higher in 271 

sites with male-biased/even ASR, than in Kishanpur, a site with a female-biased ASR (Table 3; 272 

Fig. 3). However, we note that ASR was male-biased in Katerniaghat WLS in 2012 but female-273 

biased in 2013. In general, probabilities of fine-scale habitat use by multiple male tigers and 274 

females (State 5 (𝜓′ ×(f))), appeared to be generally low and similar across sites, regardless of 275 

ASR, suggesting that dominant males may be highly effective in warding off territorial intrusions 276 

by rivals. However, parameter uncertainty makes it difficult to statistically differentiate possible 277 

differences.   278 

 279 
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3.1 Survival Estimates 280 

Apparent survival for adult male and female tigers were similar in the three sites, 281 

suggesting that differential survival of adult male and female tigers is unlikely to be the key factor 282 

underlying variation in ASR in these sites. Estimates of male and female survival were very similar 283 

in two of our three study sites (Fig. 4).  Point estimates of female survival was highest in 284 

Kishanpur WLS (Φ=0.85, SE=0.06) and were 10-15% lower in our two other study sites with 285 

lower habitat connectivity. However, the confidence intervals overlapped across sites providing no 286 

clear statistical evidence of a difference.  Estimates of male survival were similar in all three sites 287 

(Φ=0.65).  Overall, models with sex-specific differences in survival were weakly supported 288 

relative to other models that assumed constant survival probabilities for males and females. 289 

(Appendix C).  290 

 291 
4. Discussion 292 

 293 
 Our study casts light on how space use of a territorial carnivore is influenced by the species 294 

territorial behavior and intra-specific interactions.  By modeling shared space use by tigers at point 295 

locations (camera trap stations), we are also able to investigate how  heterogeneity in species 296 

occurrence may also be influenced by endogenous factors, in addition exogenous variables (for 297 

example abundance, vegetation attributes, and human presence) that are typically used to explain 298 

species occurrence (Barber-Meyer et al., 2013; Sunarto et al., 2012). We highlight three patterns in 299 

inter-site variations in fine-scale habitat use (ψ) that appear to be linked to territorial behaviour. 300 

First, large areas of suitable habitat may not be used by male tigers, likely because these areas are 301 

not used by females. Second, in the populations we surveyed, only a relatively small proportion of 302 

sites was associated with the socially stable state 3 (use by female and only a single male). Lastly, 303 

the finding that a non-negligible amount of habitat is used by multiple males (regardless of female 304 
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use) suggests potentially unstable social dynamics, in which male behavior may disrupt potential 305 

population growth.  This could arise from infanticide and associated inter-sex aggression, as well 306 

as intra-sex competition to secure mates and increase harem sizes.  307 

 Our analyses also suggest that these inter-site variations in the probability of shared space 308 

use by male tigers may be attributed to, at least in part, by two inter-related factors: ASR and 309 

degree of habitat connectivity or isolation. In the following sections, we (a) interpret our results 310 

about linkages between ASR variation and probability of shared space use; (b) examine how 311 

habitat connectivity and isolation may have some influence on ASR and population structure, and 312 

thereby indirectly influence space use; (c) delve into potential demographic consequences of 313 

shared space use (and ensuing intraspecific competition) on small populations of territorial 314 

carnivores; and (d) elucidate the relevance of our study for conservation and management of tiger  315 

populations in fragmented landscapes. First, we found that the considerable variation in co-316 

occurrence of tigers may be an artifact of adult sex ratios. A previous study noted that expansive 317 

areas of habitat within some PAs (Dudhwa and Katerniaghat in our study) were associated with 318 

low tiger use (Chanchani et al., 2016). Our results confirm that these sites had even or near-even 319 

sex ratios (as many males as females) and were associated with higher probability of use at camera 320 

trap locations (areas of the PA) with no use by male tigers, than a site with female-biased ASR. A 321 

related finding was that sites with males per female, appear to be have lower likelihood of stable 322 

space use (one male per female territory), and instead found some evidence for 'heaping' of 323 

overlapping male territories in areas used by females, which potentially depresses population 324 

growth rates.  325 

  326 

 (b) 327 
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Second, we evaluate support for our prediction that the degree of overlapping space use in 328 

populations would be indirectly influenced by the degree of habitat connectivity or isolation. Our 329 

working hypothesis was that sites with poor connectivity would likely be associated with male-330 

biased sex ratios. This prediction appears to be supported: Dudhwa and Katerniaghat both have 331 

poorer habitat connectivity with other tiger occupied areas than Kishanpur, and were also 332 

associated with even adult sex ratios, and associated patterns of fine-scale space use. A previous 333 

study established that habitat connectivity influences tiger occupancy (Chanchani et al., 2016). 334 

While we have not explicitly modeled the relationship between habitat connectivity and ASR in 335 

this study, we think it may be a critical factor driving variation in adult sex ratios in our study area. 336 

Our finding of similar probabilities of apparent survival for adult male and female tigers in the 337 

three study sites, lends support to the idea that habitat fragmentation, rather than variation in adult 338 

survival, may underlie skew in ASR and associated patterns of habitat use. While habitat 339 

fragmentation has previously been associated with population declines and loss of genetic 340 

heterozygosity (Mondol, et al. 2013), the ‘indirect’ impacts of fragmentation on population 341 

demography and individual fitness have received less attention, even though is recognize that the 342 

omission of spatial structure can undermine analysis of population vulnerability (Gilpin, 1987).343 

 Third, we speculate that increased territorial overlap may have local effects on demography 344 

and population structure. Specifically, we suggest that this will be on account of two factors. First,  345 

male tigers in sites with male-biased ASR are likely to compete intensely for access to female 346 

territories. Second, intensified competition between males may have deleterious effects on survival 347 

of males, females and juveniles, with negative feedbacks on population growth. Reproductive 348 

success, cub survival and population growth may be depressed for several reasons.  Models of 349 

equilibrium occupancy for territorial species predict that mate finding difficulties may lead to Allee 350 
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effects (Stephens et al. 1999).  For tigers, we are referring specifically to depensation—a decrease 351 

in the size of the breeding population leading to reduced reproduction and lower population growth 352 

rates (Lande, 1987).  353 

We believe small tiger populations may exist below the ecological carrying capacity of 354 

these sites as a consequence of a skewed ASR, among other factors .Recent population declines 355 

populations in recent decades  may have been accelerated by poor recruitment, survival and low 356 

immigration of individuals, a result of  poaching, habitat fragmentation and intraspecific 357 

competition (Barlow et al., 2009; Carter et al., 2015).  Further, Many tiger populations in habitat 358 

fragments across the species range remain vulnerable to extinction because isolation reduces 359 

genetic heterozygosity (Thatte et al., 2017). Extant habitats may only support small tiger 360 

populations with  elevated risk of  patch -level extinction ( Noon and McKelvey, 1996; Thapa et 361 

all., 2017).  362 

  We think it plausible that these and other factors have depressed tiger populations in some 363 

PAs within our study area.  estimated apparent survival probabilities for adult male and female 364 

tigers were ~ 10 -15% lower in fragmented sites with male-biased ASR (Dudhwa and Katerniaght) 365 

relative to larger and better connected habitats including Nagarhole in Southern India and Huai 366 

Kha Khaeng Sanctuary in Thailand and PAs in Central and Western India (Duangchantrasiri et 367 

al., 2016; Karanth et al., 2006; Majumder et al., 2017; Sadhu et al., 2017). 368 

We attribute small population sizes and low survival rates primarily to poaching, in part, a 369 

consequence of the proximity of our sites to the international border with Nepal (Chanchani et al., 370 

2016). However, when poaching is combined with skewed, male-biased ASR, the increased 371 

intraspecific competition and Allee effects have a synergistic negative effect on the populations 372 

(Lande, 1998; Stephens and Sutherland, 1999). In the CTL, we speculate that male-biased ASR 373 
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may result in reduced probabilities of encountering mates may be a consequence of both low 374 

population density and increased competition among males to gain access to females (Rankin et 375 

al., 2011; Wadekind, 2012).   Difficulty in encountering potential mates may be compounded by 376 

the occasional emigration of female tigers from protected areas. We documented two female tigers 377 

raising cubs in sugarcane plantations away from primary habitats in PAs and Reserve Forests. Such 378 

local movements, whether temporary or permanent, may be a response to the likelihood of 379 

infanticide from a novel, but dominant male  (Ebensperger, 1998; Singh et al., 2014; Swenson, 380 

2003).  Further mortality of sub-dominant (and often younger males) that arise from territorial 381 

conflicts with established, dominant males may result in high rates of male mortality. One study in 382 

Nepal ascribed 50% of mortality of young male tigers due to intra-sexual aggression (Smith, 383 

1993), even though the ASR in Chitwan National Park (Nepal)  was ~ 1:3.  Finally, we note that 384 

recovery may be a slow process in tiger populations with low adult survival (e.g., Katerniaghat and 385 

Dudhwa),  which are extinction-prone even if significant measures are implemented to increase 386 

prey abundance Chapron et al (2008). 387 

We are aware that overlapping space use by tigers, as inferred from camera trap data, is an 388 

indirect measure of the potential for intra-specific conflict and does not provide probabilities or 389 

frequencies of occurrence of actual conflict. Further, our results highlight that variation in ASR are  390 

temporally dynamic, and that skewed ASR may be reversed by changing population vital rates 391 

(related to Birth, Immigration, Death, Emigration. In our study, we recorded transitions in ASR 392 

from male-biased to female-biased in one site, Katerniaghat WLS. Such switches may be triggered 393 

by sex biased mortality or immigration/ emigration of a few individuals from or into small 394 

populations (Robinson et al., 2008). We speculate that such reversals in ASR are more likely to 395 

occur over shorter time intervals in sites with good habitat connectivity, than those with poor 396 
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connectivity. While our sample size is small (n = 3 sites), we are comparing these sites in the 397 

context of known variability (ASR, habitat connectivity) and based on our findings, there is 398 

generally consistent evidence supporting our hypothesis of possible influence of ASR and 399 

connectivity among our three study sites. We expect that this study will encourage others to look 400 

beyond population dynamics at behavioral and other endogenous factors that may profoundly 401 

influence tiger space and demography, which will help add support to or refine ideas brought up in 402 

this manuscript. 403 

4.1 Conservation and Management Implications 404 

The maintenance of viable carnivore metapopulations requires that functional habitat 405 

connectivity be maintained and that all available habitats, regardless of PA designation, be 406 

effectively protected (Wikramanayake et al., 2011)   In many areas across the extant range of large 407 

carnivores , the lack of effective protection from poaching has led to large habitat tracts that 408 

support very low tiger densities (Hilborn et al., 2006; Liberg et al., 2012). For example, in the 409 

Terai, extensive tracts of suitable habitat in Nepal, only 1-2 kilometers away from the northern 410 

boundary of DNP, face high hunting pressure of both tigers and their prey. As a result, they rarely 411 

sustain breeding females whose offspring may disperse into Dudhwa NP's productive riparian 412 

habitats (Wikramanayake et al., 2010; Chanchani et al., 2014(b)). However, our finding of male-413 

biased ASR in DNP, despite lower male survival rates of resident males, suggests that males may 414 

occasionally immigrate into the park from surrounding areas, as is observed in many large 415 

carnivores (Sweanor et al., 2000).  416 

However, rapid land use change is severely degrading wildlife corridors in human 417 

dominated landscapes, and may severely limit the movement of large mammals through the matrix 418 

(Joshi et al., 2016). The maintenance and restoration of vital wildlife corridors often have little 419 
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political support, especially if they involve land acquisition or displacement of people. In the 420 

absence of formal corridors, we are increasingly documenting the use of the surrounding 421 

agricultural matrix by large carnivores (Athreya et al., 2013; Joshi et al., 2013). If policies can be 422 

developed to minimize human-wildlife conflict and increase human tolerance of tigers (and prey) 423 

in the agricultural matrix, it may be possible to compensate to some extent for inadequate extent of 424 

protected area and lack of law enforcement (Gosling, 2003).  Our study suggests that in the CTL 425 

there may be less than the assumed three adult females per male in many tiger populations, even in 426 

areas with good habitat connectivity. Similar skews in sex ratios may also exist among other large 427 

carnivore species (Palomares et al., 2012). The persistence of small populations of territorial  428 

species requires protecting and increasing prey populations and maintaining high adult survival 429 

rates (Chapron et al., 2008; Karanth and Stith, 1999). The success of these and other conservation 430 

measures requires not only upon political will, but also societal involvement in, and support for 431 

conservation (Oldekop et al., 2015; Rastogi et al., 2012). Finally, our study underscores that 432 

poaching and habitat fragmentation often result in male-biased ASR with the potential to 433 

accelerate rates of population decline. Managers must therefore routinely monitor sex-ratios, 434 

reproduction and survival, in addition to population size.  435 

Finally, for carnivore populations with severely skewed ASR and low abundance,  436 

recovery and persistence may well depend on the timely implementation of mitigation measures 437 

such as the supplementation of breeding-age individuals to compensate for skewed sex-ratios 438 

(Lambertucci et al., 2013; Reddy et al., 2016). With population declines in various areas, this is 439 

increasingly being viewed as an essential and viable strategy to achieve tiger population recovery 440 

across the species range ( Sankar et al., 2010; Gray et al., 2017; Kolipaka et al., 2017; Harihar et 441 

al., 2018),  442 
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Figures 

Figure 1. Map of the Central Terai Landscape depicting female home range locations, and state-

wise ‘photo-capture locations of male tigers (in  2013).  The approximate 'home ranges' of 

females tigers (defined by minimum convex polygons around capture locations) are delineated in 

beige. 
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Figure 2 
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Figure 2. Bayesian, multi state occupancy model used to test hypothesis about habitat use and 

intra-specific completion among male tigers. The five true (latent) habitat use states are State 1: 

no male use; State 2: location use by single male tiger and no female use; State 3: habitat use by 

a single male tiger and female use; State 4: habitat use by multiple male tigers and no female use; 

State 5: habitat use by multiple male tigers, and female use. The observation matrix (θ) details 

the observation process associated the detection of tigers in each of the five habitat use states at site 

(i) and sampling occasion (j). The diagonal elements are the probabilities of correct classification 

and the all off-diagonals are probabilities of mis-classification of a state.  The probabilities in each 

row of the matrix sum to 1. All pij are vectors of detection parameters that vary by time. 
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Figure 3: Posterior distributions for parameters linked to the five habitat use states for three PAs in 

DTR (a) Dudhwa NP,(b) Katerniaghat WLS and (c) Kishanpur WLS) over the two study-years 

(white: 2012 and grey: 2013). These PAs span gradients of habitat connectivity and ASR (male- 

biased to female-biased).  The width of the strip in these plots is proportional to the density. Tiger 

silhouettes at the top of the figure indicate habitat use states, i.e., use by 0, 1 or >1 males, with (1 or 

more) and without female use. 
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Figure 4. Model averaged estimates of apparent survival probability of male and female tigers in 

DTR's three protected areas over a 4-year period (2010-2014).  
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Tables 

 

Table 1. Five occupancy states for male tigers and associated patterns of habitat-use, and specific predictions in relation to ASR. 

Occupancy state for male tigers Probability of fine-scale 

habitat use by male tigers 

Specific hypotheses 

 
Category 1 Category 2    

State 1 

(1-Ψ-Ψ’)  

No male use  High (+ +)  Low (- -)  High probability that large areas of available habitat may go unused 

by male tigers in sites with male-biased ASR, because males hone in 

on female territories.  

State 2  

Ψ(1-f)  

Use by single male 

tiger and no female 

use 

High (+)  Low (-)  A few dominant males are expected to secure and restrict access to 

females in sites with male-biased ASR. Thus, higher likelihood of 

male tiger use outside of female territories is expected.  

State 3 

Ψ(f)  

Use by single male 

tiger and female use 

Low (-)  High (+)  In sites with male-biased ASR, males with compete fiercely for 

access to females. In sites with female-biased ASR, there is a higher 

probability that every male tiger in the population will have access to 

one or more female(s).  

State 4 

Ψ’(1-f)  

Use by multiple 

male tigers and no 

female use 

High (+ +)  Low (-)  High probability of shared habitat use by multiple male tigers in sites 

with male-biased ASR because of increased intraspecific competition 

for mates. Shared use of sites expected in the vicinity of female 

home-range boundaries.  

State 5 

Ψ’(f)  

Use by multiple 

male tigers and 

female use 

High (+)  Low (-)  High probability of shared habitat use by multiple male tigers in sites 

with male-biased ASR because of increased intraspecific competition 

for mates. Territorial behavior may reduce shared use of locations, 

relative to sites with no female use.  

Footnotes:  

Category 1 sites (i.e. Dudhwa National Park) have the following characteristics: poor habitat connectivity, male-biased/ even ASR and lower adult survival rates 

(expected) 

Category 2 sites (i.e. Kishanpur Wildlife Sanctuary) have the following characteristics: good habitat connectivity, female-biased ASR and higher adult survival 

rates. 
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Table 2. Details of camera trap effort in DTR's three protected areas. pmix is the estimated proportion of males in the population based 

on a spatially-explicit, capture-recapture model. DNP and Katerniaghat have male-biased/even sex ratios and relatively poor habitat 

connectivity. Kishanpur has female-biased sex ratios and good habitat connectivity. 

Site Year 

No. 

of 

Came

ras 

Effort 

(trap 

nights) 

No. of 

unique 

individuals 

detected 

Total 

captures 

No. of 

females 

No. of 

female 

captures 

No. of 

males 

No. of male 

captures 

Males/ 

female
a 

Estimated 

tiger 

density/100k

m2 b 

 

DNP 2012 159 2626 14 126 5 42 9 84 1.80 2.05 (0.38)  

DNP 2013 202 4861 14 274 7 92 7 182 1.00 1.89 (0.34)  

Katerniagha

t 2012 82 2190 18 88 7 35 11 53 1.57 4.72 (0.92) 

 

Katerniagha

t 2013 111 3663 17 207 11 106 7 101 0.636 2.22 (0.40) 

 

Kishanpur 2012 63 2648 16 264 11 119 8 145 0.727 4.66 (0.67)  

Kishanpur 2013 67 2655 15 254 9 151 6 103 0.667 4.92 (0.88)  

TOTALS  684 18643 94 1213 50 545 48 668    

 

Footnootes: 

 
a Adult sex ratio, calculated as the number of males/ female. Measures of uncertainty are no included because mark-recapture analyses 

indicated we censused the population. 
b Density estimates from Bayesian spatially capture-recapture analyses reported in Chanchani et al., 2014 (a). 
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Table 3. Bayesian p values to test hypotheses about differences in fine scale occupancy of tigers 

across gradients of adult sex ratios and habitat connectivity. When distributions were exactly the 

same, the Bayesian p values would be 0.5. Values >0.5 indicate that our hypothesis (indicated by 

> sign) was supported, while values <0.5 signified our hypotheses was not supported. 

Probabilities near 1 indicate the strongest support possible. 

 

 
aDudhwa National Park (DNP) had even/ male-biased sex ratios and poor habitat connectivity.  

Kishanpur Wildlife Sanctuary (KPUR) had female-biased adult sex ratios and good habitat 

connectivity. Adult sex ratios in Katerniaghat Wildlife sanctuary (KGHAT) fluctuated between 

strongly male-biased and female-biased over the study period this site is connected to a PA in 

Nepal via a forest corridor. MBI - male-biased and isolated; FBC - female-biased and well 

connected; MBSC - male-biased, connected via a single corridor. 
bNote that hypotheses about State 3 are that higher male-biased ASR’s and lower connectivity 

will lead to lower habitat use in State 3 (Table 1), thus low Bayesian p-values are predicted. 

 

 

 

 

 

Year State  

Hypothesis about occupancya & Bayesian p values 

DNP>KPUR 

( MBI>FBC) 

KGHAT>KPUR 

( MBSC>FBC) 

DNP>KGHAT 

( MBI>MBSC) 

2012 1 (1-Ψ- Ψ')  0.99  
2013 1 (1-Ψ- Ψ') 0.95 1.00 0.03 

2012 2 Ψ (1-f)  0.45  
2013 2  Ψ (1-f) 0.31 0.21 0.55 

2012 3  Ψ (f)b  0.01  
2013 3  Ψ (f) b 0.01 0.01 0.43 

2012 4  Ψ' (1-f)  0.66  
2013 4  Ψ' (1-f) 0.97 0.79 0.92 

2012 5  Ψ' (f)  0.28  
2013 5  Ψ' (f) 0.67 0.40 0.74 
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Appendix A: Estimating abundance and p* (probability that an individual is captured atleast 

once) 

Appendix B. Posterior predictive check plots showing distributions the of relative frequency of 

various values in a simulated data set, generated from the model. 

Appendix C: Table of model selection results for open-population (CJS) models to estimate 

apparent survival for tigers. 
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