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Abstract: The Centre for Maritime Research and Experimentation
conducted a geoacoustic inverse experiment in the Mediterranean Sea
in the summer of 2012. Among the objectives was to employ an autono-
mous underwater vehicle to collect acoustic data to invert for properties
of the seafloor. Inversion results for the compression wave speed in the
bottom and the source spectrum of the R/V Alliance during a close
approach to the bottom moored vehicle are presented. The estimated
wave speed was 1529 m/s (r ¼ 10). The source spectrum of the Alliance
was estimated across more than six octaves of frequency.

PACS numbers: 43.28.We, 43.30.Pc [WS]
Date Received: March 14, 2014 Date Accepted: October 8, 2014

1. Introduction

The objective of the inverse problem presented here was to simultaneously estimate
properties of the acoustic source and the environment, using data collected by a single
hydrophone. The acoustic source spectrum of a surface ship passing near a bottom
moored autonomous underwater vehicle (AUV) was estimated across 19 contiguous
1/3 octave bands spanning more than 6 octaves of frequency. In addition, the compres-
sion wave speed and attenuation in marine sediments were estimated, where the bot-
tom was parameterized as a fluid acoustic half-space with attenuation, for a total of 21
unknown parameters. Data subjected to inversion included geolocation information for
the source and receiver, water depth, local sound speed profile, and acoustic pressure
observed by the receiver hydrophone. Parameter estimates were calculated using a for-
ward model based on the passive sonar equation and an objective function that was
minimized using an evolutionary algorithm. Whereas characterization of the acoustic
waveguide is the central objective of most geoacoustic inverse problems, the approach

a)Author to whom correspondence should be addressed.
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described here also sought to estimate the power spectrum radiated by a passing ship
by including the influence of the shallow water waveguide on signal attenuation.

2. Experiment

Data for this study were collected during the Glider Acoustic Sensing of Sediments
2012 (GLASS’12) experiment conducted in the Mediterranean Sea at the location
shown in Fig. 1. The acoustic acquisition system included the acoustic array, signal
conditioning, digital recording, and data storage integrated into a mission module that
was installed in the vehicle. The system collected 8 channels of digital data at 100 kHz
with 24-bit precision from an array with vertical and tetrahedral apertures mounted to
the nose of the vehicle. Results reported here were based on analysis of data from a
single hydrophone channel.

Ship radiated noise data were collected during a close pass of the Alliance [see
Fig. 1(b)], with the AUV bottom moored in 18.5 m of water using a purpose built test
stand that maintained the vehicle about 1.5 m above the seafloor. The water column
was characterized by a typical downward refracting summer sound speed profile as
illustrated in Fig. 2(a). The data set used for the inversion began with the closest point
of approach (CPA) and extended for less than 2 min as the Alliance proceeded south at
5 m/s. Figure 2(b) illustrates received level (RL) data in the 250 Hz band during this
event. (Also shown is the output of the forward model using parameter estimates gen-
erated by the inversion as will be discussed in Sec. 4.) Acoustic data representing the
ambient and self-noise spectrum observed when the Alliance was loitering at a distance
of 4 km were also used [see Fig. 2(c)]. The elevated noise levels in the 200 and 400 Hz
bands were due to the power supply used for the hydrophone array.

Received acoustic band levels were estimated from data records that were 5 s
in length with adjacent records overlapping by 50%. Each 5 s observation was decom-
posed into an ensemble of short buffers (e.g., 0.328 s) from which acoustic power spec-
tra were computed. Received power spectra (Df � 3 Hz) were integrated across the
standard 1/3 octave bands ranging from 125 Hz to 8.0 kHz. Nine frequency bins were
used to compute the 125 Hz band level. Other band levels were computed from com-
mensurately larger numbers of frequency bins. Use of proportional band levels pro-
vided elements of the data vector with more uniform acoustic power in regions where
the spectrum level varied inversely with frequency, as confirmed by inspection of the
ambient noise spectrum of Fig. 2(c).

Fig. 1. GLASS’12 experiment site (a) approximately 10 km off the Italian coast near Viareggio, and (b) during
a close pass by the R/V Alliance. Tick marks on ship’s track provided at 2 min intervals.
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Due to a moderately active population of shrimp, the median value of each
1/3 octave band level was used as the best estimate, the median being a more robust
estimator than the mean when contending with noise from individual snapping shrimp.
The spread of each observation was represented by the interquartile range, a measure
of the statistical dispersion equal to the difference between the upper and lower quar-
tiles. Thus, the inversion data were comprised of the location of the AUV, the Alliance
track [Fig. 1(b)], the local sound speed profile [Fig. 2(a)], the noise radiated by
Alliance as range from the AUV increased from 75 to 550 m [Fig. 2(b)], and the ambi-
ent noise observed in the absence of the Alliance [Fig. 2(c)].

3. Inversion method

3.1 Forward model

The inverse method developed for this study treated the acoustic source, the Alliance,
as an unknown subject of the parameter estimation problem, in addition to certain
properties of the seabed sediments. The acoustic source was modeled as a point source
located at a depth of 3 m, corresponding to the propeller depth. A forward model pre-
dicted the received acoustic pressure in 1/3 octave band levels as a function of the
unknown source spectrum, the ambient noise spectrum and the sediment, represented
by an acoustic half-space.

An acoustic half-space parameterization was selected as a useful approxima-
tion of the seafloor despite the potential for significant variations in penetration depth
across the inversion bandwidth. While the inversion bandwidth spanned more than 6
octaves, ship radiated acoustic power decreased sharply in frequency bands below
250 Hz as shown in Fig. 2(c). As a result, the signal observed in these bands faded
quickly beneath the ambient noise floor as range to the Alliance increased, limiting the
useful information available at the lowest frequencies and greatest penetration depths.
In addition, geophysical data collected at the site were largely consistent with the sim-
plified parameterization including two cores of 1 m depth and a sub-bottom profile
that confirmed the absence of strong reflectors in the first several meters of the seafloor
sediments.1 Thus, sediment property estimates represent an average value in the first
few meters beneath the seafloor, where available geophysical data confirmed the ab-
sence of strong inhomogeneity.

The sound speed profile, source-receiver positions, and sediment density were
known quantities, the latter from the geophysical core data. Thus, the forward model

Fig. 2. GLASS’12 sea trial data: (a) Sound speed profile, (b) RL in 250 Hz 1/3 octave band including forward
model result for reported parameter estimates, and (c) RL observed at CPA. Error bars delineate the interquar-
tile range of acoustic observations.
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for the acoustic pressure amplitude Po observed at frequency f was represented by the
Alliance source spectrum Ps convolved with the magnitude of the acoustic transfer
function H between the source and receiver separated by the horizontal distance r, to-
gether with the combined ambient and self-noise pressure amplitude Pa,

P2
oðf ; rÞ ¼ P2

s ðf ÞH2ðf ; r; cb; abÞ þ P2
aðf Þ; (1)

where the compression wave speed and attenuation coefficient in the acoustic half-
space were cb and ab, respectively. Dependence of the acoustic transfer function H on
sediment density and sound speed profile in the water is implicitly assumed in Eq. (1).
Frequency dependent, acoustic transfer functions were computed using the normal
mode model KrakenC (Ref. 2) with the upper phase speed limit set to 105 m/s to
account for propagation over shorter ranges and steeper angles. The magnitudes of the
acoustic transfer functions were estimated as the average value for ten discrete frequen-
cies linearly distributed over each 1/3 octave band.

3.2 Nonlinear optimization

An objective function was defined to guide the directed search for the set of model pa-
rameters that best explained the observed data. The data on which the objective func-
tion operated were the acoustic pressure amplitudes in contiguous 1/3 octave bands
ranging from 125 Hz to 8.0 kHz observed at 42 source-receiver separations between 75
and 550 m for a total of N ¼ 798 observations. The error associated with the nth
frequency-distance pair in the [N� 1] error vector e was

e n; mð Þ ¼ ln
Pm n; mð Þ

Po nð Þ

� �
; (2)

where Pm was the acoustic pressure predicted by the forward model for parameter set
m. An objective function based on this error vector was defined as

/ðmÞ ¼ ððw � eðmÞÞTðw � eðmÞÞÞ1=2; (3)

with T the transpose operator. The weight vector w was used to provide observations
with greater statistical spread with proportionally less influence over the objective func-
tion value. In particular, each observation was weighted by the inverse of its interquar-
tile range such that

w ¼ N
XN

n¼1

Pon

qn

Po1

q1
;

Po2

q2
;

Po3

q3
;…;

PoN

qN

� �T

; (4)

where qn was the interquartile range of the nth observation. Thus, the inverse problem
was reduced to a directed search for the set of model parameters m that minimized the
difference between the acoustic observations Po and the prediction of the forward
model PmðmÞ as measured by the objective function /ðmÞ.

A global search strategy based on the differential evolution3 algorithm was
used to minimize Eq. (3). The optimization was initialized with a population comprised
of 10 individuals for each unknown parameter for a total of 210 members. The optimi-
zation was started with the initial population randomly (uniform) distributed through-
out the bounded parameter search space M. Source level bounds were centered on the
spectrum observed at CPA plus an estimate for the transmission loss in a spherically
divergent wave field. The upper and lower bounds spanned 620 dB about this refer-
ence value, plus an additional factor for the interquartile range of data observed at
CPA. Parameter bounds for sound speed in the bottom were 1000 to 2000 m/s. The
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attenuation coefficient a was bounded at 0 to 1, where the frequency dependent attenu-
ation a was modeled as

a ¼ af

103 dB=m; (5)

with f the frequency in Hz.

3.3 Parameter value and uncertainty estimates

Parameter values and their uncertainties were expressed using a posteriori probability
distributions derived from a maximum likelihood approach4 where the a priori U and
a posteriori G probability distributions were related through a likelihood function L as

GðmÞ ¼ LðmÞUðmÞ; (6)

and the one-dimensional marginal a posteriori probability density function for the ith
parameter GiðmiÞ was the integral of the M dimensional probability density with
respect to all parameters mj for j ¼ 1; 2; :::; M and i 6¼ j to yield

GiðmiÞ ¼
ð
� � �
ð

GðmÞ dm1 � � � dmi�1 dmiþ1 � � � dmM : (7)

Numerical methods to estimate the integrals of Eq. (7) include importance
sampling where the integrand is non-uniformly sampled to concentrate the computa-
tional effort to regions that contribute most to the integral. The differential evolution
algorithm implements importance sampling using a generating distribution to select the
trial model vectors. While the generating distribution is unknown and evolves over the
course of the optimization, a large number of candidate solutions are generated from
the model parameter space M. As a result, the model vectors m and objective function
values / computed during the optimization process can be used to estimate the inte-
grals of Eq. (7).5

An estimate for the a posteriori probability of the kth model vector based on
the Np model vectors in the population at the conclusion of the optimization process is

Ĝ mkð Þ ¼
L mkð ÞU mkð Þ
XNp

j¼1

L mjð ÞU mjð Þ

; (8)

with the a priori probabilities U uniformly distributed between the bounds defined for
each element in the model parameter vector m. Thus, estimation of the a posteriori
probabilities was effectively maximum likelihood within defined parameter bounds.

The marginal probability distribution for obtaining the particular value K for
the ith parameter mi in the model vector is

ĜiðKÞ ¼
XNp

k¼1

ĜðmkÞ dðmk; i � KÞ: (9)

Since the likelihood function L is usually related to the objective function /ðmÞ
through an exponential, an empirical estimate of the likelihood function is

L mð Þ ¼ exp
� / mð Þ � / moð Þ
� �

T

� �
; (10)

where mo is the estimated parameter vector for the optimum value of the objective
function and T is a constant that is particular to each optimization. The parameter T
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was set to the average of the 50 best objective functions obtained during the optimiza-
tion minus the best objective function value, a value that experience has shown to be a
good choice,6

T ¼ 1
50

X50

n¼1

/ mnð Þ � / moð Þ: (11)

4. Result

Inversion results for the source spectrum and sediment compression wave speed are
provided as Figs. 3(a) and 3(b), respectively. Parameter estimates are presented as the
mean plus and minus one standard deviation (l6r) for the marginal a posteriori prob-
ability distributions. The source spectrum estimate included the reference value deter-
mined by assuming a spherically divergent acoustic field between the Alliance and the
bottom moored AUV while at CPA. The relatively large uncertainty in the source level
estimated for the 200 Hz band (r ¼ 8:5 dB) was due to electronic noise in the data re-
cording system [see Fig. 2(c)] and the correspondingly low signal-to-noise ratio in this
band. The standard deviations of the estimated source level distributions were other-
wise on the order of two to three decibels.

The estimated compression wave speed is illustrated in Fig. 3(b), where the
bottom was modeled as a homogeneous, acoustic half-space. Also shown in the figure
are the compression wave speeds measured in 2 cores taken within 500 m of each other
and the AUV deployment location. The compression wave speed estimate of 1529 m/s
(r ¼ 10) agrees well with the mean value of 1510 m/s (r ¼ 15) that was measured in
the cores. The inversion did not converge on an estimate for attenuation in the sedi-
ment; its influence on the value of the objective function being negligible as verified by
a marginal sensitivity analysis performed using a synthetic data set. In short, the trans-
mission path length was insufficient (e.g., �30 water depths) to accumulate a detectable
level of attenuation due to absorption as consideration of Eq. (5) suggests. Finally,
Fig. 2(b) provides a comparison of the RLs observed in the 250 Hz band to those cal-
culated by the forward model (KrakenC) using the set of model parameters estimated
by the inversion, where good agreement was found.

Fig. 3. GLASS’12 inversion results (a) R/V Alliance source spectrum estimate, and (b) sediment compression
wave speed. Parameter estimates presented as the mean plus and minus one standard deviation (l6r) for the a
posteriori probability distributions.
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5. Conclusion

Acoustic data collected by a hydrophone mounted to a bottom moored AUV were
successfully inverted for the broadband source spectrum of a passing ship and the com-
pression wave speed in the seafloor sediments. Formulation of the inverse problem was
atypical in that it cast Alliance’s source level in each of the 1/3 octave bands as inde-
pendent and unknown parameters subject to estimation simultaneously with the com-
pression wave speed in the sediment. A maximum likelihood approach was used to
estimate the a posteriori probability distributions for each of the model parameters.
The standard deviations associated with these probability distributions were presented
where good agreement was found between the measured and estimated compression
wave speed. Inverse problems of this type are not only of interest where the use of a
ship of opportunity is concerned, but also when an estimate of the acoustic source
spectrum radiated by that ship is desired.
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